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1.0 STATEMENT OF THE PROBLEM

The equations of motion of a satellite, in the true force environment
of the earth, are nonlinear differential equations which are analytically
intractable. Historieally, two approaches have been employed to obtain
estimates of the trajectories which can be attained., The first, discussed
in a previous monograph, is numerical Integration, In this first approach
(called special perturbations), serles expansions formed about the most
recent estimate of position and velocity are utilized to numerically estimate
the next point on the curve (other equivalent techniques can be formulated).
However, no gimplifications need be made in the equations of motion. The
sezconc approach lnvolves the simplification of the mathematical structure
of the problem by the use of truncated series expansions substituted directly
into the defining equations under the assumption that the coupling effects of
the perturbations are negligible. The simplified differential equations
are then Integrated analytically to obtaln an approximate solution. This
solutlion process is called general perturbatlons.

The purpose of thls monograph ls to establish the nature of the solutions
availeble by general perturbations techniques and to provide insight as to
how these solutlons can be profitably employed in the mission analysis and
inflight phases of most space programs. To accomplish this objective, a
critlcal revliew of the avallable literature will be presented for the
dominating perturbative Influences: the oblateness perturbation, the
atmosrheric drag perturbation, the extra-terrestrial gravitation perturbations,
and the solar radilation pressure perturbation., Following each of these reviews,
ths development adjudged to be most outstanding will be analyzed in detaill,

The presentation i1s initiated with a discussion of the dominant pertur-
bation for most earth satellites, that derived from the earth's oblateness.,
Thig discussion presents two basic approaches to Fhe definition of changes
in the motlon relative to that produced by a central force field. The first
is based upon an assumed form for the spatial curve and is correct to the
oraer of the second coefficlent of the earth's potential. (This type of
solution is typified by the works of King-Hele, Reference l.11, and Struble,
RefTerences 1.12, and 1.13). The second approach is based upon the method of
veriaticn of parameters as first applied to problems in celestial mechanics.
This latter method can be applied to any order without excessive revision to
the method or without excessively complicating the solution. (This type of
solution is typified by the works of Kozai, Reference 1.5, Brouwer, Reference
1.7, Garfinkel, Referénce 1.6, and others.s These developments are intended
tc demonstrate the assumptions implicit in the derivations and problems of
conditioning in a numerical solution since both of these factors are extremely
important in the application of the material.

The discussion continues wlth the development of the atmospheric pertur—
baticn to the motion of a satellite. In contrast to the oblateness derivations,
only one basic approach 1s considered (that of Sterne, T. E,, Reference 2.2.
dowever, an extension reported by Kalll, F., Reference 2.3, is also presented.)
Thls restriction in the presentation arises from a clear-cut superiority of
the theory (relative to others available) resulting from the generality implicit
ir the formulation., This generality allows many factors which affect the



atmospheric perturbation by altering the atmospheric density (solar activity,
effects, diurnal effects, latitudinal effects, ... etc.) to be introduced

(in an approximate sense) and allows the resultant displacement to be computed.
Emphasis in the discussion of this material is placed on the simplifications
to the structure of the problem necessary to provide an analytic solution.

This emphasis allows a gqualitative Interpretation of the accuracy available
and assures that the limitations of the formulation are understood.

The discussion of perturbative influences concludes with a presentation
of the effects of extra-terrestrial gravitation (solar, lunar, ...) and of
solar radiation pressure. These effects are normally negligible; however,
many analyses require their inclusion to provide the necessary accuracy.
Emphasis in these discussions is placed on the development of the perturbations
themselves. The speclal cases where resonances can OCCUr are not considered;
rather, the existence of such cases 1s noted, and reference to sore of the
applicable literature is made.

The monograph concludes with the presentation of a scheme for approxi-
mating the net result of all of these perturbing influences and a mechani-
zation to effect the solution. This mechanization i1s believed to reflect
the optimum formulations of each phase of the analysis the date of publication.



2.0 STATE-OF-THE-ART

2.1 THE PERTURBATIVE EFFECTS CF EARTH OBLATENESS ON THE ORBIT OF AN ARTIFICIAL
EARTH SATELLITE

2.1.1 Bgsic Beview of the Problem

Z.7.1.1 Definition of the Perturbing Force

1f the earth were an ideal homogeneous sphere, the motion along any
Zreat cirele would be periodic or harmonic. The true shape of the earth,
aAowever, is more closely that of a geoid; that is, the center of mass does
7ot lie on the spin axis and neither the meridian nor the latitudinal contours
are circles. The net result of the irregular mass distribution of the earth is
to produce a variation in the gravitational acceleration relative to that
predicted using a point mass description for the earth. Due to the asphericity
of the central body, a perturbing component of force {transverse component)
is produced which acts along the tangent to the instantaneous meridian and
always points toward the equator. The magnitude of this transverse component
depends upon the equatorial mass accumulation or oblateness. It reaches its
maximun value at the L5° latitude and approaches zero at latitudes of 00 and
90¢. The motion about a geold can be visualized best by resolving it into
individual motions along the meridian and latitudinal contours. The motion
along a meridian can be thought of as consisting of a number of periodic
{harmonic) motions, called zonal harmonics, of different frequency and _
amplitude. Similarly, the motion along a latitudinal contour can be visualized
as consisting of a number of periodic (harmonic) motions called tesseral
harmonics, of different frequency and amplitude. The zonal harmonics describe
Zhe deviations of a meridian from a great circle, whereas the tesseral harmonics
describe the deviations of a latitudinal contour from a circle. The larger the
number of these harmonics, the better the description of every detail of the
true contour of the earth.

Since, at this stage of scientific progress, the tesseral harmonics are
not sufficlently known, it 1s assumed by most investigators that the shape
of the earth is an ellipsoid of revclution and, consequently, that all
Zesseral harmonics are zero.

The analytical representation of the zonal harmonic motions for an oblate
earth, taken as an ellipsoid of reveclution whose center coincides with the
center of mass, is given by the simplified Vinti's potential, which was
adopted in 1961 by the TAU,

U:f_[/

= (%—‘4) B (4in8)]

#n=2

whers i 1s the earth's gravitational constant, r is the distance from the
center of the earth to the satellite, is the equatorial radius of the
earth, J‘1 are Vinti's zonal harmonics ang Pn(sin 8 ) are Legendre polynomlals
of order n defined as follows, '
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and where 8 is the geograpvhic latitude. For,
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A derivation of this potential was presented in an earlier monograph Ref.
(1.0).

However, since the two major works, selected for detailed analytical
develorment in this monograph (King-Hele and Kozai), are based on Jeffreys
potential, it is necessary to discuss the form of this potential. - Jeffreys
potential is defined as follows,

roao\M r’

where the Legendre volynomials P (sin & ) have the same definitions as
before, and where the {%F) coefficients are constants, chosen to agree with
observations, and are determined by the relation,

B, éhf!ﬁd”f; (o0 8) dm

in which M is the mass of the earth, d is the distance from the center of the
earth to a particle inside the earth whose mass is m. For,
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1f, in addition to the assumption that the center of the ellinsoid of revolu-
Zion (representing the earth) is coincident with the center of mass, it is
also assumed that the earth is symmetrical with respect to its equatorial
nlane, all of the odd harmonics must vanish.

The substitution of the exwressions for the coefficients (B /M) and the
volinomials P in the definition of Jeffreys potential yields

2 3
U=_/£[,,£(’_?f_a) (1-3ain?8) -2 (Eﬂ)(&msa-é’ma)
r 3\ r SA\r
D /QEQ)‘I . ¥ . 2
o~ (r (35.0in 5~ 30.5in%6 +3)]

where the quantities J and H,D (second, third, and fourth harmonics) were
introdneed by Jeffreys.

For the earth, with the center of the ellipnsoid of revolution taken as
the center of mass, the values of the zonal harmonics J, H, N, etc., can be
fournd in manv papers. Since the review and assessment of the material
covered in this type of reference is not within the scope of this monograph,
howaver, it is corsidered adequate at this noint to provide a list of refer-
ences which nresent such data. Acrordinglv, the reader is referred to Refer-
ences 1.1, 1.2, 1.3, and 1.4. Then the relationship between Vinti's and
Jeffrevs'! gonal-harmonic coefficients is: ’

Z
o =3V
2
= 5 H
=-—D
%" 35



The perturbing transverse or non-radjal component of gravitational
acceleration, T, produced by the equatorial bulge, can be resolved into two

parts (Figure 1) as follows,

ORBITAL
PLANE

EARTH'S
EQUATOR

1. A horizontal component S in the orbital plane at right angle to the
radial component R, and such that S . V 2 O.

2. An orthogonal component W normal to the orbital plane, and such that
W . h =+, this component causes the nodal line to rotate.

These components can now be derived from the gravitational potential of
the earth by representing it by the sum of the central field and the perturb-

ing potentials,

where Q is the perturbing potential,
- J 'Q'i (/-3 26‘)-—/ //—%3(5'44;::’8-344&6)*
Q 34Y T, - 5/1 r

L
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i is the orbital inelination and u“is the ersument of latitude.

This perturbing potential can now be divided into secvlar and periodic
parts to facilitate future efforts and to reveal the nature of the perturba-
ticn., This step is accomplished as follows,

Q = Q * QPEQIOD'C

SEC

Tre components of the perturbing force can now be derived from the perturbing
potential Q: the radial R, the transverse T (tangent to the instantaneous
meridian), the horizontal S, and the orthogonal W as follows,

aQ RZ, 2, ! R 2
== = - 28 (/- -— £ (3 nY8 - 30 +3
R o - J r"( 3.am”S) 7/(0 ré(JM .ain"§+3)
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= — =-/¢/J—‘q,amd"mfz =l D 52 (3~ Fainl tin s *) i i i 2.
rain d* 3 rv 77 ré

(The terms in H have been dropped for the purpose of this illustration.)

Using the identities,

and the relationship,

¢ m is the true anomaly
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Since Qgec is a function of a, e, i, these elements have no secular
perturbations. (The same result would have been obtained for the secular

part of Q if terms in F were present since integration over a complete period
of the coefficient of H is zero.)

Qure =4 [glJ g‘f("e”-%(

2,1.1.2 Summary of the Effects of the Perturbing Force on the Orbit

The gravitational perturbations due to earth oblateness produvce secular
and/or periodic changes in the orbits of all artificial satellites. These
perturbations will be developed later; however, the effects will be sum-
marized here to serve as motivation for the analysis.

1. Regression of the Node

The orbital plane rotates about the earth's spin axis in the oppo-
site direction of the satellite motion, resulting in monotonic
regression (for posigrade orbits) of the ascending node along the
earth's equator. For retrograde orbits the node moves counterclock-
wise.

2. Rotation of the Apsidal Line

The major axis rotates in the orbital plane in the direction of the
satellite motion for orbital inclinations i < 63.4°, and in the
opposite direction for inclinations i > 63.4°. The rate of rota-
tion is zero when i = 63.4°.

3. Change in Radial Distance

As a result of the gravitational perturbations, the radial distance
from the center of the earth is subject to periodic changes during
the motion in inclined orbits. More exactly, the periocdic change
in radial distance is superimposed on a constant part displacement
which is independent of the satellite position in the orbit. The
superimposed oscillatory part has a period = 1/2 revolution and an

amplitude = /J'r Req 2.44'4:2[
3- av © .



There is also a higher order oscillatory change, for elliptic orbits
only, with a perio@_: 1/3 revolution and an amplitude

< 5/ ""(Eg) i’
L. Change in the Orbital Period

Because of a non-constant angular momentum and the change in radial
distance, there is necessarily a change in the orbital period P.
Two types of orbital periods are of interest in the satellite life-
time analysis: the nodal period, Pg , from one ascending node to
the next, and the anomalistic, P,, from one perigee to the next.
Since the perigee is moving, the anomalistic period is longer than
the nodal period for orbital inclinations i < 63.4°. Thus, by the
time the perigee has rotated 360°¢, the number of anomalistic periods
will be smaller by one than the number of nodal periods. For orbi-
tal inelinations i > 63.4°, the opposite is true. On the other
hand, the period for inclined orbits, whether nodal or anomalistic,
is always slightly greater than for an eguatorial orbit.

The changes in the nodal longitude, AL , and in the argument of perigee,
Aw, are both secular and periodic. These secular changes are produced by
the unchanging direction of the perturbing equatorial bulge with respect to
the ngit&l plane (that is, by the non-radial or transverse component of
force).

The changes in the semi-major axis, da, the eccentricity, Ae, and the
orbital inclination, Ai, are periodic; that is, oscillating with the cyclic
change of the satellite position with respect to the perturbing equatorial
bulze., More evactly, the periodic changes Ada and Ae ars superimposad on
a constant perturbation f(relative to a conie solution). These effects are
rroduced by the distortion of the central force field.

2.1.2 Review of the Available Titerature
2.3..2.1 General Comments on the Papers Reviewed

There is an abundance of technical literature that is concerned with the
perturbative effects of earth oblateness on the motion of artificial satel-
lites. There are, however, only few with original theories. Thus, most of
the papers duplicate each other and differ only in the degree of sophistica~
tion and the order to which the solutions are extended. Some of these papers
consider only circular orbits, or place severe restrictions or either the
eccentricity, or the inelination, or both. Unfortunately, comparison of the
solutions presented in these papers is very difficult due to differences in
the nomenclatures, the lack of inter-relationships between the various
parameters, and the lack of general discussion and assessment of the results.

One group of authors concerns itself with the application of the princi-
ples of classical astronomy. Thev use basic variables, which are not always
convenient for interpretation during the development of the theory, and employ



arguments which are, at times, obscure. TFor this reason, such theories are
more involved and are difficult to interpret during the various stages of the
develonment.

There is also a second class of napers concerned with inference of earth
oblateness from observations of orbital motion. Such analyses are usually
complicated by choice of variables and the cumbersome form of the results. In
most cases, a circular rather than an elliptic generating solution is used.

The order of the theory is defined, in all the papers, in relation to
the highest harmonic of the perturbing potential which is employed. Theories
based only on the second harmonic are referred to a2s the first order. Gen-
erally, the second order theories do not impose limitations on either the
eccentricity or the orbital ineclination. A1l qualitative aspects of the
problem arise in the first order terms; the higher order terms function pri-
marily to modify the numerical values.

2.1.2.2 lethods and Techniques

Two basic methods are employed in the literature. They are based upon
the following considerations.

The orbit of an artificial satellite is a twisted space curve wound
about the earth in a complicated wave pattern. The complicated waves of this
curve are removed by introducing a rotating orbital nlene, upon which the
orbit itself may be represented as a plane curve. Since this plane curve is
not a closed circuit, some artifice must be introduced to properly define the
orbital motion., The choice of the nature of such an artifice defines the
method of osculating ellipse or the method of basic coordinates.

2.1.2.2.1 The Method of Osculating Fllipse

This method has its orlgin in classical astronomy. The method introduces
a precessing orbital plane and an osculating ellipse in this plane, which
varies in size and shape throughout the satellite motion. The advantages of
this method are that the variations of the osculating elements are small, the
differential equations describing these variations are relatively easy to
deal with, and the result of the analysis is the time history of a set of
parameters which reflect the trend of the perturbation.

The principal disadvantage of this method is that the osculating ellipse
does not represent a succession of satellite positions and hence, it does not
in itself reveal the trend of the motion. Another disadvantage is the failure
in case of very small eccentricities, resulting from the fact that the accen-~
tricity appears as divisor in the expressions for the periodic perturbations
in the osculating elements w (argument of perigee) and M (mean anomaly). This
difficulty is, admittedly, of an artificial nature and can be removed by using
the combination of e sin w and e cosw, and also (M + @ ) instead of M. Some
authors calculate a, e, w , M separately and combine them in the radius vector
and in the argument of latitude, The small divisor then cancels out.
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“his method is used by Kozai (Ref. 1.5), Garfinkel(Ref. 1.6), Brouwer

(Ref. 1.7), Krause (Pef. 1.8), Anthony and Fosdick (Ref. 1.9), and others.
Izsak'se work (Ref. 1.10) is generally considered as belonging to this group, but
Tzsak considers himself as a provonent of the method of basic variables, (such
a claim is not fully substantiated by his type of analytical treatment).

2.1.2,2,2 The Method of Basic Coordinates

Tr. this method the motion of the orbital plane as a rigid body is intro-
Guced. The motion is represented by an instantaneous rotation about the
vosition vector r, reflecting the rotation of the velocity vector about r
which, in turn, causes the change in $£2(nodal longitude) and i (orbital incli-
nations). Such a method possesses the desirable possibility of directly
renresenting a succession of satellite positions and reveals the actual motion
of the satellite. Pasic rectangular, spherical, or oblate-spheroidal coordi-
nates are used in the analyvsis, ami the effect of the perturbation are ,
expressed by differential equations of motion in terms of such coordinates and
the perturbing accelerations, Struble (Ref. 1.12) and King-Hele (Ref. 1.31)
are the orincipal proponents of this method.

2,1.2.3 Integration Procedures

The integration nrocedures employed in various papers depend upon the
specific method used in the analytical treatment of the problem. In certain
cases, even though two papers can be categorized under the same method, the
resnective analytical treatments of the basic philosophy (whieh is character-
igtic of the method itself) may not follow the same line and, consequently,
different integration procedures will necessarily apply.

Kozai, Krause, Anthony, and Fosdick, whose works were categorized under
the mebhod of osculating ellipse, replace the time argument, in the defini-
tiors of the rates of the osculating elements, by the true anomaly and proceed
to integrate these rates directly over a revolution. However, Garfinkel and
Rrower, who were also categorized under this method, do not define the rates
of +he osculating elements directly. Instead, they derive the perturbations
in the osculating elements by Von Zeipel's modification of the method of
Delzunay and arrive at closed form solutions in terms of elliptic integrals.
Tn his lunar theory, Delaunay uses a succession of transformations to remove,
one by one, the periodic terms of the determining Hamiltenian, whereas in
Von Zeipel's modification, a single transformation accomplishes the same
purpose. The secvlar terms, however, are derived directly from the Hamiltonian.

The integration procedure used in connection with the method of basic
ccordinates consists of the following steps: first, the equations of satel-
iite motion are defined in terms of some basic coordinates (rectangular,
soherical, oblate-spheroidal, etc.) and then the integration is performed
by seeking a particular solution in one of the following forms,

a:

S b~

=;/[/ # eCoc;(V‘AS’)*JV + Jew]
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or

« == —/-{/* ecoo (B-w)-Jc +J2dJ

r "

where ¥ is the central angle referred to the arpgument of latitude u¥ by the
relation, ¥ = wt - 90°: B is referred to the argument of perigee w by the
relation, 8 = w - 90°; B is the perturbed argument of latitude; r¥* is the
harmonic mean value of the radius, resulting from the distortion of the
central force field; (v, w) and (¢, d) are unknowmn functions to be determined
by integration.

The integration process involves a number of artifices and the replace-
ment of the time argument by one of the coordinates, usvally by ¢ or B .
The choice of ¥ or B has the geometrical advantage that these coordinates
are less subject to perturbational variations than is the true anomalv n vhen
the eccentricity is small,

2.1.2,L Critical ®valuation of the Papers Feviewed
2.1.2.4.1 The Method of Osculating "llinse

This 1is a classicsl astronomy concept based on a precessing orbital
plane and an osculating ellipse (in the rotating plane) which is defined by
the instantaneous position and velocity vectors. The osculating elements for
each revolution are obtained either by direct integration of their rates of
change, using Jagrange's planetary equations, or the perturbations in the
osculating elements are derived by the principles of Hamiltonian mechanics,
or by some other classical astronomy artifice (as in the case of Anthony and
Fosdick, who employ Lindstedt technique to obtain approximate solutions for
the differential equations of satellite motion).

2.1.2,4.1.1 The York of V. Kozai (Reference 1.5)

Assunptions: The earth is an oblate spheroid with axial symmetry only;
the density distribution of the earth is svmmetrical about its axis of rota-
tion; the gravitational field is represented by the standard potential with
spherical harmonics from the second through the fourth present; no limitations
are impcsad as to the order of magnitudes of the eccentricity and orbital
inclination,

Completeness: This is a complete first-order theory which includes
secular and both short- and long-periodic perturbations. A complete set of
workable osculating elements is furnished including evpressions for the per—
turbed radius and the argument of latitude. The special cases of e = 0 and
1 = 0 are also covered. The secular terms contain the J2, d,, and J2 har-
monics, the short-period terms are limited to J2, and the lorig-period terms
are evpressed in J,, JB/J2’ and J#/J2.

Fvaluation: The perturbations in the oscvlating elements are expressed
as functions of the mean orbital elemenrts, the perturbing acceleration, and
time by making use of Tagrangian definitions of the time rates of change. The
time argument is replaced by the true anomaly and the first-order secular gl’
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secord—-order secular Q,, long periodic ., and the short periodic paris of
the perturbing potenti8l are derived. T%e analytical treatment tha% follows
is simple and provides a clear geometrical interpretation of the problem.

Te remove, for instance, the short-period perturbations, one has only to
replace the perturbing potential Q by Q, in the Tagrangian definition for the
variations of the osculating elements. 'Kozai's is a complete first-order
theory, verv rigorous, meaningful, and easy to follow. It provides a clear
insight into the geometrical aspects of the problem and appeals to an engineer
with its straightforward analytical treatment. The solutions are simple,
elezant, and meaningful. -

2.1.2.4.1.2 Tre Work of B. Garfinkel (Reference 1.6)

hssumptions: The earth is a non-uniform spheroid with axial and equa-
torial symmetry; the gravitational field of the earth is independent of
longitude and is represented by a special potential function (Garfinkel's
potential) which does not fit exactly the standard earth's potential (with
the second and fourth harmonics present), but approximates it closely enough
to make the Hamilton-Jacobi equation separable.

Completeness: The theory is complete in position coordinates only. The
perturbations in the osculating elements are derived which, in turn, define
the perturbed spherical position coordinates. The periodic changes are of
the first order and the secular changes are of the second order.

Fvaluation: Garfinkel's technique involves the preliminary determination
of a ron-Keplerian intermediary orbit based on an approximation of the standard
pctential. The approximating potential incorporates a major portion of the
second-spherical harmonic and preserves all of the basic features of the
standard potential. This unique potential affords separability of the
Hamilton—Jacobi equation in spherical coordinates and leads to closed-form
solution in terms of elliptic functions with no secular variations of the
first order. The non-Keplerian intermediary orbit is then taken as the
unperturbed orbit in Delaunay theorv. The secular terms are obtained directly
from the determining Hamiltonian. To remove the periodic terms from the
deterrining Hamiltonian, Garfinkel makes use of Von Zeipel's modification of
Delaura7's method. Garfinkel's analytical treatment of the problem is focused
primarily on the satisfaction of the principles of classical astronomy. There
is no discussion of the seomebrical and physical aspects of the problem and
no assessment of the solutions derived.

2,1.2,L.1.3 The “ork of D. Brouwer (Reference 1.7)

issumptions: The earth is a non-uniform spheroid with axial symnretry
onlw; the gravitational field of the earth is independent of longitude and
ma: be represented by Struble's potential which is a slightly modified
Jeffrey's potential; there is no limitation on the eccentricity or orbital
inclination, )

Completeness: A complete set of workable osculating elements is pre-
serted. This is a complete second-order theory in both position and velocity
ccordinates., The periodic terms, both of short and long period, are developed
to fivst order and the secular terms are developed to second order.
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Pvaluvation: Brouwer defines the problem in terms of Delaunay variables
by using Namiltonian mechanies. He then applies Von Zeipel's modification of
Nelaunay's method to remove the periodic terms from the determining Hamilton-
ian, whereas he obtains the secular terms directly fromthe Yamiltonian. Tt
apoears from the analytical treatment of the problem that Rrouwer's primary
intention was to present a solution satisfyving the basic principles of classi-
cal astronomy. From this mnint of view, Brouwer's technique is perhaps one
of the most remarkable. T'nfortunately, the author presents neither a compre—
hensive discussion, other than of a purely mathematical nature, nor an assess-
ment of the results.

2.3.2.4.1.4 The Tork of H. G, L. Krause (Reference 1.8)

Assumptions: The earth is an oblate spheroid with axial and equatorial
syrmetry; the gravitational field of the earth is independent of longitude and
is represented by the standard potential with the second and fourth harmonics
present.

Completeness: The solution is an approximate first-order theoryv, since
long-period terms are not derived, Short period and secular terms are limited
to those containing eccentricity up to the third power. Periodic perturbations
are of first order and the secular are of second order. A complete set of
workable osculating elements is furnished. The solutions are of closed form.

Bvaluation: Iagrange's definitions for the time rates of change of the
osculating elements are used, in which the time argument is replaced by the
true anomaly, and the rates are then integrated in closed form over a revolu-
tion., Only short period and secular terms are obtained. Since long-period
perturbations are neglected, this is an approximate first-order theory, The
analytica’ treatment is simple and straightforward.

2.1.2.4.1.5 The Work of M. T.. Anthony and G. ¥, Fosdick (Reference 1.9)

Assumptions: The earth is an oblate spheroid with arial and equatorial
symmetry; the potential field of the earth is indenendent of longitude and
may be represented by the standard potential limited to the principal term
and the second harmonic; the jnitial position of the satellite is at an apsis;
no restriction is placed on either the eccentricity or orbital. inclination.

Completeness: This is an incomplete and approximate first-order theory
in the second harmonic J. Solutions are derived for the perturbations in
radial distance r, speed V, and angular momentum P, deviation from the initial
plane of motion @, and the rate of apsidal advance dw.

Fvalvation: The equations of satellite motion are defined in terms of
the spherical coordinates r, © (deviation from the initial plane of motion),
¢ (argument of latitude). Approximate solutions of the differential equations
are found by the method of Tindstedt, by assuming power series expansions in
the second harmonic J for all variables and, then, truncating the series
beyond the first power of J. The truncated series expansions are of the form
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wrere 1 = 1/r, P is the angular momentum, and ¢ is a new independent variable
defined by

=E(/+J¢)

Tbe quantities with the 'o! subscript apply to the two~body problem (for which
= 0), whereas the quantities with the subscripts "1 reflect perturbatlons .

due to oblateness and are determined by integration of the differential equa-

tions of motion.®* The analog of the ecreptr301ty is expressed by the parameter

prets =)

where V_/V_ is the ratio of the initial orbital speed (at an apsis) and the
zorresponding cirewlar speed,

Tt is not very clear how the independent variable £ compares with the
classical w (1n1t1a1 argument of nerlgee\ nor how the eccentrlcltv analog
7] TRY denen8 on the classical eccentricity e, The transformations are far

fyom obvious. The constant @. is so chosen as to eliminate secular terms in
the solution for u = 1/r expréssed as a function of & . The new variables
empioved in the analvtlca1 treatment do not have a simple geometrical inter-
vretation, and the nature of the periodic perturbations, embodied in the
psendo~armment of latitude € , is not defined. It is not clear whether the
Oericdlc perturbations are short—term periodic, or perhaps a combination of
both short and long periodic terms. It is also obscure as to how the secular
variation in S?(the nodal longitude) is obtained.

2.1.2.4.2 The Method of Basic Coordinates

The orbital plane is considered to be a rigid body rotating about the
instantaneous position vector, and the motion of the satellite in the orbital
n]ane is along a non-closed plane curve representing a succession of satellite
pesitions., Basic coordinates are used instead of osculating elements, and the
quatlor s of satellite motion, expressed in terms of such coordinates, are
integrated by seeking a particular solution of the form

3+ evcept for ¢:Lvﬂﬁch is a constant.
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2,1.2,4.2,1 The Vork of D. G. King-Hele (Reference 1.11)

Assumptions: The earth is a non—uniform oblate spheroid; the gravita-
tional field of the earth is irdependent of lonritude, svmmetrical about the
eguatorial vlare, and is defined by Jeffrey's potential function; the eccen—
tricity e £ 0,05.

Completeness: The theory in itself is self-sufficlent to describe the
problem completely, but unfortunately the author does not extend it to its
Tull capacity and does not derive expressions for the periodic changes in a
(semi-major axis), e (eccentricity), and i (orbital inclination). However,
the fact that King-Hele gives an incomplete set of vorkable elements does not
weaken the power and the originality of his approach, as the analysis can
easily be extended to also cover the periodic changes in a, e, and i.

Fvaluation: King-Hele has developed a novel and powerful method for the
solution of the earth oblateness perturbation problem which is completely
divorced from the classical astronomy concept of osculating ellipse, His
analysis is very rigorous and easy to follow. The method assumes that the
actual equation of the plane curve, representing a succession of satellite
positions, is of the form «= ¢r =[/+ e coo (¥ 58) +Jv * Jew]Vp
and the equations of satellite motion are integrated by imposing this parti-~
cular solution.,

2.1.2,L.2,2 The Work of R. A. Struble (Reference 1.12)

Assumption: The earth is a non-uniform oblate spheroid symmetrical
about the equatorial plane; the gravitational field of the earth is indepen-
dent of longitude and is defined by the standard potential function; there is
no limitation whatsoever as to the eccentricity of orbital inclination.

Completeness: The analysis is not completely self-sufficient since no
procedure is presented for the interration of dQ/dt and for the dt/df
(vhere B is the perturbed argument of latitude). JTnstead, Struble suggests
the introduction of these quantities into the solution via the method of
averaging which he developed in a separate paper (Reference 1..13).

Fvaluation: Struble's approach follows basically the concept and the
principles employed by King-Hele and may have been influenced by him, although
King-Hele is not reported in Struble's list of references., The analysis,
however, is extended to yield second-order solutions., Equations are presented
with the burden of proof on the reader; and the logic of successive steps in
the analytical treatment is indicated in an intricate and confusing manner of
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cress-referencing to various sets of eguations. Similarly to King-Hele's

aprroach, Struble assumes that the actual equation of the plane curve, reore-
senting a succession of satellite positions, is of the form
/ / . 2
== =—[/+eCoo(/6’-w)—J'c +J%d
7 r

»

wrere B is the perturbed argument of Jatitude, and proceeds to integrate the
satallite equations of motion by imposing this solution. The short-period

nrervurbations are isolated in the ¢ and d functions, which are determined by
irtegration; the mean radius r¥, the mean eccentricity e, and the mean argu-
me

= of perigee w erhibit only long-veriod oscillations (with a secular
varigtion in @ ). Unlike King-Hele, who employs basic coordinates as vari-
abtles, Struble introduces the perturbed argument of latitude B as the inde-
pendent variable®*, related to the unperturbed argument of latitude B by the
identivy o48/ud = £/ hwos) r? (d8)/dt , where the paraneter k is not _
mnovm & priori, but is determined later in svch a manner as to make 8 and B

exhibit the same secular behavior. The solutions are evpressed in terms
of the mean inclination i_, the perturbed argumert of latitude 8 , the argu-
ment of perigee (O , the eccentricity e, the constants of integration ilog s mo s
e, and the functions 773, M2, M3, M, M5, Mg, vi vp. These finctions
represent lengthy collections of trigonometric terms; some of them are one~
pase long expressions., Hence, Struble's analytical treatment appears to be
extremely lengthy, intricate, and cumbersome. However, this is not a reflec—
Tion on the method emnloyved, but rather on the mathematical application of the
rethod.,

2.,1.2,5 Selection of Papers for Detailed Development
The two papers selected for detailed analytical development are:

King-Hele, D, G. "The Effect of the Farth Oblateness on the Orbit of
a llear Satellite," Proceedings of the Royal Society. Series 4, No. 1248
(September 1959).

Kozai, Y. "The Motion of a Close Farth Satellite," Astronomical Journal.
(October 1959).

These two authors were selected because their works appear to be the most
outetanding representatives of the two methods of approach, Kozai's work is
aced on the concept of osculating ellipse, whereas the work of King-Hele
follows the method of basic coordinates, The analytical treatment in both
papers 1s rigorous and easy to follow., Further, both papers provide clear
geometrical interpretation of the problem and display original and interesting
characteristics in the results and in the approach which are unique. From
the point of view of engineering applicability, these two papers excel with
their straightforward presentation of this complex problem,

%% The new independent variable B, according to Struble, preserves some
of the mathematical simplicity of the system which would be lost if the
unperturbed B8 were used as independent variabvle,
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2.1.3 Analybical Development of King-Hele's Technique
2.1.3.1 Derivation of the Equations of Hotion

The coordinate frame of reference is the iy Iy ky earth-equatorial frame
centered at the earth; iy pointinsg in the direction of the ascending node W
of the orbital plane at the earth's equator, Iy along the earth's spin axis,
and j; completes the right-hand system. A vector in this system is defined
bv the complement of the geocentric latitude 9, and by the angle ® , measured
counterclockwise from the instantaneous node N to the projection of the vector
onto the earth's equatorial olane.

Tet ¥ and r_bte the position and velocity vectors of the spacecraft at
some time t ard 1% a unit vector in the direction of r ,

F=rL" (1.1)

The acceleration vector in votating coordinates is

F=Fl*+2rL"+rL" (1.2)
The acceleration vector r bhas a corponent «_ in the direction of T*, a
component a, in the direction in which © increases, and a component ag 1in the
direction iR which @ increases, The direction in which 6 increases is repre-
sented by the tangept to the meridian passing throvgh the position vector r,
and is denoted by D°, and that in which @ increases is represented by the
normal. to the meridian of T and is denoted by A”, (See Figure 1.)

11 three reference pointings, 1.5 D'y A, can be defined in terms of ©
and @ as follows:
[*=Lum9coo§ *d, mé&b{,ma
D*=1L, cnf cood +J, 006 ain$ -%, ain b (1.3)
e . - =
A¥=i, ain§  t, wd 4,000 =LxD

Thus, the derivatives with respect to time are:
[*=(i, c008 coo $ +J, Co0Oain® - 4, sin 0)6
+(-i, aind +J, co0 B ) .0ind = 56 + Ad a6
D* =i, an6co0d +J, ainb amd +%, 0000)6 (1.4)
t(-(, am @ +], cood)d co00 =-L6+A$ oo
A*=["xD*+[*xD* = (D"6 +A*$ 4w6) x D*
VD" X(-L v A% co08) = -I* $.4in0-D" & o080
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ard L =D*E+D*6 + 4B a0 +AN(E ain 0486 co0 D)

D*e +(-[*O +4* {5 00 6)0 - (L*,dm9+D*coo9)JM¢9
+ A ainO+ 86 co08)
==L ME%+ 8% 4m?6) +D¥E - $% 0ts 8 Cr08)

*/4* (é;an<9 *é?éé? &mJQJ

(1..5)

Suostitution of I and 1% from Equatw ons (1./) and (1.5) into Iiquation (1.2)

vields the acceleration vector in rotating coordinates,

F = L7 [F - (6 18" sin0)] #0927 6+r(6-8%ain6 ro8)
A% (27 & 4in6 1 (§anb +28 6 c006))]
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The gravitation acceleration vector for the earth's spheroid is defined
as follows:

o 1 . 1 W
VU:*—.{/'/'D*——*A

(1.7)

Since, in ¥ing-Hele's theory, the earth is assumed to be symmetrical with
respect to the equatorial nlane, the third barmonic H is necessarily equal to
zero and, therefore, U, the gravitational potential function, is given by

J R? D R *x
TS S 0) oz —;;.(35&00"6’-306'002943)} (1.8)

/
U=/a[ %

—
r 3 r?

