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Part 2: Identification and Significance of the Innovation

Summary: Quality vehicle health management systems are critical to the successful operation of modern sounding
rockets, and other unmanned vehicles. Unfortunately, the software of these systems tends to be complex and rigid
and thus expensive and failure-prone, especially given the several real-time constraints of rocketry. We propose to
develop the “Magic Bullet” Adaptive Intelligent Vehicle Health Management (AIVHM) System, a novel adaptive
control system for sounding rockets based on the technologies of treatment learning and Bayes classification. This
system will be able to derive an appropriate control strategy for a vehicle in the event of partial system failure. Our
relationship with the Portland State Aerospace Society (PSAS) provides us with a unique opportunity to evaluate and
deploy these methods at extremely low cost and with extremely low risk, for simulation and even actual flight testing.
The PSAS LV2 rocket has a navigation and control system architecture ideally suited to experimentation with the
proposed system. As senior technical advisory to PSAS, our organization is well-positioned to prototype and deploy
the Magic Bullet AIVHMs technology with PSAS. We expect this deployment to result in the information needed to
scale the technology to larger, more complex, more demanding avionics applications.

Figure 1: This Trident
missile shows the conse-
quences of complex, in-
adaptive avionics software.

As widely-available hardware grows more capable and sophisticated, the systems engi-
neering problem changes: the hard part today is to build software controllers for these
systems. Even a small rocket, for example, tends to have a large amount of complex and
error-prone code for navigation and guidance. Methods from machine learning and data
mining can significantly reduce this systems engineering cost.

We propose to construct an AIVHM system suitable for use in unmanned vehicles.
An AIVHMS can improve the odds of safely completing missions by managing control
strategies during operation. We believe that the costs of building an AIVHMS can be
significantly reduced by using automatic data miners to learn vehicle health policies. We
expect our proposed AIVHMS to be ultra-fast, accurate, and adaptive enough to solve
complex VHM problems in real-time.

Most data miners run too slowly to be successful in real-time AIVHM applications.
Our Magic Bullet AIVHM represents a new kind ofreal-time anytime data miner. Un-
like standard learners,Magic Bullet rapidly, incrementally, and continuously improves
its theories as new data arrives. That is,Magic Bullet can offer recommendations on
how to improve vehicle health at any time, and can find better recommendations as time
progresses.Magic Bullet is a treatment learner[20] that reports theleast that can be
done tomostimprove the current vehicle situation. Treatment learners are especially useful in time-critical situations,
when operators only have time to perform a limited number of actions.

The current generation of treatment learners are too slow for real-time AIVHM. However, using Bayesian methods,
it may be possible to speed up treatment learning 100-fold. Treatment learning will then become the basis of a novel,
easy-to-build IVHM technology. The alternative toMagic Bullet is a purpose-built (hence expensive) IVHM that deals
poorly with entirely unforeseen circumstances.Magic Bullet, on the other hand, will be able to handle the unforeseen
by learning new solutions on-the-spot.

Our plan is to experiment with theMagic Bullet AIVHMS on an existing ultra-low-cost sounding rocket (see§2.1).
In Phase I of the proposed work, we will construct software simulations of a target sounding rocket, implement the
Magic Bullet AIVHM learner for the rocket (see§2.2), and evaluateMagic Bullet in simulation. In Phase II, we will
test our software on the actual target vehicle. Error conditions deemed recoverable in simulation will be deliberately
induced in the rocket during flight. It is anticipated that some launch vehicles will be damaged beyond repair during
this process. However, the extremely low parts cost of the target vehicle (less than $5,000) makes this sort of testing a
reasonable proposition.
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2.1 The LV2 Rocket

Figure 2: PSAS LV2 Avionics Ar-
chitecture

Our test rocket is the Portland State Aerospace Society (PSAS) LV2 rocket.
Amateur rocket groups such as PSAS have a rich history of significant contri-
butions to science and engineering. Indeed, most national space programs can
trace their roots back to small, active groups of amateurs working on rocketry
during the early part of the 20th century [30]. Over its 5-year history, the Port-
land State Aerospace Society has established a reputation as one of the world’s
foremost amateur rocketry groups. The group is the first to have the honor of
being featured as “IEEE Innovators”, in a recent IEEE advertising campaign.
The open-hardware, open-software, open-development model used by the team
has led to widespread replication of its work. PSAS was the featured exhibitor
at the Usenix 2003 Annual Technical Conference.

LV2 is the4th generation PSAS sounding rocket and is a non-trivial combination of avionics hardware and soft-
ware, including a six-axis inertial measurement unit, on-board GPS, digital telemetry down link, and amateur TV
display as well as more traditional avionics systems. Primary flight sequencing is autonomous, with several levels of
backup. The rocket flies at speeds up to Mach 2.4, with a design altitude of 45,000 feet (14 miles): it is controlled by
an on-board Debian GNU/Linux flight computer [24].

LV2’s active guidance system is rapidly evolving. The current design has lateral thrusters for roll control and
oxidizer injection thrust vector controllers for pitch and yaw control. The design includes a bell-shaped chamber
below the nozzle of LV2 containing four oxidizer injectors. Injecting oxidizers into that chamber creates a secondary
burn that produces off-axis unbalanced thrust.

The avionics architecture of the PSAS system is shown in Figure 2. A central PC-104 flight computer with an
AMD Elan x86 processor communicates with a number of peripheral boards via the high-reliability Controller Area
Network (CAN) serial bus. The peripheral boards contain a Microchip PIC micro-controller together with dedicated
hardware functionality such as inertial measurement, ignition, and video telemetry. A large amount of rocket and
ground software (valued at about $1M in commercial development—see§6.3) controls the avionics hardware.

A key feature of Figure 2 is the separation of the controller (a Debian/GNU LINUX system) from the rest of the
rocket. The narrow interface achieved by this separation makes it straightforward to construct a reasonably detailed
launch vehicle simulator for this craft, permitting more extensive and extreme experimentation with new ideas such as
Magic Bullet without risking even the extremely inexpensive hardware used by the PSAS team.

During the last flight of LV2, the fin canister separated from the airframe around Mach 1 due to a defect introduced
in a last-minute configuration change. Nonetheless, the rocket flew onwards for several seconds before becoming
unstable and crashing. For a nearly stable vehicle such as LV2, it is quite possible that active guidance by an on-board
AIVHMS could have taken the rocket to a recoverable flight configuration. Even better than saving the vehicle, it is
possible that the mission could have been completed in this circumstance.

