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Abstract 

The orientation of a sounding rocket with respect to ground stations or GPS 

satellites is often highly variable and sometimes unpredictable due to its trajectory and 

spin.  Therefore, a sounding rocket antenna should have a radiation pattern that is nearly 

omnidirectional to ensure sufficient signal strength in any direction, and the antennas 

should be circularly polarized to minimize polarization loss.  Microstrip antennas are well 

suited to meet these requirements because they are low profile, lightweight, durable, and 

can be conformed to nonplanar geometries.  Additionally, circularly polarization can be 

achieved using simple geometries and small size.  This dissertation presents the theory 

and equations required to design common microstrip antennas.  Circularly polarized 

telemetry and GPS antennas are designed for sounding rocket payloads with 6, 8, and 14-

inch diameters, and their performance is compared with linearly polarized antennas.  A 

circularly polarized antenna for a 14-inch diameter rocket payload is fabricated and its 

measured performance compared with theoretical predictions. 
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