Truncating this ewpansion at J and substituting the resulting expression for
U into (1.7) yvields

- R* - R* OV
vy = L*[‘é%;dcfp(/ﬂM@)]*D{ZﬂJ74{)‘0@0 e]m (0" (1.9)

Finally, term-by-term comparison of the respective components of (1..6) and
(1..9) sgives

s R*
r'~'=r(92f§52,4m2¢9)=-’—,é—/dc/-r—y(/-3600"9) (1.10)
iﬁ 25 $2 ’Pz .
gy (r‘8)-r¢ M96009=2/4(J'7;4m<9m¢9 (3..11)

/ d .
el K4 %0 ) =
2B o (r*d¢ aun”6) =0 (1..12)

2.1..3.2 Preraratory Steps for the Integration of the Tquations of Motion

The angles § and @ were defined in the preceding section. How, two
additional ansles Y and B will be defined; both of these angles are measured
comnterclockvise in the orbital plane from the direction 7, which is 90° ahead
of the lode in the direction of motion, ¥ defines the position of the space-
craft in the orbital vplane and B that of the perigee point. The inclination
of the orbital plane to the earth's equator plane is denoted by i, and the
instantaneous angle of regression of the node N along the earth!s equator by

% The fourth zonal harronic D is neglected in this analysis.
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£ . It should not be confused with the nodal longitude ) which defines the
node relative to the vernal equinox,

fith these conventions, the following orbital relationships exist:

cot @ = lani awm (F +2) (1.13)
Co0l = _am! too ¥ (1.1%)
aon W=-amnb too(F + ) (1.15)

Nifferentiation of (1.13) and (1.14) with respect to @ yields

d - 9 d¥
d—é(cofG)—z_‘aszO(Q’*Q)(/ ov 78 (1.16)
.o, de av

—aun b dqf‘ ~ain !l _gen ¥ oy (1.17)

How substituting for sin ¢ from (1.15), relation (1.17) becomes

90 . av
? =ainl coo (S +0D) s (1.18)

av

s (1.19)

d
mzé’d;(caié) = ainl Coo(F+0)

Finallv, after substitution for d/d¢ (cot ©) from (1.16), relation
(1.19) becomes

an dvr ady
. . 2
el an @l + — — | = — 1.20)
( av dé) ad ( ’
which, upon solving for d¥/d@ , vields

IV aee l aen®B

_— = — . N . 4 o’_fZ

= . oA Stecld 2w 0 () F e i an O ——— 1.21
o) /Zdwl_d(ﬂze‘;;' IV ( )
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But, from (1.13) and (1.15)
bam { ain(P+Q) = cot6

ol oo (F+.0) =-an ¥V

Thus, substitution of these expressions into (1.26) yields

d% dn 4y / Coo™ O
L (eo?6) » et = -2 = ) i % )
g2 (77 g Z(dV dJ)Mgme/we@*é“ T e

",d&cjé',dw'z é,dmz',wc ¥ Z
ay

But, from Fquation (1.1L4)

and

by identity, so that substitution of these expressions and (1.22) into (1.27)
vields

a2 o0 / adzn
(s 8) 1ot B = -2 el a6 00O —*
Py o7 G) & 2ee”! C00 {dy*zédeVZ

) Q.8

2.3..3.3 Integration of the Tquations of lotion

Equation (1.12) can be integrated in a straightforward manner:
réd.an?6 = Aesol (1.29)
where (h cos i) is the component of the anguwlar momentum normal to the earth's
equator,
Tquation (1.11) cannot, however, be integrated in a direct mamer.
Tnstead, it will be rewritten in a different form suitable for the purpose of

this analysis. First, tbe time derivatives will be transformed to derivatives
with respect to @ ,
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Terms having 12 or Je2 as a factor are ne;rlected in this analysis and
since A$2/d¥ has J as a factor®t, (dR2/dy )2 is consequently neslected.

Trerofore, the following approximations are introduced:

g a¥ 2, 90
o JF e ¢ a9 — o (1.22)
, 92 ¥ n )2 i an?o T2 (1.23)
d¥ dJdé ay ”
i dv 2 a0
I e an
Jv? dﬁ e de (1.2&)
Nifferentiating (1.22) with respect to @
d,da d¥v dé dn a%Q J¥v
T )2l anBes0d — — & 0 — —
dé¢' d¥ dé § gy gdr’ JF
din 4rvr
which, after snbstitnuting far d6/d® from (1.18) and for J¥: of
fron {1 2L), bec‘omes
dQ d¥ an o¥
— = |~ ~Zlani oo (P 1) .ainl oo O —
O'i6 ay dé dV § (1..25)
: o402
taec?l a6 7
aY
Similarly, differentiation of relation (1.16) with resnec+ to @ yields
a? o2 dv
(cor8) = - 2)(/7+
787 cot on i am (P ¢ ( IV 97
d/da dv¥
*¢ ¢*.Q) 7
an ( aoo ( (dV 73
and naking use of relations (1.23) and (1.25)
9 (ert0) = tani sin($ ) (102 i
oy {ain - 7E
dn 4¥
~2lan®s co0*(F+0) aim O cs0d T T (1.26)
d¥ dJdé
. . d4n
*lam [ Coo ($+0).aee” 0 8 SV 2

B TS o

¥ See Fguations (1.39) and (1.40).
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¥4

/ : ez ~ .
‘;éazg( 245——; -rdan b coo9=2//J—;—;,¢m6coo9 (1.30)

Dividing by r sj_nzg, (1..30) becomes
F 4

m df zé —) @ co?é = »Z/A/J—_ Ll&’fg (1.31)

where, u = 1/r, Thus, substitution from relation (1.29) for rZsine s r° s

and :r"l+ vields
4 /
For ot si (i i) e

20 dé
L, P? (1..32)
—Z/Js?’ 7 U e 20 aen’6 o0
Finally, dividing through by é and using the identity
(4
gLy L ere)
IF\ain®6 dIé dé
vields
QZ
éz (MG)*M@ -2/&(':/'——&(,4&& 2 aun 36 o0 (1.33)
At this point, define
/ = / /
o al/-e%) (1.34)
and note that
/
Lol y (1.35)
R
and
/
«== =L[/#eCoo(V—,€)] (1.36)
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Thus, on substituting these evpressions for u /h2 and u, Fquation (1.33)
becones

b4

i—(;; (cotB) + cot® = - 2JLO% aec?l e c00 8 [/f e Coo(?"';é’)] (1.37)
C

Comnarison of the right-hand sides of Fquations (1.28) and (1.37) vields

240 d?n
St lan¥ = = 2£ [/re e (V)] (1.38)
where
£ = JL2R%eool (1.39)

A first order solution for d2/d¥ , which retains terms of 0(Je) and
neglects terms of 0(J2), can be assumed to be of the form

92 _e[1renrow) (1.0)
av

Henae,
o 1

Substituting these evpressions in Fquation (1.38) vields

WV%MA = 2coo (V78) (1.42)

Trtagration of (1.42) with respect to ¥ yields

/

Nzeo——— | 3cCoo(¥V+38) rcoo(3¥-48)

64«"*’[ g ) (1.43)

- - [ 00° ¥ c00,8 ~ain* ¥ oti. 5
B ¥
On substituting this expression for A , Fquation (1.40) becomes

an { 2e N 4
=== = - - a4l ; i
av 34m2w[w° Vero 8 - an V‘“"/"]} (1.44)
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Since A becomes infinite for multiples of 2w, it will be redefined by
the following substitution:

¥y =u*-90
, (1.45)
A= w-90

%* . . .
where both u~ and ® are measured 1nythe orbital plane counterclockwise from
its node T at the earth's equator; u" defines the instantaneous position of
the spacecraft, and W) (the argument of perigee) defines the perigee point.

As a result of substitutions (1.45), relation (l.44) assumes the form

an _ 2u s e

Ta* = { —m[m w* o cw - cooSu¥* coo Cd)]} (1.14»6)
A_Q Z[e Zrrdc M“*
ory “27E -G [wne o —csotur-a) Jour  (LA)

The first term,27€, represents the regression of the node due to the
rotation of the orbital plane about the earth's spin axis as a result of the
earth!s oblateness., The second term, €eA , represents the effect of the
rotation of the semi-major axis on the nodal displacement (regression or
precession).

Integration of the second term in (1.47) with respect to u* vields

2wraw - mradw
. i &* ) )
[MCJ —Tj—m(a’“-w)]du* = —an (a"‘—w)T
° eoo © U coo U* o
L GV B .
= rain(ca -Aw)-2.am @
A00A W

where Aw is given by Fquation (1.87).
Substitution reduces Fquation (1.47) to
-Z—L@ -8[27- '-?i RD it (e -dar) -2 sum cu)]
Rev

3 tewdw (1.48)
E=JTL*R%coo ¢

King-Hele attaches here the (-) sign because he used (P +2) rather than
(¢ —Q) in the basic relations (1.13) and (1.15).
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Tt now —emains to solve the differential. equation (1.10).

2

. . . ~
F oo r (6% 8in0) = - LL T 2 1-3000%8)

,.2
This sten is accomplished by noting from relation (1.35) that
A= LLE
and from {1.14) that

Coo 6 =_dint ooV

With these substitutions, Fguation (1.49) becomes

(1.49)

Fer(6%8%uin?6) = -1 42uP ~TLh2R% U (/- Sain?i coo® y) (1:50)

N TR AR
o) e 5y)

and from Equation (J..29)

g = Au? cool

o

At this point, Tquation (1.21), on using definition (1.40) for 4Q/dv,

reduces to

dY L.
d—f =aec i aim?8 [/fe(/fe/\)wzmza]
sc¢ that
y = Z—:é = AP /& (14 eN) et sia?0 ] +0(TH)
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Substitution of (1.54) into (1.51) thus yields

. g .
F=-A d—l;[/fe(/fe/])szcz,am‘?&] (1.55)

It was mentioned before that, in this analysis, terms containing J2 and
Je? are neglected. Since duéddl, as derived from Fquation (1.36), contains
e as a factor, and € = JLRR< cos i, the product(dujd¥) *& » e/ will have
Je? as a factor and is neglected. Therefore,

o/
Pz B 2] € e i 2inO) (1.56)
agy

Differentiating (1.56) with respect to time give r as

F oo ZlR) =V (P (1.57)
Fo=- fﬁ[:'liyaz (/+*€ e i aemnt0) + 2 :—; € ate l 006 aem 8 %] (1.58)

But from relation (1.17)
im ;’_i e i s ¥ (1.59)

and from relation (1.54), after dropping the term € eA which will vield
products with Je? as a faetor resulting from multiplication by d2u/ay 2
and du/d¥, Y reduces to

V= Au?()+E.aeci 2on?8) (1.60)
On substituting (1.59) and (1.60) into Equation (1.58), T is obtained as

. d?u
F o= —/za’[
A

(/46 aeeiand)’ (1.61)

e/
+2 € lanl co0Bain V (/7€ win®0 )
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Since €% = (JL2R2 cos 1)2 has J° as a factor, it should be neglected;

so that, to the first order, ? is
. Z 2 0/2[( . -z
F=-A% [ z(/*fﬁﬂétw 8)
¥ (1.62)
du .
02 Z2 £ loni 200 6 ain V]
dY

and since from relation (1.14)

coo B = .t ( coo ¥

ofu d?u
F o= -Jf’?z/{;’; + 2Eanc ! [Wz(/-w’z co0?¥)
(1.63)
o/
# dé un’l on' ¥V eoo V]}fO(JZ)

The next step is to redefine the term r(éz +é % sin2©) of Fquation
(1.50). Since from (1.17)

. . . ;‘/' .
6 - Aot L et y (l.éL)
_awn 8
and from relation (1.29)
P .
g Aufemi (1.65)
a2l

it follows that

ez ez ! %l gV A2 cpo?l
r(6°+ ERainte) =~ [HEl2n Ve, TE 0L ) () 4
V4 ,dm‘?& M‘?g
Thus, substituting for :f/ from (L.54) and neglecting € 2 vields
-z . 2 an’l a2 *Y o0
r(8 + 8% an?0)= ’?01/3[ : Y )
2w to aun®8 (1.67)

o P2E()+ €N) tar ¢ tin L ain® V]
Since sin“i cos W = cos<0 by relation (1.14), the first term in the
braciets of Equation (1.67) reduces to
an?l 2V 002l am U - amZi coo? ¥ 1 o0
+ .

2?8 aere O a6

/- a2l oY ,

e 26
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ard, therefore, Fgnation (1..67) becomes
r(6%s éz,ahzé) =A%’ [/*26 (/+eN).ee zm’zw’-’w] (1.68)

Subtraction of (1.68) from (1.63) rields

. .2 ez bkl
For (6 +$ ain0) = - szaz{(d;::fa)fZEACLL%:ﬁz (1-ain* V)

du
+ il ain VooV s U lreN) ain®ain? V] r0T %) (169)

where
27,
€ =JLR coot
Cgmparing (1..69) with the right-hand side of (1.50) and dividing through

by h2u , ore has that
? z,,Z -2 2 2H2 dza .2 2
2 rt = Lo JLRAUN (I B co0* ) - ZTLR* [ S 2 (Vi et )
au
*;mzt'wVeoona(/fe/))mzz'mzw] +O(J?) (1.70)

To solve the differential Equation (1.70), a particular solution in the
following form is assumed:

u=L[/*ewo(V—,<s’)+Jvaew] - (1.71)

/
’r
where v and w are functions to be deternmined.

Differentiating Fquation (1.71) twice with respect to W, and denoting
the derivatives of B, v, w by primes,yieids

d2u
"7 = Ll o (Vo628 18" sin (V8D 1T e (2.72)

tn]rBere 1 - B')z was approximated by (1 - 2 g!) because ( 5’)2 is of order
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Addition of (31.71) and (1.72) vields
z

et L1128 o0 (V-8) +,8" ain (V- a) T Tetwng) T

Rut, sinee u and its derivatives, on the right-hand side of Equation (1.70),

ara independent of v and w, it is given in the form

a=L[/fecoo(V;d)} (1.74)

Thus, substituting u and its derivatives from relation (1.74)%* in the
‘rt-hand side of Fguation (1.70) produces

L +JL3R* 1+ 2€ coo (W8] (1~ B.aim* c0™¥)
-2JL’ R [~ € coo(¥-a)(1-ain® coo®¥)

S din (V- 8) ain?i a2V
£ (1.75)

b 1+ @ Coo (V) ain i ain ¥+ din*l ain?V |

where the term e~ A cos(W¥-B) was neglected because it is of order Je2.

which can be further simplified

The expression in (1.75) will be rewrittenas follows,
LA TLR [ (1-Bain?i coo V)= 2 sin?i an ¥]
+ 2JL7R%e oo (¥~,8) [1- 8 sin®s oo™ ¥+ 1aini co0™V <tie® ain? Y]
+ JLPR%e ain (V18) aim?s ain 2y -2 JL3R e/ din*i ain®V
"25[‘)2[(5@021- 3) -ain® ero 2|
+ LR e coo (V8) [ (Sco0®i-1)-3 ain?i co0 2V (1.76)

L+

r L R%C i (Vo8)ainZi sn2 ¥V - 2JL°RTeN ain?i an® ¥
Tquating (1.73) and (1.76) and dividing through by L, yields

28" e coo(V-8)+,8"e ain(V-8)+J(v"sv) + Je (w”+w)

JLAR?
= [(Jcoozz' -3) -ain?l oo 2 V]
2 ,
+JL*R%e [Coo('V-/?)(é'coo 2p=l-3.an? Coo 2 W) (1.77)

tan (V-8) dni 2nlV —ZAMZ/MZV]

LYETS
I

Holding B constant.
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Since v is the change in radial distance arising from the second-order
solution in which terms having Je as a factor are not retained, isolation of
J(v" + v) from Fquation (1.77) is accomplished by dropping the Je terms 3%,
so that

v L2Q2 2 - - ZV)
viry = 2 (S0 d -3 -.aerd coo (1..78)

Assuming a particuvlar solution,

v=A+ Bcoo 2V (1.79)

and differentiating twice

vi=-Y B cro 2 ¥

Substituting v" and v into Fquation (1.78) rields

A~38Bcrol¥ = (5 coo?i-3)- an L oo 2V
whence

ZQZ

A= LR Sero%-3)
2
L2PRY . 5,

= eIy AN
5 [6)

so that a particular solution of Tgnation (1.78) will be as follows:

5 coo?l -3 , ozl

Vv =L2RF [ > 2

002 'V] (1.80)

Substitution for (v" + v) from (1.78) in Tquation (1.77) vields

280l V-,8) +,8"ain(V-8) +J(w”sw) =

= JLAR*[(Seroi-1) cool¥i8) - B.ain % o0 2V eo0 (V58)

* am Rl ain XY i (Vo 8) -2 N am®l a XY (1.81)

w——— oy —

5 B and p" are functions of J.
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where, from Fquation (1.43),

/

2N an?l anfyW = i coo( Wi 8) *}/‘—Mzz'doa{37’;d) (1.82)

~ 3.0l o0l Y Coo (V- 8) + 0ty st 2V g (V-8) =
= ~2.ain?i 002V o0 (V-8
~ain % (0002 ¥ o0 (V-8 i 2V in (v6)]
= - % 200 (3% 8) + c00 (¥+,8)] ~aini co0 (37,8)

=-2.an?l co00(3Y-8)-an’ coo(¥rd8) (1.83)
Combiring (1.82) and (1..83) gives
—B.in®l coo Y coo (V28) +ain®i anl YV aw (V-4)
“ 2N ain i ain? Y =5 ain® e20 (3F )
sc “hat Fquation (1.81) will assume the form

2.8 coo(¥-8)+ 8lan(V-,8) » Jiw"rw) (1.8

= JLZ,QZ[(JcmZz'-/) m(w-ﬂ)—gmzz coo(3¥-8)

At this point, King-Hele notes that there is only one wav to split
(1.84) into two parts without producing diversent solutions for B! and w;
that is,

28" coo(¥8) # 8" aun (V- 8) = JL R (S5 co0% 1) coo(V-5) (1.85)

%)
w'rw = 'ELZQZMZA' coo (3Y¥-3) (1.86)
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Tguation (1.85) is linear and of the first order with respect to gt.

2,8 co0 (V58) 2 8 "t (V-/8) =0

;- C
< o (Y-,8)
,, c’ 2C
s = coo(V-48)

a2 (V-8)  awt (V-8)

CI

———— = JLPRA (S 200*-]) coo (V)
an (V-48)

C = JL2R (S coo®i-1) [ ain (¥ -8) cool ¥ 8) IV + K

Nl
C= LZ (S eo0 1) an? (V- 8) + K
/P . S
T R (V-8)

4 *
'O_/.d = WJL'?/QZ(JMZ[-/)z Adaw **
c Rev (1.67)

WOTE: The arbitrarv constant K was set equal to zero to avoid infinite values
for A at the limifs O and 27,

Tn order to integrate Tquation (1.86), a particular solution is assumed
of the form
w =K oo (3¥-8)
w”=- 9k coo (3¥V-48)

S
w”rw =-8K coo (3YV-4) = -3—,4222” Y epo(3V-4)

———— ——— o

st B=w=- 90° according to relation (1.45), B' = w' and AB= Aw-
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S .
=‘é;7.ézu?2;m9222

-2 z
= — 2R an i oo (3V-8)
24 - (1.88)

Ja(w) is the third-order change in radial distance s Whereas Jv is the second-
order change. See Tquation (1.71). Je(w) is of oscillatory nature with a
pericd equal,to 1/3 orbital revolution and an amplitude proportional to
(5/24 7e sin®i). v consists of two parts: (1) linear constant change over
a revolution; (2) oscillatory change with a period equal to 1/2 orbital

revolution and an amplitude proportional to (J/6 sin®i),

Equation (1.71) will now be rewritten as follows:
/ ,
—=L[/+ecoo(&f-,é’)]u/2(wcw) (1.89)
r

lemembering that the function v is independent of Je (see corment
foilowing Equation (1.77) ), and that Je? terms are not retained in this
analysis, Equation (1.89) can be writtenas

/
- = /_[/*ewo(?f—,d)][/ *Jv +ch] (1.90)
r
But. from Fguation (1.74)
/ -
L[/+ean (V—,d)]=;_— (1.91)
o
Therefore,
_/_-_—__/[/,4 JV"JCW] (1092)
ro 5
re (/- - Jew] (1.93)
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where

S o0l -3 am®l
v =127 [ > + p Coo 2 V] (1.94)
- i 207, 2,
= 7 LR aen”t oo (B3VW -8) (1.95)

Substituting relations (1.94) and (1.95), Fquation (1.93) can, therefore,
be written in the following form:

2 Scoo’i-3 JLERE
P) ][/- g N oY (1.96)

R Y
HJ/.ADeMzcmmv-/)]

r=r [/-JZ_‘?/Q

where
S0l -3)
2

represents the constant part dve to the distortion of the central force field.

F=r (1-JL7R*

2.1.3.4 Surmary of the Change in the Orbital Flements
2.1.3.h.) . Argument of Perigee and MNode.

The change in the argument of perigee, Aw , is given by Fquation (1.87),

do wJLARH (S eoo 1) RAD. (1.97)
Rev

The regression of the node, AQ is given by Equation (1.48),

40 2e/ e, . )
80 g2y SN (ZE2 rsinty-de)-Rincy )] RO (199)
where,
£ =JL R csol (1.99)
and

/

/
[=—= —"
o a (/-€f)
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2,1.3.4.2 Radial Distance

Using relatiors (1.45)

¥y o= w* - 90°
b8 = w - 90°

ailows fquations (1.80) and (1.88)%% to be written as functions of the argu-
ment of latitude wk, e

2 L . z v
v =L2R7 [ Jw;z 5 '4(/;? ¢ Coo Pl *] (non~-dimensional) (1.100)
w = —2—-;—542,@2” % eoo(3u*-w) (non~dimensional) (1.101)

The magnitude of the perturbed radius vector is obtained from Fquation
(1.9¢). Defining

Sepo?/ -3
F=r [/—JK@Z i ‘—] (1.102)
wWhare
Vi
,"a =
/It e coolu*-w)
vields for r,
22
r=r [/+ Ji/? ain cooZa"‘v*Z;—-Lz,Qzem?z' coo(3a*—cu)] (1.103)
s& that
aom i

- S ) :
Ar =r-F=JL2R4*F [ Coo2U*+ — e gim?l wo(ja*—@)] (1.104)

24

where T, as given by Fquation (1.102) represents the constant change in r_
due to the distortion of the central force field, and the terms within the

brackets represent the periodic oscillatoryr change with respect to the con-
stant part.

S e s eimim e e . ——

*®  or Fquations (1.94) and (1.95)
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2,1.3,L,3 Incliration

King-Hele does not derive an expression for the periodic change in the
orbital inclination i. MYowever, his theory is easily extended to cover this
change.

From Equatior (1.11), the intesral (1.29) and relations (1.13), (1.14),
and (1.15), it follows that

F4

s—té = ff;‘; [Z/(J % 2en 6 cooe] (1.105)
Yow, from the geometry alore
di L dd R*
d_£=-ma ——~//J— cool co0B crold™ (1.206)

From relation (1.1/) and the fact that Y= u¥* - 90°
Co08 = gt [ COOY =_awn £ i i *
Therefore, Tagration (1.106) car be rewritten as
oi R?

o _ ..//J' ——-ML cooi ain 2 U (1.107)

The time argment is now repl acoﬁ by thg areument of latitude v by

neans of Tgnation (1.60), where = (/)< cos i
r* R 2
= |N/-gf= 2
dt = [/ J(p) Aire 6] du* (1..208)

Substituting (1.108) into (1.107) ard neglecting terms in 7 vields

di Rz
G LT a2 dinRu (1.309)
ou* R rp

and since by Tguation (1.90)

;{ =é[/+ccoo(a"‘-w)][/ *Jv *JCW]

3¢ Since Y = w¥ = 90°, it follows that dy = du¥

o0y
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Tgratior (1,109) redrces to

e/}

/RN ' ,
da,=“‘J(;)M2<' [M Z&(**em 2 u*coo (a-w)] + O(J*?) (1.710)

2
=_5—: J(/';Q— MZz'[ZAm,Za*feM(3a*-w) * e.aint (“”*5027
+0(J %)

ally, integration with respect to ¥ rields
o RV e
£=¢ 7‘6—; J(;) am 2, [0002«* te@ oo (UFrcew) * 3 0 (34*—@)](1-111)

2.1.3.L. L Modal Period

King-Helels am\roac'% for the determiration of the nodal reriod, Po
is the following

2w
_ ¥
e —{ > (1..112)
“ut o is given by Fquation (1..60), where ¢ = J2R2 cos i
N 4 M f
V= [/ 1R in 6] = T [/»sJL";?‘(/wfzm‘V)]
r r# (1..113)
# 22/ /PC00%E  ain¥
_.,-_—2[/*‘]‘";@( 2 - 2 CMZV]
and r is given by Fquation (1.89)
~/
r=- [/+ ecoo(¥-8) +Jv + Jew:l (1.134)
Thus,
g% f[/*ecoo(V,d) Tondew] [ a1t (== K
(1.115)
-l 2¥)]ar
7 coo d

Using the definitions (1.94) and (1..95) for v and w, and integrating
fror. O to 27 yields

i e e e~ v —— - T oc—

. cos © = sin 1 cos Y by Fquation (L.1L)
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2 //00021' ‘5]
(1.116)

Y%

-2 7L [/+ 2-JLR

A 2
where the anmular momentum h was assumed constant and set {;7;2‘
Wext, the average p is derived as the harmonic mean value of r,

/ Fdy 5 eon?i -

2 - __f g7 = _[/+J/_2Q2 Q&0 Lo 3] (1.217)

P Rrne r A1 2

whence
— Sew?-3
A= ,v[/*‘JLZ — ] (1.118)

Considering the momentum as non-constant, p, in Fquation (1.116) is
(1..119)

replaced by relation (1..118)
(;‘f)z 7 coo’ - /]

=%
g =2r 2( 2 et
n ;{d—
or in terms of a
a% PZ 76002[“/ SE
R=2r —[1-d 5 =] (1.120)
S v
where a is the harmonic mean average valuve of the semi-major avis given by
- Seoo?l -
a =a,|[/-JL2R? —c"’;‘—i] (1.121)
2
The change ir the nodal period, APg , is given by
AR =R -(R) = (p)[(p_)-] ske. (1.122)

is the nodal period of the preceding revolution.

in which (Pg )o
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2.1.4 Analytical Development of Kozal's Approach

2.1.4.1 The Composite Parts of the Perturbing Potential

Kezal uses the standard potentlal function of Jeffreys and includes the
third harmonic, since he assumes asymetry of the gravitational field with
respect to the earth's equatorial plane. Thus, the perturbing potential Q
in Kozal's work is given by,

-2 A2 /o As .
@=U . /[éﬁ(/ 340’?26')*2;/(\5'40”26‘_3”6‘) (1.123)
. (35,441"'6'-304&26+3)]
where, 35r*
2
A, = QZ&%&
- _Z 3
A, ——fH,QEa (1.124)
q
A‘/ = D'QEQ

is of the first order; A; and Ay are of the second order. Kozai derives the
periodic perturbations t0 the first order and the secular perturbations up to
the second order. This potential 1s transformed using the relation,

2 S =i £ dern i (1.125)

(vhare w* = 7 +w is the argument of latitude), and the trigonometric identi-
ties

i~ ain Sur* (1.126)

The perturbing potential Q then assumes the form,
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Q{2 (G pon’e) i em2u’]

D (2)7 (2 ainsi = 5 ) aim G 34 i

p P ; , ) (r.127)
Ay /2 R IR S
+a5 r) [3(8’4““ 72" “35)
3 N, > /4 ,}
- — un® 2, oo 2 U+ — ¢ Coo Yu
# 7 ZM t),duo ¢ BM :l

Since u* = N+w , where 1 is the true anomaly and w is the argument of
perigee,

aso 2u* = cotoaoo,?w —MZ/MZ«:J

ma*‘=,¢o}b7mw +aoo/xuo'uw (1.126)

e Su*= _am 37&00340 + Coo 3/,4,% S

coo Yu*= Coo 7/600 Y - Lin Vym Y ew

In Equation (1.127), the factors in front of the brackets, (a/r)3, (a/r)l‘,
(a/r) , are multiplied by terms (free from trigonometric functions in 5 and
w ) end by trigoncmetric terms expounded in relations (1.128). The former
products yleld the secular contribution of the perturbing potential; the
latter products, involving trigonometric functlons 1n and w, yleld the
periodic contribution of the perturbing potential, Terms depending on w
only, and not on 7 , are long periodic; terms depending on 5 are short
periodic.

In order to separate the firsteorder secular, second-order secular, the long
periodic, and the short-periodic parts of the disturbing potential, the
hermonic-mean values of the following terms are first evaluated, employing the
relations,
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Introducing ldentities (1.128) in the perturbing potential (1.127), and
multiplying the terms within the brackets by the respective (a/r)n, yields

[ upon substitution of the mean-harmonic values (1.131) ] , the four parts of

the disturbing potential,
- A % 3 4
= Ay 1/ o2 Y AYA S AR |
Qz 3//a:(/e) (/"26)(84% 4‘74024*5;)

A ¢ ()-et) (S ain i 1) ain ¢ in @ (1.132)
= ez(/-ez)_,/z(% ——ZLM‘Z)MZZ doOZw]
(R (e

3 .
+zé(f§)_44m‘z ax>2’({74a14
where Q) is the first-order secular part of the disturbing potential, Qo
is the second-order secular, Q3 is the long periodie, and Q) is the short-
periodic part of the disturbing potential. Note that Q) was obtained by sub-
tracting Q1 from the portion of the disturbing potential (1.127) which has
Ap as a factor.

2.1.k.2 Lagrenglan Definitions for the Variations of the Orbital Elements
Kozai uses Lagrange's definitions for the rates of change in the orbital

elements and rep laces the time argument by the true anomaly by means of the
relation,

where h 1s the angular momentum per unit mass.

The Lagrangian definitions for the variatlons of the orbital elements are:

da 2 2Q

=2 = 1.1

ot ra M (1.133)
de /~-e? > 94 _ 94 (1.1
de _ lef( ez 2424 134)
ot %e(/e M dw
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dw / Q@ /-e? 374 /-e? 24 . dQ (1.135)
— = = - ;] — — - —— —_— -COOL — .
dt {( col ¢ 3% e 9e Ae oe d¢
o co? 4@
A a_w (1.136)
dn / 2Q
— = — (1.137)
dt Fam i L
<ol Y 4
ﬂ/=),_f_f.(/6 9% ., 299 (1.138)
at # & Je da
ir_a4_, (1.139)
al ad

NOTE: a, n, e, i, and W may be regarded as constant on the right-hand sides of
Equetions (1.33) through (1.139) except for n in (1.138) and (1.139). In
those later equations, n must be considered a variable. However, it is a
known function of time after obtaining the expression for a (semi-major axis).

2.1.4.3 The Secular Perturbations of the First Order

2se perturbations are obtained by replacing Q by Q) in Lagrangian defini-
tions for 4 w /fdt, 4 82 /dt, dM/at, as given by relations (1.135), (1.137),
and (1.138). To accomplish this objective, the partial derivatives of Q1
with respect to the elements i, e, a, must be derived.

-3,
‘Z—Q’ = U = (/-¢%) Tain i conl (1.1%0)
4
& Az % 3 .
= —= /-e? /-_!:,z£~
2e ~ as el 6)( 2 4) (2.141)
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Q, A, %y, 3 . 2 1.1k2
5--/{-;,(/6) (/ zmc) (1.142)

Substitution of these partial derivatives into Eguations (1.135), (1.137),
and (1.138) yields,

: 5_5__/(_604‘, e, /e Q) _ A—’;‘z(z-fm’) (1.143)
: at 7{ ac e 7e fz 2 {
: First Order
: a0 Secular
E o 1 3@ _ fe g, Seouler
dt  Aaumi i /ﬂz
= d_M- _ A
T A1 2 () Fane) STeT ]
t (1.145)

where,
o =all/-e%)
2.1.,4,4 The Short-Period Perturbations
These perturbations are obtained by replacing Q by Q4 in Lagrange's definition
for the variations in the orbital elements as given by relations (1.133)

through (1.138). However, the partial derivatives of Q) with respect to: M,
w, i, e, a, must be derived first.

7@, / d [2/a’ 2 -% 3 .,
— = - - — = - i
o 277 g [3(,: (/- )(/ PRt ) (1.146)

+(7a-)JM 2 eo0 2(Pr )]

2Q, T
?;E)" = - wA, (7),402& an 2(Pr @) (1.147)
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3_6‘25 =-/1%Micml[('g)j-(/-@z)wi (?)3@0 2(7;*&1)]
) cao2(7+w)]

r

(1.148)

=-u %MZ@OL[’% ( 2//?

. 2 3 .3
o ARl ) et ]
2 L

e (7) (5 )i % i i 200 ) 11 Gain* ) =)

g P -3, o 3
“Q'z-//fﬁ[(;— _(/_ez 2)(/-24/)%2[)1“5(%) mzt'woz(ffw)] (1..150)

NOTE: The term is equal to dM/dn . Hence, the

2./ o2
a*v/-e
integral of thils term with respect to the true anomaly 1 will be M.

Substitution of these partial derivetives in Equations (1.133) through
(1.138) and replacing the time argument by the true anomaly, 4t = " d/
yields the following integrated solutions in which the argument

must be replaced by the limits of integration ng and Mj.