There are several ways an AIVHMS can use active guidance to compensate for in-flight emergencies in this system.
For example, a persistent steering error due to airframe failure might be resolved by placing the rocket in a spin using
the lateral thrusters, or by simply using the thrust vector controllers to counteract the error.

Our intent is to specify a set ofskeletal repair plans(e.g. spin rocket, inject oxidizers) with slots for parameter
settings (e.g. spin rate, which oxiders to use, rate of oxidizer injection). An AIVHMS would then have two tasks:
selecting which skeleton to apply and learning appropriate slot parameters.

For such on-board AIVHMS to be practical, the IVHM needs an ultra-fast real-time learning algorithm for skeleton
selection and parameter tuning. Our proposal is to usetreatment learning.
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2.2 Treatment Learning

outlook temp(oF) humidity windy? class
sunny 85 86 false none ✘
sunny 80 90 true none ✘
sunny 72 95 false none ✘

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots ✘
sunny 75 70 true lots ✘

overcast 83 88 false lots ✔
overcast 64 65 true lots ✔
overcast 72 90 true lots ✔
overcast 81 75 false lot ✔

Figure 3: A log of golf-playing behavior.

Treatment learning is a data mining method invented by one of us
(Menzies) using funds from NASA’s Office of Safety and Mission
Assurance1. Treatment learners find contrast sets that separate dif-
ferent outcomes [18, 20]. Unlike standard contrast set learners (e.g.
STUCCO [1]), treatment learners seekminimal treatments; i.e. the
smallestsets thatmostseparate outcomes. Treatment learners hence
have a potential advantage over standard learners for learning control
strategies, since the treatment learner will report the fewest changes
needed to improve the current situation.

Treatment learners build up their treatments by combiningpromis-
ing attribute ranges. A range is promising if itlifts the distribution
of outcomes; i.e. itselectsoutcomes we like andavoidsundesirable
outcomes. For example, consider the log of golf playing behavior
shown in Figure 3 that shows golf play over 14 weekends under vari-
ous weather conditions. Thebaselinegolf playing behavior comprises
playing lots of golf six times, some golf three times, and no golf eight
times; i.e.

5

14
· none+

3

14
· some+

6

14
· lots

where 5
14 , 3

14 , etc is theprobability of each class in the baseline (i.e. original) data set (denotedP (class | baseline)).
Suppose we know theutility of each class (i.e. how much we value each outcome) isnone= 2, some= 4, lots = 8.
We can then sum this baseline as

sum(baseline) =

P
(P (class| baseline) · Utility(class))P

Utility(class)
=

5
14

· 2 + 3
14

· 4 + 6
14

· 8

2 + 4 + 8
= 0.357 (1)

These scores model the domain-specific view of the relative merits of playing lots of golf. (The exact scores do
not matter too much, just as long as we normalize their sum as we have above.)

Consider the effects of applying the decision not to play golf on rainy or sunny days. In effect, this means “treating”
the data by selecting the ticked examples in Figure 3 whereoutlook = overcast. The “treatment”outlook =
overcast yields four examples with lots of golf played; i.e.

sum(outlook= overcast) =

P
(P (class| outlook= overcast) · Utility(class))P

Utility(class)
=

0
4

· 2 + 0
4

· 4 + 4
4

· 8

2 + 4 + 8
= 0.57 (2)

The lift can now be calculated: it is the ratio of the sum of the treatment to the sum of the baseline:

lift (outlook= overcast) =
sum(outlook= overcast)

sum(baseline)
=

0.57

0.357
= 1.6 (3)

In the language of treatment learning, promising attribute ranges are those that result in lifts greater than one; i.e.
mostimprovethe distributions of the outcomes when compared to the baseline. Treatments are formed by combining
these promising attribute ranges. The golfing data set is tiny: there is little to be gained there by considering complex
combinations. In fact, the best treatment for the golf example is a single attribute range:RX(outlook = overcast).

12000–2003, West Virginia University Initiatives
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Looking at Figure 3, is simple to see why this treatment is so effective:RX(outlook= overcast) appearsalwayswhen
lots of golf is played andneverotherwise.

Consider the golfing decision as a control problem. Treatment learning finds an accurate, simple decision method
(in this case, noting whetheroutlook= overcast) for a control output (in this case, whether to play golf).

Treatment learning can also learnminimal monitorsthat can alert the operator to hazardous conditions. For exam-
ple, by reversing the scores on our classes (tonone= 8, some= 4, lots = 2) and repeating the above analysis, we
find that whenoutlook= sunny, we decide to play less often than not. (This treatment selects the crossed examples in
Figure 3: 3don’t playsand 2plays).

Armed with the above results, we can now control our golfing. If golfing becomes a mission-critical operation,
then we can raise an alert whenoutlook= sunny. Faced with such a golf playing crisis, we can (say) select a vacation
location whereoutlook= overcast.

2.3 Adaptive IVHM and the Small Treatment Effect

Significantly, our treatments for the golfing problem in§2.2 were compact and simple, requiring only a few of the
available attributes. In particular, we only neededoutlook: the other attributes (temperature, humidity, windy) of
Figure 3 were essentially useless in helping to answer our question. Analogous results to thissmall-treatment effect
have been reported in other fields.2 In many cases, what happens in an entire system can be controlled by setting
values in a small critical region. Mathematically, this effect can be explained by considering the expected number of
decision points in a space of connected concepts [22].

The small-treatment effect is of vital importance to practical AIVHM. Standard data miners generate intricate
descriptions of the attribute ranges associated with different outcomes (e.g. J48 decision tree learner [31]). The more
complex the treatment, the more effort associated with executing a repair. Conversely, the simpler the treatment, the
faster it can be applied. Further, and more importantly for real-time controllers, smaller target concepts are often easier
and faster to find. For this reason, treatment learners are our preferred choice for AIVHM.

2.4 Applications of Treatment Learning to NASA

Treatment learning has already been applied, to non-real-time tasks in NASA applications. Feather and Menzies [10]
report experiments in the use of treatment learning to optimize requirements models for deep space missions. Cornford
and Feather’s DDP [2] tool allows users to sketch out mappings between requirements, risks, and mitigations. This
enables search for thecheapestmitigations: those thatmostreduce risks while achieving themostrequirements. For
humans, finding these mitigations can be overwhelmingly complicated. For example, one deep space mission analyzed
using DDP has 99 possible mitigation options, yielding299 ≈ 1030 mitigation strategies to consider. This space is
too large to explore thoroughly. For example, Figure 4(a) shows the results of 50,000 runs with DDP. In each run, a
random set of mitigations were selected. Note the huge range of possible costs and benefits.

