

LPC2148's RTOS

Bruce Chhuon
4/10/07

What is a Real Time Operating System?

● A Real Time Operating System (RTOS)
manages hardware and software resources.

● Deterministic - guarantees task completion at a
set deadline.

● Real time operations are possible through
multitasking. Task are broken into threads and
scheduled to be processed based on priority

RTOS Importance

● An high priority signal such as one from an ABS
system of an car should not be queued.

● Critical processes should be addressed
immediately.

● A slow response may result in Death.

eCos

● Currently running on the LPC2148
● Drawbacks:

– Can't shut off superfluous functions
– C++ dependencies
– Crazy build system
– Overhead

FreeRTOS

● Design to be:
– Simple
– Portable
– Concise

● Primarily written in C.
● Few assembler functions
● Thumb mode supported
● Has been ported to the LPC2148
● Run both task and co-routines.

Task

● Real time application can be structure as a set
of independent tasks.

● Tasks have their own stack.
● The scheduler is responsible for starting, stop,

swapping in, and swapping out tasks.
● The scheduler is responsible for managing the

processor context:
– Registers values
– Stack contents

Task have 4 states

● Running State
● Task is utilising the processor

● Ready State
● Task able to run

● Block State
● Task waiting on an event

● Suspended State
● Task are unavailable for scheduling

Tasks Priorities

● The range of priorities is configurable 0 -
desired amount

● Modify configMAX_PRIORITIES in
FreeRTOSConfig.h

● Higher value means more RAM usage
● Higher priorities task run before lower priority

task

Implementing a Task

● Task creation is done by xTaskCreate()
● Task deletion is done by vTaskDelete()
● Functions that implement a task should return

void and take void pointers as its only
parameter.

Template for a function
implementing a task

 void vATaskFunction(void *pvParameters)
 {
 for(;;)
 {
 -- Task application code here. --
 }
 }

The Idle Task

● Idle tasks are created automatically when the
scheduler is started

● Responsible for freeing memory by removing
deleted task

● Idle task should not be starve out of time

Co-routines

● Co-routine share a stack
● Co-routines are prioritized and scheduled with

respect to other co-routines.
● Co-routine are implemented through a set of

macros
● Restrictions on where the API call can be made

Co-routine States

● Running State
● Task is utilising the processor

● Ready State
● Task able to run

● Block State
● Task waiting on an event

● Suspended State
● May exist in future releases

Co-routine Priorities

● The range of priorities is configurable 0 -
desired amount

● Modify configMAX_PRIORITIES in
FreeRTOSConfig.h

● Higher value means more RAM usage
● Tasks have priority over co-routine

Implementing a Co-routine

● Create by calling xCoRoutineCreate()
● Must start with crSTART()
● Must end with crEND()
● Usually implemented as a continuous loop
● A co-routine function can create other co-

routines
● Functions which implement a co-routine should

return void, have xCoRoutineHandle and an
index as parameters.

Template for functions implementing
a co-routine

void vACoRoutineFunction(xCoRoutineHandle xHandle,
unsigned portBASE_TYPE uxIndex)
 {
 crSTART(xHandle);

 for(;;)
 {
 -- Co-routine application code here. --
 }

 crEND();
 }

Mixing Task and Co-routines

● Co-routine should be schedule when idle.
● Co-routines are executed when there are no

tasks queued to be in the running state.
● Co-routines consume less memory, but are

more restrictive and more complex than a task.

Limitation and Restrictions

● When a co-routine is blocked, its stack is not
protected.

● Variable on the stack can changed
● To overcome this problem the variable should

be declared as static
● API function that call to block co-routines can

only be made from the co-routine itself.
● Blocking calls can't be made from switch

statements

Memory Usage for STR7x ARM7
Port

● Kernel
– 4 KB of ROM

● Scheduler
– 236 bytes

● Queue
– 76 bytes + queue storage area

● Task
– 64 bytes + stack size

Community

● Embedded Systems Discussion Groups
● http://www.embeddedrelated.com/groups/lpc2000/1.php

● Yahoo groups
● http://tech.groups.yahoo.com/group/lpc2000/

● Source Forge
● http://sourceforge.net/forum/forum.php?forum_id=382005