/
va. =2 D AZ{ 2(“ ~(1-e?) )(’ ‘g*’“’”z")
SHORT Aa aM a L3 I’ 2 (1.151)

3
+(ﬁ> ol coo 2 (ff,a;)]

r
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/- - 2@, 2@) (/—cfX | gy 2l )
—|fl-e®* — - —|dt = SO 1.52
Posuoer = fe (/ © m w ‘ e N2 a ool P uoar | (1-52)

i w3 I .
NS Y R
2

h-N

e z

L e
2{/ L [cooZ(ffw)fe coo/f  2) 4 cco(37 Zw)}}

’ /A
Co ¢ @ dt = — == M&[Cooz(7+w)+caoo(f v 2w)

i =
SHORT ?{ dew 4 )0 (1.153)

* 3 C00(37+2w)]

/o 8R, _A . i )
= - —Jdt = ; Cou[(}fM cmf) ,A.onZ(f w()l.lsl;)

e | e
- ZM(/»‘ZG))" warz (3?*2&))]

/ 9@, [/-e* 947,,) < ) 92,
= —{ - + — == - d
da,, . {( cot ¢ Py = Je ot 7\ 2 ) 7% dé-eocdn,,,

+</—§M2z'>[é(/- EZ)M/  ln 20 © tin 37}

/ VA I 2:| ,
- -2 —_—— — z 2
c[‘/Ml+(2 /6M z) Am(/; @)
/T 7 / /9 ] ,

== (]~ (37+2cew)
*e[/zmz 6( 8M 2;) e’ wun 7+l
‘—/(/‘—Mzz')w,?(yfa))fEMZA'M(f—Zw)
2 2 )
3 e (1.155)
*gmzéaérzﬁ//a?a))+/—6~4mzzl¢1)n(.5/fza,)

//-ef(/-cz 2Q, aa,)
= — —H+2aHdt
dAds#okr % e de a da
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Here; n is a variable,

Therefore,

Vire /-e? 0@, 79,
C],/l/s,qop, = 7 dl - £ ( c Je *a '5) ot

A : ?
=- 2 V/-e? (/‘éw'mzz) (/——G—)M b S sin 2
ep” 2 ¥ < 7
e? /, 5 .
7k 3/] —;(/f;ez)mzzm(f*,?w)

+—7(/-e—2) % ain (374 20)

7 78 L g f w
e* 3 .

+ /—6,44);1*’[,4&”(7-24)) +§em’¢‘m (V/f 2)
32

*/-A—MIZ'M/JZ *2&))}

( 1.156)
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2,1.4.5 The Mean Values of the Short-Periodic Perturbations

The mean values of the short-periodic perturbations with respect to the
mean anomaly M do not vanish, except for that of the semi-major axis a. This
fact can be shown by considering the point where r = a; that is, cospp = - €
and M = 7T/2 - 2,

_ /4: Ny /"62 [
desuopr _.;; aue”l be 27 coo 2w (1.157)
!/ A _—
9L onr =5 ;52 ain R co0 2y oo 2w (1.158)
/A -
s p—f csoi c00 27 ain Z @ (1.159)

4,0 L1 et ——\ I
e = -—;[M*’L(-g—+ o @027>M2a) +Zwo2t C’om?f.dm;?a;](l.l&)

1 et

> 0 27’)m 2w (1.161)
[

A .
oM =-—V]-et am 4(—+

SHORT pl

where (100\/7 =(/+/;i:_67>j</ *././/_—ez)

j = l, 2’ 3, sseey n

The mean value a of a semi-major sxis a is determined from the relation,

- — — A 3
a’ 2* = e = ao’;;z{/'—f(/'zm‘ﬂ)\//-e ]

y4
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aad the known value of —ﬁ, which is given by Equation (1.145). Hence,

a = ao[/- i’;' (/- gmzé) /-ez] (1.162)

V4

Ine mean values of the short-periodic perturbations, as given in Equations
(1.157) through (1.161), were transcribed from Kozai's report. The derivation
of these equations, however, yields results which are opposite in sign for

short

2oy apt s dishort » and dgshort’ and which are of a different form for dw

and Mghort Thus, the derivation of these guantities, using Kozai's con-
ditions,

MJ‘f= o
,j=1, 2, 3’ cos ey n

introduced into Equations (1.152) through (1.156), will be reported. Con-
sider Equation (1.153)

A
ac = -2 MZt'[CoOZ(f*‘w)feCoO(ffZa))*gcoo(\?f*,?&)j,

/
SHoRr 57 z

The mean value digy,. is obtained by replacing e by (- cos i ) and the
resulting expressions by,

/
2

—coo(f*Za)) wo/ [coOZ{/fa))*CoO2aJ]

/ _ i
- = Coo/37f2w) coo/

/
3 "z [cmZ(/fw) t m(%/uéw)]

The terms cos 2 W (which is independent of 7 ) and cos (,n + 2w ) are neglected.

Thus,

/A L —
@ roer =/—5 /—v—i aun 2¢ co'o,?/coo,&a (1.158)
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Next, consider Equation (1.152),

/-e? / S L
desyoer - e ‘?a. daSHoAr - 2 z' leIIMT

But, since,

SHORT

it follows that,

/-c?\ am { !/ A, ,2_(/-62)
= ' =" 1.1
e, per ( - ) ool I romr 5 §r 2 - eoo 2?@02&) (1.157)

Similarly, consider Equation (1.154)

Az . .
Wpoer =™ OO0 [(f%//rem/ ) -2—/4-,:2 (7+w)

- %M(ff 2e) ——j—m(3/+£a))}

But since,

and
'j:l’ 2, 3’ .--,n

It follows that,
(f—M) te M/) =0

Now, the mean value of aQ short 18 obtained by replacing e by (= cosm )
and the resulting expressions by,
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!/ = /T = .
E,M (/*Za)) cooy =;[M2(f*d))*m2a)]

1 A e —— .
p s (37+20) Coo —/E[mf(/fw) hafz(é’/f,?a))]

The terms sin 2 w (which is independent of 7 ) and sin (kn + 2w ) are
neglected, Thus,

00l o0 2 ain 2 cw (1.159)

%ﬁ*@ilexpTession for dw s}-:lért is obtained by rewriting Equation (1.155) as
follows:

Az 2 .
Jdo,, ., = ;{(/‘ %M 2[)[(%—/141»@4()7:7) +;(/—j—)Mf + é M27

3 e
P dim f e 2( W = 2 ?i i (-
7*rew) f/6M¢M(/ 2w)

¢
S L e . L. .
"?M tar (VP12w) f/-,z.au y M(Jfr,?w)} -cooidn,

Here agein,

/—Mfe,a'mf =0

M/'7=0

d =125 3, e«sey n
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Thus, using the condition that cos 1) = - e, yields,

Ty = ff{— L i z[—;’(/— gez)m(ffzm ooy

SHORT 2 F4
b2 [+

1/
+/E(7f z{-ez)m(a’/u?w) CoO/}

3 . — 3 -
4 ZM’J MZ//»&/) * EM’J'M(‘VZ' Ze)

/;M'?z Zrarem i 872} -t TR,

Now, considering the ldentitles,

M(fh?w) CoO/ f[m,?(/f&)) + o 2&)]

M(37f26)) Coo/ =‘2/‘[M2(7fw) fM(yff,Z&J)]

an (Y -2w) ool = LMZ(/&J) M,Zw]

M(J/ff&)) coo 7 =é[w (4‘f*2w) *,4&;:(67*20)]

and neglecting the terms sin (47 + 2w ) and sin (6n + 2w ) yilelds

da):nazr:%{ [('e— )(56: -Z—)m]ngw

L oot oae B it 2 } (1.160)
% Co0 7M o]
Similerly, dM_, ... 1is obtained as,
; 3\ [
= _i{mzz[(g/—z + -—) ( P 7) wto]MZw}»//
SworT 7,2 e? /6 be? 32 (1.161)
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2,1.4,6 The Long Period Perturbations

rese perturbations sre obtained by determining the respective deviations
rom the mean values of the short periodie perturbations, as defined by Eq.
(1.157) through (1.161). There areno long periodic perturbations of the first
order in the semj-major axis a. The long periodic perturbations of the
remaliring elements are defined as follows:

Vipre = Ty 480 # 84 (1.163)
ST = Pper T8+ S, € (1.164)
O e = I, +EN + 8,0 (1.165)
I, e = Fgppey P @ + S, @ (1.166)

where the §y , O, veess, represent the deviations from the short periodic

mean values,
Eozal does not present the technique he used to determine these deviations.
However, through research of the literature on the subject, some useful
clues were obtained pertaining to the way the 6311, 6ie, 6.9 6,w and
B Rl X
6.1, Oze, 620 , 0,w are to be derived.

The technique consists basically of replacing Q by Q3 in relations (1.134)
through {1.137), remembering that 8@; /aM = 0, and in adding certain terms

to the basic definitions of d Q /dt and d w /dt.

d /
_(@z) = — ol 94, (1.167)
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where,

N=-=ncooi
o
A, 5
C¢)=;2'7?<2‘—2—M2£)
df. A, .
—\Q) === rani = ~\lan | ]
di b4

d . Az L. B . . 2
—_&)=‘5—-—7/M£COOL=JMZ>.O
di 2

d( ) ( e) A, 5 e
= = 4 Iz 2 .
g /-e?] p* 77(2 4 MZ[) 4(/'62) @
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(1.168)

(1.169)

(1.170)

(1.171)

(1.172)

(1.173)



The function Q3, given by Eq. (1.132), will be rewritten in a more convenient
form for the purpose of the ensuing analytical development. As 1t was stated
eerliier, Q3 represents the long-periodie part of the perturbing potential.,

A (3 4 K \ &
Qg—/;;j;a—:,,e“e)M<Mw A, (1.17%)
,_41 R P (/8 21.an 4) ( & )]

+ a,/ze (7-e*)  in? — ool w 8——_4_2 (27 )
P 2
aa, d[ 3 4
—d = — e .
0 hpdz‘ 7 or LM L 2 ) - (1.175)
A, 2 _2_(/8‘2/,44:}12[) Coo 2w
+ P e an”e 5 - - J
A, o 7 8/2—5,414224)
29s = Jf(—‘—)a)[ J i(—*é’e) 2Ln [ At o)
de /-e ¥4, 0\C (1.176)
/g - e
/44/2 (Z*JeZ)MZ‘-( 8-2/.aem t) 6005260 ]
A, o 7 8(2-% ain?)
&, [ (3 Ay ) ) (/d' Ay ) .
—f={-———emtww | = =2 canPiaunew|n
¢ A, p 4 4 L, P (1.177)
vy V'CZML'@O'(Q-Z/MZL') coo 2 w .]
’ L
A, p* 7 8(2-Lain?i) «
From (1.167) and (1.175), after eliminating d/dt on both sides,
3 A
6‘ L =" — —@C&OLMGJ
Y A p @, (1.178)
A, L. ,(/8~2/M2z> co0 2 e
r—=_ @ an 2 —
A, p* 7 8(9-Sain %) |,
Similarly, from (1.168) and (1.175), after eliminating d/dt on both sides,
A
Se ='3(/’62)A - _ain I aint co
27 : . o, (1.179)

A ) /8-2/4(»2’5) coo 2
- -n% hd F-o
z2(/-e )A : € ‘( 7 8(4-Fain?i)l,
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From (1.169) and (1.177), it follows that,

/ 20"= (/Jﬁiemzmw

. A ]
).(2 (‘3— —t e ML,MQ)) &

Aani 3 4 4,;a YA p and (1.180)
+8——-— 2 , (Q'Z/Mzt') o 2w
2 & @0 7 8( Y-S ain 20)

p

and from (1.172), (1.178), and (1.179), that

d . 3 4 oy : A
—(n)é¢ =(— 2 emcma)).() —2142;0*’6 ain’i

di 4 Ao 7
*< coOZw)( -6 cooc’) (1.181)
8(4- Sacm I\ 2-{am*l

DB se =(Z As emzm@)[z-(s
de 4 A, p

*< o0 2 @w )( -a')coOL')
(¥ Sam®i)I\2-d.un?

The addition of (1.180), (1.181), and (1..82) yields relation (1.169).

A, p*

Integrating with respect to w, ¥yi elds,

v Q-2/am? ) an 2 w
a0 ", 07 femd 7 2(4-5 aim %)
A, 2 -z . /8—2/@25) e B w (
e 1.183)
*5,4 2% © ¢ coot 7 Y(Y-5am?i)*
3 A Cool
r= 2 oe Co0 w
¢ A0 2L
in which the argument w has to be replaced by the limits of integration wq
end W
1

In a similar manner, from (1.170) and (1.177) that,
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#“_ég_(U'A, )ﬂ43,4 0%

—_— == — —c w
7 4 4 L 0 e Lune coocxzmw 7/42;9 e Amw) (l 18)4)

84, . 2_(9-2/4&&1&') coo 2 cw
- e’ em , )
,42/2 7 8( Y-85 a2 )

':"h, e

and from (1,170) and (1.176), it follows that,

!rg’
A\ e

/- f) 2@, :_(3 Ay (/

——)”/C)Mc’ MQJ)&J

Fe 4 AU” (1.185) ’
.2 KZ*JcZ)MZz(/B'Z/““"Z‘) oo 2w o ' -
Az/vz 7 (-5 ?l) :
From (1.173), (1.178), and (1.179),
f /5 4
g(a))d:/=- (— L o sni ool Mw)ﬂ
Ji ¥ A p
5 Ar . L ,(/8—2/40}22[)( o 2ew )( -@ es0i )(1-186) :
AZp’e e s 7 HY-Sain2iW\2 - { am? £
~(w)£c=(3 em;ma))a),,, g
de 2 @ £
. 2l .18 £
-y A, ezmz‘{-(@ Z/Mzt) C’oOZ'a)z . (1.187) :
Ay p# 7 Y4 ~Fawm &) g

Adiition of (1.184) through (1.187) yields relation (1.170). Integrating this
result with respect to ), yields,
A . /Q-Z/M"’t)m.?w

28 Y -Sam

» (/8 Z/.an 4)( a2 cu ){ S ¢oo z]
- ) GZM‘!L Py ——— o
28 Y-S % Z i (1.188)
_ /4 62( int 2@))[’/@0 C(P-2/an? )~ Saune 4(/8 2/t 4)]
/42,32 F-Fain® 56
3 /4_,(4(/4 L -e C'.oozé)
oo @w

4 A, p e amn ¢

in which the argument w has to be replsaced by the limits of integration Wo
and Wy
1

TELTFTmm e

+

PO AT (0 )

17 v 11

The technique for the determination of 621, 62e, 62.(2 5 dz“’ consists in the
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application of the following rule,

(1.189)

where f represents any orbital element and the summation represents the sum
of the partial derivatives of ( Of/ 9t) with respect to the remaining elements.

First of all, the time argument in relation (1.189) will be eliminated in favor
of the perturbed true anomaly 7 through the relationship,

r? /A 3 3
e E{1rd B L ong Samg i

€ r* 2
- le-(/ f;>m 7 er 2(7#&)%}0’7

Applying rule (1.189) to the orbital inclination,

di ¢  af dt E(at) a(ﬁc)
—=—+—=]|é —|be+ —|—|J 1.191
gt ot +3a(9t> PR TS AP PYY R (1.191)

By Eg. (1.136) and (1.147),

(1.190)

2 ! . 90, w4 Ae
o _ 1 oy LR yn2iam 2 (V@) 1.192
Y z”cm do 2 A r’ ‘ 4 (1.192)

Replacement of the time argument by the perturbed true anomaly by means of Eq.
(1.190) yields. ;2
ﬁ) e L L2 20 in 2 0)
7 2 rp
2 3 3 .,
- -f—(—lq—z),dén,?[ﬂﬂ,?(rfa))(/*ec‘m/) {(/ - —Z'M‘zl) 0007
2e\p?*

ToraL

(1.193)

¢ 2 din? coo Y eo0 2(Y+e) -(/fﬁ)wfz i ) Z(wa)J

The first pzart of Eq. (1.193) represents the short periodic perturbation and,
since the purpose here is the determination of the long periodic contribution
arising from the perturbed part of the true anomaly, only the second term of

Eq. (1.193) is to be considered. In fact, it represents the function ai/a? ,
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2 / A,
2 ( ) (/+ ecoof)an&,dmz(/,uw)[/’zm ) cooy
f 3 (1.194)
P
*;Mzt'coofm.?(yf@) —(/*p—)m’z'mfm%/m)]

Since the effort here is concentrated on long perlodic perturbations, only
furctions of w are to be retained in relation (1.194). To obtain explicitly

these functions of w, one proceeds as follows,
7

s g _:?_ 2 e? _"? 2 €
TR N S I

z
mff’/few/)j= gf{/f 3—) +//f gez)aofr %(3*62) o 27

J e
+;€200037+ gcodl/

J
S e
2 Z(Prew) 6'007(/7‘66007) =;(3fez) e 2y

(1.195)
L .z / ‘ / , ~ / _
dort 1 iin Z(Prew) =2—M7 ‘Emfcw Y raw) = ZM 7
/o A
_;/'M (J/w;/w) *47’4‘” (3P +¥w)
s J
:44}5??4:%22(/*&1)//:‘6&07) = EZ—M Y (1.196)

Introdueing (1.195) and (1.196) in relation (1.19%) one obtains,
1A\ 3 e®
- —( £ )M 2f [(l ‘-,44'4224><3+82>M Zew - —ain ‘Vw] (1.197)
iy B\p* 2 8

Tet 6 i be the long periodic perturbations in inelination arising from the
pe*‘ttu‘bed part of the true anomaly. Then, the transformed relation (1.191)
can be written as,

i J [ s af d¢ J
L gi)-% (—‘) Sa + —(—‘) Se + < ) dw (1.198)
/ f aa 97 de\? 37
It now remains to evaluate the partial derivatives of relation (1.197),

92(57) o =5/<;2)(/ (:2)‘“”2‘ {("—‘“"” “eret)ain 200 (g
3

'—ezméxzmi’w]

32
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. 2
—9—( 52‘—)66 = ! (&> (/'_/")M 2¢ (/ -j—mﬂ) (3+22e% 3e%) aro 24 1a200)

s 2
i (i) Sw = £ (’4_‘2) wz;[(/— %m’z) (12+11e?)+ 3e’an ’c} (1.201)

| dw Nl 2 \p
9 (iﬂ) -2 (Z‘.):o (1.202)
am\oyl sn \3y
Substitution of Egs. (1.197) and (1.199) through (1.201) into relation (1.198),
yields,
d ! 1A, Y 3 ., [ o, Ye(6re?)
gy oo f 3 . y Tefteren)
d/(5z‘ 24(/”1)4@@24{(/ 5 4)3(3+e Y
- 3+22e? 4 1.203
N # 3 rlle”rFe —(/; +//cz)] -3ezmzé},dm2® ( )
/-e?
) /[ A \* - /S e
- =—(-i)ezwzz(/j—ifﬁ—)mzw
i 8\ p* 6
Using the relation,
A 5
(E‘i‘i’ = —;(2 - ——M’z) (1.204)
df SECLAR P 2

replacing dn by,

de 2dw
Y = & 1.20
7 (%) %;(9-5“:@) (1.205)

~

and integrating Eq. (1.203) with respect to w, yields,

2 (1.206)

14 - /S ain 2L o Pew |¥
2°

A
e Bl P
% ¢ it ‘( 4 8(4-Saum 2i) |,
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] 5 is determined in a direct manner from the condition that,
Na (/-e?)¢po i = cowsr (1.207)

ex:l the known Tact that there are no long periodic perturbations in a.

Therefore,
‘ ConssT
/-ef co0l = (1.208)
. ocb,e ~STEF wini S,e =0 20
—ﬁ eroi S,e /-c* sni Se = (1.209)
whence,
/-e?\ awm .
S,e = —( — &, ¢ (1.210)
e ool
Substitution of (1.206) into (1.210), yields,
A, (1 SEan®\ coo 2w |7
S,e = —7 e(/-e? Mz'( ) 1,211
Z /vz ¢ é Y Y-Saam?i) o, ( )
3,82 and {§ow are derived in exactly the same manner as §oi.
A, _(7—/.5'”2[) ere 2 C
cs' =—— : 10212
2l 2(4-5 sia®i) (.212)
A, 1~ 15 2 ®i\ i P
-5-—82""coo'( )
Pt U UY-San®)?
A (St 28 ~/58.ainti + /35 sin %\ ain 2 e
S = AT -e 2./ (1.213)
» ¢ 48 Y-Sam?,
! A, G [ -1 Een 2N e 2co S eoo?i
*- == el uin? Y ———
2 p* i 4-8.ain?l 2~ Ftinti
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where the argument w has to be replaced by the limits of integration Wo
and Ww4.
1

2.1,4.7 The Second Order Secular Perturbations

The secular perturbations of the second order with the A4 harmonic are obtained
from Eq. (1.135) and (1.137) by substituting Q, for Q. To these must be

ad.ged the contributlon of the square of the Ap harmonic; that is, the terms in
A2 L]

dn /94,

ot i Aani 3

+ AT (TERM) (1.214)

2Q, /- _3_0_2_) 2
> *— e +A, (TERM) (1.215)

/
2 - eeore

Qo, as glven by Eq. (1.132), will be rewritten in the following form,

£ A 3 73 .03 . 3
Q, =.[:T— a—'; 7:(/+Eez)(/-cz) (gm"z—7M’4 +§3_—) (1L.216)

and the partial derivatives required in Egs. (1.21L4) and (1.215) are,

12 - Z/aﬁzz')
a b

1.217)
/Y (

— = - ” /+£ez>,4¢,‘,¢ [cootl(

2Q, A, (
— 2
2

J A 3 /5 0
A ‘f( ° ) — Y(/*Ze’)(zm"[— “;—mzz » ;) (1.218)

Substituting these partial derivatives into Egs. (1.214) and (1.215), yields,

an A A, 3 /2 - 2] aun*i
(_) - —yﬂcooz(/f —ez)(——&> +AL (TERM Fop ) (1.219)
o Juscomnl” g 7
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{d A /2
0 = _‘L”{_(/+_9.62>_?_3(/ 6‘3 2)4[47.24'

* e
¢ SEcuLar ﬂl/ 7 8 4 62
2D orE® (1.220)
> 2—/ Y 27 z . ¥4
g\ " 558 ) ral (TERM Foe o)

¥ozal loes not present a derivation for the second order secular perturbations;
net evan a hint., His results for the A22 (terms) do not agree with the
resitlts obtained by other theories. At this time, the apparent discrepancies
Jave not been resolved. Kozal's Ay2 (terms) are thus, transcribed varbatim.

AL (TERM FOR 3 = -(—A_iz % m;) ; &[ f(,+ e_z)

7 (1.221)

z A - 5 2
AATERM FOR ¢) = = 77(2 - ZM%)* A—:[Z( # %) (1.222)

7* 7
6’3( ez) . ( 3 . )
- - - -2{)-= Fd Lo ®
o\ o e 2 Jvi-eZ
I : 2 ¢
7z \ s 7 coo¥e
where a is given by (1.162),
pg=al(/-e*)

and

7= 7 [/f é'(/- f—m%) V/-CZJ
7\ 2

i and e are the mean values of the inclination and eccentricity over all
periods with respect to M and w.

2.1.4.8 The Sum of the Secular Perturbations of the First and Second Order
The rates of the secular perturbations of the First order are gilven by Egs.
(1.143) through (.1,45). The rates of the secular perturbations of the second
order are given by Egs. (1.219) and (1.220), with the Ay* (terms) defined by

(1.221) and (1.222), Thus, if £ and ¢ represent the sum of the rates of the
secular perturbations of the first and second order,

e (Ef_?) +(°'_ﬂ) (1.223)

dt dt
Js+ OROER Zuo 0RDER
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1sd ORDER 20 ORDER

the corresponding total secular perturbations during the time interval t are:
Q2+t and wit, respectively.

NOTE: In this analysis only the secular rate of thg first order for the mean
anomaly M 1s derived and is given by Eq. (L.145): M =T; Mt = T,

2.1.4.9 Perturbations in the Radius end Argument of Latitude

The perturbations in r and the argument of latltude u¥ are calculated for two
reasons; (1) for the sake of completeness; (2) the expressions for short
periodic perturbations in the mean anomaly and argument of perigee are, first
of all, lengthy and complicated and, secondly, they fail in case of very small
eccentricities. Therefore, it is very useful to combine (M, w ) together with
(a, e) in the radius vector and in the argument of latitude.

Using the relation for the unperturbed increment in the true snomaly,

2 S o
df=g——i-c—dM

,.Z

and differentiating r with respect to 1n, 8, &, yields,

d d
;r=/_—%; M/dM+£‘Za‘co070/e (1.225)

Now, noting that the perturbed rate of the true snomaly is given by,

_a? /-e? a ry (1.226)
d%‘lmﬂm - ,.2 aM 7 ;— /*;)Mf de

o0&

where,
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A 3 ,
da = da ;=2 ao(/-gmzz) 7-e?

SNVoRrT z
p

de = ey or
4 (1.227)
agM = am *—E —IV/~€2 amnl din 2o
SHORT 8 paf
3 A
do = du,,,.. _E —i n? o 2@
2

and that the perturbed rate of the argument of latitude can be defined as
(177 + dw ):

a? ‘//:; Q r .
ot _r_z_olM,.T(/,‘ ;—)Am/de * dw (1.228)

allovs relations (1.225) and (1.228) to be written as,

s (I R

L B ai o ne
t+t—_ — 4 #
6a;0M oo (Pt @)
= ﬁz[(z ZM l)(? M caunl |+ / 24(4124 {33 !/ -/l-e* 7 awny
; (1.230)
B ) R e G R s

2 6
2,1.4.,16 The Sum Total of All Perturbations

/ 7 . e -
- (/-—M"z)m 2(7rw) - g coo? ! m(3/+24))}

a = a 4 das#oer
€= ¢ chIIORT - de:uolr de“”‘
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- e +de

SHoRT SHORT LoME

W= Gyt wt ¢ da)snuv - dwrﬂanr ’ dwtauc

0 =0, +0t 0 e Ay * Wi

SHORK SMORT

M=M * 7t + M, e

where a is given by (1.162); % and 1 are the mean values with respect to M
and W; Wq, 24, My are initial values from which periodic perturbations

have been subtracted.
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2.2 THZ PERTURBATIVE EFFECTS OF ATMOSPHERIC DRAG ON THE ORBIT OF AN ARTIFICIAL
SATELLITE

2.2,1 3asic Review of the Problem

2.2.1.1 Definition of the Perturbing Force
The atmespheric drag is directly dependent on the following factors:

A. The Drag Coefficient, Cpt The drag coefficient Cp is a function of
the shape of the vehicle, its projected effective area, A, the accom-
modation coefficient o« , and the orbital altitude, h,

E. The Projected Effective Area, A: The projected effective area is a
finction of attitude stabilization of the spacecraft.

C. The Mass Variation of the Spacecraft

D. The Relative Velocity, Vg, of the Spacecraft with Respect to the
Atmosphere: Due to the fact that the atmosphere rotates, the velocity
of the spacecraft relative to the rotating atmosphere differs from the
inertial velocity of the spacecraft. Consequently, the drag force
vector will not lie in the plane of unperturbed motion; and, therefore,
all six orbital elements will be affected.

E. The Atmospheric Density: The atmospheric density is a rapidly decreas-
irg function of altitude with superimposed effects of solar ultraviolet

NERET.

1

I7 0 E T TR RN IR 1 OO (1 1 1

ard corpuscular radiation In the upper atmosphere regions (above 200 KM).

In other words, at altitudes above 200 KM, the atmospheric density is a
function of both altitude and time; the dependence on time being
implicit in the form of dependence on the position of the subsolar point
and the amount of emitted solar energy (ultraviolet and corpuscular).

The drag acceleration is analytically defined in terms of these factors as
follows,

L--80% T,

m

where B = CpA/2m  is the ballistic coefficient; P » 1is the instantaneous atmos-
Pheric mass density at altitude h above the oblate earth's surface, Vg, is
the magnitude of Vg

The dependence of atmospheric density on orbital altitude is usually approxi-
mated by the exponential functional relationship,

-k (h~hy)
25 C
. . . . =1 e
where K 1is the inverse of the density scale height (Af",o dh and p

is the density at the instantaneous perigee height. p and K are determined as
a function of both perigee altitude and time from a preferred dynamic model
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atmosphere. In this manner, the integration of the perturbative effects is
greatly simplified.

In addition to the direct dependence of atmospheric drag on the five factors
listed heretofore, it also depends in an indirect manner on the attitude stabi-
lization of the spacecraft, the rotation of the atmosphere, and the flattening of
the atmosphere. This indirect dependence is implicit through the projected
effective area, A, (and the drag coefficient, Cp), the relative velocity Vg and
the term (h-hp) in the exponential definition of the density, respectively.

A.

The attitude stabilization: The attitude stabilization affects the
shape of the projected effective area, A, and through it, also the drag
coefficient, Cp. The two extreme cases of attitude stabilization are:
"nmose-on," wi%% the longitudinal axis of the vehicle along the instan-
taneous velocity vector (0° angle-of-attack), and "proadside," with a
90° angle-of-attack. All the other cases are contained between these
two extremes. In absence of information on vehicle attitude stabiliza-
tion, a locally fixed attitude ‘geometry may be assumed. Such locally
stabilized attitude yields a (nearly) constant effective drag area.
Vice-versa, by assuming a constant effective area, a locally stabilized
attitude is automatically imposed, Maximum lifetime is achieved by
having the longitudinal axis of the vehicle locally stabilized in the
direction of the instantaneous velocity vector to minimize the projected
effective area.

The rotation of the atmosphere: The atmospheric drag in a stationary
atmosphere causes the eccentricity, e, the semi-major axis, a, and hence
the orbital period P to decrease secularly (per revolution), but causes
no secular changes in the argument of perigee @ , the ineclination i,
and the longitude of the node £ . In a rotating atmosphere, the drag
acceleration vector is out of the plane of unperturbed motion, and the
three orientational elements will also be affected. The effect of
atmospheric rotation is: (1) to decrease the respective rates at which
a, e, and P vary for 1i<90°, and to inepease these rates for 1 7 809
(2) to decpease the inclination 1 for all orbits; and (3) to produce
secular regression of the node 2 of the argument of perigee w .

The flattening of the atmosphere: The flattening of the atmosphere,
assumed to be the same as that of the earth, affects the atmospheric
density through the exponential term (h-hp). Since density varies
rapidly with slight changes in altitude, the effect of the flattening of
the atmosphere is rather significant.

2.2.1.2 The Effect of the Perturbing Force on Orbit Decay

The drag acceleration causes a distortion in the shape of the orbit and a
continuous loss of kinetic energy of the satellite to the atmosphere. The net
result of these periodically repeated effects is:

A,

A cumulative variation of the orbital elements.
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E. A drop in orbital altitude (increase in potential energy) to compensate
for the loss in kinetic energy. Apogee altitude decays at much higher

rates than does the perigee altitude. Thus, an initially circular orbit

with uniform drag over its entire path will tend to remain mearly circ-
ular and an elliptic orbit will tend to become circular.

2.2.2 Review of the Available Literature

2,2.,2.1 General Comments on the Papers Reviewed

The literature in the field of general perturbations, as applxed to atmos-

pheric drag effects on the orbit of an artificial earth satellite, is very
K Unfortunately, many of the papers duplicate one another and differ

principally only in the manner in which the exponential density function is
develcpad., Furthermore, most of the works do not include all of the factors
whicli are pertinent to the problem, such as the rotation and the non- sphericity
of the atmosphere; and some authors restrict the validity of the analy51s by
assuming that for elliptical orbits of eccentricity > 0.1, the perigee alti-
tude may be considered constant, and that the uncertainties in the true varia-
tion of atmospheric density are greater than the differences between the
results cbtained by them and other authors, Practically, except for some super-
ficial comments, no attempt is made by any author to discuss the variation of
the drag coefficient Cp and the dependence of the projected effective area,
A, on attitude stabilization. Rather, they assume these parameters to be
constant. Further, the variability of the density scale height is completely
ignored and assumed to be constant (except for King-Hele). Likewise, standard
atmosphere models (mostly outdated) are considered for the determination of
atmospheric density at perigee, P, , and only as a function of altitude, com-
pletely ignoring the dynamic nature of the atmosphere.

2,2.2,2 Methods and Techniques

The mathod most commonly used by the majority of authors is that of general
perturbations; that is, integration of the equations of motion by analytical
methods., The time rates of change of the elements are defined in terms of the
compenents of the perturbing acceleration in the radial (R), local horizontal
(5), and orthogonal (W) directions. Three alternative developments may then be
used: expansion in series in terms of the true anomaly ©,% the eccentric
anomaly E, and in the mean anomaly M. Most of the papers, however, use the
expansion in terms of the eccentric anomaly E. Denotmg by Av the secular
changes in any of the six orbital elements, the series expansion in the
eccentzic anomaly E yields:

L4
4V = - (COMSTANT) ,af D, cro”£dE
»=0

# 8 will be utilized as the true anomaly to be consistent with the notation of

the papers to be reviewed. , S
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il

where the coefficients D are functions of the eccentricity ,e, and of the
factor d- (n.Ji-e? cos ) /n n , where ¢ 1is the rate of rotation of the atmos-
phere and n is the mean motion. The density is generally approximated by the
exponential function ,o=,2e “4he) and expanded in terms of one of the three
anomalies. When the eccentric anomaly E is used, the expansion of the density
exponential function yields:

. ’ .
-klh-hp) _c(r-cos£)  -@lamRu- amte)

V4 =/A; e j/g e

where ¢ = Kae and Q = K Rp f sin? i, K is the inverse of the density scale
height, f is the flattening of the earth, Req is the equatorial radius, i is
the orbital inclination, u#* is the equivalent (8 +w ), and transforming the
true anomaly & in terms of E, the density becomes,

o =/€ G-C[CCME+QIGCME(/*§A,, MO”[)*QZ@CME(/*’;:'@M”£}4.---]

where,

2

Q = (/-eN-Qew 20 +5 an?2a)

Q= (/—er(Zszo Y2)

Introducing this expansion for the density,p, in the foregoing definition
for AV, and performing the respective series multiplication, yields:

Clos £

4V =~(C0/usrAu7)/0pC‘c'[[€cw£fQcoané-»«Qc ,.‘,i.‘ A;'Coo"[
LB M"E}d[

ccwo £
+Q2 e

[d
LR
2,2.2.3 Integration Procedures

The basic approach to the integration of the perturbative effects of atmos-
pheric drag for orbits of relatively high eccentricity is to consider only the
accumulated secular perturbations per perigee pass. This procedure leads to the
assumption that the motion over the remainder of the orbital path is not signifi-
cantly affected by atmospheric drag. In other words, the drag effect in the
vicinity of perigee is assumed to be so mich higher than elsewhere on the oribt,
that it is nearly that of an impulse. For this case, which is assumed to occur
when ¢ > 3, the "asymptotic solutions" are used. The result is that, the larger
c is,the more accurate are the results.