The large space of mitigation strategies within DDP was constrained and improved using a treatment learner
that divided Figure 4(a) intopreferred(in the sense of lower costs and higher benefits) andundesiredregions. With
knowledge of that division, a treatment learner found a set of constraints that selected for the preferred outcomes while
avoiding the undesired regions. The resulting preferred treatments are shown in Figure 4(b). This space provides a
range of high-quality strategies from which a controller could select either randomly or according to optimization
criteria. Note that the variance in behavior was indeed greatlyreducedwhile decreasingmean costs andincreasing
mean benefits. Significantly, and as predicted by the small-treatment effect, treatment learning achieved this result
using only a small subset of the available risk mitigation options.

2Master-variablesin scheduling [4];prime-implicantsin model-based diagnosis [27], machine learning [26], and fault-tree analysis [17];min-
imal environmentsin the ATMS [5]; base controversial assumptionsof HT4 [19]; the smallfeature subset selectioneffect [16] and the related1R
effect [13].
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Figure 4: An application of treatment learning. Here, one dot is one project plan; i.e. one possible setting to the 99
risk mitigation options for a JPL deep space mission. X-axis= “cost” = sum of the cost of selected risk mitigations
(lower is better). Y-axis= “benefit”= requirements coverage, less the effects of risk (more is better)

2.5 Drawbacks of Treatment Learning

One disadvantage with the current generation of treatment learners is that they cannot update their own theories
when new data arrives.Anytimelearners can offer, at any time, some current best theory: this best theory improves
monotonically over time.

Another problem with current treatment learners is that they are too slow for real-time AIVHM. Our first practical
treatment learner, TAR2, found treatments by computing the lift of all combinations of1..Max promising attribute
ranges (whereMax was some user-defined parameters). Such a search is theoretically slow (O(2Max)). However, in
confirmation of the small-treatment effect, TAR2 found effective treatments using smallMax (Max ≤ 8) on its test
domains [21].

A later version, TAR3 [14], built and tested treatments fromN attribute ranges, whereN was chosen randomly
in the range1 ≤ N ≤ Max. Each treatment of sizeN was then filled in using attribute ranges selected in a random
fashion weighted using thelift distribution of the individual ranges. (TAR3 selected highlift ranges more often than
low lift ranges.) TAR3 ran much faster that TAR2 both in theory (O(Max)) and in practice, and found nearly the same
treatments as did the more exhaustive search of TAR2.

Even though TAR3 is faster than TAR2, it still takes seconds to runs. In order to make treatment learning fast
enough for real-time AIVHM, we need a treatment learner that is two orders of magnitude faster than TAR3. Further,
it should be an anytime algorithm. We call this ultra-fast anytime treatment learnerMagic Bullet.

2.6 Towards Better Treatment Learners

To build Magic Bullet, we will adapt ideas from other kinds of data miners. Of the many available data mining
techniques, our research led us to three approaches that we believed best suited to our domain:neural networks,
instance-based learners, andBayes classifiers.

The back-propagation of neural networks [25] incrementally adjusts the weights of the network in response to how
well the network predicts for system output. Hence, neural nets areanytimealgorithms. However, while a trained
neural net runs fast enough for real-time responses, training time can be too slow to allow for real-time adaption.

Instance-Based Learners (IBL) [3] have performance properties that directly contrast with those of neural nets.
Training is extremely fast in IBL: new examples are just inserted into then-dimensional space of all previous examples.
However, a trained IBL system can be extremely slow in classifying a new example, as it typically must examine all
previous examples in order to make a classification. Ak-th nearest neighbor system, for instance, must compute
the distance from the target example to every previous example in order to make a classification. While methods
for improving performance are known, they tend to be complex and do not entirely alleviate the classification speed
problem.

A promising approach to real-time anytime treatment learning is to handle treatment learning as an extension to

page 9 of 25



Uplift Systems, Inc. Proposal 04–E3.01–9377 Magic Bullet

attributes class
MAKE SIZE HIFI TYPE
BMW medium yes coupe
BMW small yes coupe
Benz small yes coupe
Ford small yes coupe

Honda small no coupe
Mitsubishi small yes coupe

Toyota large no coupe
Toyota small yes coupe
Benz large no SUV
Ford large no SUV

Mitsubishi medium no SUV
Toyota large no SUV

F =

8>>>>>>>>><>>>>>>>>>:

attributes class
MAKE coupe : SUV SIZE coupe : SUV HIFI coupe : SUV coupe : SUV

Mitsubishi 1 : 1 Small 6 :0a yes 6 :0b 8 : 4
Toyota 2 : 1 Medium 1 : 1 no 2 : 4
Benz 1 : 1 Large 1 : 3
BMW 2 : 0c

Ford 1 : 1
Honda 1 : 0d

9>>>>>>>>>=>>>>>>>>>;

P (Ei | Cj) =

8>>>>>>>>><>>>>>>>>>:

attributes class
MAKE coupe : SUV SIZE coupe : SUV HIFI coupe : SUV coupe SUV

Mitsubishi 2
9 : 2

5 Small 7
9 : 1

5 yes 7
9 : 1

5
9
13

5
13

Toyota 2
9 : 2

5 Medium 7
9 : 2

5 no 7
9 : 5

5
Benz 2

9 : 1
5 Large 2

9 : 4
5

BMW 3
9 : 1

5
Ford 2

9 : 2
5

Honda 2
9 : 1

5

9>>>>>>>>>=>>>>>>>>>;

Figure 5: A log of car types (left) and extracted statistics (right). Zero frequency entry (the cellsabcd in F ) would
make

∏
iP (Ei |H), and hence Equation 4, evaluate to zero. Standard practice when computingP (Ei |H) is thus to

add one to all frequency counts inF .

Bayes classifiers [7, 8]. ABayes classifiertunes past knowledge to new evidence using Bayes’ Theorem:

P (H |E) =
P (H)
P (E)

∏
i

P (Ei |H) (4)

That is, given fragments of evidenceEi and a prior probability for a classP (H), a posterior probabilityP (H |E) is
calculated for the hypothesis given the evidence. For example, suppose our task is to decide if amedium-sizedFord is
acoupeor anSUV. To solve this problem, a Bayes classifier imports examples ofcoupes andSUVs (Figure 5, left hand
side) to compute the frequenciesF of the attribute ranges in the different classes. Figure 5, right hand side, shows an
estimate forP (Ei |H) computed by dividing the frequency of an attribute range in a class by the frequency of that
class.