For nearly circular orbits, e is small and ¢ < 3. In this case the
osculating atmosphere remains a good approximation throughout the orbit, all parts
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of which contribute significantly to the integrals of the changes in the orbital
elements, and the asymptotic solutions become useless, The integration is,
therefore, performed over the entire orbital path between 0 and 27 . The
resulting solutions are called the "General Solutions" and are applied to cases
where ¢ < 3, '

The Gensral Sclutions for the Case when ¢ ¢ 3

ccoE
The integrals in € cos™E dE, in the definitions of the changes in

the orbital element dp (as indicated in the preceding sectio?)j are expressed
by most authors in a sequence of modified Bessel functions In €} of the first
kind. This is usually done by first transforming the powers cos™E into
multiple angles cosnE  and then, using the definition:

P ceer
‘;(C)"éz; J ¢ Coonk JL
where
= T
L(c)-p &F iy
” Jz,;, J_!(/’ﬁ)/ n=123,...n

Finally, the higher orders of the Bessel functions are expressed in terms of the
zero and fipst orders using the following reduction formula:

n-i n

-7 -2Z
Gt =4y, 27 L

However, these two steps can be combined to express the integrals of
e® COSE -5sNE dE directly in terms of the modified Bessel functions of the zero
and first order by the application of the following table:

—f e dE =L (C)

Zry

/ ceas £

— Je Cook o = [(C)

r s

| £ cao £ o L(C)
e ot dE = [ (c)- —
2re C
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3
E—) (C)

_i cem & 5 2 6 7 29
R O A A 2

The integrated form of the general solutions (c £ 3) for the secular
changes of the orbital elements will then assume the following form:

AV = - (COMNSTANT) XZ)r/gc'C[(a, ? ?O’a, +3 5‘

Q Q
4 b 3 2 bz)f,(c)}

a,) L ()

The Asymptotic Solutions for the Case when ¢ > 3

When ¢ > 3, very accurate analytical solutions can be obtained by consid-
ering the accumulated secular changes per perigee pass; that is, by assuming
that the drag effect in the vicinity of perigee is nearly that of an impulse.
This assumption is made when c¢ > 3. The larger c¢ is, the more accurate are

the results.

The integrated solutions for this case, called the "asymptotic solutions,"
can be directly derived from the "General Solutions” by replacing the modified

Bessel functions Ip(c) and Il(c) of the zero and first order with their
equivalent asymptotic expansions Io(c) and Il( c), which are defined as
follows:

4 C‘:( / 9 75 )
I ~ J+— + + -, .,
° Sc [128¢c%? Joz24¢c”?

8C 128c* 1024c”

A ec( 3 /5105 )

or in a general form

P ec e 4 (Yp2- /)(4/1 -3%) .. (441-/2J-/)’)]
~ (-1
Z [/ rL e 7 8e)

J
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As before, the higher-order functions can be reduced to lower order by the use
of the recurrent relation

fter substitution of the expressions for the asymptotic expansions of the
modified Bessel function in the definitions of the "General Solutions," the
exponentials eC and e”® will cancel out, and the "asymptotic solutions"
111 have the following form:

f &, a
AV =- (Cousranr) 2 fz [(a,*-@ a, +3 c_f‘ a,) 1" (C)

‘(4 + 9’5 ,3 b7, (c)]

where the coefficients (ag, 2, a2) and (bgy, by, b2) have the same
védlues as before, )

2.2.2.4 Critical Evaluation of the Papers Reviewed

2.2.2.4.1 The Method of General Perturbations - Bessel Functions Introduced
in the Solutions

This method is based on the princ1p1e of osculating ellipse w1th binomial
series expansion in terms of the eccentrieieggmaly E, and the integrated

secular changes in the orbital elements per revolution expressed in terms of
modified Bessel functions of the first kind of the argument c¢ = Kae:

The Work of T. E, Sterne (Reference 2.2).

Asgunptions

The atmosphere is non-spherical and rotates with the angular velocity
(2, of the Earth. The resultant aerodynamic force acts in the direction
cpposite to the relative velocity V of the satellite with respect to the
rotating atmosphere, The atmospheric density () at any altitude (h) above
the oblate Earth is approx1mated by the osculating exponentlal atmosphere
o=, € Xhhg) | where ,4, is the density at perigee, hp is the perigee
utl?ht and K is the inverse of the density scale height, The Earth's
canAtatlonal potentlal is taken as that of a point mass; the factor
T = K Rpy f sin? i is assumed to be < 0.2 in the expansion of the exponen-

tial form of the atmosphere,

“

Asymptotic solutions for the case of eccentric orbits are presented for

the secular changes in all orbital elements. For nearly=-circular orbits, how-
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ever, only the secular change in the orbital period is presented ("General
Solution" type).

Evaluation

A1l the factors influencing atmospheric drag are included. The analysis
is more rigorous and accurate than the other analyses reported in the litera-
ture. However, in view of Sterne's assumption that Q < 0.2 and that he
neglects powers of Q greater than 2, his results are somevhat less accur-
ate for satellite altitudes <« 200 n.mi. This limitation is not considered
serious, however, since the formulation can be easily extended to include
powers of Q higher than 2.

The Work Of F, Kalil (Reference 2.3)

Assumptions

The atmosphere is oblate, has the same flattening as the Earth, and varies
exponentially with altitude. The atmosphere rotates with the same angular
velocity as the Earth. The gravitational potential §f the Earth 1s taken as
that of a point mass. Sterne's assumptions, that 'ﬁg <.%; {ratio of the
rate of the Earth's rotation and the mean motion of the sagellite) and that
Q =K Rgg f sin? 1 is < 0.2 for orbital altitudes 2> 200 n.mi., are retained;

the eccentricity is contained within the boundaries of 0 < e g 0.01.

Completeness

Only the "General Solutions™ are presented for three of the orbital ele-
ments: the semi-major axis, the eccentricity, and the period of nearly
circular orbits (0 < e £ 0.0l). The expansion of the expopential form of the
atmosphere is extended to include powers of Q through QF, thus making the
results fairly accurate for orbital altitudes lower than 200 n.mi.

Evaluation

Kalil uses Sterne's approach, his technique and assumptions. His work
is primarily an extension of Sterne's analysis to the case of nearly-circular
orbits. For this case, Sterne derives only the solution for the secular change
in the orbital period, whereas Kalil proceeds to derive also the solutions for
the semi-major axis and the eccentricity. In summary, Kalil's paper is limited
to the special case of nearly-circular orbits and does not include solutions
for the changes in all orbital elements. The solutions ("General Solutions")
for this case could be derived from the "asymptotic solutions” for eccentric
orbits, when expressed in terms of modified Bessel functions, by simply replac-
ing the asymptotic expansions of the Bessel functions with their regular
definitions.

The Work Of P, E, El!'Yasberg (Reference 2,.)
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The atmosphere is stationary and spherical. The atmospheric density is
aprroximated by the exponential osculating atmosphere. The gravitational
potential of the Earth is that of a point mass.

Corpleteness

Incomplete. The theory is limited to the hypothetical case of spherical
non-rotating atmosphere.

Bvelustion
Tt appears that this work was influenced by Sterne (that is, it generally
follows his approach and technique). Failure to include all of the factors
hich affect atmospheric drag, however, restricts the analysis and limits the
scecpe. In addition, further assumptions and approximations are made in deriv-
ing the "Asymptotic Solutions" for eccentric orbits.

Tae Work Of G, E. Cook and D, G. King-Hele (Reference 2.5)

Assumptions

The atmosphere is spherically symmetrical and rotates with the same angu-
lar velocity as the Earth. The air density is approximated by the exponential
furction p=p [ 1+ Db(r-r )R]e™ r‘rP)/HP, where Hp and b are taken _
constant over a'revolution. The density scale height at perigee, Hp, varies
linearly with perigee altitude, Hp = Hp_+ k(rf - rpe), in which %k is a
constant and < 0.2; the Earth's gravita%ional potential is that of a mass
point. The orbital eccentricity is < 0.2. The parameter b is assumed to
be related to the constant k, b = k/2H:

Completeness

The non-sphericity of the atmosphere is neglected -~ incomplete set of
orbital elements. Only expressions for the rates of change Aa and Ax of
the semi-major axis, a , and the parameter x = ae are presented. The
solutions do not apply for eccentricities e > 0.2.

Evaluation

Solutions are given for the secular changes Aa, Ax(x = ae), the perigee

droo from its initial position (rpqc - ), the ratio of the current and initial

periods, and fer the current time end total lifetime t; 1In orbit for the
cases of; O ¢ e ¢€0.025 and 0.025 « e =0.2. Also, the variations in perigee
drop snd orbital period as a function of (t/tL), as well as the total lifetime
t;, as a function of the initial period T,, are given.

The analysis is rather cumbersome and difficult to follow. In the process,

numerous assumptions are made and subsequently modified, so that the intricate
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inter-relationships in the development have to be mastered to follow the
analysis. As an illustration, the original assumption of linear variation of
the density scale height H with altitude is replaced by several intricate
relationships in an effort to show that particular constant values of H for
the entire lifetime may be used. To add to the confusion, subscripts are not
sufficiently defined. In the case of eccentric orbits, the subscript "o"
appears to refer to the zero-time conditions; this assumption is difficult to
verify. 1In the case of nearly circular orbits, it appears that the subscript
"1" is used to indicate zero-time conditions; but again, no clear definition
is given. Numerous approximations are also made without apparent justifica-
tion. TFor instance, In deriving a solution for the perigee drop for the case
of eccentric orbits (8x >3 ), "a" was set equal to 8,- Finally, no reason
is given why it isdassuTed t37x air density variation follows the law:

p = p_[1 + blr-rg)?] e~ \TTp)/Hy | and no attempt is made to introduce the
oblatghess of the atmosphere into the analysis.

2.2.2.4.2 The Method of General Perturbations - Bessel Functions not Inbro-
duced in the Solutions

This method is based on the principle of osculating ellipse with Fourier
series expansion in one of the three anomalies and the secular changes separ-
ated from the periodic changes in the integrated solutions.

The Work Of 1, G, Izsak (Reference 2.6)

Assumptions

The atmosphere 1s spherical, rotates with the Earth, and is approximated
by the empirical power function p = Pp = . The Earth's gravitational
potential is that of a point mass. hp - 2

Completeness

Incomplete. The oblateness of the atmosphere is not included. There is
no distinction between eccentric and nearly-circular orbits. The solutions
for both cases are combined in a single set of solutions.

Evaluation

The assumption of a spherical atmosphere and the approximation of atmos-
pheric density by an outdated empirical power function makes the analysis both
incomplete and questionable. The basic equations for the rates of change of
the orbital elements are taken "verbatim" from Sterne's paper. The expansion
of the density power function by the method reported by Smart (1953) makes the
coefficients of the series in the integrands rather cumbersome. Because of
the use of a power representation for the atmospheric density variation, the
integrals are not suitable for development in Bessel functions. Instead, Izsak
uses indefinite integrals, integrates the rates of change of the orbital ele-
ments with respect to the eccentric anomaly, and obtains a term in E (free
from trigonometric functions) and a series of terms in sin JE. TNext, he
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‘replaces the "free”™ E by (nt + e sin E), and thus obtains the secular and
the periocdic changes. Normally, when development in Bessel functions 1s used,

the respective solutions have the secular and periodic changes combined together.

The Work Of Y, V, Batrakov and V, F. Proscurin (Reference 2.7)

Assumptions

The atmogphere is stationary and spheriifl¥y symmetrical. The air density
is approximated by the function: g = Al g, ,—D) , where A and B are con-
stants. The Earth's gravitational potential is’ taken as that of a point mass.

Cormpleteness

Ircomplete. Two-dimensional analysis. The rotation and non-sphericity
¢f the atmosphere are neglected. There is no distinction between eccentric
and nearly-circular orbits. The solutions for both cases are combined in a

ke periodic and the secular terms are separated in the solutions. The
second and higher-order secular terms are only suggested. The power of the.
euthor's approach is weakened by his neglect of the rotation and non-sphericity
of the atmosphere, as well as through the representation of air density by an
cutiasted and questionable model. The expression for the change in the longil-
tude of perigee, 7 , has the eccentricity in the denominator which, for nearly
circulaer orbits, would make the perturbative variation in the perigee direction
approach infinity.

2,2.2.L.3 The Method of Canonical Variables

This method if based on a generalization of the method of variation of
arvitrery constants. The equations of motion are defined in canonical varia-
bles, and the development of the drag acceleration in power of eccentricity
and 1n multiples of the mean anomaly.

Th: Work Of D. Brouwer and H. Gen-Ichiro (Reference 2.8)

£ssumptions

The atmosphere is stationary and spherical. The atmospheric density may
ve represented by a spherical exponential model from the perigee height upward.
The dnsity scale height is constant. The drag effects can be linearly super-
impcsed upon the effects of Earth oblateness to the first order.

Completensss

Tyo-dimensional analysis, because the rotation of the atmosphere is not
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included. The oblateness of the atmosphere is also neglected. No distinctien
is made between nearly circular and eccentric orbits. Numerous simplifying
assumptions are made. The drag perturbation effects are superimposed to the
solutions of the drag-free problem.

Evaluation

Equations of motion for the cenonical variables which are solutions of
the drag-free problem are developed first. Next, the drag accelerations are
introduced and expanded in powers of e and multiples of the mean anomaly.
Finally, the integration is performed by the method of successive approxima-
tions. The Oth approximation corresponds to the solution of the drag-free
problem. The solutions are very lengthly and extremely cumbersome. Because
of the superimposition of the drag-free problem, the solutions fail at the
eritical inclination. The power of the author's approach is greatly weakened
by the neglect of the rotation and non-spheric%ty of the atmosphere, by the
spherical exponential approximsiion p = p e@\h' = bp) or the eir density, and
by assuming a constant value for a , tﬁe inverse of the density scale height.
Furthermore, the effectiveness of the theory is greatly reduced by the unfav-
orable series convergence in the case of low perigee heights and also in the
case of values of (a.‘e z] ). The analytical treatment is more concerned
with satisfyling the classical astronomical principles than with actual satellite
engineering needs.

2.2.2.4.4 The Method of Variation of Parameters

This method is based on the principles of general perturbations; the
transformation of variables in the basic equations of motion, using either
non-dimensional variables (& = Rgg/r,n = }LBEKYhz)Or dimensional( ¢ = 1Ay = h) ,
where h is the angular momentum, and the application of the Krylov-Bogoliu-
boff averaging method over a full revolution.

The Work Of E. R. Roberson (Reference 2.9)

Assumptions

The atmosphere 1s stationary and spheric%%. The ?iﬁ density can be repre-
sented by the exponential function p = p%e'KP /r-1/p , where p s is the
air density at distance p = a(l - e2) from the Earth's center and K 1s the
inverse of the density scale height taken as a constant. The radial component
of the drag acceleration is small and may be neglected; the eccentricity is
assumed to be small, and therefore, powers of e> 1 may be discarded.

Completeness

Two-dimensional analysis. The effects of the rotation and oblateness of
the atmosphere are not included. The radial drag acceleration component is
neglected. Solutions are derived only for the decay of eccentricity with the
semi~- latus rectum p, the decay of the semi- latus rectum p with the true
anomaly, and for the "growth" of the true anomaly with time. The analysis is
appliceble only to nearly circular orbits.
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E.zluation

The analysis is not rigorous. It does not include all of the factdrs
affecting the drag forces which are assumed to act tangent to the path of
motion. The angular momentum is assumed ¢constant. The atmospheric model used
is outdated (Kallman, 1952). Powers of the eccentricity higher than one are
neglected in deriving the solutions; thus, the solutions apply only to nearly-
circular orbits. The preliminary solutions for dp/dﬁ and de/dB (vhere
A 1s the true anomaly), which were obtained by the Krylov-Bogoliuboff averag-
ing method, are subjected to intricate manipulation to derive expressions for
e and p by an iterative process. The process requires the use of tabulated
velues for certain definite integral functions. It appears that there is an
~0r in the solution for de/dﬁ (Equations 28 and 31). The averaging
Krylov-Bogoliuboff method is questionable, as it leads to the invariance of
the perigee.

q W

The Vork Of B, Billik (Reference 2,10)

Assumptions

The atmosphere 1s stationary and sphericagl. Tge air density may be approx-
imated by the exponential function p =}?P ek r‘REQ s where Ppp and K are
matehing constants (K is the inverse of the density scale height). The per-
igee altitude remains invariant for eccentricities > 0.1; for e >0.1, the
molified Bessel functions of all orders are assumed to be equal in the defin-

ition of the asymptotic solutions.
Completeness

Two-dimensional analysis. The effects of the rotation and oblateness of
thz atmosphere are not included. Incomplete and obscure definition of the
constant p in the exponential model of the atmosphere. The conclusion
resulting é;om the application of the Krylov-Bogoliuboff averaging method for
the invariance of perigee altitude when e >0.1 is far from being true and
weakens the power of the author's approach.

Eviluation

The author attempts a survey of 30 references listed but limits himself to
& brief discussion of about one-third of the referenced papers. The main body
of the discussion and the analysis are centered on the author's earlier report
dated December 1960 and listed as his seventh reference. The survey is based
entirzly on a two-dimensional analysis of the drag problem; the effects of the
rotatiorn and non-sphericity of the atmosphere are ignored. Sterne's paper,
"Effests of the Rotation of a Planetary Atmosphere upon the Orbit of Close
Satellites,” is listed among the references; but it is not discussed. In

reporting Roberson's solutions for the case of nearly-circular orbits the author
replaces Ro erson's)definition for air density by his own definition,
When deriving the asymptotic solutions for eccentric

p = “Ep ¢ TH\P = "EQ X1 C
.orbits with e > 0.1, the author assumes the modified Bessel functions of all
orcers to be equal. All the reviewed papers, according to Billik, may be used
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for adequate lifetime calculations and the differences between the results
obtained by the various authors are smaller than the inherent uncertainties

in the knowledge of the atmosphere, implying that a three-dimensional analysis
is unwarranted.

2.2.2.5 Selection of Papers for Detailed Development

Two papers were selected for detailed, analytical development. They appear
to be the most outstanding papers in the up-to-date literature for the follow-
ing reasons:

A. They include all the factors which affect atmospheric drag.
B. The analysis is three-dimensional, very rigorous, and easy to follow.

C. The analysis applies to eccentric as well as to nearly-circular orbits
(including circular orbits).

D. The only simplifying assumption is that 2 G—SL) , half of the ratio
of the rate of the Earth's rotation and the mesn motion of the satellite
is € 1/30 for close Earth satellites; therefore, i (5:&)2 1is<0.001 of
the leading term in the definition of the relative velocity of the satellite
with respect to the atmosphere and may be neglected.

B, The solutions are expressed in an elegant form convenlent for computer
development.

The two papers selected are: "Effect of the Rotation of a Planetary Atmosphere
Upon the Orbit of a Close Satellite," by T. E. Sterne, ARS Journal.

October 1959, Volume 29, No. 10; and "Effect of an Oblate Rotating Atmosphere
on the Eccentricity, Semi-Major Axis and Period of a Close Earth Satellite,"”

by F. Kalil, The Martin Company, Baltimore 3, Maryland.

2.2.3 Analytical Development of Sterne's Technique (Asymptotic Solutions)

2.2.3.1 The Acceleration Caused by the Perturbing Force Acting on the Spacecraft

Assuming that atmospheric drag is the only perturbation force acting on
the spacecraft, the vector of the drag acceleration can be defined as follows:

§\U|

=804, (2.1)

vhere B 1s the ballistic coefficient(CDA/m) and V is the velocity vector
of the spacecraft relative to the atmosphere,

R

V=V-.\7A;M (2.2)
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The inertial velocity vector V 1is given by,

\7=;@—)"*§r9 .27 (Peant + S1|//~c’z} (2.3)

/-ccoof

where E is a unit vector in the outward direction of the position vector __?,

S5 1s a unit vector perpendicular to R in the osculating orbital plane, W
ccmpletes the right-hand frame. '

The rotational velocity vector of the atmosphere, VATM’ is defined as

Vo =2 %7 =00, (kxF) = rll, (ExR)

(2.4)

where e 1is the rotational rate of the atmosphere in rad/sec , and X is a
unit vector in the direction of the Farth's spin axis

k= R ainiainit +8aini ooy * W ool (2.5)

so that
Zm = r.f)e (3cr0l ~Wawn i coo u) -‘-62(/-86’00!5').0G (S ool -Wainiecoou) (2.6)

Substitution of relations (2.3) and (2.6) in Egquation (2.2) yields,

— ~ ane an t _[ an//-c?
Vv =R —#

-all-eco0£)(, cooz_']

< /;ew:o;é’ |L/-eewo £ (2.7)
+*Wall-ecoo£), aum i coou
Next, the magnhitude Vg is calculated, =
2 .
2 V/-e?coo
sz(_a_n___) (e®am*E +/-e%) —2a%n* (—g——t)
2 \/-eewnk£ ” (2.8)
*al(/‘ewé')zﬂ: (/-a4e*e avpe?u)
Now, defining,
L2, V/-e2 cool
d= —= (2.9)

”

and sudstituting into (2.8) yields,
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/+ecoo £ 2, 2 2 g -1 :l
Vﬂz __.al”l [/—-—e—-;‘? "Zd +(T) (/‘CME) (/‘M (wr’ A a) (2.10)
/ £ J-ecrok 10N (/-ecoo£)” _
v ocan | S22 [r-24 —e—c"—i—+(—) () —ain? awe?u )(2.11)
ot /- eceook [te Coo £ ” /e coof

Now, meking use of Sterne's observation that —"}Tﬁ is always less than l/lS for
Earth orbits, the function under the radical can be expanded in a series. The
third term will be smaller than -i(%f-—)2 ; that is <« 1/1#50 times a number
smaller then 1. Hence, the third term will average 0.001 of the leading
term and can be neglected. For the same reason, 3 d? ¢ 0.001. In the binomial
expansion all terms after the second may be neglected so that Equation (2.11)

is approximately

v /+e ookl (/ d /-CWE)
. =axn - .
2 /-ecm £ | +ecoo £ (2.12)
The vector Vg in Equation (2.7) will be now expressed in terms of the
parameters,
- 2 ’
o = .Qe /-e” coot
7

£: _ 7

- / —€ecoo £ (2.13)

(/-eceo

2
A =af [P— eank +SV-e? (/-d £) )'W 1—23(/'60005)14“"5 6’”4 (2.1k4)
/-e? ”

Substitution of Equation (2.1L4) in Equation (2.1) yields, s
b} o[ = _ = (/-ecoo£)
9=‘3a/0 V. E[,Q cankt +"5V/~€2< /-d ——'——)
4 < J /-e* (2.15)

— , z
+W 28 unl oot (/-econk)
n”
where VR is given by (2.12)

2.2.3.2 Rates of Change of the Orbital Flements Caused by the Perturbing
Acceleration

In the previous section the acceleration of the perturbing force wes
derived:
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= —Bap V£ E@ eSINE +V -2 (/—o’ (- 66’05)2)5_‘
/-e%
W Neswiwsu (/-e aos.;){l (2.16)
77 -

where VR is the magnitude of the relative velocity of the vehicle with
respect to the atmosphere, as defined by relation (2.12),

3|

Vo = AN\//+CC0SF (/—0’ /—6[’0_5‘5) (2.17)
/- @ COSF /FCLOSE 17

Thus, since the inertial velocity vector V in the osculating R S W frame,
is given by Equation (2.3):

V= an k CSINE + 5 \Jr-02 ) (2.18)
/~COSE

the energy change, de /dt, per unit mass may be found from the definition of
work Jdone on the vehicle by the perturbing force:

JE =DV _Ba’np ve (1+e005F)E (/—o’ /—eco$£> (2.19)
at m /+ €COSE ) o
But the total energy is,
£ = ~A
Za (2.20)
Thus, it follows by differentiation that,
da - u de ,a )ddé_Zc?.o’e_Zo'E (2.21)
at  2E2d% M dt anfar )

After substitution of de /dt from (2.19) and using the definition of VR
from {2.17)

da . -2Ba’s (/+ecosz)2(/-o' /-ewsE )% oF

» 2
ot V7~ @252 F [ +@LOSE/ O (2.22)

The rate of change of the angular momentum h per unit mass is equal to the
external moments produced by the perturbing force,

A= TXD=7RXD = YRx(RR+55+WW)= F(-SW+WSs)
o m

3|

(2.23)
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But, the vector h can be defined as

h=hw

(2.24)
Thus, differentiating Equation (2.24), one obtains
Gh. odh W+ hv'" (2.25)
adr o7
Comparison of the W components in relations (2.23) and (2.25) yields,
dh = a(/-eewsc)s =rs (2.26)

at

where S 1is the component of the perturbing force in the direction of S
given by Equation (2.16)

5=_Bapv,?£' y-e k—o’(/%‘?__ﬁes_f)l} (2.27)

/-e?

or, after substitution of Vp from Equation (2.17)

S=-Ba’n/i-etp [s+ecosE (/—d /-e 003£)l:/-d_(/-em5£)2:l IE (2.28)
J-C a5F /+ € COSE /-e? dt

But, since

Jua(-er)=atny-e? (2.29)

one has that,

2 _ _ 42
ec=/-74 (2.30)
MmMa
Thus, differentiation of (2.30) with respect to time, ylelds
2e ge-=- dh+ da = -h (2 ah - Hda (2.31)
ae a dt /ua, ae¢ a, dt

* % is the component in the direction of =8
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where da/dt 1is given by relation (2.22), dh/at vy (2.26) and (2.27), while by
(2.29),

o= an/-e (2.32)

4 /-et | [J1-e?
e Vua ’\/‘a?n (2.33)

Thus, substitution in Equation (2.31) yields

e de . f\7-e2 Bafn\//—ezloz' /j+€ CoS £ (/-d /-€ CoSE\
aE a<n /-~ COS £ 1+ 005 £

2q) (2.34)
*{(/ > € C05E ) (/— g /-eCoSE\ _ (/- 8(’036')[/—0’ (/-ecos £) z
/+ @05 EF /-@2
or de _-28a (/—ez)/o /4@ COSE [/-d /-eeose’) §
dt /-COS £ ( /+C00SE
- o PR z
JasE-d (/-er[Z(”S‘E-G-@(ﬁS‘[:lg’{ (2.35)
20-e4) ) ¢

The motion of the node is the same as the motion of the projection, bp,of ©
(angular momentum) on the equatorial plane. Since hyp is perpendicular to
the node, the motion of hp and the node is produced by the component of
dh/dt in the direction of the node.

Comparison of the respective S-components of dh/dt in Equations (2.23)
and (2.25), after replacing W by dg/dt S, yields,*

Hh do _ -l (2.26)
de

Applying this relation to the component of E/dt in the direction of the node,

H SINE dn = TWSIVU (2.37)
7t
hence,
da _rWswu . rWswwu _ (recase)Wsmw o)
=T - = B - - 203

C{‘t —/l Slil& C 7 A y‘f_,—é—l’s?lNl: an \//_.67'51/&/(:

cggm 1sd§he angle through which the angular momentum vector is rotated in
wime ¢
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But, from Equation (2.16) and the value for V from Equation (2.17), it
follows that,

1+e &as&E - 4 £
=-Ba .n.B.S/N(_ Co_su(l ecose) P \/ tz ( ;::;)jt (2.39)

Substitution of this expression for W i1s relation (2.38) yields,

- SE
%:—Ba’}o n‘ Swek (/ ecczSE)l\//aecosé( c(,ijéis j:- (2.20)

vhere
z
(1-ecose)smau=(re CosE)t SIN(26+20) = (I- € CoSEXEW 20 D528
+ cos 20 sn20)=(~ cosE) SIN2W (05 2 6 #¥

z [(cos £ -)- ('—337'(1—6052‘5)]
= (1-€ CosE) SIN 2 [ e e

Thus, substitution of the expression for (L - e cos E)2 sin 2u in Equation
(2.40) yields,

|-€ CosE
OL.Q.:__B(L/)JLQ.S/NZ(D /- e‘CﬂS’E( -d vy )[ ([ Ze)
ot’t 2n yi- -c? ;* (2.)+1)
'3
— 2 ecoseE+ (2-€%) cos E] -
The time rate of change of the orbital inclination is related to do /it as

1M n

will be shown. Indicating by the subscript "o the conditions in the unperturbed
orbital plane,

SIN AL =SIN(L=L)=SINC @5( -cost SN L, (2:42)

Now, let € be the inclination of the perturbed orbit relative to the unper-
turbed orbilt, i.e.,

COS € =Co5i, CoSL + SIN Ly SINL QSA (2.43)

But, from orbital relationships,

** The term (cos 2w 'sin 2g) is an odd function of © and will contribute
nothing to the integral f
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SIN Lo SINU,
SIN W (2.44)

SIN ¢ =

SIN Ly SINL SNAN (2.45)
@sé, Wse-Crse "

TANLLO::

Solving these three equations simultaneously for cos i yields

{

Cos ¢ = R (Cosi, siwu, cosna - casu, sman) (2.46)

Substitution of the expressions for sini and cosi into relation (2.42) yields,

SIn ¢

IN AL = ——=2 |cosi, simnw, (I- (2.47)
SWat= Sin Le 22 % o (/ COSAJ?—)*-CaSZ(oS/NA;E]

Fipally, differentiation with respect to time, and taking the limilt as
AQ -+ 0, yields,

e SIM L ds , 2 / AL 2
—— = —— Sl —— =25 s L (2.48)
At SINUW u At ,:SINZM oAt

Bubstituting the expression for f% from relation (2.40), it follows that

{¢ MLOS s 1-ecose\Je
*t _ ~ga 23 = (- e cose) V/-ecos‘s(w——._)—-— (2.49)
dt n Vi-er 1+€ CoSE J ¢t

Were 2 (pS U=+ COS2u = I+ s (2 O+2W)=/+C0S2Wws 20
FSIN2LSINEE =1+ CO0S 280 Cosh * %

[(Co.s £-e)*- (1- eX (/- cos’s)
= I+ Ws2w (I—€ coseye

_ +’C05 200 [-(/-ze‘)- 2ecos £+ (z—-e‘?)CO.S"E]
- (I - e cosg)?

that o ING [ 2. 2. j~ec
so tha fg-j=“3a/0&’- S C’—QCOSE)L I-etcos?e I-d E+
dt 2n  Ter I+¢& se -

(2.50)

(zetx)- 2eCwse +(z—c")6057'6 d&e
(/- € CosEN? dt

Cos 2w

Thé térm sin 2wsin 26 %S an odd function of € and will contribute
nothing to the integral f*”
]
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The rate of change of the argument of perigee w resulting from the motion of'
the node (assuming that the in-plane perturbing forces are zero) is equal to
du/dt.

dw - d«
dt i

From orbital relationships we have that,

SIN G Cosu = s, SINE+ SIN L, COSE COS U, (2.51)

SINC SNASL

SINE - S &, (2.52)
SN ¢ CoS ip COSIL
- 2 (cos AL - ———————=2 Smw 40) (2.
COSE SINo,( SV ) (2.53)

where € is the inclination of the perturbed orbit relative to the unperturbed
orbit.

Elimination of € Dbetween these three equations yields,

CO5U = COSU, COSAN + COSC, SN, SINDS  (2,54)

Differentiating with respect to time and taking the limit as A — 0, one

obtains
dw _ ALu - . d s
T5). = Te =t T% (2.55)

vhere d£/at 1is given by Equation (2.h41).

The subscript "w" in Equation (2.55) indicates that this is the change in
W contributed by the nodal motion which is caused by the component of the
perturbing acceleration normal to the orbital plane.

The contribution to the change in w caused by the R and S components
of the perturbing acceleration in the orbital plane is equal to _@@%ﬂy“, which
is the.negative change of the true anomaly © caused by the perturbing accel-
eration. This derivative must not be confused with (de/dt), which is the
rate of change of the true anomaly © in an unperturbed Kepler orbit. Hence,

Aw\_ (L8
dt) T.ZE")

s (2.56)
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The perturbing accelerations in the R and S directions (in the orbital
plare) will tend to rotate the perigee in the opposite direction of motion and
charnge the orientation of the velocity vector, which must remain tangent to
the instantaneous osculating ellipse at any time. This will result in a change
d Y/dt of the flight path angle. The rotation of the perigee causes also a
change in ©.

From the definition of

-1/ €& siIN & ) :,
= 2. 3
¥ = TAN (Hewse (2.57)
i1t follows by differentiation that,
*
dy _ e(csere) dey , _sme de  .50)
d+t [+e*+2ecdsé dt I+ €*+2ecos6 dt

But since,

[T

I+ €'+ 28 w56 =(1+ewsd)(1+e casE) (5 s9) £

Equation (2.58) becomes,

d¥ _ ecwsE LN SINE de e
dt “irecose (¢ ) e (irecoss At ,
Hence,
0[9)*_ |+ € CosE SIN £ de oY
== ) = == - -7 .6
de), . ecosE Jio (1+ecosE) dt dt| (26

)

Next, the value of 47 /dt in Equation (2.61) will be determined.

If N is the component of the perturbing acceleration normal to the
veloclty vector V _in the orbital plane, then

N =RCos¥—SSINYE =V %g— C (2.62)
whare,
I+ & CosE 4 (2.63)
V.= arn (/«e case)
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e SINE (2.64)

SIN Y = iz
Vi-e*
Co05¥% = \[i_e*cosze (2.65)

Substitution of relations (2.63), (2.64), (2.65), in (2.62) yields

Ay _ [ os
dt a,n(l+€cas£) (’2 I-e%-S e SmE) (2.66)

From Equation (2.16)

3

4
R =-Rapy, eswe r (2.67)

(i- eCo.SE) dE
s =~Papy, Vi-e® (/1-od 5 e &

Thus, substitution of R and S from (2.67), (2.68) and Vi from (2.17)
vields,

d% =_ Bap 1-e* e sinE | +€ CosE - d /—-eap.SEC{(l-eCosE)"a[E (2.69)
d+ I+ € coséE I-& CosE /1 € ase 1-e*  dt
From Equation (2.35)

de //+e cosE , ;1= ecos[
ot = —~Gay (1-€7) -e C.o.SE( ‘(lf'CCOSE zcosE

(2.70)
-—.(-¢ CoSEX 2wSE-e-e Co5 Ei] Ze

When rela.twons (2.69) and (2.70) are substituted for d¥Y/dt and de/dt

in Equation (2.61), it follows that,
-
- SINE fj+CcoSE -@CoSE
ey _Bap Vi-er s f+eco ! eco [26055
ot e CosE /- eloSE 1+e s

kN
4 2 (1-ecase) | d€ (2.71)
_ e - E-e-ecCose)-ed 2
e (1- ecosE)(zcose-€ ) —
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_/({ai a/
{22) = Bap Vi-e*sE /recose [1-d mees€z L
( dt ? '_5 / 1+ € 23 I+e cosE 1-—5"(’

V' /1-€ coSE

(2.72)
e cosE)(z-e Zwsf)jl L
LTt |
Sinee (d0/dt)* is an odd function of E (because of the factor sin E), the =
integration of this term over the interval (0, 27 ) to derive the secular =
perturbations will contribdte nothing. Therefore, when this reasoning is
applied to relation (2.56), it follows that,
2™ 27 *
fi,.- [ -
dt t
B3 g (2.73)

Hence, the only change in w over a revolution is caused by the W-component
of the perturbing acceleration and is given by Equation (2.55).

2.2.72.3 Determination of Atmospheric Density Allowing for Earth Flattening
Very accurate analytical approximations can be obtained by expressing

the variation of the mass density , P, in the viecinity of perigee by the
osculating exponential atmosphere,

—k (h-hp)
g = /% e (2.74)

93



where p 1s the atmospheric density at altitude h above the earth's

spheroidal surface, p, 1s the atmospheric density at perigee, K = =d/dh
loge p ) is the inverse of the density scale height, and

h =a (l"'e COSE) - R (2.75)

hy, =a (I-e) - Rp (2.76)

The radius, R, of the spheroidal earth at any point, whose geccentric
latitude is & , is given by

R

£ —

A 2\ _ A 2 .
k= m.ﬂ_u;g = &a (l Fihdad 6)" Rea (/' 5 SWesw U) (2.77)

where,

_Z'f—'(z _ (I—F/2) —
A—Eﬁjsz-—Zf - f)e 2¥f (2.78)

and where f is the flattening of the Earth.
Thus, R and R o, ~ are approximately
z 2
R= g, (I-fsmisinu)

(2.79)
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EF: £ . (/—-% sInte sivtw) (2.80)

In view of relations (2.75), (2.76), (2.79), and (2.80), it follows that,

K (h-h)) = Kae (I-CO05E)+ KEBq £sWe(smi-sWw)  (2.81)

Defning,

C= Kae (2.82)

and

Q = K Boq fSINL (2.83)

equation (2.74) reduces to,

—C/1— _ r z
o =p e (- cosE) e Qs l~swvw) (2.84)

vhere,

s - SIN*@ = (BIN L+ SINW)(EINL- SINW)
-0 UMD U~y
=(25mw ”—:_‘" s £5= ) (2cos 55w L2 )5 w) SN (-0)

2 1., &
= @520 SINB+S5IN2W SN DSe= Cas 20 SIN 8 T5IN 203106 Vi-51 8

¥ In the'expansion which follows, the odd powers of‘sine © are ignored
because they contribute nothing to the integral iy
o
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Hence,

k3 E 3 T
-8 (SIN Sl 2
€ Gasivw) = /| — Qeas2wsivet % (69512 wsw¥e

- 510200 sIN*O + SIN" 20 SING)~ %3 (Cas3 20 5in%
< 4 1. é
+ 3Cas2WsSIN 2L SIN'G —3(0S 2WSIN 2w SIN 6 )

~38 8 & z * B
o ((os’ 2005188 + SiN?200 S18Fp - SNt W SIND ~ 25 200 0% 205N 6
(2.85)

* 2 T ¢ + 6 4 <
+ SIN 4LSIN®B + 2518220 005 2005106 — 2SIK ZU$/N6+5/A124J.5N6)
Thus, collecting terms in powers of sin @ and setting Mg:\/ﬁez an £ ,

one obtains I~ eepok
- 2z, . 2 - 2
RIS e )- - @ eaw 2w * %anzw[ o J
/-ecoof.
2 J . [ #
+ (/-e’)z(%cooélw -gm,?wmzzw »j—;m "Za)[?fﬂ—wa—[}
3 3 4
f(/—c")J(- g cm’fw*% cm2wM22wf§4uc% ew 2w
“M v )[ M[Jé v Q7 QY
- — un 2 /- 2 - 4 X .2
12 %) Jcesot] 17 (24/”02w /st
Q* . , )[ME ]8 (2.86)
t = a2
24 Ve com£

Defining for convenience, 2

A
Q,=@-e (— Geoszw+ % swtew)
&* e’ z &t =
Q= (1-8Y = costw = wsz20sm’ze+ S 5w’z
2 ( ) 2 2 2 24 S )

3 3
s, & .3 @ * 4

Q,= (1- e*) (— ~ Gs2o+ - @s 2wsw’zw > g‘-swzzfacoszz&) - % sm’2uw)
- 2, 4 * a*

Q= (1 -V (T 20— swwr = sw2w)

e 2# (2.87)
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EZquation (2.86) will assume the form,
S £ )2 , St £ \‘»‘ £

C-Q(s‘w Zp0 - 120 Reu) =/
/-ecos £ /—e cos[/ /-ecost
( S £ )5 (2.88)
+

/-ecos £
Substitution of (2.88) in Fquation (2.84) yields,

LNz : y , " _
oozl o)
s [/ Q(/ eeoo k. " /-eco0 £ % /-ecoot " /-eeoof (2.89)

Please note that Sterne retains only the coefficlents Q; and Qp. His
reasoning for doing so is that for close Earth satellites
Q=KR, T sin2i < 0.2, and hence the powers of Q > 2 (which appear in the
coerficients Qz and Ql;) are small, and the error incurred will be only about
0.16 percent. ’Bhis observation 1s quite true for orbital altitudes of about
20C n.mi., and the higher the altitude, the smaller will be the error. However,
at 100 n.mi., @~ 0.5 and not 0.2. Thus, the error resulting from the dele-
tior of the coefficients Q; and Q) will be about 3.4 percent. Hence, for
orbital altitudes below 2007n.mi., terms through Ql{. should be retained.

- 3terne introduces a new variable in the derivation of the asymptotic
solutions and retains only the coefficlents Ql and Qp,

3¢
z
Y = ¢ (1-Cos¢) " (2.90)
siw’E _ (1-casE)(1+cosE) Z(z- %)
(-ecwse)> [u-erreq-cose)]’ - (1+5 L)
- _2 y: 1 (4e+’) y¢
T og-eyr ¢ @(-e)* \i-¢ c?
— 2
+ 4
SIN"E 2 Yt o1 (46 )y:= 4 Yo (2.o1)
Ci—eawse) [a-er ¢ (e \i-e JC?| (- cz

Substitution of Equation {2.90), (2.91) in relation (2.89) yields,

¥ ¥
/0=/0p [/*2 Q _)’_f-__Q_/_(_f/E +/)L—2- +4__QZ_ !E] (2.92)

(/-e)? ¢ (/-e)’\/-e c (/-e)* ¢

*¥
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2.2.3.4 The Average Secular Rates of the Orbital Elements

The time derivatives of the orbital elements a, e, {} , i, @, were derived
previously and are given by Equations (2.22), (2.35), (2.41), (2.50) and (2.55),
respectively. The average secular™ rates of the orbital elements are obtained
by integrating the respective time derivatives over one orbital period P and
dividing by P. These average secular rates per unlt time will be denoted by
a dot and the subscript "sec."

2
. 284" (1+€ cos€)” I-eawseN
= - “/ (/—d dE  (2.93)

a‘"‘ P r Vi-e*coss |+ C @5E
27
é - - 28@(1 e) j/O 1+C DSE o, | - € Cos [6055
SEc P A )- € COSE I+ € cosE (2.94)
_t (1-€Co5E) (2C0SE — € = ecos‘E)] dE
2(-¢?)
zm
. Ba Q. Sw20 S et cosie |~ €C@sE
= - /“C‘COS’f — - ‘_zes
He 2Pn (i-e* A : /= 1+ € cose (-2 (2.95)

— 2edsE + (z—e‘)cas'&‘] dE

r
. Ba 0, 5W i s o [, 1282 [/
L=~ 57, I_e‘//a(/-caase—) f1- e*coss (I a'/u—case

b4 p 2 cas? (2.96)
(2et-1)— 2ewse+ (2—¢ &
+ C0520 e coe)* ] dLE
= - A 2.
C;J‘ y 5L 2, (2.97)
D — __3__ é—‘sso
P =3 P(——a ) (2.98)

¥ ngooular” means monotonically increasing with time
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¥

2.2.3,5 Integration of the Time Rates of the Orbital FElements - Asymptétié
Solutions

The asymptotic solutions apply only to eccentric orbits for which ¢ > 3.
The integration of the time rates of change is performed over a revolution of
the satellite. Subsequent division by the orbital period ylelds the average
rate of change in each orbital element throughout the revolution. It should
be noted that the orbital elements and the parameters d, c¢, and Qy, appear-
ing in the integrands of the respective integrals defining the changes per
revolution are considered constant during the interval of variation so as to
make possible the integration in closed form.

25t 2fr(/+c¢o5£)" J- & ¥
- _ .—.“a _ — CosSE
azsec P ‘/./9 W /- 17 CoeE A E (2.99)
o
v 2 » 5—.12
. 4 Ba? I—d) + (| +d) € cos
ogee= ~ P //0 J-e* cosE L& (2.100)
o

Sterne introduces the new variable,

Yz= C(/"‘CQSE)
where
¢ = Kae

s0 that,

YZ
(1= )t (1+d) € Cose= (1= ) t@rd) e ~(1d)e—-
= [(/—cl)+(/-c{)e] [ﬁ— I+l ey (2.101)

(Z—d.)-f-(l'/‘d)e C

or, if k is defined as

A
(/= d)+ (14.0) @ (2.102)

-

2 2 z 5
’7‘-01) + (1+a£)66055]=- [(I—al)+(/+a£);J (/“ke*:—) (2.103)
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Likewise,

2.2
|—e*cas’E = I-e’ /—g-)
) er yr_ et ¥y (2.108)
=(1-e |1+ — =7 Tjle ¢
Finally,
- 2vydy 2Vty  Evdy |z ALY
A v* 2 oz S (2.105)
B 2y~ 7, Z v rE Ih- X
Combining (2.103), (2.104) and (2.105) yields,
[(l al)+(/+¢£)ew5,f] y— (/- zke = +J<e"c,)a(y 0
\’ / -t CﬂS[ J/-I. e" —cz cz.u
where

(+e)t _e\
[(/ az)+(/+¢)e] _ Ute) (,_ / e> (2.107)

fi- €2 1-et !+ €

Substitution of Equation (2.106) in (2.100) yields, after manipulation
in the denominator,

ygaz/,\/_ // Z yz 4 '*T‘ y?) dy
= (2.108)
f/o /f,?(,‘ /c‘ /)y2~;_«f(/ eﬁ) Y+ 5es ) ‘

2c3\ g2

Now, expanding the denominator in powers of y , lgnoring powers > L,
the integrand becomes, except for the factor p ,

(- L) v 25w (25-) AL

Ag /<‘<‘3z _ __(_ _%e
-2 vyt — ] I+4C /8kele))’

3 g _z (1+5e%) A 1-5€ 32 2 2| %
+ — [/+—e-———————/<e< ;)"'?K‘f]y

32ct 3 (i-e*)* 3 /-€
/ 2 3 +
= hm— 2.10
f +4-C-F'Y +3zc’-7c?—Y (2.109)
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where,

(2.110)

2 (irseD) 16 (/-56‘

32 2 _,
+ — L e .
(1-e*)* 3 1—6’-\) 3 . (2.111)

ﬂ = / +-4§ e
3

Thus, substituting the result of multiplication of (2.109) in Eguation
(2.108) yields,

a;aﬂ: 4&2/\ M—/ /( v“f{f’; Y4>a./>’ (2.112)

But, from Equation (2.92),

/P (1-e)r c* (1-e): \I-¢

Replacing p in the integrand of Equation (2.112) by relation (2,113,
and multiplying, will yleld the following new integrand, excluding the factor
e~V"dy,

f+———[-f ‘”']y’
"l

3 _ e Q ( fi-) ——/28 Q" Y (o1
+3zc‘[z 2t e e

—y? Q, Y- 4 Q
ye :,Oey[l-l--—f: 4y L ( >>’4+a;(f) ](2113)

For the sake of simplicity, the following definitions are introduced,

8Q,
F=Ff + (e? (2.115)
e Q, L 128 Qa y
FZ— = fz 3 (’-C)Z 2 I—e 3 (!—C)4 (2.11 )

These de*lnltigns reduce the integrand given by Equation (2.114) except for
the factor e"Y<dy, to
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F z 35 4
[ _4'? y -+ 3327 Y (2.117)

So that Equation (2.112) becomes,

2 }rZ—E
. 48a A -yt F
a=— —2 \/i /f,/c 6+——’-v’+ 372 Y“) oy (2.118)
c =
o

Sec. P 322*

The asymptotic solutions are based on the assumption that when ¢ > 3,
the upper limit v2c of the integral may be approximated by « without a
great loss in accuracy. This assumption is rgasonably valid since, for large
values of y2 » the order of magnitude of e- is much lower than that of a

polynomial in (y2/c).

Thus, meking this approximation,

2 . 2
" _4_54_/_\_) VE. -y(-/-f’— 2, 3% 4>¢ZY
%™ ( c /}[e A drrrrat (8:129)

S€c P
Now, since the integrals introduced can be evaluated as,
o : J__
-y 7r
A 2
Coyt ; Nm
fe yidy = — =
A 2
oo 2 J_
Y 4 3 /8 (2.120)
e vy == —
‘[ al)’ 4 2

The average secular rate of a can be written as

T
: _(2BaA 2 [ £, 5 . ]
a;a-v ( 5 )/fs \’ = | + oC Faat + (2.121)

102



-The change in the period follows directly from 8agg.»

B,= TP (-Z—”‘)~ - 382 A4 | BF [/f ol ,";c,] (2.122)

Similarly,

$5cC

* -e”) /+€ -e
& Zb’ag /‘ (+ cos E) ( / coss) [casE

V_—m I + CCOSE
— d (1 —5%5)(2(_‘055-3-3 sz)J LE (2.123)
2(1-e*)
2 s
e = _Mf o L1=d)t rd) e C5E [casg
= V/-ezcos"f
d
- 2(,‘81)(/— ecost)(2 6055-'9—6605"5)] dE (2.124)

Introducing the new variable y2 ; a8 defined in Equation (2.90) yields,
z
(1-easE)(2cosE~e-ews'e) = | = (I~ Co5E)

0T (1-cos&)*

(i8] 105 0-em] [-rmee 523

- EHE) d[ & A [E i F

- - * é Y /-e
—- ,__y:_ ~€ d I—l 2 ¥ 3 = __;:I=</_.__J)
- ¢ \u+e - ¢ 2z e ¢ 1+e

[(f-al)+ (1Hd)e, ed] ¥* 3 e y?

|+ € 1+€ C 2
_ (- == ) _ (, ed ](2.125)
- ( 1+€ [ (- a&)-f(lﬁl) (I-al)+(7+.l)e ct

Likewise,

(1 — )+ (1+d ) e cose =[(l—-at)+(:+az)e][l— (:—dl)::.,.d)ceci}

= [( I-d)+ (’*d)e] (I- ke —g) (2.126)
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where,

4 = I+ d (2.127)
T (=d)+Grde AT
Finally,
22 * 2 : 4
2 2 2 4 _ _x 2¢  y e _V.] ]
/! — e Cos £ = /-& (/—.C_—) - (/ e) [/+ ’_ct C j-et Cz \2.128)

2 LY
dE ‘—"J? ‘/I-—Y_‘ (2.129)
2C

For the sake of convenience, the polynomial of (2.125) will be designated
by P(E), and the coefficients of the transformed P(E) polynomial (resulting
from the change of variable) will be denoted as follows:

4 (/ + ol )
(1—d)+ (1 +L)E

1

16 ed
(I =)+ Ci+ed)e

Using this notation, the polynomial (2.125) will assume the simplified
form,

S =

-e 2 3Ss 4

Combining relations (2.126), (2.128), (2.129), (2.130) yields the inte-
grand of (2.124), except for p ,

(1-d)+ (1+d)ecosE PE)LE = A ‘/_g_‘
V/-e"cas"é

3s e
(I-% y* o+ 3z2ct y*) (/-ke_ck) Ay

\[ 2e% y2 _ e _Y_J r, yt (2.131)
I+ ,_et . 1-er ¢* / ‘;'—C'
vhere 2
*_ (I=d)+ (1+d)e ( _i-e )_ //-f-e ( /-e
A= EX-LE / ! +e o= I-e /_l_c‘é (2.132)
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Substitution of Equation (2.131) in (2.12h) yields, after the multiplica-

tion In the denominator,

S Iy

Ju . 73

’p o 4810 e)/\ |, / (/*72‘)/ +37_CL

) ‘/ 4-e 2 /8‘ * 1 et Y‘
/+— —NY- 5 (—'zy'/' s (2.133)

sEc
2¢C

As before, expanding the denominator in powers of y2, and ignoring

powers > kL, the integrand becomes, except for the factor p ,
R [ VA PR / [/-k—‘yj[_iy‘
]:/—‘;ZZ \I e* I>Y+ k/ e'—)y +3zc‘ (/__e" c &#C
e
S5 = [ (- k) s 35

8 7t 2 73‘5 +
- 3 ke (_ —el) Y][’“;‘Z Y7 Zzer y]
2
(—46 —4kc-—n.)y‘+——ic; [/+l:— (/——-—_c:c,)

e*
-— (/—72‘;4&) A+ S y‘]

+C

- 8

3)46(!
o
T
4cC

where, after replacing the parameters A and

(2.134)

y?

z
yo 7 325-'a

s by their respective values,

- 3+4/<e+—4—€:+ £ed )
( 1-e? (1= Y+ (1+d)E/ (2.135)

£ =
. g8 (e*\_ g 16ed
£, =147 (_—?)— ke I Q - ) (—dyr (1+d)€

3 (1=t (1+d)e /-e™
Substituting the result of the multiplication of (2.134%) in Equation

(2.133) yields,

Vzc , .
s 48z (-eYA 2 fi gz, 3f >
Gee™ P c o]/a (/+ 4c [ 3z0% Ay (2.1

SEC

8 Q ed )(,__ 4et _4’{,&) (2.136)




where, from Equation (2.92),

[/ L & <4e+l)>’4+it

* (2.138)
e (- e)‘y Ct (-e)r\/-e )’J

oo“

Replacing p in the integrand of Equation (2.137) by relation (2.138),
and multipLying,the new integrand, except for e=¥ dy, becomes,

L] ga' ) 2 32 [ n‘*L" &' ( __8_8._ *)
<F+ (1-e)* v+ 32C% € 3 (l et 2+ I-e f
L 128 & } £ (2.139)
3 (1 —-&4+ 4
Defining for convenience,
» * 8aQ
/7" = ﬁ -+ ([—-——é—l)L (2.114-0)

" * ¢ & 8e *) 2 Qz
F; =~ 3 (i-e)? (2+ I-e ) 3 (-e)t(2.1)

the integrand given by Equation (2.139) becomes, except for the factor
e-Y-dy,

s

F J F, z
f+ -4_c Yt + 32C* ye (2.142)
Thus,
4Ba (1-eYAT ‘/ " L 3
. /I-e 2 Y F
e = — - - /i/[ € (f*' ’zy%>3(Y’
o

Again, as before, replacing the upper limit of the integral by o » yields,

¢ (48 (/ eHA) V— A
Csac ( /%./ (H 7 _3? )") (2 144)

The asymptotic solution is obtained by using relations (2.120),
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©  [(2Ba(1—€DA ‘fzfr A" QFZ*)
iy ( P )4 1+ 5+ Jager)E

The secular rate of the nodal longitude, ! , can be derived in the same
manner, from (2.95),

® Bo Sesiveg ( /- e@st‘)[ z
o e m— e’ "E — e__l
'Oftc 2PN / et // V o |+ E COSE 2

(2.146)
—2ewsE + (2-e*) ca.szé‘] de
. - +d)€ casE
- - tetemie o Lo o
(5 Pﬁ
(2.147)

— zewse+ (2-¢€° cosz£] dE

Introducing the new variable y2, as defined by Equation (2.90) yields,

2e*~1 - zewse + (2-€')Cos*F = (/-e) l: ( )(I-—CoSE)

z-&* - _ z+e\ v 2-c* ¥*
e e« oot seE e 15 ]
(2.148)
Likewise, .
o _ ) +al)€ [/ 1+ d eZ_ZJ
(- oL )# (1) eeosE = [(,, e ] - g € ¢
= [(.uat)+(l+al)e] (/- ke Lt) (2.149)
/ 1 _ | )Y
, — A —_ — |14+ =)=
_e
[ 4+ CCOSE (/+e)[/ fTé%z] |+e (He c
2 ¢ (2.150)
(4 Y
i (/ +e F]

So that the product of (2.149) and (2.150) beconmes,
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(dirGediceme = (1 132)(- ket 1 5 £ 502

I+ € CosS &
P
( /7"6) [/+ (/+e ) Yz * </—+§g)(l—§f—k% Z):‘L](E'lsl)

I\

Similarly,

T i <+
v? 2 Yy
/—t"LCasz£=l-ez /- Z):.(/—e) [/+ et ¢ —/—-—e‘ —C_’-—_} (2.152)

de= 2 2L - [Z [, 2.7y

|- ¥ 2  4c* (2.153)
2¢C
So that,,
1-e* C gc*

vy, ge* 4~e‘>2Y‘*a[(2'15”)
= % e [+—(f+ = —c-+;{(3~:—e-)- ey
Multiplication of relations (2.151) and (2.154) ylelds,

- [(-)+ (rd)ewsE] 4,
\[/-e Cos*E Y o

=M?2_l//——e—’- (1-— — [I+ v [(/+ e,)+ (——ke)]
e

Finally, multiplication of (2.155) by (2.148) yields the integrand of
(2.147), except for the factor p ,

[(/ L)+ (1+al)eazs¢:_]
|+ wsSE

=l/%_l/:é’—‘ (l ,,,e)(/-e) J/—— I:a (“e) (/+e ée)

VI - e“cos’E [ze -2 ewsE +(2- e)asz:lalf
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_(”L = )]y+32c7- [5 (/Té—é%( ;4—63
b -2 (2 - e (D) T ;;-ke\\
L (:.)e:)}y }4/ ’/_\[_? (/—a( \(:—e}

e 4 e
_ sy 4e(s+4e)+4ée]y ,._320 [g(——ke) (/+1_u

4C [—e? e
2\ 2
2+€ z+e _ ) - (46 )
-8 z—e>_ fe\ie (H ) (3 1-e® /-e* (5.156)
2,15
-er)
+ 32:‘2 e ] % C{)’
Defining for convenience, ('_
ol 4e(s+eée) }
f, = [’5+ —e* 4 ke (2.157)
o8 2e __ z2re\_,, [zte se?
f = 8(/+6 'él) (/+ I-e2 87—6) ‘e \'-e) (Hl-e‘)
z
4.,9 (z-e?) (2.158)
] i
( i-e + 3z (1-e)?
where,
A: _ I+
T (=) + (1+ )€ (2.159)

the integrand of Equation (2.147) becomes, except for the factor p,
e

z £ ]
[2 (7= (-4 52 e e 2 v s o

Jubstitution of relation (2.160) for the integrand in Equation (2.147)
yilelds,

QN XTI N A
Qgc:‘ ]O/

Sterne has an error in his expression for fl

(2.161)
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Now, from Equation (2.92),

-y 2 Q@ 2 1 @, [2e )4-4 Q. j
Fepe [+E 50 & s (B a2 e

Replacing p in the integrand of Equation (2. %61) by relation (2.162),
and nultiplying, the new integrand, except for e~Y“dy, becomes

/ A 1< ¥ 2 ! ™ e @ se 128Q,
3% (6 ) sl £ ) 2]

(1-e?) 32c* (-e* -e i-€

Finally, defining

*1 9 + 5&,

F =1 (1-er)* (2.164)
T -1 ( ) 128 & 5
= " Gmen BF I oy e

the integrand given by Equation (2.163) becomes, except for the factor e‘ygiy,

/C-** Z /Cz-!f
r 2 + 2.166
/ s 4 32C* Y ( )

and hence,

. BaM?w( \/— £ )
L = ( 5, )/d,,e (1-¢) /0/ 3§b-zy’dy (2.167)

As before, replacing the upper limit of the integral by ¢@ yields,

. Bal), unly - A
Coge ( P )( ) /-¢) /_ﬁpf ’ (/’775 2320”4)@/ (2.168)

and the asymptotic solution is obtained by using relations (2.120),

ﬂém’“ (Eaﬂ M,?w\(/d

+* * N
£ 3K ) (2.169)
ZP7n

zn(, . 5
+e) a e) /% (H 8C +/280
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The secular change in the inclination is obtained from Equation (2.96),

/- £
"1&.:“‘ Ban, amwi ML//O(/*eaoOE) li,————-———-—/ " (} J ecoo )dEJ

/+e\wa£

(Ba[) s coOwa/O v/ -e” ‘é’( [)[Zez-/—,?ecaof

Pn/l-e% /*e ok

+H Z-e%) coo [}o’E
The integrand of the first integral is shown for convenience as a product
of 2 factors: the first factor is:

(2.170)

(/-c cook) <[ (1-€) +e(/-c cook) = (7-ef) +/_—i—(/-aoo£)]2
ez 2 oS 1] (2.17)
e

The second factor of the integrand (the one in the brackets) is given by
Equation (2.155),

ey em{)"f’/f—c—(/ J —) 1/ —i[(/*/?g—)

[t cm E /*e 4c
/ e Ye  4e?
oz tellyt ol 2 i+ 725)
"\ ke}f" +3202[8 e XN e T Jer
8e2) ( 4e2¥ ) (2.172)
( /-e% /~cfﬂy de

Multiplication of Equation (2.171) and (2.172) yields,
Ye ( e 56}
el (A (s e V.8l
\/7 /e (/ i )(/ c)z o K /- ez)+4 /e k6)+/-e /
2
[ /,i?+_'5‘_6_ +fi)+/5(—9)(+4‘—°-)
326'2 /+8 e [/-ef  /-e J-e/\ [-g2
8ef\ _( #e = g f/g
+(3—/-_e—2—) (;—c;) +32(/_6) ]y % (2.173)

Thus defining,

* % ( 4ez> r‘v"( e ) , 8e , 4e(3+2¢e) ke (2.178)

/-e /-e?

111



i P )(/,«iji___{_;’f—‘”),«/é(/%)(/ +/_Zf)( )(/ )032( )(2 175)

Equation (2.173), which is the transformed integrand of the first integral
in Equation (2. lTO), except for the factor p , becomes,

/ {‘llﬂ {\*ﬂ*
\/—/ 2(/47 cz)(/- 2[ 7 y2*322c2 yqdy (2.176)

Substitution of (2.176) for the integrand of the first integral in Equa-
tion (2.170) ylelds,

o, (BN L) o 85

where, from Equation (2.92),

- jE &, {__l_ Q, <c + 4
/D B 6 [/ c (/ 6)7' y C" Q-—C): (l—f +I)y +C (, eyi-y‘l (2 178)

Replacing p in Equation (2.177) by relation (2.178) yields the new inte-
grand, except for the factor e~Y dy,

AN A Y -~ 164, ge.
I 4C (’C (1 e)s, )/ 320 [% -e)z (2+ l—e_{d)

(2.179)
1288, ¢
— =l Y
Defining for ﬂonvenlgnce,
Lot o *h i 8a|
— el (2.180)
/ —ﬁ * (-ev*
I 16 &, ( ae * 128 R
h =1 (1-ey* 2t et A)+ (1-e)* (2.181)

the integrand given by Equation (2.179) becomes, except for the factor e'yedy,
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rexn . P
j+ oy 4+ F y (2.182)
4-C 3"‘2"_2 *
So that,
_ [ Ba Ste swi ( _ J— [
(), = — (e ) £ 72)0-4F (% et
F-u'll 2 (2'183)
—
7 4c 4 32C; )’ ]dY
Finally, replacing the upper limit of the :Lntegra,l by e yields s
N - Ba .Q-e S/IV (4
(".’;ec)mgr:w ( P > ( Ite (’ €) /‘/D‘/e [/'f‘
Fros F P (2.184)
+ / + 2
4c 32c¢* Y]o{)’
and the asymptotic solution is obtained by using relations (2.120),
’ Ba _Qg SMJ Z_ ) 27
R (—‘27,71—' (ot o) a-erp B (1+
+ Flum- . 3F;¢o> (2.185)
8e 128¢2

Evaluation of the second integral in Equatlon (2.170) proceeds as follows:

’ _ Ba seesw:
(655534”2 ' (Pa )@526) rab’ e’cose +

BT +al)c’005£]

I+ & (osE

. The integrand of this integral is exactly the same as, the integrand of
$.ec g&iven by (2,147). The only difference between Qsec’ as defined by
Equation (2.147), and (I,..) part 18 in the coefficients preceding the
respective integrals. The former integral has the factor sin2w and the
later has the factor sinicos2w . Hence, when this difference is accounted
for, the asymptotic solution of integral (2.186) is obtained from that for

'Qse"’ which is given by Equation (2.169),

[-ZC "1‘26”557"(2-6‘)6'0525]‘1‘5 (2.186)

(ﬁ ) ~ 2 Stp SIVL Cas26 (- d’ )/ ey 2 2,,( " 3F )
- o _+___ (2,187)
55/5’ . 2P (
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Hence, the total perturbation in orbital inclinatlion amounts to,

, — ; , 2.188
L, = («bsco\}’uﬂ -+ (’"550)94”1 rao)sec  (2.188)

Combining relations (2.185) and (2.187), one has that.

ey

. Bo-Qe,ﬁlA/L)( i-e s 21 _/_"':w 3F
RS R L

128Cc*
Pk e
F 35 (2.189)
+ (05 24LJ (/'7" — -—‘—"'T
8c /298¢ /|
The final orbit element considered is detined by Equation (2.97),
L .
= - 2 £C 2.190
W, = ~o5L Stge 70 [5 (2.190)

where Sasec is given by Equation (2.169).

2.2.3.6 An Alternate Technique Leading to Standard-Form Solutions in Terms
of Bessel Functions

In deriving the asymptotic solutions for eccentric orbits for which
¢ > 3, Sterne introduced a new variable y2 = ¢(1 = cos E) to reduce the inte-
grals to a suitable algebraic form for integration.

A simpler and more elegant technique can be used by expanding the inte-
grands directly in powers of the eccentric snomaly , E, and expressing the
solutions in terms of modified Bessel functions of the first kind ,I (c) and
Il(c) of the zero and first orders. Using this technique, the solutions are
expressed in a standard form which is applicable to both eccentric orbits
("Asymptotic Solutions") and nearly circular orbits ('General Solutions™).
Indeed, to obtain the "Asymptotic Solutions" for eccentric orbits fram the
standard form of solutions, the modified Bessel functions ,Ig(c) and Ij(e),
are replaced by the corresponding asymptotic series expansions. Likewise, in
order to obtain the "General Solutions" for nearly circular orbits, the modi-
fied Bessel functions ,In(c) and I,(c) » are replaced by the corresponding
regular series expansions. In view of this fact, it is irrelevant whether the
analysis is originally performed with the "General Solutions" or the "Asymptotic
Solutions" in mind. However, the former concept is more convenient for our
purposes and will be applied here. The "Asymptotic Solutions" will then be
obtained as indicated.

The average secular rates of the orbital elements are obtained by inte-
grating the respective time derivatives over the orbital period P and
dividing by P.

If the average secular rate of any of the six orbital elements 1s denoted
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ec» 1t will have the following general form according to Equations
through (2.98),

¢ CONS
¥="<P

by b,
(2.93)°

Ee

T)&Z/;f(f) JAdE (2.191)

where

= n 2
F(EY= D X COSE = X,+ X, COSE + X, COS £
n

2,192)
3 4 (

g + &, COSE+ Oy COSE+ o -
and vhere powers of cos E >4 are neglected because the respective coefficlents
o, contain powers of e generally of order (n-1) or n. (In Sterne's anal-
ysis, powers of e > 3 are not retained.)

It remains to express the density p in terms of the eccentric anomaly
E., From Equation (2.89),

~ e (i-cos€) SINE 1\ ( SINE
P-p e I+ Q, (|~eCose) + Q, ——,_CCOSE) (2.193)

In the ensuing expansion of the functions of E (which multiply Q; and
Qo) 1in powers of cosE, only terms containing powers of e < 3, for the first
function, and powers of e < 2, for the second function, will be retained.
This step is taken since Q; and Qp are of the order of Q and Q,
respectively.

2
( SMJE) _ (l_co5'-£)(/+2€cos£+367'6275‘£)

| = € CasE (2.19%)

4
= |+ 2ewsE - (1-3€") WS E-20asE-36 WS E

(_ifﬁ’_‘_s___) = (/-20s%E + Cas’E ) (1+ 4 ecosE)
/- € CosE

= J/+ 4+ecosE- 2cos‘.£—:ac>0053./_—'¢L cos‘fz+4€@6€' (2.195)

With these expansions, Equation (2.193) becomes,
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) -C ’ ceosE e eosE 2 . 3 L g
F = & /gle + Q, € E-}-zeCosE-(1—36)0055-286055—34.‘&55]

¢ éosE

+ Q,€ [I+4—eco5£— ZCﬂSzE-aeaos’Efao;FJ-‘}eaagl_ﬂ}

(2.196)

Thus, substitution of relation (2.196) in Equation (2.191) yields,
w

) o=— (CONIT\)_ZéC@

sec P

c cos E
2 3 4
f? l}io_}_u ,CGSGIQ{ZCOS€+°‘3 @551“‘!4@55] df-
(~]

4
ecosk - s
+ Ql e I+ 2€cosE-(1-3€%) Cos'F ~ 26 CoSE
(4

. ~-3e "aos"f] E:(o-/- , CoSEt ¥, OSE| fE

os &
+Q, e’ E-l-cxecose—zms"f_ 8ecas’E
0 +CoSE+ 46 c'as"e] E', o, Cos s] o
(2.297)
Now, the second and third integrals becone,
ceos &
&, e [O(o'f‘(20(0e+o(,)CasE+€-°(°+3°(°el+20(‘€+°(2)COSZE (2.198)
(- .