The likelihoodL of evidence belonging to some class is the product of the probability of that class times the
conditional probability of that evidence. Figure 5 shows thatP (SUV) = 5

13 ; P (MAKE = Ford |SUV) = 2
5 ; and

P (SIZE= medium|SUV) = 2
5 . HenceL(SUV|E) can be calculated and, in a similar manner,L(coupe|E)

L(SUV|E) =
2
5
· 2
5
· 5
13

= 0.0615385 L(coupe|E) =
2
9
· 2
9
· 9
13

= 0.011396 (5)

These are then normalized to probabilities as follows:

P (SUV) =
0.0615385

0.0615385 + 0.011396
= 84% P (coupe) =

0.011396
0.0615385 + 0.011396

= 16%

That is, it is more likely thatMAKE = Ford, SIZE= mediumis anSUVthan that it is acoupe.
Many studies (e.g. [11, 6]) have reported that, in many domains, this simple Bayes classification scheme exhibits

excellent performance compared to other learners. Bayes classifiers can be extended to numeric attributes using kernel
estimation methods. The default numeric kernel estimation is a simple gaussian [31]. Other, more sophisticated
methods are well-established [15, 9], but several studies report that even simple methods suffice for adapting Bayes
classifiers to numeric variables [6, 32].

The repeated success of such simple Bayesian methods surprises many researchers. Such classifiers are often
callednäıve [31], since they assume that the frequencies of different attributes are independent. In practice [33], the
absolute values of the classification probabilities computed by Bayes classifiers are often inaccurate. However, the
relative ranking of classification probabilities is adequate for the purposes of classification. For example, in the above
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example with medium-size Fords, a Bayes classifier might correctly conclude thatP (SUV) is greater thanP (coupe)
even if the precise numeric values forP (SUV) andP (coupe) are inaccurate.

We conjecture that a Bayes classifier can be extended to become a fast Bayesian treatment learner. Currently,
each time TAR2 or TAR3 builds a treatmentT it assess that treatment via a complete pass through the database of
examples to recalculate Equation 2. Note that the purpose of this pass is to count how many examples of which
particular class are selected by a treatment. An alternative, possibly much faster, method is toestimatethose counts
using Equation 5. Recall that Equation 5 returns the likelihood that a given example falls into a particular class.
The likelihoodL(class|T ) estimates the fraction of examples of classC selected from a database by treatmentT .
Multiplying L(class|T ) by the number of examples in the database therefore gives an estimator for the number of
examples of classC selected by the treatmentT : this estimate is exactly the value needed to compute treatment lift.
Such a Bayesian treatment learner should have several advantages, as listed below.

Achieves Real-Time Response:If L(class|T ) is indeed an adequate estimator for the counts used by Equation 2,
then candidate treatments can be assessedwithouta time-consuming pass through the database. Training such a
Bayes treatment learner is fast, since it only requires updating the frequency tables. Further, classification with
such a treatment learner is also fast, since there are only a few calculations required for each new example. A
Bayes treatment learner can thus achieve real-time response rates.

Handles Incomplete Information:An on-board AIVHMS should be able to make decisions even if some of the
sensors are inoperative. We note above in the car example that Bayesian methods can easily handle such missing
information. The above example (about medium-sized Fords) made no reference to one of the attributes in the
example set (presence or absence ofHIFI ). If the available evidence makes no comment on a certain attributeX
(e.g.,X = HIFI ), Bayes methods simply omitP (H |Ex) from the product term and adjustP (E) appropriately.
That is, the methods use only available evidence to tune the priors. (By contrast, many other classification
methods have a harder time adapting to missing data.)

Needs Little Memory:The inputs to a Bayes method are summarized in small frequency tables. This means that
multiple tables can be held in main memory at once. Because these frequency tables are small, it is possible to
maintain different frequency tables for different modes of operation. These modes may be pre-specified by the
mission profile (e.g. launch, booster separation, etc) or automatically learned (e.g. the above example in which
the fin canister is lost during the boost phase).

Achieves Anytime Inference:At any time, a Bayesian frequency table contains information on the examples seen
to date. As time progresses, more examples are seen: the frequency counts are more precise and the classification
accuracy improves. Better yet, if the rocket’s mode somehow changes and old examples become irrelevant, a
Bayes frequency table can automatically detect when it shouldswitchto a new mode and collect new frequency
counts. The trigger for such a switch is when previously stable distributions in its frequency tables start changing
significantly. Such a change might occur when, say, the rocket’s aerodynamics have changed due to airframe
failure. Note that just after such a mode change, the performance of the system will drop while new knowledge
is gained for the new mode. The learner is still anytime, however, since the best treatment for the new mode will
always be available. As more experience is gained with that mode, its treatment will get better.
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Part 3: Technical Objectives

Based on the above, several technical questions present themselves:

How Fast Is Fast Enough?The core technical question of this project is how to build an AIVHMS that is fast
enough for on-board real-time control. To answer this question, some domain modeling is required to define
numerous fault scenarios, their possible repairs, and the time required for those repairs.

Is Treatment Learning Fast Enough?Once we have established the performance requirements, we then need to
verify that small treatments can be found fast enough to support on-board in-flight adaptation. We also need to
insure that these treatments can be evaluated sufficiently quickly to guide real-time control.

Is Treatment Learning Adequate?We have some confidence that treatment learning will be useful for adaptive
IVHM. However, the effectiveness of our current treatment learners depends on the small-treatment effect (see§2.3).
We need to verify that complex devices like LV2 can be effectively controlled by setting a small number of pa-
rameters.

Can We Use Likelihood Estimators For Lift?Based on our analysis of Bayesian methods, we believe that using
likelihood estimators for lift will speed up the treatment learner without significantly impacting its effectiveness.

Can Likelihood Rank Treatments Accurately?A Bayesian treatment learner may suffer from thenäıveBayes clas-
sifier assumption, namely of independence between attributes. Our pre-experimental intuition is that the fortu-
itous results for näıve Bayes classifiers will also hold for Bayesian treatment learners: even if theabsolute value
of the lift predicted by Bayesian methods is wrong, therelative rankingsof the treatments will still be correct.
That is, our expectation is that an ultra-fast Bayesian treatment learner will be able to infer what is the best current
treatment, even if we are unable to predict the exact effects of that treatment.

Will Frequency Table Changes Indicate Mode Changes?Our Bayesian treatment learner will also need to recog-
nize mode changes in the rocket (e.g. a fin falling off) so it can start a new frequency table for the new mode.
Later on, the rocket might move back to an old mode of operation. If so, then it would be useful for the Bayesian
treatment learner to retrieve cached frequency tables for the old mode for reuse. To enable this, we need to verify
thatMagic Bullet can effectively switch from current modes to new modes as well switching from the current
mode back to old modes.
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Part 4: Work Plan

All the work for Phase I will occur in Portland, Oregon. For Phase I, the work breaks up into six tasks. Initially,
we will build the infrastructure needed to constructMagic Bullet, in three steps. We will (A) perform some domain
modeling to (B) design and build a flight simulator. This simulator, combined with a (C) control language for the LV2
hardware, will be used to experiment with theMagic Bullet AIVHMS.

We will constructMagic Bullet in two steps. We will (D) experiment with the Bayesian treatment learning using
standard public domain data sets, then (E) conduct experiments with that treatment learner using the simulator. Of
course, ongoing during the course of the project will be the need to (F) manage the project.

Note that deliverables of part (E), theMagic Bullet and associated report, will be the end deliverables for this
project.

The relationship between the proposed technical tasks and the technical questions are shown in Figure 6. Each
task, its deliverables, and its due date is described in Figure 7. No tasks involving direct integration of theMagic
Bullet AIVHMS and the LV2 avionics hardware and software are part of the Phase I plan. These activities will be
deferred to Phase II, as discussed in Part 6.3 of this proposal.

Technical Tasks(defined in Figure 7)
Technical Questions
(defined in Part 2.6)

A) Dom.
Model

B) Simu-
lator

C) Language D) Treatment
Learning

E) Simu-
lations

1. How fast is fast enough? ✔ ✔ ✔

2. Treatment learning is fast
enough?

✔ ✔ ✔

3. Treatment learning is ade-
quate?

✔ ✔

4. Likelihood estimates for lift? ✔ ✔

5. Likelihood can rank treat-
ments?

✔ ✔ ✔

6. Frequency tables can detect
mode changes?

✔ ✔

Figure 6: Relationship between tasks and technical questions.
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ID Task Who Hours Notes Deliverable Due
Massey tasks:
A Perform

domain
modeling

Massey 100 Define the major modes of the rocket
(e.g. launch, separation, deploy
parachute, etc). For each mode, de-
fine nominal and off-nominal opera-
tional profiles (probability distributions
for input values). For a sample of the
off-nominal scenarios, construct a li-
brary ofskeleton repair plans(actions to
be performed to repair some emergency
situation).

For the list of known
off-nominal scenarios,
definition of the required
response time of an
AIVHMS.

March 2005

B Build flight
simulator

Massey 200 Based on the architecture of Figure 2, re-
place the peripheral boards with simula-
tors of flight data. This simulator will
need the nominal and off-nominal oper-
ational profiles defined above.

Logs of simulated sen-
sory data from the rocket
in simulated flight can
be collected for two se-
lected operational profiles
(one nominal, one off-
nominal).

April

C Define a con-
trol language
for the LV2
hardware

Massey 150 The AIVHMS will need a high-language
for querying the state of the rocket and
issue control commands.

Traces of control lan-
guage scripts executing,
reporting sense data and
setting controllable.

May

Menzies tasks:
D Experiment

with bayesian
treatment
learning:

Menzies 180 While the simulator is being built, tech-
nical questions can still be explored by
building a Bayesian treatment learner
and testing it on public-domain data sets.

A report on Bayesian
treatment learning on
public-domain data sets
discussing technical
questions 4–6.

May

E Conduct
experiments
using simula-
tor

Menzies 230 Once the simulator and the control lan-
guage are available, Bayesian treat-
ment learning can be tested for adaptive
IVHM on the LV2 simulator.

A report on Bayesian
treatment learning for
adaptive IVHM for the
LV2 rocket, discussing
technical questions 2–6.

June

F Proposal
management,
contact with
NASA

Menzies 40 Ensuring the deliverables arrive on time;
reporting to NASA, as required.

— —

Total
hours

900

Figure 7: Tasks, teams, deliverables, due dates (2005 end-of-month).
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Part 5: Related R/R&D

5.1 IVHM at NASA

Figure 8: NASA’s Deep Space One remote
agent experiment.

IVHM has been previously discussed by many groups including the
Model-based Diagnosis and Recovery Groupat Ames Research Cen-
ter (ARC)3 That group bases its work on model checking of au-
tonomous systems, based on the LIVINGSTONE model-based sys-
tems kernel [23]. In October 1998, that group launched Deep Space 1
(see Figure 8). For part of its mission, DS1 was flown autonomously
by Remote Agent, an AI system combining high-level planning and
scheduling with intelligent execution. If something went wrong dur-
ing flight, LIVINGSTONE recognized there was a problem and could
ask two levels of on-board experts for advise. An “executive” could be
consulted for simple procedures that might quickly remedy the prob-
lem. If those simple procedures failed to resolve the problem, the ex-
ecutive gave up and passed the problem to an AI planner that generated
a new plan for achieving mission goals.

The skeletal repair plans used inMagic Bullet are far less detailed
that the models used in LIVINGSTONE. In essence, LIVINGSTONE
reasons over complete models of a spacecraft whileMagic Bullet rea-
sons over partial models of repair actions. For systems that are fully
described in a declarative model, LIVINGSTONE-based IVHM may be the preferred approach. However, when such
complete models are non-trivial to build, the skeletal repair plans ofMagic Bullet may be a more cost-effective solu-
tion.

Another advantage ofMagic Bullet is the rapid response and adaptivity of the system. The general-purpose
planner of LIVINGSTONE may not be quick enough to monitor and manage a sounding rocket during boost phase.
Our proposed work will check our conjecture that Bayesian treatment learning is fast. If this research is successful,
then a clear future direction (beyond the scope of this proposal) is to explore combining the detailed reasoning of
LIVINGSTONE with the adaptivity ofMagic Bullet.

5.2 Control Theory

Standard avionics control models for robust systems are often based onpiecewise-linearcontrol theory (e.g. [12]). The
fundamental idea is that a transition from one linear control domain to another is made when the control boundaries of
the operating controller are exceeded. In principle, this can be an effective method of recovering from control failure:
however, the devil is in the details. The set of control domains and their associated controllers must be determined
statically up-front. This is difficult: it requires envisioning the set of all possible flight regimes, including pathological
ones, and deriving appropriate controllers.Magic Bullet may be able to better that, adaptively constructing control
rules even for unforeseen situations.

Another problem with piecewise-linear controllers is that a decision rule must be given for each domain. The
decision rule specifies the conditions for a transition to be made, and the new domain to be transitioned to. Again, this
can be difficult, requiring significant nonlinear reasoning to be done up front, and expensive calculation at runtime. By
contrast,Magic Bullet is specifically designed to adapt to new flight regimes on its own, recognizing automatically
when the current control rules are inadequate. This strength ofMagic Bullet in AIVHM should provide a significant
advance in the state of the art for such controllers.