2
— (2, € +N,) GS'E — (3, € +2%,€4 N\ OSE|LE
1r

¢ eoSE
a,| € [0201- (#%X.C+A) CoSE - 2, CoSE - 2(49, 6+v,) Cos 5
(=4

4 5
1™, Cos €+ (4R €4+, ) CoS 5__] dE (2.199)

The following integrals, modified (reguler) Bessel functions Ig(c) and

I;(c) of order O and 1 (first kind), can be utilized to evaluate Voo’
v
QCosSE
fé' dE = T I,(c) (2.200)

[
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i (2.201)

L CosE

fc? Cose fe = T I, ()
o

" B I,(c) 2,202)
feccQSECDSzEJE = T I,(c)~ /C(C (2.
é -

T _ I
/gccasgcvjaf-df = Irl- oC(C) + (/+ —g;) _[/ (cﬂ (2.203)
A _

7r
e CosE

| e @.54._55(5 = T ] (/+ 237) 2, (cJ—<;2+ %) I,(CZ_] (2.204)

p—

s

J/”E?CCose CZZSiE¢jﬂf
(%

1l
3

[ (.2 _ 2 7 24
( c C3) L©* (H czt ?)‘Z/-(cﬂ '2,205)

—

Multiplication of relations (2,200) through (2.204) by the coefficients
of the first integrand yields the solution of the first integral in Equation

(2.197),
”

f(p‘-’ cose [o(ov" X, COSE+ oL, Cos%wacos’uq,ms?] dE
(4]
= 1r +x, + - X3 3 g

2.206)
X2 2 X4 23 6Ng- (
—_—— - — C
+o(wrey - X2l 2, Zea G g

Multiplication of relations (2.202) through (2.204) by the coefficients
of the second integrand, and retaining only terms with powers of c¢ in the
denominators, yields the solution of the second integral in Equation (2.197);
more precisely, of integral (2.198),

T

- ¢ LoSE 2z
&‘J & [Q(a + (2ot €+ ) CosE + (-, #3X e +2N,E FN, )loSE
[

4
= (Lxgetw,) ose-(3%, €r2x, e+x,)Cosk | dE
Q 3
= Tl'?'i [(2°(o€+w')—z B, €+ 2% +3,) I, ()

2.207)
+ [q o + (3%, €% ax,e +v,) = F(2voerx «>§(3°(a€11‘2°«.€+°(zjl.‘c’}(
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Multiplication of relations (2.203) through (2.205) by the coefficient
of the third integrand and retaining only terms with powers of ¢ > 1 1in the
denominators, yields the solution of the third integral in Equation (2.197);
more precisely, of integral (2.199),

T

CCosE 2
Qz'/.€ \:c)(o + (4qoe+0<,)605£-26<0605[

o
_ 2 (Fx et o, oS EFN, CoSE +(# e, e*%)@ffé] e -
2%
37 ?:: {E&;’% (+ %,€+°<,)] I,(c)+ [(43105%(1), i

+ ”céf C¢°<a€+<><,)] T, (C)} (2.208)

Substituting relations (2.206), (2.207), and (2.208) into Equation (2.197),
and combining all terms with Io(c) as a factor on one side, and those with
I;(c) as a factor on another side, the following "General Solutions" are
obtained for the case of ¢ < 3; that is, for nearly-circular orbits,

’ Cows e K S
'\)SEC: _‘< F} 277'6 ﬁ: [:(ao-f-—a-a//+ c?_ az)-Z'O(c)
. s (2.209)
(bt St b, + 252 2T @)
where
¢ 3 X
Ay = ot +y= 2+ o (2.210)
3 2
a, = @N:€rot)y- ¢ (3N, €FBNLHX2) (o
4. = _ 24 erx)
, = T (4=, » (2.212)
. Sy 2%y 23 6 Xg
by = N, F X -z 7t T T E (2.213)
- 2 2 6 2
. = N BN CF 2 e, T (Aera )T 7 Ox e 2x e y)
(2.214)
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2o
C

8
b, = (#x.€+x)- *— (F A e+,) (2.215)

In order to obtain the =symptotic solutions for eccentric orbits (c > 3),
the modified (regular) Bessel functions ,Ig(c) and Il(c), are replaced by
the following asymptotic definitions for n =0 and n =1,

[+

< C  z e
£ o~ N (#H- ) Y3 )@En-5) - ~v—=
()~ == [/+ ~ /) - G@© (2.216)
" V2me “,—,3,, ¢ AT (BN \eze »
Herce, the asymptotic solutions are:
[ & 3Q,

- ConsT Vz'/?' —a,+ =372,\G,(c)

Vsge =7 ( oP ) /% C L(a°+ ¢ 4 VC," "> o

34, (2.217)
+ (bt T B+ T5E 5,)G (O

vhere the coefficients (a., a,, a,) and (by, by, b,) are the same for
. 0 1 2 0 1 2
both types of solutions,

In order to obtain the solutions for the individual secular changes of
the orbital elements, it is necessary only to determine the respective
coefficients for each case and introduce them in relations (2.210) through
(2.,215). The respective solutions will then be given by Equation (2.209) for
near-circular orbits (c £ 3) and by Equation (2.217) for eccentric orbits

(¢ >3).
2.2.3.6.1 The a, Coefficient for a,.,

Equation (2.93) may be rewritten in the form,

” z
5 _ (28a [(/-cl) + (I+d) € Cose
a’szc,_ _(_p"ﬁ)h Z//O ]

2,218
‘//—ezc.osze’ ( )
Defining,
J = At
I - (2.219)

‘ 2
[(/"al)'/‘ (1+) 86055] = (=) (1+2 J'g%g,:-Jze‘@s"g) (2.220)
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-4 e?
(/_ezwzé-)z =/+_2_M2£+,... (2.221)

and multiplying relations (2.220) and (2.221), neglecting powers of e > 3
and substituting the resulting product in the integral (2.218) yields,

174
éseb: _ [ZBaz(/-—-c/)L}( 2//0 [/+2Jccasg +E(J+%) CosE
P 5 ., (2.222)
+ Je Cﬂsaé] ALE
Thus, ("
~, = !
~, = 2Je
~, = e (J ‘)
1 ‘343 — Licfs
%, = O
consT —28a Y(1-A)%
\ P P (2.223)

When the values of these coefficients are substituted in relations (2.210)
through (2.215), it follows that,
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3

[ R ’
Qo = I+€(J +%)— —“%
. : 3 2 ,%: -7
a, = 2e(jro-z e (J+ 40+ 3)
@, = I-%2e(j+2)
bo = 2Je +Je’~ & (J i) 5 ?, Je’
b, = /[re(s +4J+,)— Ce(a+/)+ 8(./-/-4.)7",,)
by = 2e(/+2)- —5 + Lo (jra)

(2.2214)

Knowing a » the change in the orbital period is obtained from the
relation, sec

[ 4

P = 2 P 0; 55¢> (non-dimensional)
7

Po=-38 (1rd)x 2m€°6 |@r o422 0) T

+(b,+ 2 b+ Tt a, by) I,(C)] (2.225)

2.2,3.6.2 The o Coefficients for e
sec

Equation (2.94) may be rewritten in the form,

b _ _ |28a (l-e‘),(Z [(l—a!)+(l+al)ease l:w £
Cuse = - P22 [P L jmteste 112

(2.226)

- 2;1/—5’) (1- ecasE)(zws.£~e—éCO~S"£):l dE

Series expansion in terms of "cosE yields,
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k8 2 —'/"_ eZ 2
(/-€“cos’e) = I — OSE+ - -

(2.227)
(1-d)+Q+d) € ase . >
V/——el—cisff_ = (I-d)+e(rd) Cose +_c§ (-o) cos zg+§-a£s’€ (2.,228)

((’ ~d)r(td)e ms&) SE = (1-d) Case +E (1+o) 156 + & (I-) &
. 2

€ %
+'E; os’E
It will suffice to assume that,
£ _ d
2(1-e*) 2

Also, since d << 1 (approximately 0.06), terms containing e3d are
neglected.

Hence, the second term in the second brackets of the integrand in (2.226)
becomes,

ol

- _Z(/—ewsa(zease-e-eaos%) = -;-/[6— o+ s

+ 3€ (os*c - et cas’g] (2.230)

Multiplication of (2.228) and (2.230) yields,

(=) + (1td) € Casi % [e—(z+e1) Cose+3e se- 620535]
&

\/'/-e‘Cos“

= ;—![(f(l—al)—z(l—c/‘ eol) cose +8(-sd )Cos E
+ e*(1+sd) Cos>£] (2.2.31)

Addition of Equation (2.229) and (2.231) yields the integrand in (2.226),
except for the factor p,
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Esge =~ [‘?—B—g—g"—gﬂ* 2,0//0 [6-5( (l.-d)-f[(/w{)z-/-é't(j WOsE

2 2
+ § (1=e) (z+5a¢)ws£+-§ (I+5al")(o53£+§-a aas";] oL (2:232)

Thus,

« = Za-db
= (l-d)ed’
¢ = fz-(:—al)(z+5c/)
«, = £ (+sd?)
3
~, = EZ—
CowsT . 28a (1-e*
P P (2.233)

These coefficients, when substituted in relations (2.210) through (2.215)
yield,

S 3
(4, = eG-d)(1+3d)t 5 = —(H s+ 3%
a, = (i1-d)+ed —Z—C ¢ (1-d)(+cd)
@, = -ezi/ (1-d) - %[{/-d}’} EHd (2 —d)]

b, = (1-d)°+ -2‘?-

(1+7d*)- ——-(1 -dY(etsd) - ¢ + a(,»sJ)— :

b, = L -t)r § G-d@rer— % [ Ells & cl-) (1)

b, = (- Fed(z-d) - e”l(/—a!)f ——[(/ )
(2.234)
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2.2.3.6.3 The a, Coefficients for Q _

Equation (2.95) may be rewritten in the form,

| Ba Rgsmw2w |/— CI- d)+(:+4)ecase[ 2
s€e [2% ;e"—] ,/.F /= ewsg[ I+ €Cose (ze)

(2.235)
—2€ WSE +(z2—-e*) s ZEJ dE
Series expansion in terms of cosE yields,
-7 2 2 k ) 3 (2.236)
(1 +CCaSE) = |- CCOSE+ @ COSE-C LIS E+ o o>
/- + £
(=)t rd)e cos = (l-ad)+ 2€u w56~ 28EADSE+... .
!+ € Cos £
(2.237)
) 2 2 e* z
\ﬁ-ewsf = /| — = cos“F + .
2 (2.238)

Multiplying (2.237) and (2.,238), it follows that,

(/‘0{)‘*(/*'{)@@55 \//—-ezCDSzE = (/_4)4-2 Ca/@se-—%éf-sa/)wgé-f-.u .

/+ € CosE

(2.239)

Finally, multiplication of (2.239) by the second brackets of the integrand in
(2.235) yields,

("d.)*(/"'al)e(aSE V z . 2
)+ € Case I-Ease [_ (1-2¢)-26ase +(2-€) Co&%

= -(- 26)(/ d)—2eosE+ I:Z(/—al)— - (/+3d)]Cos £
+(#ed+E) sy e C+3Yeos¥E + - (2.240)
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wheres, agaln, the terms containing edd were neglected.

Substituting relation (2.240) for the integrand in Equatior (2.235) yields,

/s
s [B“ 365’”2“’:\;( z/p [-(/—26‘)(/—«1) - 20005
o

e 2P, {i-e?

+(2(-L)— & (1+3d))@ser@ed fe’)mé’e-e‘(/fs‘oaas"i—:la/é‘
2

(2.241)
Thus,
(o, = — (1-2eD(-)
ol = ~2¢€
I ez‘

d, = 20-d)- 3 (1+3L)
ﬁ c<3 = 460[ -+ 83

~, = - e*(1+3L)

cowsT —  Ba S2e SIW 24

. P 2Pn \1-€% (2.242)

Substituting these coefficients in relations (2.210) through (2.215) will
yield,

4 2 z
a, = (I-d)+ -Z— (1-13)— % Edte)- 53; ez(/¢3a/)
a, = -2e [[+o-dyo-2€Y)]-2 2 (-4)-F e (s-)]
a,= - (I—-2e"0-dt e (3-24-4€%)
2 2
by = - Ze(/-za(--i-)——z-(/.dyr% (+3)
+ 2L (#dte =)+-Z‘; e* (1+3dd)

b} = (0-d)- %z(u-ra()-l' jze [/‘f' (1-d)(1- 251)]-" c%-[z(’—l) __.23_6""(5_4/):]

bz = — Ze [/fZ(/—a/)(l- ze‘}]-l- f (/—zez)(l—a/)

. - %;. 1t2(1-d)(I- ze"]

(2.243)
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2.2.3.6,4 The a, Coefficients for ig..

Equation (2.96) may be rewritten in the form,

;o [50./2 MI:I pr{(/ c crof) m[(/ a’/*ﬂfa’)ecwé']

s&e 2Pr/7-e2 /*recoo Lt

(/-d}+(/+
+ Coolew //-e’coo'?[[ /}fe d); wé—}[z"e‘-/-z‘em[f(z-ez) w’[}d[
o0

(2.244)

. However, the second part of the integrand is the same as the integrand of
Q0 in Equation (2.235), except for the factor cos 2w, Therefore, the
respective integrated solution will be the one found for hsec ; except for
the constant term. Hence, the «, coefficients for the second part of the
integrand of Equation (2.24l) are exactly those in (2.242) and the correspond-
ing 8, and b, are those in (2.24k3).

The first part of the integrand in (2.244) is the product of,

(/-ccook)’= /- 2e eoo £+ ePcoo’l (2.245)

and a second factor, the expansion of which is given by relation (2.239),

(- a!)+(/fc/)€w55]
(/-—em:;é) V/ e*cos’s G CCosE

= (1-d) - 26(1-2D5E + £ (1-13d)0SE + & o5 (2.206)

Thus, substituting relation (2.246) for the first part of the integrand
in (2. 2&-&3 and remembering that the second part of the integrand is the same

as the integrand of Qsec in (2. 235) except for the factor cos 2w, yields,
7
; Ba Lo SWEL o
L =~ [ < -d)- -2 =(1-1 Y
e I ,«zolo (1-d)-2e a()c:ase+z(l 3d)se

’ .
+é 6'0535'/‘6'052 W(nra6ranp oF .Q_)J e (2.247)

Hence, the o, coefficients for Part 1 are,
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d-o = /—‘d
o, = -2e(l-z2d)
ez

&y = == (I"/Bd‘)
Part 1 « 2

0(3 = 63

~, = O

CousT _ By eSING

| P 2pPn fiTET

(2.248)

Substitution of these coefficients in relations (2.210) through (2.215)
yields

3

z
2o = (=)t < (1-33e)- 5
a, = 2ed +.%%"(I+Sa/)
a, = (I-d-8¢
Part 1 2 2 28’
bo = —2,8(/—24—%)—%(/—13J)4—F
b, = (-d)-E 1+ s)—2ek - 2 (143 L)
= - 2 - 24
Lbz = 2¢- 2 (1-d)+ e
(2.249)

Attaching to, the a , b, coefficlents for Q.. in relations (2.243),
the supseript " " for proper identification, and muitiplying each of them
by the factor cosZ® , ylelds the coefficients &, b, for dgee by adding
(cos 2w)a, . and (cos Zw)bné to the corresponding coefficients in (2.249),
that is,’
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Aot = Aot 052WA,;
aQ,. = a + @52&)@/5'1
Part 1
Part 2 baL = ba + C&SZ&) boh
b, = b + <Cosz2wbhbg
| bae ~ b, + szw b, (2.250)
242.3.6.5 The oy Coefficients for &
These coefflicients are the same as those given for flsec' The two
solutions are related as follows:
&)”c = — (oss .Q“& (2.251)

2.2,4 Analytical Development of Kalil's Technique (General Solutions)

2.2.4,1 Reduction of the Time Rates of the Orbital Elements to Integrable Form

The "General Solutions" apply only to near-circular orbits for which
c £ 3. Kalil uses basically the approach employed by Sterne for the derivation
of the drag acceleration vector,g% ; that is

D _ 5 e (1 -€ CosE>"
-;D— = _Ba/Ollz[:RCSI»E+S l""e’— (/-‘d l__e?— )

[ J
+ W %Iﬁ- Swi cos u (I-ecaseyz| £ (3:22)

where Vg 1s the relative velocity of the satellite with respect to the
atmosphere,

//-f-e Cos & |-€ Cose
V, = G» (I - d—_"—") (2.253)
g }-€e eose& I+ CosE
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Kalil also uses the same definitions for the seéular rates of the orbital

elements a, e, P, as derived by Sterne and summarized in Equations (2.93),

(2.94), and (2.98),

2.
. fP (/occosg) (l— d/—e(osa LE (2.25)

1-CYcos2 g | +E Cas€E

Sec

, 28a Cl*e )[ /1+ease /-€ CosE
E = —
sec I-€ cos ( 0% e cose & CosE [6055

the) (1-€ws gY(zase-¢- ewsE)Ja/E

(2.255)

2 2 2
P = - 35’0.[,0 (/¢ case) /= dﬁf—m—s—f>a/f (2.256)
V/-ez COS*E /e case

. Kalil, however, does not present in his paper solutions for ﬁsec 3
For the sake of completeness, however, the solutions for

3 and (l) o
tﬁeue three orﬁita.l elements will be included in this analysis; and, for this
reason, the respective definitions will be transcribed in the form presented

by Sterne by Equations (2.95), (2.96), and (2.97),

. Ba e SIN zw /—efasf 2
Sge= — e FV 1€ asTE ( )[(ze—l)

2P
- 2ewse +(2-e*) Cos £J cZE (2.257)

i
2 -& ooS€ 2-
_ Ba StesSNL p J—eteoste (/ - di____);(l«eaose)
2PN ﬁ':—éi A /+e asE

+Coslw [(ze'l/)—chase'-f (z—ez)ws'ii-lzc{é' (2.258)

W, = -Csin,, (2.259)
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Let v sec represent the secular rate in any of the six orbital elements,

"

Y = - (C‘;'ST\]O Pf(e>dE (2.260)

where f(E) represents the polynomial expansion in powers of cosE of the
integrands (except for p ) appearing under the integrals in relations (2.25&)
through (2.259).

z
£(E)= N FN, COSEF X CosPEF N, COSEFX, OS £+ - - (2.261)

Powers of cos £>U4 are not retained in the expansion of f£(E), because
the o, coefficients generally contain powers of e of the order of n or

(n-1) , and powers of e >§ are neglected in this analysis. In fact, Kalil
even neglects the power e,

Once again, the density p will be given by Equation (2.89); that is

2 ) 4 .-
B c(1-C08 £) aw £ . ME) ( Mé:)
2T %E [/+Q‘</'cw£> QZ(/-ccooé_ +03 /-ecooE

+QL(;f§§ii§E)s] (2.262)

6

where the coefficients Q‘l’ Qo Q3, Q, are glven by Equation (2.87),

Q = (/-e*)(-Q co0o 2w "ZQMZ&J)

2 ¥
Q’ Q.
&, —_(/-cz)’(g coo 4¢u ‘Z co0lcwamlw 2—5‘- m"’Za))

3 s ¥ QY
@, -5 (‘ chaoJZw *EQM&JM*’Z&) , %mz&x o 2w —/~2—,ah ?0)

@ Q"f# Qy"i?)
/7. = +—
Q=11 Zycoo,?w g Tt S @

(2.263)
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Kaiil appears to have three errors 1n these coeff1c1ents, which have been
corrected: (1) in Q, he has (l =,° ) instead of (L - e2); (2) in Q
he has (1 - e°) 1ﬁstead of (1 - e?)2; (3) in the third term of the expreqsion
for Qg he has /24, instead of Qh/k

The term @ was already defined. However, the definition is transcribed
here for completeness.

Q = K Reaf W (2.264)

P

where I 1is the flattening of the Earth and K 1s the inverse of the density
scale height.

At this point, the functions containing the eccentric anomaly in Equation
(2.2€2) are each expanded in a series. However, in the expansion of
[aan£/¢ 1~ coo £)]° powers of e~ are retained; whereas in the remaining three
expansions, only the first-order powers in e are retained. This procedure
was adopted due to the order of the respective coefficients Q; , 1 =1, 2, 3, 4.

/""\‘
Tl
(o1~
RN
Q6
1

(1-@SE)(1+2€ Cose+3€ CosE = 1+2€cosE
~(1-3€*)cos?% - zeCos’ —3e*CasE

(/ 2005 & + CosE) (114 ewse)= I+4€005E — 2 SE
- BeCosE+CoSE+ 4o 5 E

TN
{
3
B

N

LY

i

€ 3 ¢
QSW ) = (1-CosE) (e @se) = (/- 30086 + 3005 ~ COSE ) (1te€sE)
£

& 7
= JFCCSE— 300SE — (85 L+ 305 +19C oS E ~BSE -G LOSE

Siwe o«
(_—— f) = (/- cas‘&’)*(/vbe € ose)z (I-# Cos'E+6WSE

2
— fcosCe + ws%)(1+8ecwse) = | +8€ wose — +WSE
~ 32€Cos¥F¢ Cos's + 48 € Cos’e - 4 CastE
~ 32¢c cos’e + cos’e +5e CosTE

(2.265)
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Substitution of (2.265) into (2.262) yields,

-&

= €

_ecost

e +a,e

acosE
[/+z ecos€ (i -361)5051'6'—2660335—367-@;%

o eosE B

+ Qe |+ 4-€ (056 — 205 ~BeDS £+ L'a542='+¢-£c'o"s§5]
L.

ceose [ z & Ky
+ & A€ 11 6ECOSE ~3(o5E-180c03e +3Co5 & +I3CLUISE
~ cos%e - (,eaas"g]

CcosE

+ 0~+€

|+ §€ CoSE — 4 CoSE — 32 CLOSE +6005E

5
+ 28OS 40055 ~ 326 (SE$CoSE+ 3ec’osq¢:J

(2.266)

and the substitution of relations (2.266) and (2.261) into (2.260) yields,

2

* con -e Q eosE

Vee = = (apg ;e fé E:{o+oc‘@sg+q»zcosir+ oy OSE
(~]

+ o, CosTe|AE
i s Cos™2]

ccos€ N .
t+ &, € E’(o+(2q’oe+w,) CosE%—(—bz,,-l-Swoe_/-que.mz)@SE
0

2
— (zc(a €+0(')COS!6-—(3‘1°€*2°{. €+Q1)wg€]a/E
27
e wsé 3
+ &zf€ E’(o F(#,04,) COSE - 20 08 £-2($%,E 4% )05 E
(-4
217

+ o, COS'E+ (3, € 41,) C!ossf:']clE

agos 3
+ 03/8 ‘ EE‘(,, +(6q¢,e+°<,)6035—3°(°Cas'is—s(aq,ent,)@s&’

3
° + 3d, cos 43 (6Xp ) COSE - Xy cose

27 - (Cx,+x) cos7£]al£

[}

soosé 3
+ Q4f€ 1}(, +(8x,e+x,)CoSE ~ 4o, cas?—#@q,em,)cbw
5
+ 6%, cos%6 + 6 (8 €+ ) COSE -4, Cos‘e

— 4B+ )DSET N oS E +(8Q°e+q')aosqg] Je| (2.267)
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Note that in the multiplication of the function f(E) which is defined
by Equation (2.261) by the polynomial adjoint to Q, in Equation (2.266), the
tems containing a,e or higher were not retained; while in the multiplication

of f(E) by the polynomials adjoint to Qps Q3 Ql, the terms containing
¢ 2 were not retained.

2.2,4,2 Kalil's Integration Procedure
Kalil integrates Equation (2.267) in the following manner:

A. The five integrals in Equation (2.267) are combined in one single
integral by collecting terms of the same powers in cosE.

B. The powers cosP'E are then converted to multiple angles cos n E by
the application of the following transformation table:

2¢coor £ = [ +tewo2F
4 0po3E = Bewk + cr0 3F

B eootF = 3+ Yoo 2 F + oo 4L

/6 200%E = 0 o0 £ + B oo 3L + Cpo 5L
F2 r0d L = O #/Feo0l L # 8 oo YL F oo S L
b4 coo’f = B8 CO0L £2) ppo FE £ T s0 SL F gro JLE

C. The terms In cos »E of the same multiple angles are collected.

D. The integration is performed term by term through the use of modified

Bessel functions of the flrst kind. The individual integrals are
defined as follows

27
S cosne e = 271,
o

n= Cbl) 2)3). --h
E. The final solutions are of the form,

° (ConsT) -C n
Viee = — =Eempe %;o A, I, ©
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where the coefficients A, are functions of aps Q1 Q» Q3, Qh'

It becomes obvious, from the foregoing presentation of the required
algebraic menipulations for deriving the final solutions, that Kalil's approach
is cumbersome, tedious, and also inconvenient. In addition,the form in which
the final solutions are presented has the following disadvantages:

A, It involves the modified Bessel functions of all orders. To reduce
the Bessel functions of higher orders to those of the zero and first
orders, the recurrent reduction formula

- 2n
Lpy = Ia., c L,

must be used, which means additlonal algebraic manipulations, collect-
ing terms, determining the new coefficients of Ig(c) and I;(c), ete.

B. The Q;, Qp, Q3, Q) parameters do not appear explicitly in a suitable
form for switching off some of them when it is desired, as -~ for
instance - for comparison with Sterne, who retains only @Q; and Qo
Instead, these parameters enter in an intricate form in the A,
coefficients.

C. The fundamental rule that the power of the parameter c, appearing
in connection with Qg, Qo, Q3, Qy, should never be lower than the
order of the subscrip% of the respective Q,, is not obvious in Kalil's
form of the final solutions.

2.2.4,3 Alternate Integration Procedure

For the reasons listed and in order to avoid the inherent, lengthy alge=-
bralc manipulations, the five integrals in Equation (2.267) will not be com=
bined; rather, the integration of the individusl terms in each of the five
integrals will be performed directly (without converting the powers of cosE
to multiple angles) by the use of the table of integrals presented on the next
page in terms of modified Bessel functions of the zero and first orders.

The multiplication of the individual member integrals by their respective
coefficients is indicated at the margin of the table of integrals. There are
five column of coefficients corresponding to the five polynomials in Equations
(2.267). It will be noted that not all of the coefficients of the last four

polynomials appear at the margin of the table of integrals. The reason for
this being that the products of the coefficients of the four polynomials

(having the parameters Q;, Qs Q3 Qy as factors) by the corresponding inte-
grels should not contain powers o% ¢ lower than the orQer of the subscript
of the respective Qp.

The integration is extended up to terms containing cos?E. Kalil neglects
in his derivations powers of e >2. In this analysis, only powers of e >3

¥ or if 1t is desired to neglect the oblateness of the atmosphere in which

case Ql =Q = Q3 = Qu =0
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ars neglected, except for the terms having Q, as factors (where powers of
e” ere not retained) and for terms having Q, Q3 Qy as factors (vhere only
the first power of e is retained).

Using this alternate integration procedure and the table of integrals s
the integrated solutions of Equation (2.267) will assume the following form,
once all terms having Ip end Il as a factor are collected.

2 | Rz R3
f cesst -
é_ﬁ,[g # :Io QO
o
27 -
a Cos
o
27 I
C CosE ! . 2
?:? e Code e _:_Ia_ = Ry (-, H30 €
A ' + 24,8+ 97)
2% 7
2 aos€ 2 : -
fe" oodeds == T (e F), [ et er)
&
FA/d
| reesé 4 2 3 2
z‘:r;/é’ cosElE :(l+%7_)10— T (+ S |Ya-Gadrmg &, | 3R
~E +d‘2)
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] C Cos
rﬂff

o

27
0 eoSE
] 4 tosede =
(]
2.
/ Clos&
{;ff Cosga’E
o
2r
_l_ ceosE
zrr/; COSE AE
o
zw'
A
o[t eosteale
)
27

—

S+ )nH(rat )t

(Hc—,.+ )

“oclede = ——(’* >

(If-”

+&8

2_ A i1reo
c6+3+—41o
+ (/+—+ %4 1’—‘3)1
C‘ !
18 345 2520
(/+ =t et et )Io
‘i )+ 2__4 _3_3_-0 1260
a c* c4+ CZ Il
3 675  Sodo
c‘ c‘)I
+ / 70 #4540

¢, 729
ot t

cé
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+ Thus, the general expression for the change in any single element assumes the

form,

)

O

whare,

_(4“’57).‘ 2TE€ {[& +—a +3 —a:+/5 7 a,
P

+ ms—j—: a4]ra o
a @3
+ E:+—- b,+3-z-:‘ b, +15 3 b,

+ 105 —Z{ b+] _Z;(C,) } (2.268)

o3 3olp
ot oty = F T

(2°<,e +x,)- % (3°(o€t+2‘¥l€+qz)

&%
Yo ~ T (4loet<L))

4 24
(éo(oe+w‘)~ Z"Q(o‘f" —E Céclof-f'c{')

/2 _ 24
Q(o - ? (8&{067"01,)1- ct 0(0

2%4.;_ Zalg & XNao

[id cr a3

Xz _
8ty
2 2 [ 2
«, #+ (3, +ax, €ty ) T XM etel )t E (3"("”2"‘.6*"‘1)
2 8
(4,6 +et)= T, + o (4t €4 )
8 & _ 2
020 - Z(éqoe+°<'§+ ot do o3 (é°{°€+q|3
8 7z #8
(Bt e+ey=— %otz (B4}~ 7 ol

384—
(8 o €+ ) (2.269)
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2.2.4.3.1 The o

L» Qs b, Coefficients for Qgec

= |

2 A
= e(i*%)
—_— .3
= JE€
= 0 (2.270)
/+
= 2 (- x -
Ba* (1-d) J =
2 2 Je’
l+e (j+5)- =
c
ze(j+1)—§ez(J"+4J'+—;’—)
;- & e (j+2)
o
. £ 48
2€(J+3)—z + ?zf(J'/'B)
24& 2% 3&% )
/ - ?eQ+4)+ - JCQ;‘-#-)
3
2J6+Je~—-(_/ b E)+ 2 e
l+€(J+4J+,_)—--—-e(JH)+ e(J+4J+—)
2 P (A .
e (j+2)-—+ — €( +2)
e Cc
& 9
/- e +3)+ — — —— € (,+3
c €3+ c? c? J*3)
199 +8 7¢8
ze(J+4)——8—-+ — (U r4)- ——+ -Z—-e(ﬂ-#)(? -271)
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R.2.4.3.2 The a , ay by Coefficients for Py,

L
hey are the same as for a

The constant factor for P 1s obtained as follows,
coNST 3 Pfcomsr 2
= =38a(/-d)
f=} a

2.2,4.3.3 The a, 2 b, Coefficients for e

a,

p’:

yo)

R
i

d4=

sec?

2 a

because

3, (4se
Zp(a)

P

ed ).
=2 (/-d)

sec

(/-d)? +e%d*

ez—d(/-d)(z +5d)

e® 52
5 (1+89%)
3

£
2

const= 2Bal/-€%)

e &t 3
-d E = (1+5d¥+ —
e(/-d)(/+3d) + 2 7 (/+5d )+2C3 e

a, = (1-d)+€%d - 2 € ()-d)(6+d)

oF

Qy

- € 11-0) - £l1-0) " e *d (2-0])

1l

24
(-)? + &% (3-2d) L ed(1-a) + Sz (1-0)" + %0 (3-24)]

d 12 2 12 LAV I }
< (1-0) - £ 1)+ €89 (430} G eati-o)= "5l re’d (4°5d)]
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2.2.4,3.4 The @, ap, b, Coefficients for Q

F 3 Fi
b = (- + Z(1- 707 —ZEC(/—d)(Zde) - S+ S s -y e’

é=eMWBM%§WﬂfHﬁﬂQ§emwﬁm)
b, =(/-d)*+ e*d(z- d)-——(/ d)+—[(/ ~9)¥re?d (2-4)]

- 94(/ 9)-E[0-a) e%d(3-29)] * % Z edlr-d)- % [(/vd) e*d(3-24)]

A
1

= {U+d)?re®d (4-30)] - 7 ed I-d) ,_[(, d)? re?d (4-3d)]

- 2% ed(/-0) » T3 [(1-9)7 vy (4-39))

O
I

sec

& = ~(/-d)(/-2e?)
a, = -Ze
eZ
X, = 2(/“0')‘?(/*30’)
a, =4ed »ef
a, = ~e*(/+3d)
cowsr = Belly gnlw
2nr y7-e¥
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1}

4,

2
(-0)+ S -134) - £(9d » €*) ~32 €2 (/2 30)

o, = ~2e [ 1+ (-l )-2e%)) - 3[201-d)-5 €7 (5-d)]

g, = -U-0)-282)+ & ell+2(1-9)(1-2¢*)]
a, = -2e[/+8(1-)1-2e%)] F2(1-d)()-2e?) - % e [/+301-d)/-2e2)]
a, = -(/-d)(I-2¢*) +§¢e [/+401-d)(/- 2¢7)] -gc"f(/-a’)(/-,?ez)

38 e[141/-d)1-267)]

b = -2e(/-2d)+ e"-f(/-d) +;C—-e’(/f3d) f§e(4dfez) fc%c‘(/+3d)
2
b = (1-d)-% (//fd/+ci’ e[/f(/~c/)(/—2ef)]fgiz[mw—gez(o—-d)]

b, =-Rel/+2(/-0)(1-2€%)] + § (1-d)(1-2¢%) - é—i el/+20-0)0-2e2)
by = ~-d))-2e%)+ 5 € (1230001 2e%] ~Zx ) (1-26%)+ 2%, e[ 1431 )(1-267)]
b, = ~2e/##(1-0)()- 26%)) +E(-d)(1-2€%) - %’;’ e[/+411-0)(r-2e%)

+ 35 a)-2e%) - Zr e 124 (1) (1-28%)

(2.277)
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2,2.4.3.5 The o, a , by Coefficients for i

sec

o =(/-d) + o0 2w x (Q, OF.Q,,C)
o =-gell-2d)+ coolw * (X, orﬁm)

a, = %2(/—/&/) v cpo 2w * (A, OFﬂm)

a, = e’ oo 20 *(, oF M1,,)
o, = 0 "‘00020*(0(4 OFI.Z‘“)
Badly atrt
CONST = —E’;/ﬁ (2.278)

e* e’ .
= /~d)* = (/-/3d) ~— * (a, or §)__) % (00 Za
V4 o

3 .
= 2ed +2—Ce‘?{/f3d) + (@, oF {1, )% (00 2w

2, = (/-d)-zae + (@, opfim) oo 2w

a, = 2e(2-d) - C(/-)" 8(,Zd)+(a30F,.(2 ) * o0 2w
24 384
Q, = (/- d)-—ge(ﬁ’ Zo/)* (/ d) - —% e(3-2d) +(a, ar.{Z )»coo,z.y

e? .
b = -2e()-2d) 1ed - S (1-13d)% L @3 (b or D, ) # er0 20
° 2 ¢ (] See

, = (/- a’)-——(/h?d)——ed 762(/r‘3d) +(4 aF.Q L) * a0 Zw

2 /6 .
b, = Zle -'c—(/-a’) fc—z e #(b gF_asx)’\‘szw

by = (/- a’)-——e(zd) +—2(/d)‘ S e (2-d) Hb oF 1, ) % cro 2w
b, = 2el3-24d) ~S(/-d) 7(3 -2d) - ‘f,(/-d)
758

+ ? e(3-2d) + (b, orF Ji“_c)* 000 Zew (2.279)
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2.2.4,3.6 The a,, a,, b, Coefficients for

sec
They are the same as for () sec because
(‘j.fic ST 0 L, (2.280)
2,2.h.4 Reduction of Kalil's Solution of a for Comparison

sec

Kalil's original solution for é‘sec is given in the following form,

a =- 2552”(/—4/)2*27;‘/% e“[B 1 *B1 *8, L, +B [+ ] +8.71] (2.281)

Sec

However, reduction of the higher orders of the modified Bessel functions to
the zero and first orders yields,

12
a. = -28a’//-d)z*27r/q, e'c{[@ + B, ‘ggj +(/*’i,iz{) 3‘/'2—(/*(%)@]{(6‘)

sec 8,,.6 72 384
4 [8,'5252 *(/*%)Bg e (/"_)34 w (14 v ?;)B,]J:(c)} (2.282)
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Cgee L 7,
B =/*e*(j %) / 0
B8 = ZJ'e-gzg'2+%)+g4+%ef(J 4 +5 7, o /
B, =236(j ,,)_3@ e’ +4J 2)+3 Qz / .g_
8, —6"2«5(J 25 % -4 (1+8,)
8, =30%e( f3)+/504 e?(] f/zJ*Z—)ﬂos"” (1+2) | -fur sy
B, = 2/0— el;*4) _/E»_?(,f/?é2 (1+ 72 334)

Thin,

2 - Q,
Lge = -28a%(/-0) *27/0/36 C{[/fczg Z,é) ’ Z‘_{ZC(J' +1)

3 22, 7. 39 8 .
Ce(‘j *4J*2—)}+ -—5{/-56(‘/*2)}*'

/5Q
s {26(,«3)"* 26 (j 13) * (14 ,)C(J 2) 3)}
/05@ 24 2« 38
*‘—C‘/—y{/‘—é‘ el 4‘)* - ‘——C(JH‘)}]]

62
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Xalil has a typographical error in the first term of the B, coefficient.