3Seehttp://ic-www.arc.nasa.gov/projects/mba/ .
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5.3 Data Mining

The relationship of this work to other data mining approaches was discussed above using the following references.
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Part 6: Key Personnel and Bibliography of Directly Related Work

6.1 Eligibility of Key Personnel

This proposal comes frombart-massey.com LLC, DBA Uplift Systems, Inc.. Uplift Systems, Inc. is a Portland-
based think tank doing advanced AI and open source research and development on a consultative basis for American
companies. This is a small business concern as defined in section 2.14 of the solicitation document for this SBIR
(i.e. organized for profit; American owned and controlled; operating within the USA; pays taxes to the U.S. state and
federal government; has less than 500 employees).

The Principal Investigator, Dr. Tim Menzies, is Chief Information Officer at Uplift Systems, Inc.. Dr. Bart Massey
is the founder, CEO, and owner of Uplift Systems, Inc..

6.2 Tim Menzies, Ph.D. (Principal Investigator)

Qualifications: Ph.D. AI, U. New South Wales 1995; M.Sc. Cog. Sci., UNSW 1988; B.Sc. CS., UNSW 1985.

• Currently Chief Information Officer at Uplift Systems, Inc., and a Research Associate Professor4 of Computer
Science at Portland State University.

• Author, over 150 refereed journal/conference/workshop articles.
• Former SE research chair, NASA software IV&V facility 2002–2004.
• Member, numerous IEEE conference program committees including ASE 2002–2004.
• Member, editorial board, Journal of Visual Computing and Languages.
• Reviewer, international refereed journals including CACM, IJHCS, Informaticia, IEEE Transactions on Software

Engineering. Journal of Logic Programming, IEEE Software.
• Guest editor, special issues for IEEE Intelligent Systems; International Journal of Human and Computer Studies;

Requirements Engineering Journal.
• Has run tutorials and workshops at international venues such as International Conference on Software Engineer-

ing (2000); Automates Software Engineering (2001); American Association for Artificial Intelligence (2002)

Eligibility: Dr. Menzies currently derives his income from active grants and from one day per week of teaching at
Portland State University. He derives an intermittent additional income from his role at Uplift Systems, Inc..

During the period of performance for this project Menzies will suspend work on his other grants, and devote 100% of
his time to this project.

As this work moves to Phase II, Uplift Systems, Inc. will hire more staff to expedite the work. For Phase II, Menzies
will devote 60% of his time to this project.

Capabilities: Skilled in data mining methods; inventor of treatment learning [20]; extensive history in data mining
and practical software engineering applications.

Basis for PI Selection:Apart from inventing treatment learning, Dr. Menzies has an excellent track record of suc-
cessful work with NASA on numerous grants:

• The research rover, 2004: A NASA WVU USIP: $48,000
• See more! Learn more! Tell more!, 2003-2004: A NASA WVU USIP: $92,000
• A next-generation testable language, 2004: A NASA WVU USIP: $35,000
• Integrating model checking & procedural languages, 2003: A NASA IV&V DDF. $50,000 USA
• Understanding models better, 2003: A NASA WVU USIP: $17,000

4Research professors receive no fixed income; rather, their salary comes from any grants they bring in. As such, they have much flexibility in
the organization of their work and no fixed time commitments to their University.
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• A spectrum of IV&V techniques, 2002/2003: A NASA WVU CSIP. $200,000
• Better risk modelling, 2002: A NASA CSIP. $27,000
• Tree query languages, 2001: A NASA CSIP. $27,000

Bibliography of Directly Related Work:Menzies has evolved treatment learning over several years and several appli-
cations:

[1] E. Chiang and T. Menzies. Simulations for very early life cycle quality evaluations.Software Process: Improve-
ment and Practice, 7(3-4):141–159, 2003. Available fromhttp://menzies.us/pdf/03spip.pdf .

[2] M. Feather and T. Menzies. Converging on the optimal attainment of requirements. InIEEE Joint Conference
On Requirements Engineering ICRE’02 and RE’02, 9-13th September, University of Essen, Germany, 2002.
Available fromhttp://menzies.us/pdf/02re02.pdf .

[3] T. Menzies. Practical machine learning for software engineering and knowledge engineering. InHandbook of
Software Engineering and Knowledge Engineering. World-Scientific, December 2001. Available fromhttp:
//menzies.us/pdf/00ml.pdf .

[4] T. Menzies, E. Chiang, M. Feather, Y. Hu, and J. Kiper. Condensing uncertainty via incremental treatment
learning. In T. M. Khoshgoftaar, editor,Software Engineering with Computational Intelligence. Kluwer, 2003.
Available fromhttp://menzies.us/pdf/02itar2.pdf .

[5] T. Menzies, R. Gunnalan, K. Appukutty, S. A, and Y. Hu. Learning tiny theories. InInternational Jour-
nal on Artificial Intelligence Tools (IJAIT), to appear, 2003. Available fromhttp://menzies.us/pdf/
03select.pdf .

[6] T. Menzies and Y. Hu. Constraining discussions in requirements engineering. InFirst International Workshop on
Model-based Requirements Engineering, 2001. Available fromhttp://menzies.us/pdf/01lesstalk.
pdf .

[7] T. Menzies and Y. Hu. Reusing models for requirements engineering. InFirst International Workshop on Model-
based Requirements Engineering, 2001. Available fromhttp://menzies.us/pdf/01reusere.pdf .

[8] T. Menzies and Y. Hu. Data mining for very busy people. InIEEE Computer, November 2003. Available from
http://menzies.us/pdf/03tar2.pdf .

[9] T. Menzies and Y. Hu. Just enough learning (of association rules): The TAR2 treatment learner. InArtificial
Intelligence Review (to appear), 2004. Available fromhttp://menzies.us/pdf/02tar2.pdf .

[10] T. Menzies and J. Kiper. Better reasoning about software engineering activities. InASE-2001, 2001. Available
from http://menzies.us/pdf/01ase.pdf .

[11] T. Menzies, D. Raffo, S. on Setamanit, Y. Hu, and S. Tootoonian. Model-based tests of truisms. InProceedings
of IEEE ASE 2002, 2002. Available fromhttp://menzies.us/pdf/02truisms.pdf .

[12] T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In M. Madravio, editor,Soft Computing
in Software Engineering. Springer-Verlag, 2003. Available fromhttp://menzies.us/pdf/03maybe.
pdf .

[13] T. Menzies and E. Sinsel. Practical large scale what-if queries: Case studies with software risk assessment. In
Proceedings ASE 2000, 2000. Available fromhttp://menzies.us/pdf/00ase.pdf .