He has (69 /c ), while the correct form should be (6Qz/-2). This fact

is substantial by virtue by the argument that the power of ¢ should never

be lower than the order of the subscript of the respective Q, coefficients.
He also has an extraneous e? term as multiplier of Q3 in the B; coefficient,
#hich 1s odd since e2 terms do not have to appear even in connection with Q.
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2.3 THE EFFECT OF LUNI-SOLAR PERTURBATIONS ON THE ORBIT OF AN
EARTH SATELLITE

2.3.1 Basic Review of the Problem

2.3.1.1 Definition of the Disturbing Force

By the attraction of the disturbing force, both the earth and the satellite
obtain an acceleration in the direction of the disturbing body. Hence, the
specific disturbing force, acting on the artificial earth satellite, is equal
to the geometric difference (vector difference) of the direct disturbing
attraction acting on the satellite and the indirect disturbing attraction

by which the satellite would be acted upon if it were placed at the earth's
center,

The disturbing acceleration Q of the moon or sun is normally defined by*
r /
Q-—-Gzr{—— {——/—J
AR

where -1—', r.. are the geocentric position vectors of the satellite and the
disturbing = body, respectively, p is the distance from the disturbing body
to the satellite, G the universal gravitational constant, and mD the mass of
the disturbing body.

Defining by R and D to be the unit directions along the position vectors T

and r_, the vector Q can be written in a more convenient form for subsequent
resolution into components,

o-on {265 )

The parameter l/p3 will now be eliminated through the use of the law of

cosines,
2 '3/2
! ! r r
b= A ()
Ve r n r

(]

#*% The Symbol Q was also used to denote the perturbing potential of the
Earth
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where ¢ is the angle subtended by the unit vectors ﬁ and 5; that is, ﬁ . ]S =
cos @ . Binomial expansion of the function in the brackets, now yields the
relation in its most useable form

AN 3l z}
pr Gj[/3(’a)m¢ 2(’8) (/Jcmsf)

Substituting l/p3 from this expansion and setting K = 6,,,0/,-‘,3 )

r [ /*3({—)@04@ —{3.@0@—5( g)(/-xoozé)] Dg

D

Q -

where powers of (r/r_) higher than 1 are neglected. It is assumed that the
geocentric distance r of the satellite is never greater than approximately
1/190 of the earth-moon distance r (If greater distances are assumed,
additional terms must be considered).

The dlsturblng force Q will now_ be resolved in the directions R §, V_G';
whcr‘. R is a unit vector along r, S is a unit vector in the osculating plane
90° ahead from R, and W is the unit normal to the osculating plane of the
satellite. If (A, B, C) are the direction cosines _of the unit vector D (the
pointing of the disturbing body), rel ative to the N, M W orbital frame of the
satellite, and u* the argument of latitude of the satelhte, then

D <=NA +MB + WC
R=Ncoou” + Manu*

= -/UMA(**/Waooa*

G

Thus, the components of the disturbing force Q in the ﬁ, §, W directions
are,

R=-Kr [(/—3&,02;5) +% (i;—) m¢(3-5aoo2¢)J
D

M/ao AN
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3 = 3Kr [coo é-é(g)(/-é'coozsfﬂ (—Ama*+Bcooa*)

2]

I/ r
W = 3Kr [coo g - —(—)(/-5@02 95)] (C)
2\ ry

where

cod =4 oo u* + B g ™

2.3.1.2 The Effect of the Disturbing Force on Orbital Decay

.The magnitude of the effect of the disturbing body on the orbit of an artificial
earth satellite depends on the position of the disturbing body in its orbit. The
disturbing effect of the sun (or the moon) also depends on the orientation of

the satellite orbit and its nodal position with respect to the orbital plane of

the disturbing body. These effects on orbital precession of the satellite may
support of oppose the effects of each other or the earth's perturbative tendency,
Thus, the apsidal rotation, caused by luni-solar disturbing forces, is by far
more complex than in the case of perturbations caused by earth oblateness.
First of all, the perigee does not move uniformly; secondly, the apogee moves
differently and in a less pronounced manner.

Fortunately from the standpoint of most analyses for close Earth satellites,

the uncertainties in the coefficients of the earth's potential function overshadow
these perturbations, thus they can genera ly be neglected. However, these
effects become more and more significant with increasing distance of the
satellite's orbit from the earth's center. For highly eccentric satellite

orbits with apogee radius of about 1/10 of the Earth-moon distance, the affect
of luni-solar perturbations on nodal precession and apsidal rotation approaches
rapidly the order of magnitude of the effect of Earth oblateness.

The significance of luni-solar perturbations on the orbit of an artificial

Earth satellite was pointed out by Kozai after a detailed examination of the
orbit of Vanguard I. He found that the perigee height displayed a significant
periodic variation which could be attributed neither to atmospheric drag

effect nor to any of the harmonics of the Earth's gravitational field. Such
perturbations may become particularly significant when resonance occurs;
that is, when perigee moves in step with the sun and the moon., In such cases,
a progressive charige in perigee height may amount to the order of 1 NM per
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day over a period of several years. When resonance occurs, the eccentricity
is the most important orbital element, since any change in it affects the
perigee radius, which influences the satellite's lifetime. By expanding the
expression of the averaged rate of change of the ecdentricity over a revolution
and including all the perturbing influences in it, G. E. Cook has determined
the 15 possibilities for resonance to occur.

2.%, 2 Review of the Available Literature

2.32,2,1 General Comments on the Papers Reviewed

The effects of the disturbance of a third body on the orbit of an artificial
Earth satellite have been investigated recently in several papers. Most of
these papers, however, are subject to certain limitations or are applicable
to circular orbits only. Some authors (e.g., Spitzer, Reference 3, 1)

use the simplified lunar theory and, thereby, introduced the assumptions
inherent to such theory of small eccentricity and small inclination of the
satellite's orbit to the orbit of the disturbing body. Most authors, however,
use general perturbation techniques applicable to artificial satellites, without
liri:itations as to eccentricity and orbital inclination of the satellite. However,
some of these papers give explicit expressions only for the secular terms
[Kozai (Reference 3.2), Blitzer (Reference 3.3), Lorell (Reference 3. 4)]
wrile others fail to give general results [ Musen {Reference 3. 5), Upton
(Reference 3.6), Bailie and Musen (Reference 3.7)] and concern themselves
with the effects on particular satellites.

The greatest inconvenience of almost all the papers, from the point of view
of applicability and of combining the perturbation effects due to various dis-
turbing forces, lies in the choice of the reference plane which, in most cases,
is taken as the plane of the disturbing body [ Moe (Referencd 3. 8), Geyling
(Reference 3.9), Penzo {(Reference 3.10), etc.]. The inconvenience of such
a reference plane increases with the number of disturbing bodies, Since, in
each case, a different reference plane and consequently transformation of
variables must be used. Only a few of the papers use the inertial earth-
equatorial system as the reference frame and, among them, the paper of

iy

G. E. Cook (Reference 3, 11) deserves special attention,

As & rule, it appears that all the theories on the subject are of first order,
the assumption being that the ratio of the satellite's radial distance (r)
from the center of the earth to the earth-moon distance (rD) < 0.1, so that
ell terms greater than the first power in (r/r,) may be neglected in the
expansion of the disturbing function. A further simplification is introduced
by assuming that the disturbing body is fixed during one revolution of the
satellite, OSuch simplification makes possible the integration of the rates
of change of the osculating elements and is justified by the fact that the

Jnean metion of the satellite is by far greater than the mean motion of the

disturbing body. However, care must be taken to assure that the results are
accurate for satellite motions near resonance. For these cases (if not for
all), a time average position for the disturbing body should be employed.
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2.3.2,2 Methods and Techniques

The method most commonly used is an extension of the general perturbations
theory. The rates of change of the osculating elements are defined by
Lagrange's planetary equations in terms of the R, S, W components of the
disturbing force, and the respective changes per revolution caused by the
disturbing force are obtained in closed form by direct integration with
respect to the true anomaly. The great majority of the pepers assume that
the disturbing body is fixed during one revolution of the satellite and, then,
restrict the applicability of their methods to the case when the geocentric
orbital radius of the satellite £ 1/10 of the earth-moon distance.

A paper by A. V. Egorova (Reference 3.12), also based on the principles of
the general perturbations theory, uses a degree of sophistication which, by
all standards, appears to be guestionable and inefficient. This paper
expands the disturbing function in powers of eccentricity of the satellite
(this step is quite unreasonable for many applications due to the large values
of the eccentricity involved). The author then tires to avoid the
difficulty by performing the integration "by parts" with respect to the
eccentric anomaly and using the true anomaly of the disturbing body as

the variable of differentiation, For the sun, the integration by parts is
done ohly once; for the moon, the integration is done twice. In both cases,
the residual integrals are neglected.

A few authors, like Geyling, use the Hamiltonian approach and present the
effects of the luni-solar disturbing forces in terms of variations in the
satellite's position., The disturbing body in these analyses is not assumed
fixed during one revolution of the satellite, Rather, circular orbits are
considered for these bodies with respect to the Farth,

In all of the papers reviewed, with the exception of those by Cock and Kozai,
the luni-solar perturbations on the satellite orbit are evaluated with respect
to the orbital plane of the disturbing body as the plane of reference; that
is, the lunar orbit plane and the ecliptic. This approach constitutes a
great inconvenience since, for most of the cases of interest, the main

source of perturbation is due to the oblateness of the Earth. For these
cases, it would be necessary to determine the respective perturbations

caused by each disturbing body (sun, moon) over a revolution of the satellite,
resolve these perturbations individually into a common reference frame (the
inertial earth-equatorial frame), add the resultant perturbations, and

adjust the orbital elements before continuing the process for the next
revolution of the satellite,
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243:2:3 Interration Procedures

To rake possible the analytical integration of the rates of change of the
osculating elements, the disturbing body is assumed to be fixed during one
revolubion of the satellite and the time argument in Lagrange's definitions
of the rates of change is eliminated in favor of the true anomaly through the
relation,

F4

dl = = dy

M|

where h 1s the angular momentum per unit mass and 7 is the true anomaly.

The integration is perfomed with respect to n over one revolution of the
satellite. Normally, both secular and periodic terms are combined, but the
two types can be separated at the expense of a reasonable amount of algebraic
manipulations, if desired. However, some authors give explicit expressions
Tor the secular terms but fall to glve expressions for the periodic terms.

Tha solutions are generally of the first order. However, G. E. Cook does
nelude second-order terms for the argument of perigee. It is of interest
that the solutions are functions of the direction cosiness (A, B, C) of the
disturbing body pointing with respecttothe N, M, W orbital frame of the

satellite, where N is the node of the satellite's orbltal plane at the
refersnce plane,

2.3.2,t Critical Evaluation of the Papers Reviewed
2.3.2.4,1 The Method Based on General Perturbations

This theory is based on general perturbations principles and the integration
of Lagrange's planetary equations with respect to the true anomaly over a
revclution of the satellite. The perturbations in the osculating elements
are evaluated elther in the inertial earth~equatorisl freme of reference or
with respect to the orbital plane of the disturbing body.

3.2.4,1.1 The Work of G. E., Cook (Reference 3.11). Assumptions: The
c.ista;l:inT body is fixed during one revolution of the satellite; the ratio
(r;r3) of the geocentric radial distance of the satellite to that of the dis-
turbing body < l/lO.

Completeness: Complete first order theory with respect to (r/r of the
clsturbing function;y higher orderterms included only for the argument of perigee,
no sxplicit expressions are given for the secular perturbations; rather, they
are combined together with the periodic perturbations in the solutlons.

The chsnzes In the orbital elements are evaluated wit h respect to the inertial
earth~-equatorial frame of reference,.

Evaluation: The analysis is simple, easy to follow, and provides clear

geometrical interpretation of the problem, the solutions are concise and
meaningful., The greatest advantage of Cook's work lies in the choilce of the
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earth-equatorisl inertial system as the reference frame. The fact that he
does not separate the secular and periodic terms 1s not a serious disesdvantage,
since this can be easily accomplished. However, no real need for such separa-
tion seems to exist. It would not be a difficult problem even to extend the
analysis to include higher order terms for all of the osculating elements,
rather than for the argument of perigee only.

2.3.2.4.1.2 The Work of Y. Kozal (Reference 3.2). Assumptions: The geo-
centric radial distance of the satellite is very small as compared with that
of the moon (Kozal does not say how small; however, ratios less than l/lO
should satisfy this restriction). The first term of the disturbing function
may be neglected. The inclination of the orbital plane of the disturbing body
to the earth's equator is constant over a year.

Completeness: Incomplete first-order theory, since solutions for the secular
perturbations only are given. They are evaluated with respect to the earth-
equatorial frame of reference.

Evaluation: Analysis of this paper is hampered by the lack of definitions and
by the lengthy form of the disturbing function. However, evaluation is further
complicated by the fact that no indication is given as to whether the disturbing
body is or is not assumed fixed during one revolution of the satellite. Finally,
no reference is made as to how the arpument of latitude and the nodal longitude
of the disturbing body (the moon) are to be determined. (The inclination of

the lunar orbit to the earth's equator is defined in terms of the ilnclination
and the node relative to the ecliptilc and the obliquiby and is assumed constant
over a year. This assumption is not encountered in any other theory.) These
factors notwlithstanding, the greatest disadventage of Kozal's paper is its
incompleteness, since explicit solutions are presented for the secular rates

of change only.

2.3.2.4,1.3 The Work of J. Lorell (Reference 3.4). Assumptions: No
assumptions are specified in the paper. However, from a comparison of Iorell's
results with those for the secular changes reported in other papers, it was
deduced that the usual first-order theory assumptions were made; that is,

the disturbing body is fixed during one revolution of the satellite, and the
geocentric radius of the satellite r is much smaller than that of the dis-
turbing body.

Completeness: Incomplete first order theory. Only expressions for the
secular changes in the osculating elements are presented with respect to the
orbital plane of the disturbing body.

Evaluation: The paper lists only the secular rates of change in the osculating
elements., No derivations are presented. Neither the assumptlions nor the form
of the dilsturbing function are spelled out. The bulk of the paper 1s devoted
to the graphical description of orbit behavior. Thus, from the analytical
point of view, Lorell's paper is of little appeal.

2.3.2.4.1.4 The Work of M. Moe (Reference 3.8). Assumptions: The disturbing

body 1s fixed during one revolution of the satelllte; the geocentric radius
of the satellite is < 1/10 of the earth-moon distance.
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Complateness: Complete first-order theory. Solutions incorporating both
secular and periodic changes are given for all orbital elements, except the
mean ancmaly. The reference plane is the orbital plane of the disturbing body.

Evaluation: The analysis is simple and based on the geometrilcal interpretation
of the problem. An estimate of the error due to the neglect of higher order
terms in the expansion of the disturbing function is also presented. Both

the veriodiec and secular terms are combined together in the solutions. If it
were not for the Inconvenient cholce of the reference plane which is the
orbital plane of the disturbing body, Moe's paper would be most appropridte

fer englineering purposes.

2.3.2.4,1.5 The Work of P. Penzo (Reference 3.10). Assumptions: rp

(geocentric radius of the disturbing body) is much greater than r (the geocentric
radius of the satellite) and the disturbing body is fixed during the interval

of wvariation,

Completeness: A complete first-order theory presenting the combined secular
and periodic perturbations in all osculating elements, with the exception of
the mzan anomaly. These perturbations are first evaluated wlth respect to
the plane defined by the pointing of the satellite's perigee and that of the
disturbing body and, then they are transformed into the frame defined by the
orbital plane of the disturbing body, the X-axis being in the direction of
the satellite's ascending node.

Evaluation: The greatest disadvantage of Penzo's paper lies in the inconvenlent
and paculilsr frame of reference with respect to which the changes in the osculating
elements are evaluated. The transformation from this reference frame to that

of the orbital plane of the disturbing body and/or to the earth's equatorial

frame is very cumbersome. Further, the transformed solutions relative to

the former frame do not provide a clear geometrical interpretation.

2.3.2,4,2 The Method Based on Hemiltonian Canonical Equations

This theory 1s based on Hamilton's canonical equations and a time dependent
moving coordinate frame always centered at the satellite's positlion in unper-
turbed motion. The effeect of the disturbing force is presented in terms of
variations in the satellite's position In Cartesian coordinates of the moving
frame,

2.3.2,4,2,1 The Work of F. T. Geyling (Reference 3.9). Assumptions: Circular
motion of the satellite; the ratio (r/rD) of the geocentric radisl distance of
the satellite to that of the disturbing body is assumed small, but it 1s not
specified how small (again,a ratio of approximately 1/10 should suffice as an
upper limit).

Completeness: A first-order theory in Cartesian position coordinates &, m ,{
relative to the moving, time dependent, frame whose origin alwsys coincides

with the position of the satellite in unperturbed elliptic motion. €& points
radially outward and m is in the plane of the nominal orbit in the direction

of anomalistic motlon. Any perturbation in the path will result in satellite
displacements about the origin of this moving frame. The effect of the variation
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in { is to change the orlentation of the orbital plane. The effects of the
variations in & and n are restricted to changes in orbit shape and timing.
The disturbing body i1s not assumed fixed during one revolution of the

satellite; and, therefore, the disturbing functlon 1s time dependent. No
explicit expressions are given for the changes In the osculating elements.

Evaluation: Geyling's paper may be considered outstanding inasmuch as the dis-
turbing body is not considered fixed during one revolution of the satelllte.
However, the greatest disadvantage lies in the failure to present explicilt
expressions for the changes in the osculating elements. Even more serious is
the limitation which restricts spplication to circular orbits.

2¢3+.2.5 BSelectlion of Paper for Detalled Development

Based on a review of these papers, the following paper was selected for
detailed analytical development, G. E. Cook: "Luni-Solar Perturbations of the
Orbit of an Earth Satellite,” The CGeophysical Journal of the Royal Astronomical
Society, April 1962, Vol. 6, No. 3. This solution is the result of the
observation that the analysis is complete, rigorous and straightforward.

Further, the changes in the osculating elements are evaluated with respect to
the inertial earth-equatorial frame of reference making it possible to combine
these changes with those produced by other perturbation forces.

2.3.3 Analytical Development of G. E, Cook's Approach

2.3.3.1 The Disturbing Force Due to a Third Body

Let T and.;D be the geocentrice pgsition vectors of the satellite and the dis=-
turbing body, respectively, and P the position vector of the satellite with
respect to the disturbing body, so that,

5= F - (3.1)

[ 24

Also, let Rg and Ry define the positions of the satellite and the earth with
respect to the center of masses O (see Figure 2), 50 that,

F=R -, (3.2)
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Figure 2. Geometry of the Three-Body Problem

The satellite 1s attracted by the disturbing body of mass mp and by the
earth of mass mp. The differential equation of the satellite, including
these two forces can be written as,

7, ;QS = -Gw,m, —,~Gw, 7 - (3.3)

where m. 1is the mass of the satellite and G is the universal gravitational

constant. Similarly, the earth is attracted by the disturbing body and the
satellite, and the differential equation of the earth, including these two

forces, is of the form,

ig F

P *Gm M S (3.14)

m R =Gm, 7,
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Thus, subtracting (3.4) from (3.3), and differentiating (3.2), yields,

E 7 r .
ForGlmgtm) 5 =-(;mo(/§l*;;,) (3.5)

Denoting the right hand side of this equation as

- /5 F,
Q=-Gm, (;3 ’ TE) (3.6)

and replacing P by relation (3.1), yields,

o -oml 543 ) eml BBl 0

o]

where R and D are unit vectors in +the directions of T and _r'D, respectively.
Now, from the law of cosines,

2
r r
,oz= roz“r/’z-Zr‘rD 000§=/‘§ [/*’(—) —Z(—r) caogﬁ}

whence,

2

L Al AL oD od] = ol ) cmt 2 (sl

=] D
Thus, substituting (3.8) in (3.7) and neglecting powers of (r/rD) > 1, ylelds

T O e UL

o =]

where,

(3.10)
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3rd @ is the angle subtended by the vectors T and rp or R and D.

In order to determine cos @ and the components of the disturbing force Q in

the R, 8, W directions (which will be defined later), the following preliminary
derivations are required: Let ND, MD, WD be the unit pointings of the orbital
frame of the disturbing body; Np being the node of the orbit of the disturbing
body at the earth's equator,

AN, = {cooQd, +janil, + k(O)
My =L Co0l g 2, * J o0 {y 0042, + kaen ¢y, (3.11)

i by aer L2, -J'Mz'o eso L), + L esoc,

N
|

where 1, Jds kX represent the unit vectors of the earth-equatorial inertial
frame; 1 pointing to the vernal equinox and k aligned with the earth's spin
axis. (ip , 2p) are the orientation elements of the orbital plane of the dis-
turbing body relative to the earth's equator.

From the ephemeris, the geocentric position and velocity vectors ;D: ;D

of the disburbing body sre obtained, from which the pointing of the unit normal
Wp is determined,

=X, PV P K2, (3.12)

3V (s
oll-OI

W, =

o' gy
x | X

Comperison of the respective components of Wy in (3.11) and (3.12) yields,
coo iy =2,

S Rt

* o T e (3.13)
Yoo

co0 12, Tl
O

Since the geocentric vector ;D determines the right ascension «&p and
declinatlion &p of the disturbing body, the argument of latitude ¢, can be

calculated as follows:
o0 U, = 20 8, Co0 (a,-0,)

MJD
ML'D

i Uy = (3.1!;)
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Now the unit direction D of the disturbing body can be defined in the NipWp

frame,

D = A, 200 &y + My a iy + W(O) (3.15)

Substitution of the definitions of W, and Mp from (3.11) into (3.15) yields,

D= ((coou, cpodd, - o0 iy awm i, aiw 2)
_ (3.16)

ty(eoo Uy avw D) * €006, aww Uy o0 M) F Ko &) aie i,

Let N, M, W be the orbital frame of the satellite; N is the respective node
at the earth's eguator,

[ Co08) + [ain 2 + F(0)

N

- - _ (3.17)
M= =icooiaendld +jco0icool) + Katw

ZMZMAQ—‘/—'_MA'CN.QfZMZ

Xl
!

The unit pointing D of the disturbing body (as defined by Equation 3.16) is
now transformed to the orbital frame N, M, W of the satellite, by forming the

dot products of D, by N, M, W, respectively.
D =/t7[coo Uy C00 (L) -0 )+ oo, MUDM(Q-JZO)}
*A?[cooé{—woao i ({2 ~L0) + 00 ¢y dim 2, co0(D -0, )}
*ath i (i by ain 4, ) (3.168)
+_M7[4a'd L’{coo Uy, s (2-0 ) - coo iy i u, oo (ﬂ-ﬂo)}
* o0l (aim L, W”D)J
= N4+ MB » WC

Now the ﬁ, §, W directions can be defined in the ﬁ, ﬁ, W orbital Trame of
the satellite,
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B = Mewo ® + Main u*
S = Naiwu* +Meso u* (3.19)
W= W

where uv¥* is the argument of latitude of the satellite. Finally, the direction
cosines of the unit vector D, as defined by (3.18) with respect to the R, S, W
poinbirgs given by (3.19), are

coo$ =D R =4coou*+ Buswu™
DS =-Aaw i+ 8 eoo u* (3.20)
Dw-=c
The components of the disturbing force O, vhich is defined by Equation (3.9),
in the R, S, W directions can now be obtained by forming the dot products of

Q and B, 8, W and then making use of relations (3.20). Iet R, S, W be the
corponents of Q in the directions of R, 5, W, then,

=G-8 - -kr[u-s’wzsﬂw g( i)m df(&d'coozsﬁ)]

Z
--/<’{/~£(A’ %)- n 2d-314%-B" )
= =kry 1= G (A4 BY) - 3AB . 24 - F(A*-B7) 0 2 u (3.21)
3

+—§( 7:—) (A oo U's Baiw a*){&é’(/] mu*fBMlljz}}
D

s =S = 3/<r[cao¢-z( )(/ me)](z) S)

rD
) (3.22)
- 3/«{/:3 cooz"utg (A2-B2)ain 2 u*
/! fr ¥ # ¥ oz
+E — (AMa—Bcooa)[/»J‘/Aaowgma)
i

2}
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WG =skrfend g (T)(-sese)] (5-7) (3.23)

=3kCr

/
(AcoouiBMa*) —2-/( )[/-J(A mi*BM&f)zJ(

n
%

Hence, the vector Q assumes the following form in the ﬁ, S, W, frame of
reference.

Q= 3kr BMZA(*—(AZB)MOZA(*Z(AZ*BZPE]Q

¥

W48 coo 20" +(47-57) sin 288 +C(A o '+ Bin )W

(3.24)
i r ¥ - » »2) =
A (A coo 't Buain ') [3-5 (A con o+ Bain &) | B
n

* (A i &'~ B to0 D1-5 (A coo i + 8000 75

-C[/‘J(Acaoa*fBMa*)z]W
Note that the first paft of E represents first order effects; the second part
represents second order effects. Also note that, by Eq. (3.18),

A = cto U, coo(2-12) +Co0ipy .ttty 2 (()-12,)

I

B

1

coo;[-ma,,mw-aohmzom% m(ﬂ-ﬂo)} (3.25)
tan (o by e )

C = aiie 2[00 iy ainl2 )~ 00 iy 2050 sy 00 (2-0)]

t ool (aere iy aen L))

A, B, C, are the directlon cosines of the pointing of the disturbing body
(unit vector D) with respect to the geocentrie N, M, W, orbital frame of the
satellite, where N 1s the node of the satellite's orbital plane at the earth's
equator. In the definitions of A, B, C, the non-subscripted elements i and ()
pertain to the satellite and the ones with subseript "D" pertain to the orbit
of the disturbing body. All the orbital elements of both the satellite and
the disturbing body are defined with respect to the i, j, k, geocentric
(inertial) earth-equatorial frame.

2¢3¢3.2 TLagrange's Planetary Equations
Lagrange's planetary equations express the rate of change of the osculating

elements in terms of the components of the perturbing force R, S, W R is the
component in the direction of the geocentric radius vector of the satellite,
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5 1s at right angle to R in the osculating plane, and W is nommal to the
osculating plane,

The Lagrange equations are:

Z
:7“ - 27{? ledinpRs(/recnrp)s]
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(3.26)

where h is the angular momentum per unit mass ; 1 is the mean mobtion, u* the
argument of latitude, and 7 is the true anomaly of the satellite.
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2.3.3.3 Integration of the Time Rates of the Osculating Elements

Cook's theory is a simplified first order theory which neglects (except in the
calculations of the change in the argument of perigee) the second part of the
disturbing function Q@ (as defined by Equation 3.2L4), which has (r/rp) as a
factor. Further, it is assumed that the angular veloclties (mean motions) of
the sun and moon are small enough, as compared to the angular velocity of the
satellite, to consider the disturbing body (sun and moon) to be fixed

during one revolution of the satellite. This implies r & rp. In fact, the
theory is limited to satellites for which r/rD < l/lO; that is, the radial
distance of the satellite from the earth's center should not exceed one=-tenth
of the moon's distance from the earth. The simplifylng assumption, that the
disturbing body 1s fixed durlng one revolution of the satellite, makes possible
the integration of the instanteneous rates of change of the orbital elements
over one revolution of the satellite to obtain the respectlve changes per
revolution.

The error incurred by neglecting the higher order part of the disturbing function
Q (Equation 3.24k) is of the order (r/rp)3/2. Since (r/rp) < 0.1, the error

is less than 3 percent. The error incurred by assuming that the body i1s

fixed for one satellite period can be largely eliminated by placing the

body at the time average position for the interval in question.

As a first step in the solution, the time argument in Legrange's equations
is replaced by the true anomaly through the relation,

¢ (3.27)

2/ 97  dw . d1l
= r F — + PO
Z? (cU dat
vhence,

z
ol
dt_ % (3.28)
9 1-52( 92 v cooi 42
TG o
However, since the main changes in w and R are those due to the earth's

gravitational field, and these changes are proportional to J (second harmonic),
the retaining of (dwfdt + cos 1 di/dt) in Equation (3.28) would result in

coupling with the effects of the gravitational field of the disturbing body,
and such coupling effects are not considered in this first order theory.
Hence, within the range of accuracy of Cook's theory, it will be valid to set,

dat = —{—d/

In the ensulng integration process, the integrals of the following functions
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are needed,
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2.2.3.3.1 The Change in the Semi-Mzjor Axis
Za* ;}[Eemffs(/wmf)]d/
bka* 3
22 " [ABMZ&/““(A Bz)wfw]emfm,zy (3.31)
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By reletions (3.30),

2r

/e wo/(/+eeoof}'3d/ +[caozf(/fecao/)“’d/ =0
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Therefore,

Aa =0 (3.32)

2.3.3.3.2 The Change in Eccentricity

I

de = » ”M[wa +S(ewp + f:——w;)}df

%Z {{AB@OZw“(AZB)MZw]MfMZf 7[ (A-BZ)]

A8 coo 2co - 5 (4*-B%) ain 2|0y oo 2 p (3.33)
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*(/*ecoof) (23”7 ijffewozyﬂdf

By relations (3.30), the value of this integral is:

27[-%63(/*2{62)]“'2 W[-ge (/—c’)_%}

/5w ke /1-e* 3.34
te < KL 4o 200 - § (478 in 20 (3-39
2.3.3.3.3 The Change in Inclination
di = ;,— W coou¥dp = “ﬁgf [Awoa**é?w”*]m“*df
3kC
=i [A+(A coo 2u* + B.anlu )]df (3.35)
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By relations (3.30),
2 s /
- jo5 -
[ (/+ecm7) 9y = 2w (/+e?* ge¥) ~2n(/+ ziez)(/_ez) “
fz(/femf)-éoo,?fo’/ =27 gez(/ffcz) ~2r gez(/-e‘)- *
[o]

Tharefore,

. 3w kKC R ,
Sy ["(2*3ei+fe (4 eo0 20 + B.ain zm] (3.36)

2.3.3.3.4 The Change in Nodal Longitude

- rs Aa'zzld 3&C ]
anR =T W T = * 2 10 *| e e *
Y sl e instop
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Using relations (3.30) one obtains,
3
402 = 7L : _[5/2f3e2)f5c2{,4mzw-5mzw)] (3.38)
2n2/-C% gquni
2.2.2.3.5 The Change in Argument of Perigee
F4
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By reletions (3.30),

The first integral =-(Zr)ge(/fzé-ez)~ -(2») ge (/_cz) %

The second integral =-/2») gé’ (/*%s‘)*v—(g;,) gC(/-e’)'%

Therefore

daw *coo (A1 = AB.ain 2w *é(/lz‘gz)coo,&u

[ gref o(£)]

The second-order terms of the disturbing function 5 become significant for
the argument of perigee, especially for moderately small eccentricities.