6.3 Bart Massey, Ph.D.

Qualifications: Ph.D. AI, U. Oregon CIRL 1999; M.Sc. CS, U. Oregon 1992; B.A. Physics, Reed College 1987.

• Founder, CEO, and owner of Uplift Systems, Inc.. Assistant Professor of Computer Science at Portland State
University (9-month appointment). Instructor and Faculty Member, Oregon Master of Software Engineering
Program.
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• Lead Faculty Advisor, Portland State Aerospace Society. Principal architect of current avionics software and
systems.

• Author, over 30 refereed journal/conference/workshop and trade press articles.
• Member, Usenix Annual Technical Conference (ATC) Freenix Program Committee 2003. Co-chair, Usenix ATC

Freenix Program Committee 2004. Embedded Linux “Guru”, Usenix ATC 2004. X Window System “Guru”,
Usenix ATC 2004.

• Reviewer, international refereed journals and conferences including National Conference on Artificial Intelli-
gence, Software Quality Journal, IEEE Software.

• Architect and implementer of numerous and substantial open source software systems, including the XCB/XCL
X binding library (http://xcb.freedesktop.org ) and the Nickle Programming Language (http://
nickle.org ).

Eligibility: The period of performance for the project (June to September 2005) is the Summer term of PSU. Dr. Massey
will not teach for that term. During the period of performance for this project Dr. Massey will devote 100% of his time
to this project (June through September).

Capabilities: Degree work involved combinatorial search for general purpose planning and scheduling; experienced
software engineer and SE instructor, specializing in applications of formal models and tools for evaluation; experience
with machine learning in classification; 5 years experience with LV2 avionics systems; ; experienced programming
language designer and implementer.

Bibliography of Directly Related Work:Massey has relevant publications in avionics, machine learning, and formal
methods:

[1] James Perkins, Andrew Greenberg, Jamey Sharp, David Cassard, and Bart Massey. Free software and high-power
rocketry: The Portland State Aerospace Society. InProc. 2003 Usenix Annual Technical Conference, Freenix
Track, San Antonio, TX, June 2003. URLhttp://psas.pdx.edu/psas/usenix_2003/psas.pdf .

[2] Bart Massey, Mick Thomure, Raya Budrevich, and Scott Long. Learning Spam: Simple techniques for freely-
available software. InProc. 2003 Usenix Annual Technical Conference, Freenix Track, San Antonio, TX, June
2003. URLhttp://nexp.cs.pdx.edu/twiki-psam/pub/PSAM/PsamDocumentation/spam.
pdf .

[3] Bart Massey and Robert Bauer. X meets Z: Verifying correctness in the presence of POSIX Threads. In
Proc. 2002 Usenix Annual Technical Conference, Freenix Track, Monterey, CA, June 2002. URLhttp:
//freedesktop.org/Software/xcb/usenix-zxcb.pdf .
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Part 7: Relationship with Phase II or Future R/R&D

The goal of Phase II is to continue the research and validate the results of Phase I through actual test launches of the
PSAS LV2 sounding rocket.

Recent PSAS launches have been at one of two ranges. A low-altitude range near Millikan, Oregon is only
several hours from the PSAS home location in Portland, Oregon: this has made the Millikan site a convenient launch
point for low-altitude (20, 000′ ceiling) test launches. Mid-altitude launches (100, 000′ ceiling) have been conducted
in the Black Rock Desert of Nevada in conjunction with the Arizona High-Power Rocketry Association’s annual
international launch event. Exploration of additional launch site possibilities is part of the ongoing PSAS effort to
combine convenient local access with the isolation needed for approval of higher-altitude launches.

Current PSAS rocket avionics include advanced flight data collection facilities. High-bandwidth instrumentation
and operational data is collected on flash disk and recovered with the rocket. Most data is also transmitted over an
802.11b telemetry link and displayed in real-time using custom software. A seperate Amateur Television feed with
data overlay capability is used as a backup downlink. This combination of redundant systems ensures a high likelihood
of data recovery in the event of systems failure during flight.

In Phase II of this project, our AIVHMS will be integrated with the real-time navigation and control software of
the LV2 rocket. This integration is facilitated by the modular design of the rocket hardware and software, and by our
close familiarity with these rocket systems.

Once correct operation of the integrated AIVHMS is verified, additional launches will be performed to test the
adaptive properties ofMagic Bullet. Error conditions deemed recoverable in simulation will be deliberately induced
in the rocket during flight. Given the nature of this sort of activity, numerous such launches are anticipated. Phase II
will cost more than Phase I: it is anticipated that some launch vehicles will be damaged beyond repair duringMagic
Bullet AIVHMS shakedown. This additional cost is mitigated to some degree by the low parts cost of LV2: less than
$5,000 total for the current airframe and avionics. However, PSAS may have to establish less labor-intensive rocket
construction processes to meet demand: this may drive the price up slightly.

It is expected that the Phase II work will require additional investment in facilities and infrastructure, with costs to
be borne solely by Uplift Systems, Inc.. Phase II will also require funds for travel to launch sites for launch activities.
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Part 8: Company Information and Facilities

A sole proprietorship established in the mid-1990s,bart-massey.com LLC was organized as a Limited Liability
Company in the State of Oregon in August 2004. Accounting services are provided by the firm of John S. Burles,
CPA. The company currently does business as Uplift Systems, Inc. for the purposes of scientific research and de-
velopment. Historically,bart-massey.com LLC has concentrated on consulting work involving software and
computer systems technologies. Current and past clients include intellectual property law firms Klarquist, Sparkman
LLP and Tonkon, Torp LLP, software services firm Critical Path, Inc., and international market research firm Sorensen
Associates, Inc.

Current corporate technical infrastructure comprises the computers, software, and hardware tools needed to con-
duct the software simulation work required for the Phase I of this project. A network of several Linux-based computing
systems is available for software research and development work. This includes a firewall machine and an auxilliary
desktop machine with processors in the 1GHz range, running the Linux operating system. Ancillary computing and
network equipment includes an 802.11b wireless network which can be properly secured as needed, laser and color
inkjet printers, a high-resolution SCSI scanner, and a DSL modem. The current DSL network connection is 640Kbps
download: this capacity can be easily expanded given need. System power is protected by UPS units. Backup is
via a combination of RAID disk storage, DAT tape, DVD-R/RW, and offsite backup to partner locations. Sufficient
electronic test and measurement equipment is present for work on computing and avionics hardware and software sys-
tems as needed. A low-frequency oscilloscope and digital and analog multimeters are available for circuit and systems
analysis. Current company facilities comprise a dedicated space adequate to technical work. The work proposed for
Phase I ofMagic Bullet is primarily intellectual in nature: no extension of those facilities should be required for its
completion.