Ik J-et
z* J[ ] (3.40)

O[( ] e = ;‘iff(—;‘f)(A cr0 o + Bain @) [1-F (4%48%)] (3.01)
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2.3.3.2.6. The Change in Mean Anomaly

IM = 2t = - /f?[%@d/*{ﬂw re0i 40))

-89y (3.42)
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By relations (3.30),
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The second integral =(2»)(/+S5e?+ %Jef)~(2p}(/—c 1}{4 (27,)(”"2—’—32)(/_@2)-%

fz,gz/? - 37,(/-3[

ABain 200+ 3 (A*B) co0 Zw] (/0e?
(3.43)

Nl P s
3[/ zmz*gz)](’*zez)f

Herca, upon jntroducing the value of ( Aw + cos i AQ) from (3.40) and (3.41)
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2.3.3.3.7 The Change in Perigee Radius

The change in perigee radius, Ar, , is obtained from the already established
fact that Aa = 0, and the relation,

//'o=a{/-e)

from which, it follows that,

ar, =-ade (3.45)

By inspection of the expression for Ae, as given by Eq. (3.34), and the 8
component of the disturbing acceleration, as given by Eq. (3.243, it is
observed that Ar,,7 can be expressed in an alternate form as a function of the
S-component evaluated at perigee,

So = 9K [AB eso 2w F (4782 diw 2.0 (3.46)

Hence, by (3.45), (3.34), and (3.46), one has that

Sre /a — Jre
4, = m[T)W'e‘Sp S N i) (3:47)
P ¥ 4 /-e
Since Aa = 0, the mean motion, n  and the period P do not change to the

accuracy of this simplified first order theory.
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2.4 THE EFFECT CF SOLAR RADIATION PRESSURE ON THE ORBIT OF AN FARTH SATELLITE

2.4.1 Basic Review of the Problem

2.4. 1.1 Definition of the Perturbing Force

The mechanical action of solar radiation pressure on reflective and absorbing
bodies can be interpreted on the basis of either the electromagnetic or
quartum theory. According to the Quantum theory, solar radiation can

be interpreted as a flux of photons; each photon has an energy h¥ and a
momenturmn —- where h is Planck's constant, ¥ is the frequency and c is the
speed of ligh%. If N is the number of photons which fall on a unit surface
normal tq the sun's ray in a unit time, and S is the corresponding energy,
then N = _V_ » and the momentum imparted by the photons to a unit surface

c

in units of[ MASS s/provided the surface absorbs all of the photons.
LENGTH x(TimE)*

F=N(@) =(_£ -5
o R ¢

If the surface partially reflects the incident radiation, then the reflected
photons which carry momentum inghe opposite sense will impart to the
surface an additional momentum n— , where ¢ is the reflection coefficient
which depends on the reflection prgperties of the surface and which may vary
between 0 (absolute black body and 1 (specular surface). Hence, the total
radiation pressure on a ungt surface (normal to the incident ray) per unit
time, when ¢ # 0, will be = (1 + a). In general, when the ray falls under an
incident angle ¥ to the surface, the radiation pressure F is,

F=5 |rrec| cos®a [_amss
¢ LENGTH »(TIMEF

Let S be the power of solar radiation on a unit of the earth's surface per
unit t?me, called the solar constant, and d the mean distance earth-sun.
If d is the distance of the satellite from thg sun, the corresponding solar
constant S at this distance will be given by,

S = 5,,(_d.92
d

Upon substitution of this expression for S, one has that,
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,r=5 /+oc) 926’055' _MASS
re JENGTH *(TIME)

The acceleration experienced by a body, of mass m and effective cross-
sectional area A, under the influence of solar radiation pressure is

determined as follows,

= - 2 2 v
) R G

A
The ratio — is constant for a spherical sgtelhte,
For 4 non- spherical satellite, both ™ and Y vary with the orientations

o: the sun and of the satellite,

In vector notation, the perturbing acceleration F can be defined as,

F ==F D

where Dis a unit vector in the direction earth-sun, given by,

L w5/1 + J OSESINAL + K SIVN € SIN Np
A (eos®e +sm e> 00SAp +J <ooszs - S E>5/N/\D
Zz z

+ K SINESINAp

Y5

)t

1}

is the true celestial longitude of the sun and € is the obliquity.

AD
The pointings in the inertial earth-equatorial frame of perigee P, the
direction Q normal to P and the unit normal Ware defined as follows,

P = L (cosweos 0 - eosL SINW SIN D) +J (@050 SINN
=4 cas‘?i' ms(w+n)+5//v2_é s (wW- N

2 2
* 2 - 2. .
+J [ws L sw(w+n)-sw 42 sww-1) ]»r KSWA SIN

+ COSL SINWC0S D)+ K SINA SIN W
)]
2 2
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@ = L (-SINW QSN ~ (05 L (IS SINN) +J (SINW SINL + 6054 005 CO5.1.)
* K SINA (05 &)

= A [— s °L sin(w+n) -SiN 2£5/N(w*ﬂ)]
2 P

+J l}ms ‘2 oS (wW+) -S/NZ_/(; ws (W-1) J +KSINL 005 W
2

™

W= A SINASINA -JSINA (0S L+ K0S L

The direction cosines A%, B, C* of D {earth-sun pointing) in the _15, 5, W
frame are obtained by dot products which, after some algebraic manipulation,
yield,

2 2 g 2
A= WS L cos * 0s(N -0 -w) +c05’{/,_5/Nim5(AD+,Q+w)

P z  z
2 - 2
+ 5w 4 oosPe cos(Pp-nsw)+SINL swie ws(p+ 0 -w)

£
2

2 2 2

2
+ /1 SINL SINE [ms(/lo -w) -005(/:0+w)]
2

8=

8

2. 2
SIN(Ap -N-02)-00S 'L SIN E SIN(Ap+ 0 +w)

2: 2
L WS E
2 2 2 2
2 2

2. 2
- SN L WS“E SIN(Ap -D1+WI+SIN'L SIN € SIN(Np+n -w)
2 2 2

2
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2
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+ COS L SINE SINAp

Hence, the unit vector D will have the following form in the f’, (3, V—V
frame

and the perturbing vector acceleration 7 in the same frame will have the
following definition,

F i<F D = -F(PAL+Y B +WC?)

Now, let R be a unit vector in the direction of the geocentric position

vector of the satellite, and S a unit vector normal to R in the osculating
plane., Then, in the P Q, Wframe, R and S are defined in terms of the true
anomaly 1 as,

R=Faosn+Q SN
5 =—,55//v77 +5tas7/

Finally, the components of the perturbing acceleration ; in the direction
of R, S, W can be determined as,

2
W

e R = —J(A‘5'057/+ 5*5//\/77)

)
i

W
L
U
]

—ﬁ(-A";/A/7 + &* S 7 )

= ~F0"

3
Wi
3
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2.4,1,2 The Effect of the Perturbing Force on Crbit Decay

An earth satellite is, among other things, subjected to both the gravitational
force of the sun and to the solar radiation pressure force. These two forces
act in preceisely opposite directions. Since the earth experiences nearly
the same solar gravitational acceleration as does the satellite, the net
effact of the geocentric force, due to solar gravitation during one
revolution of the satellite, is very small whereas, in the case of radiation
pressure effect, the resultant acceleration of the satellite is considerably
higher than the corresponding acceleration of the earth and is strongly
dependent on the area-to-mass ratio of the satellite, Therefore, the
radiation pressure effect has to be taken into account.

The effect of soclar radiation pressure becomes significant at orbital
gltitudes above 500 NM, and is particularly emphasized for balloon-type
satellites for which the area~to-mass ratio is large. There is a marked
difference between the solar radiation pressure force and the solar
gravitational force in that the former becomes a discontinuous function of
time when the satellite enters the earth's shadow, If the satellite is
contimuously in sunlight, the force is continuous. In this case, the short-
pericedic perturbation effects could be neglected., However, there is the
possibility that such effects will be cumulative. Therefore, the short-
pericdic terms must be retained in the solutions. There are, however, no
secular orbital variations due to direct solar radiation pressure though the
amplitudes of some long period variations may become significantly large

and may represent the principal contribution to orbit decay. Finally, it

is noted that all elements, except the semi-major axis, contain long period
terms,

While the effect of solar radiation pressure on ordinary satellite is very
small, it may produce significant changes in the perigee height of satellites
with high area-to-mass ratios, For certain resonant conditions, this effect
accurulates monotonically and drastieally affects the satellitel!s lifetime.
(The change in perigee height, due to the influence of solar radation pressure
was vp 3.7 miles per day for the 100 foot Echo balloon, and up to 0.7 miles
per day for the 12 foot Beacon satellite). In general, during a complete
orbital period, solar radiation pressure causes a first order perturbation

of all six orbital elements, However, when the entire orbit is in sunlight,
solar radiation pressure has no effects on the semi-major axis or on the orbital
period. When the orbit is not entirely in sunlight, the semi-major axis, as
well, is affected by short period variations, therefore, this element is

not subject to significant perturbations.

For certain combinations of orbital altitudes and inclinations, the effect
of solar radiation pressure builds up monotonically, seriously affecting

th2 orbit lifetime, There are in all 15 possibilities when resonance may
take place, However, most interesting resonance occurs when the perigee

of the satellite moves in step with the sun, In this case, oblateness

keaps approximately constant the angle between the perigee pointing and

the projection of the earth-sun line onto the orbital plane is approximately
constant due to the earth's oblateness.
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Hence, solar radiation pressure can increase or decrease the eccentricity
monotonically, The critical argument for this type of resonance, in the
terminology of celestial mechanics, is (R + w - A ); A is the celestial
longitude of the earth-sun line, ( A_ - Q) is the sun's fongitude with respect
to the line of nodes, and wis the perigee longitude with respect to the same
line. The condition for this resonance is: (Q + w - A } = 0, When resonance
occurs, the eccentricity is the most important orbital element, since any
change in it affects the perigee radius which, in turn, influences the satellite's
lifetime.

It is interesting that a circular orbit {in a first order theory) remains
circular under the influence of the gravitational attraction of a third body,
but tends to become ecliptic under the influence of solar radiation pressure.
This can be explained by the fact that the gravitational attraction of the sun
acts on both the earth and the satellite but, due to the small area-to-mass
ratio of the earth, solar radiation pressure affects only the satellite signi-
ficantly.

2.4.2 Review of the Available Literature

2.4.2.1 General Comments on the Papers Reviewed

The literature on the effect of solar radiation pressure on the orbit of an
earth satellite is very limited because, until recently, it was considered

that this effect was negligibly small as compared to the influence of earth
oblateness and the effects of luni-solar gravitation. The few available papers
to date were prompted by the need of explaining the discrepancies between
theory and observations of satellites with high area-to-mass ratios, Papers
on the subject were written by Musen (Reference 4, 1), Musen-Bryant-

Bailie (Reference 4. 2), Parkinson-Jones-Shapiro (Reference 4. 3), Cook
(Reference 4. 4), Kozai (Reference 4.5), Wyatt (Reference 4. 6), and Geyling
(Reference 4. 7).

The work by Musen appears to excell that of the others in that it includes
resonance for the case when the perigee moves in step with the sun,
However, he neglects the effect of the earth's shadow. The work by
Parkinson and associates is limited to the discussion of nearly circular
orbits, the amplitude of the perigee height oscillation for a special case of
resonance and, in particular, to the displacement of the geometric center
of such orbits, Parkinson, however, includes the effect of the earth's
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shadow. Cook's paper presents an analytical technique for the evaluation
of the perturbations in the osculating elements, but does not indulge in a
discussion or an assessment of the physical and geometrical aspects of
the problem., This is true also of the work by Kozai. Both Cook and
Kozai consider the effect of the earth's shadow. Wyatt restricts himself
to the investigation of the solar radiation pressure effects on the short-
term secular variations in the orbital period. Geyling's treatment of the
problem is based on Hamiltonian mechanics and the variations in satellite
position referred to a time dependent moving frame whose origin always
coincides with the satellite's position in unperturbed motion. The treat-
ment, which is very involved, does not provide a clear geometrical
interpretation of the problem. Also, Geyling investigates only the special
case of circular orbits.

The theories expounded in all of the papers are of the first order. Some
authors (Musen-Bryant-Bailie) neglect the effect of the earth's shadow.

They justify this by the fact that the earth's shadow causes changes in
perturbation amplitude, without altering the nature of the perturbation, It
is unfortunate that most authors do not specify clearly what assumptions
thev have made in regard to factors such as: the nature of the perturbing
function, re-radiation from the earth, whether the radiation is totally
absorbed or partially reflected, and whether the radiation flux is assumed to
be constant at all times.

2.4, 2.2 Methods and Techniques

Muser .derives the expressions for the rates of change in the osculating
elements, caused by solar radiation pressure, by the method of variation

of vector elements. He introduces the vector element (e P), where P

is the perigee pointing, to determine the perturbations within the orbital
plane. Cook and Kozail use Lagrange's planetary equations, which define
the tirme rates of change in the osculating elements in terms of the com-
ponents of the disturbing acceleration. The same method is used by Wyatt
to define the tirmne rate of the semi~major axis, disregarding the rates

of the remaining elements, as his paper is limited to the investigation of
the short term secular variations in the orbital period only. Geyling uses
the Hamiltonian approach to dynamic problems, a time dependent dis-
turbing function and a time dependent moving coordinate frame centered at
the satellite's position in unperturbed motion. Only variations in satellite
position witn respect to this moving frame are considered. Parkinson's
paper is not based on any method in particular, as it is concerned only
with the displacement of the geometric center of nearly circular orbits and
the amplitude of the perigee height oscillation.
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2,4.2.3 Integration Procedures

Musen eliminates the true anomaly, on the right hand sides of tne expressions
defining the time rates of the osculating elements, by expanding the dyadic
products of the vector elements variations in Fourier series with respect

to the true anomaly and retaining only the constant terms in this development.
Since he neglects the effect of the earth's shadow, the rates of change of

the osculating elements are integrated directly with respect to time over a
complete revolution of the stellite, provided that there are not sharp
resonance conditions. Parkinson integrates the time rate of the displace-
ment of the geometric center of nearly circular orbits with respect to time.
He is not otherwise concerned with the changes in the osculating elements,
Cook and Wyatt eliminate the time argument in favor of the true anomaly n
and integrate between the limits 1, and n,; 1, is the value of the true
anomaly where the satellite leaves the earth's shadow and 1, where it enters
the shadow. Cook does not present, however, a technique for the determina-
tion of these limits., Wyatt developed an approximating tecnnique for

their determination, Kozai performs the integration with respect to the
eccentric anomaly E between the limits E. and E_, and recommends
numerical methods for the determination of these limits.

2.4.2.4 Critical Evaluation of the Papers Reviewed
2.4.2.4.1 The Method Based on General Perturbations

The tneory is based on the principals of general perturbations and the
integration of Lagrange's planetary equations with respect to either the
eccentric or the true anomaly.
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2.4.2.4.1.1 The Work of Y. Kozai (Reference 4.5)

Assumptions: The parallax of the sun is negligible; the solar flux is
constant along the satellite's orbit if there is no shadow; re-radiation
from the surface of the earth can be neglected.

Completeness: Complete first order theory with the effect of the earth's
snadow included. Expressions for all six orbital elements are presented.
Botk short period and long period terms are combined in the solutions.
The reference frame is the inertial earth-equatorial system,

Evaluation: Kozai presents equations without derivations. The nature of
the perturbing function is not discussed and many factors inherent to it
remain unexplained. There is no comment as to whether the radiation
pressure acceleration is constant at all times or varies with the orientation
of the satellite with respect to the solar pointing, The solar flux is assumed
constant along the orbit if there is no shadow, but it is not specified whether
the radiation is totally absorbed by the satellite or either wholly or
partially reflected. All these factors should be clearly defined, and the
perturbing function should include them as parameters in order to make the
analysis complete and meaningful.

2.4.2.4,1.2 The Work of G, E. Cook (Reference 4. 4)

Assumptions: The force produced on the satellite by solar radiation pres-
sure is independent of its distance from the sun; the magnitude of the force,
while the satellite is in sunlight, is constant for spherical satellites,
whereas for non-spherical satellites a suitable average value may be used.

Completeness: A complete first order theory, including the effects of
the earth's shadow. Solutions are given for all orbital elements with the
exception of the mean anomaly. They include both short period and long
period terms. No technique is presented for the evaluation of the limits
of integration,

Evaluation: The approach is an extension of the analysis on luni-solar
perturbations. The integration is performed in terms of the true anomaly,
but the limits are left undetermined. There is no discussion of the problem
or an assessment of the solutions. Cook does not indluge in any discussion
about the nature of the perturbing force either; only a few assumptions to
this effect are made.
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2.4.2.4.1.3 The Work of S. P. Wyatt (Reference 4. 6)

Assumptions: The radial acceleration of the perturbing force is

f @ A.)/(m R4c)

where L. is the total power output of the sun, r =la.u., ¢ is the speed
of light, 9A the average cross—sectio_nal area of &e satellite, and m is its
mass; the orientation of the vector f is fixed relative to the satellite's
orbit during one revolution; the magnitude of f is approximately constant;
re-radiation from the earth's surface may be neglected.

Completeness: Incomplete first order theory, as only short term secular
variations in the orbital period are considered. The effect of the earth's
shadow is included.

Evaluation: The analysis is incomplete and restricted in scope. The
frame of reference is the orbital plane of the satellite with the X-axis

in the direction of the intersection of the reference plane with a perpendicu-
lar plane which contains the sun. Special cases of orbital orientation and
shape are discussed. A quasi-general solution for the limits of integration
is derived, by expanding the determining equation in powers of eccentricity,
which is inefficient because of slow convergence. It appears that Wyatt's
paper is primarily concerned with the interference of the nature of the
atmosphere,.

2.4,2.4.1.4 The Work of P, Musen (Reference 4. 1)

Assumptions: The perturbing force for non-spherical satellites is not
constant; the effect of the earth's shadow may be neglected.

Completeness: A complete first order theory in the long periodic terms
only, since the affect of the earth's shadow is not considered. The effect
of a special case of resonance, when the perigee moves in step with the
sun, is investigated in detail.

Evaluation: The analysis and development of equations are based on vector
elements variations. The equations for the scalar osculating elements are
deduced from the equations for the vectorial elements. The basic vector
equation is

GM d(eP) = [y F
at
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where P is a unit vector in the perigee direction, E the vector acceleration
of the satellite under the influence of the radiation pressure and I'is

Herrick's function F- o2 [?_][\7] _ [\_/] [Y—'] —-(I—'-"V )I , Where

r, v are the position and velocity vestors, and I is the planar unit matrix.
The long period part in T'is separated from the short periodic one by
expansion into Fourier series and retaining only the constant terms in the
development. Since the effect of the earth's shadow is neglected, the
theory, although very interesting, is not sufficiently rigorous for practical
applications.

Z.4.2.5 Selection of Paper for Detailed Development

From the critical review of the available papers on the subject of the
perturbative effects of solar radiation pressure on the orbit of an earth
satellite, it was concluded that the paper by Y. Kozai, "Effects of Solar
Radiation Pressure on the Motion of an Artificial Satellite, ' Smithsonian
Institute Special Report No. 56, January 30, 1961, is the best for analytical
development for the following reasons:

1. 1t presents a complete first order theory.
The analysis is rigorous and includes the effects of the earth's
shadow.

3. The techniques used are simple and straightforward,

4. It suggests a2 method for the determination of the shadow boundaries,

R}

. 4.3 Analytical Development of ¥, Kozai's Approach

(A%}

.4.3.1 The Perturbing Acceleration

The perturbing acceleration due to solar radiation pressure acts in the
opposite direction of the earth-sun pointing. ** Denoting the perturbing
acceleration vector by 4, its magnitude by #, and the unit vector in the
earth-sun direction by D, it follows that,

_ - LENGTH
F=-FD 7

¥ Actually satellite-sun pointing; however, the two pointings are almost
coincident.
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where, as derived in Section 2.4.1.1,

F = (7_,;;7_> (%‘i) (1+ o) (:_, 0oS J')l %4%/_2 (4. 2)

in whichA is the effective cross-sectional area of the satellite, m its
mass, S the solar constant (that is, the power of solar radiation on a
unit of the earth's surface per unit time), n is the reflection coefficient
(0 for absolute black body and 1 for specular surfaces), c is the speed of
light, d the earth-sun distance, d the distance from the satellite to the
sun, and vis the incidence angle of the sun's rays to the surface. The
ratio {A/m) is constant for spherical satellites and so is the incidence
angle y. For non-spherical satellites, both (A/m) and ¢ vary with the
orientations of the satellite and the sun.

The direction cosines A%, B¥*, C* of the unit vector 13, with respect to
the P, Q, W orbital frame of the satellite (where P is the perigee
pointing), were already derived in Section 2.4, 1.1, so that it can now be
defined as,

- - - _ 4, 3)
D = PAY+ 98 +Wo* (
where,
* ¢ & { £
A= coozz coozg o0 (A, -ﬂ—w)v‘wo"zm’zcoamo 0 rw)
s < '3 .
o o0t 5 oo lly 2+ ) '”zzwzf coo (/, +2-w) (4. 4)
/
*EMz'M£[coo(AD-w)- coo (A, +w)}
g% 2¢  2& 2¢ 2 E .
= co0” S o ZM(AD—O-w)-wo 7 ZM(ADtOv‘w)
2l 2E AR 4.5
an’ = o0 ZM//IO Q rew)tawm S ZM(AD+’O_C‘)) (4. 5)

/ .
+§ML'M£[M(/10 -w) * e (A, +&))]
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£ :?—M(/lo*w)

C* =— serny co00? —.am (/)o~a)) * din L e

2
*+ Cool e € aen Np

2z
{4. 6)

in which A_ is the true celestial longitude of the sun, € 1is the obliquity, i,
Q are the inclination and the nodal longitude of the orbital plane of the
satellite relative to the inertial earth-equatorial frame of reference, and
w is the argument of perigee of the satellite's orbit.

Notz that in Kozai's notation,

4%=-s00)=-58
B* =-T1i0) =-T (4. 7)
¥
c’ =-w() =-W
where the ""0'"argument refers to the true anomaly.
in view of relation {4.3), eq. (4.1) can now be written as,
= (4. 8)

F = - F(PAT+GB*+WC*)

Now, defining by TR_, S, W,three unit vectors in the respective directions of
the radius vector r of the satellite, the direction perpendicular to r in the
osculating plane (such that S " V £ 0), and in the direction of the unit normal
to the orbital plane, it follows that,

o = /5 * _,M
R coop * Q 7 (4. 9)
S

where 1 is the true anomaly.

The components of the perturbing acceleration £2 (as given by eq. 4.8), in
the respective directions of R, S, W, are obtained by forming the dot products
of 7 by R, 5, W,
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,Q_—_
S:

W:

In Kozai's notation,

- F(Ateoo p + B ain )
" T (AranprB a0y )
-7c*

R = a’nf/f(s oo+ Tan ) = @’7* FSp)

¥
S=a’rn? T (-SanprTeooy)=a’n FT(y)
P 7 7eeop) 7

W = a’”’z; W

=a’#* Fw(o)

2.4.3.,2 Lagrange's Planetary Equations

da a% _

d-_t —2?[/@84142?*3(/*6@0?)]
O£ =Z ; * *

o %[QM/ S(Coof Coo[)]
o _ - Weoo ™

gt A

ar _ r WM!(*

Vo4 kp 2n L

dw
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aM =zl o dw ,EQ) (4.17)
2 - x-re {zﬂp@(dt +caotd£:]

where h is the angular momentum per unit mass, N the true anomaly, and
u* the argument of latitude, u* = n + w,

Z.4,3.3 Integration of the Time Rates of the Osculating Elements

I order to make possible the integration in closed form of the time rates

cf the osculating elements, Kozai assumes the direction and the nagnitude of
the perturbing acceleration, as well as the orbital osculating elements, fixed
ovar a revolution of the satellite. Further, he assumes that the solar flux
is constant along the orbit of the satellite if there is no shadow, and that
there is no re~radiation from the surface of the earth.

The perturbations of the first order over a revolution are derived in closed
form by eliminating the time argument and the true anomaly n in favor of
the eccentric anomaly, E, using the relations,

o = (f‘_w{)d[
Vs

V Sy
4,1
M?/ e [ { 8)

0007 / ewof

/-e?

/fewOV - /-e oo £

and integrating between the limits E, and E_, where E._ is the eccentric
anomaly of the point of the satellite exit from the shadow and E2 that of the
point of the satellite entry into the shadow.

2.4.3.3.1 The Change in the Semi-Major Axis

[Qer+3(/fe 0007)] (4.19)
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By relations (4. 10},
el(Ran) +Scoop) =-%8"e

S =-5F(-A"any + B coo))
Therefore,
da 2 ¥ . .
gt adier 7[“/7 et B (wfre)]

Now, applying relations (4. 18) yields,

d 7 *
d—'z_ =—%(-/} winE +B*V/-e? coo k)

Finally, the perturbation in the semi-major axis, Aa, is obtained by

integrating with respect to E between the limits E1 and EZ’
2F £
da =-— A% ep £ s B*VI-e? coof (4.20)
b4
where A% and B* are given by (4. 4) and 4. 5).
2,4,3,3.2 The Change in Eccentricity
de ﬁ[
= = LR uny+S( J (4.21)
o A 7 +S(cooy o0 £)

By relations (4. 10)
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Raunl *+ Scoo)y =-JB*

S = -F(-A'an) +B*coo 7 )
Therefore,

de 7-e?
=-F
at anrn

[—A*,arzfcm[ + B*(/+ w/wé’)}
Now, elimination of dt and n through relations (4. 18) yields,

Ef =-7 /82 [“ *A*\//—e‘?MZf*B*(é—Zecoo;?*—60025
ot an 2 2 2

Finally, integration with respect to E between the limits E1 and E

: . 2
produces the perturbation, Ae, in the eccentricity,

//—(f:2 / / £,
de= I — ;A*Wwozzgfe*(gmz,f—zem&gf) ’
£,

where, again, A* and B% are given by relations (4. 4) and (4. 5).

2,4.3.3.3 The Change in Inclination

ol r %
gc L ¥ - -
o kchooé( ZC

J/-e? coo (P + )

an /+e coof

By relations (4. 18),
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and

Now, substitution of these relations reduces eq. (4. 23) to

dié JCc*

= - 2 o w (e -e)-/T-07 i o s £] (/-€ co0f)

gE anrnt/r-e*

___Jer z _e _3 )
-aﬂz//—_?[dmw((/*@)cﬁf anozé' ¢

~V/-e% an @ (ME - %M,Z[)]

The perturbation in inclination, Ai, is now obtained by integrating with

and E_,

respect to E between the limits El 2

27 (12 aiin £ — ain 26 335)
— , - = un i
Vay aﬂz/_czcoow( e’/ atw P 2
[ “2
/7% an e (coo £ - 7 C’oto)
5
where C* is given by relation (4. 6).
2.4.3.3.4 The Change in Nodal Longitude
an /‘W,40}24("‘__\?,6,,F v/ -e* sin (P +w)
ot 7 i Qr.agn i /fecoof
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By relations (4. 18),

cmw(—”d—m—L) + mw(—w‘i) = ¢o0 w(M£

/feawf /+eao0f

and

(/-ecoo,é'
ot HA——

)oe
7

Substitution of these relations reduces eq. (4.25) to

a0 JC*  r . |
S Ml/_l,dmw(@of e)r e &owm[}(/-ecoo,f)

=- A[MG) (/fez) cook - —WZ["EC) #/- szw{dac['zmz,f)]

2

an M‘t/—

The perturbation to nodal longitude, AL, will come out as the result of

integration with respect to E between the limits E1 and EZ’

40 JC* - ((/cz)'fe'2£3£)
= - - - — - —e
an® an ivi-e? e & o y 2 (4.26)
4
N/
e? coo w (oo Z

2.4,3.3.5 The Change in the Argument of Perigee
I

= Z|_ . ! el
_{e[ﬁcoo/ (/ ww%)sawb] coo ¢ 2

By relations (4. 10),
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“Reswop v S ampy = J4*
S = ~F(-A*ain p + 8" oo p)

Therefore,

dw _ g 17e [A*(/* L) g MJ_ML-:‘E

gt anre /+ecoc»7 /fecmf dt
But,
), Y [eemk raptE e ek + 3 co0 263
/*ecoof /-eeso £ /= € eoo £
MZwofz aw k(oo F -¢) L Cumlt -3 aw 2L
/*+e coo VIi-e2(/-eco0f) + -e? (/- eoo £)
and

gt
gt = (/-ecwf) ;z—

Substitution of these relations produces,

dw

= -

Fl . ‘
[A //-e"’(e e L+ 5 coo 2 23) —e(e £ M.Zf)] - o/ 210

JE anrie

Integration yields,
¥

anrte

‘2
-e00 A8

£
s}

ary

A‘//-e’(euﬁ:ff;fm,&{-f ) *Bf(ezcooE—;/ cooZ[)
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2...3.3.5 The Change in Mean Anomaly

oM r (0’6) anr
—_— = - /- 2 2 —_ —— j  —— l+.2
7 7 & [ [/e+ : * (g0 é)j} (4.29)

By relations (4.10),

R = - 7(A*Co<>f+5fa;‘/)

Therefore,
2;{{:90’1‘=‘29’/;62[A*‘C"3Z+ B*M
an /tecso /tecpny at
But, by relations (4.18) ¢
COOV _ ok -€
/recoo /-e*

x
n
<
1}
:
~
o

Substitution of these relations yields,

_ 27
ar®/-e

,4*((/*62)«%05- $ o2 - ge) +8*/-e‘(w£— %MZE)}

2L o =
4}{/@&13, 2

Intzgration produces

Z r 2 *( . - e 3 )
!Z;,’Qdfﬁ*aﬂz//—_—g-z-ﬂ (/+e*) e £ 4M2£Ze£
’ £
-5*‘//—7—67(&05' 3&025)
£
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Now, substituting this expression in eq. (4. 29) vields,

Fe.4
3 [ da 2F *( 2y . - . 3 )
= - — .._0' 4 A—'_ £_..__
M 2] = M+aﬂ2 (/+€%).an g ImEE - Sek (4. 30)

V7
-B*)-&? (Cooé'- -;mZ[)J z—,//~ez(Aa) fCooz'A.O)
£

2.4.3.4 The Changes in the Osculating Elements when the Satellite Does
Not Enter the Earth's Shadow During One Revolution

When the satellite does not enter the shadow during one revolution, the
limits of integration (E , E,) become {0, 2m) and consequently all terms
depending on trigonome]tric unctions of E vanish. Therefore, relations
(4.20), (4.22),(4.24), (4.26), (4.28), and (4.30) reduce to

da = O (4.31)

de = -37B*» /7-e* (4. 32)
an*

4¢ = 3?6*77&%/% (4.33)

A= 3IC*r» w% (4.34)

Adw= 3FA4%r i—i?—;-mmfz (4.35)

M = =6 T8 —= ~/T-C7 (4es + co0 £ A1) (4. 36)
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3.0 RECCMMENDED PROCEDURES

The material presented in the body of this report can be utilized in two
distinetly different processes. First, the formulations can be employed to
estimate the magnitudes of the perturbing influence of any particular force.
For this application, either of the approaches for the earth's oblateness
perturbation can be mechanized depending upon the type of data desired.
However, the number of these applications is relatively small compared to
those which exist for a technique capable of estimating the effects of all
perturbing influences in an efficient manner. (This second process is
extremely important since, for many cases, it affords the advantage of avoiding
nunerical integration in the construction of the motion of a spacecraft.)

In this second application, however, similarities in the construction of
~he general perturbations solutions for the various effects dictate that a
particular approach to the earth's perturbation, characterized in the text
by Kozai's formulation, be employed. This opinion is based upon the relative
simplicity for the higher order theories, and the fact that the perturbations
which are evaluated are more compatible with the outputs of the other
perturbations analyses.

The basic assumption employed in attempting to construct a semi-analytic
model of the spacecraft's trajectory (an analytic theory will not be practical
for the case where more perturbing influences are encountered. Thus, a
combination of analytic and numerical techniques will be presented) is that
the coupling of the perturbing effects is sufficiently small as to allow a
particular element (e.g., a)to be written as

¢t

a (0) *f’a' ad¢

[
20) +5 3 4a, =a(£,,'f".,)*§; da;
J/

. - J
{=1 J=I

a ()

R

where j denotes the type of perturbation (oblateness, drag, extra-terrestrial
gravitation, or radiation pressure),n denotes the number of steps taken in

the approximation of the integral, and the change A is evaluated over the
time interval corresponding to the ith step. In this procedure, the pertur-
bations in each element are evaluated for some specified period, the results fo
all perturbing influences summed and the estimates for the elements for the
next step predicted., This process is depicted in the following sketch:
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oblateness
atmospheric drag
elements + _ | extra-terrestrial ——
| solar radiation
+ other
perturbations

In the strictest sense, the elements are being numerically integrated,
though numerical extrapolation formula are not employed. However, it is
important to note a major difference between the approach and that which is
normally applied in the generation of a trajectory by direct integration

of the accelerations. This difference is, that the step size can be
extrememly large (relative to the purely numerical approach), since the
primary error in the process (the coupling between the perturbations)

is small for most trajectories for relatively long periods of time and since
the secondary errors due to roundoff and loss of numerical significance are
reduced by increasing the step size., (These facts are the direct result of
the analytic integration process utilized in the construction of the solution)
But, because this approach is a form of nurerical integration, a measure
which can be utilized to judge whether or not the step size is too large
(small) must be constructed. One such measure is the difference in the
perturbations as evaluated from the elements resulting from the previous
step and those obtained by utilizing elements of the form

m
a,({) = alt )1 33 da

g

£

In this latter case, the perturbations are evaluated for the ith force
(oblateness, drag ...) based on elements which have been modified to more
closely represent the average elements in the absence of the ith influence
(i.e., an attempt is made to introduce the coupling of the perturbing forces).

The computational methodology to effect this solution is presented in
Figures 3.1 and 3.2 for the case in which position and velocity data are
desired for input and output. This approach has been employed in numerous
studies with considerable success. One such study was performed in the
definition of orbits for the IMP Satellites (Ref. 5.1). In this study, it
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was desired to maximize the lunar gravitational perturbation on a highly
elliptic earth satellite orbit to aid in the definition of the lunar potential
function. However, a severe constraint was introduced (the satellite was
required to have a one year lifetime) which required that the study be per-
formed nunerically since there was the tendency for this perturbation to reduce
perigee altitude below safe limits. While the application to this problem

was not without incident, the results so closely agreed with the numerically
integrated trajectories that launch windows and preliminary trajectories

could be generated from the simplified program logiec. This fact drastically
reduced the computational load associated with the development of precision
trajectories.

Since this degree of precision was obtained in a case where the magnitudes
of the perturbations were large, and since the formulation provides an extremely
efficient means of generating a trajectory, the method presented also has
application to completely self contained guidance systems. This application,
however, does not appear extremely important in the light of current G&N
systems approaches due to the extreme emphasis in such systems on minimizing
the cost, size, complexity ... of the system, In the future, such an
application will probably become feasible (application appears to be limited
prirarily by the lack of availability of a small low cost general purpose
computer of sufficient capacity to perform this task in addition to the others
required of it).
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Figure 3.1 Overall Computational Logic
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