Uplift Systems, Inc. is committed to technical excellence. While we are a young company, our success level has
been high and our prospects are bright. Acceptance of this research proposal would be a significant milestone for the
company. In any case, we expect continued healthy commercial growth.
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Part 9: Sub-contracts and Consultants (Incl. Signed Commitment Letters)

Uplift Systems, Inc. is not hiring consultants or contractors in Phase I of this project. However, this letter of support
from the Portland State Aerospace Society indicates the participation of PSAS in the proposed work.

Andrew Greenberg
Portland State Aerospace Society
Portland State University
PO Box 751
Portland, OR 97202–0751

September 7, 2004

Bart Massey
Proprietor
Uplift Systems, Inc.
17757 Schalit Way
Lake Oswego, OR 97035–5441

Prof Massey:

I am writing on behalf of the Portland State Aerospace Society (PSAS) to express our support for your pro-
posed work with PSAS on theMagic Bullet Adaptive Intelligent Vehicle Health Management (AIVHM)
system. I have carefully read your proposal, and it looks quite promising: we look forward to the opportu-
nity to work cooperatively with you on this exciting technology.

We believe that theMagic Bullet AIVHMS will be valuable in supporting our transition into fully guided
and managed flight. We also believe that Uplift Systems, Inc. is an ideal partner for this transition. You
have been the PSAS PSU lead faculty advisor for some time. You understand our LV2 sounding rocket
well and have contributed to its avionics system design in the past. Our vision statement is to inexpensively
put microsatellites into orbit. We know that doing so will require designing and implementing advanced
avionics for navigation, control, and VHM. We believe that theMagic Bullet AIVHMS will be quite useful
in this quest. PSAS is prepared to provide the necessary technical support and cooperation to make the
Magic Bullet AIVHMS project succeed.

Please let me know if there is any way we can be of assistance to you in this matter. Thank you for your
attention!

Sincerely,

Andrew Greenberg
Project Manager
Portland State Aerospace Society

page 23 of 25



Uplift Systems, Inc. Proposal 04–E3.01–9377 Magic Bullet

Part 10: Commercial Potential Applications

Figure 9: SpaceShipOne.

Widely available hardware is rapidly becoming more capable and sophisticated. The
bottleneck in using this hardware is the effort and complexity involved in creating the
software controllers for it. We believe that automatic data mining will significantly re-
duce the systems engineering cost of such controllers.

Nowhere would this be more useful than in the avionics industry. The size of the
commercial avionics market is staggering. The precise size is unknown: however, one
estimate placed that market at $4–5 billion per year [29]. A significant factor slowing the
growth of that industry is the cost of software. Over half the budget of the latest Boeing
777 was spent on software development.

Airframe and avionics hardware capabilities that previously required the resources
of a major goverment to achieve are now within the reach of industrial and even amateur
groups. In 2004, for example, the privately funded manned SpaceShipOne (Figure 9) flew to 100 kilometers (62
miles) in altitude, leaving the Earth’s atmosphere. The PSAS LV2 airframe is hardly as impressive as SpaceShipOne.
Nevertheless, PSAS has produce performance equivalents to standard rocket avionics hardware systems at a fraction
of the standard commercial cost:

• The PSAS 6-axis Inertial Measurement Unit can be built with top-quality MEMS components for a few hundred
dollars, and achieves performance similar to low-end commercial fiber ring gyros and linear accelerometers
costing up to 100 times as much.

• The current PSAS medium-altitude telemetry down link is based on COTS 802.11b technologies: again, a few
hundred dollars worth of components do the job of a system that might cost tens or even hundreds of thousands
of dollars if purchased from commercial vendors.

Despite these advances in low-cost hardware systems, the software engineering effort required to produce a quality
navigation and control system still represents a major investment in time and money. A recent highly unsystematic
estimate of the commercial cost of development of the current PSAS software base (using SLOC with a COCOMO
model) suggests that the software component of PSAS systems might require 6 commercial developers one calendar
year to replicate, with a cost in the neighborhood of $1M. This cost is disproportionate to the cost of the hardware and
airframe. Worse, it is well understood in the software engineering community that such a large and complex software
infrastructure represents a significant risk of serious undiagnosed defects, even when best practices are followed. With
loss of airframe a common consequence of sounding rocket software failure, and given the slight risk of actual human
injury from these failures, it is highly desirable to do better.

Automated systems engineering using (e.g.) TheMagic Bullet AIVHMS therefore represent the breakthrough
technology required to reach the goal of ultra-low-cost avionics. Critical components of the PSAS avionics system,
for example, will be significantly simplified byMagic Bullet. More importantly,Magic Bullet’s ability to adapt in
the presence of failure will significantly mitigate the risk of failures in hardware, airframe, and even ancillary software
systems.

With the addition ofMagic Bullet, Uplift Systems, Inc. should be well-poised to sell commercial avionics systems
and design services into a variety of organizations. Obviously, sounding rockets within NASA and elsewhere are
prime candidates for theMagic Bullet AIVHMS. Groups exploring Unmanned Aerial Vehicle avionics (including
NASA) should also find AIVHM useful: indeed, almost any kind of unmanned autonomous vehicle, including land
and underwater craft, should be able to benefit from theMagic Bullet AIVHMS. While it may be difficult to safety-
qualify theMagic Bullet AIVHMS as a primary controller for human flight in the short term, it should nonetheless be
usable in controlled-responsibility ancillary systems for commercial avionics.

In the longer term, projects where the success of the mission relies on deploying a large number of low-cost robots
might useMagic Bullet technology to maintain the health of the ensemble. Examples of such applications might
include NASA SWARM missions, or civil defense rescue missions in crushed buildings (c.f. the work of Portland
State University CS Prof. Suresh Singh and others [28]) or other hostile environments.
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Part 11: Similar Proposals and Awards

Menzies is currently working on several proposals involved with data mining:

agency PI
id name address performance

dates
topic title name title

i. NASA
SARP

100 University
Ave, Fairmont,
WV, 26554

2004-2006 meta-heuristics,
data mining, mod-
eling

Next genera-
tion testable
languages

Tim
Menzies

Dr.

ii. NASA
SARP

100 University
Ave, Fairmont,
WV, 26554

2003-2005 data mining, defect
detectors

See more Learn
More Tell More

Tim
Menzies

Dr.

Those projects are almost entirely unrelated to the proposed work. Project (i) explores non-real-time applications
of treatment learning for ground systems. Project (ii) is unrelated to treatment learning.
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