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I.O STATEMENTOFTHEPROB_

_e equations of motion of a satellite_ in the true force environment
of the earth: are nonlinear differential equations which are analytically
i_:tractable. 91istorically; two approacheshave been employedto obtain
estimates of the trajectories which can be attained, Thefirst 3 discussed
in a preTious monograph;is numerical integration. In this first approach
(called special pertumbations)_ series expansionsformed about the most
recent estimate of position and velocity are utilized to numerically estimate
the next point on the curve (other equivalent techniques can be formulated).
However:no simplifications needbe madein the equations of motion. The
secondapproachinvolves the simplification of the mathematical structure
of the problemby the use of truncated series expansions substituted directly
into the defining equations under the assmL_tion that the coupling effects of
the perturbations are negligible. The simplified differential equations
are then integrated analytically to obtain an approximate solution, This
solution process is called general perturbations.

5he purpose of this monographis to establish the nature of the solutions
avsilsb!e by general perturbations techniques and to provide insight as to
h_ these solutions can be profitably employedin the mission analysis and
ir_flight phasesof most spaceprograms, To accomplish this objective: a
critical review of the available literature will be presented for the
dominating perturbative influences: the oblateness perturbation 3 the
atmospheric drag perturbation: the extra-terrestrial gravitation perturbations_
and the solar radiation pressure perturbation, Following each of these revlews_
the developmentadjudged to be most outstanding will be analyzed in detail,

Thepresentation is initiated with a discussion of the dominantpertur-
bation for most earth satellites; that derived from the earth's oblateness,
This discussion presents two basic approachesto the definition of Changes
in the motion r_lat_v_ to that producedby a central force field. Thefirst
is basedupon an assumedform for the spatial curve and is correct to the
order of the second coefficient of the earth's potential. (This type of
solution is typified by the works of King-Hele; Reference i.iI; and Struble#
References !,12# and 1.13). The secondapproachis basedupon the methodof
variation of parameters as first applied to problems in celestial mechanics.
_±s latter methodcanbe applied to any order _Tithout excessive revision to
the methodor without excessively complicating the solution. (This type of
solution is typified by the works of Kozai_ Reference1.5# Brouwer; Reference
1,7: Carfinkel; Reference i.6: and others.) These developments are intended

to _emonstrate the assumptions implicit in the derivations and problems of

conditioning in a numerical solution since both of these factors are extremely
important in the application of the material.

_e discussion continues with the development of the atmospheric pertur-

bation to the motion of a satellite. In contrast to the oblateness derivations#
on_ one basic approach is considered (that of Sterne# T. E._ Reference 2.2.

H_ever: an extension reported by Kalil# F._ Reference 2.3# is also presented.)

This restriction in the presentation arises from a clear-cut superiority of
the theory (relative to others available) resulting from the generality implicit

in the formulation, This generality allows many factors which affect the



atmospheric perturbation by altering the atmospheric density (solar activity,
effects_ diurnal effects_ latitudinal effects, ... etc.) to be introduced
(in an approximate sense) and allows the resultant displacement to be computed.
Emphasisin the discussion of this material is placed on the simplifications
to the structure of the problem necessary to provide an analytic solution.
This emphasisallows a qualitative interpretation of the accuracy available
and assures that the limitations of the formulation are understood.

The discussion of perturbative influences concludeswith a presentation
of the effects of extra-terrestrial gravitation (solar, lunar, ...) and of
solar radiation pressure. Theseeffects are normally negligible_ however_
manyanalyses require their inclusion to provide the necessaryaccuracy.
Emphasisin these discussions is placed on the developmentof the perturbations
themselves. The special caseswhere resonancescan occur are not considered;
rather_ the existence of such cases is noted, and reference to so_ of the
applicable literature is made.

Themonographconcludeswith the presentation of a schemefor approxi-
mating the net result of all of these perturbing influences and a mechani-
zation to effect the solution. This mechanization is believed to reflect
the optimumformulations of each phase of the analysis the date of publication.
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2 .i T_E PEiV_UPJi&TiVE EFFECTS OF EARTH OBLATE_ESS ON THE ORBIT OF AN ARTIFICIAL

_RTH SATELLITE

2.1.i Basic Review of the Problem

2.1_i.1 Definition of the Perturbing Force

if the earth were an ideal homogeneous sphere, the motion along any

great circle would be periodic or harmonic. The true shape of the earth,

however, is more closely that of a geoid] that is, the center of mass does

no_ lie on the spin axis and neither the meridian nor the latitudinal contours

are circles. The net result of the irreguiar mass distribution of the earth is

to produce a variation in the gravitational acceleration relative to that

predicted using a point mass descriptioi for the earth. Due to the asphericity

of the central body, a perturbing component of force (transverse component)

is produced which acts along the tangent to the instantaneous meridian and

always points toward the equator. The magnitude of this transverse component

depends upon the equatorial mass accumulation or oblateness. It reaches its

maximm_1 value at the 45 ° latitude and approaches zero at latitudes of 0 ° and

90o, The motion about a geoid can be visualized best by resolving it into

individual motions along the meridian and latitudinal contours. The motion

along a meridian can be thought of as consisting of a number of periodic

(harmonic) motions, called zonal harmonics, of different frequency and

amplitude. Similarly; the motion along a latitudinal contour can be visualized

as consisting of a number of periodic (harmonic) motions called tesseral

harmonics, of different frequency and amplitude. The zonal harmonics describe

the deviations Of a meridian from a great circle, whereas the tesseral harmonics

describe the de_ations of a latitudinal contour from a circle. The larger the

number of these harmonics, the better the description of every detail of the

7_rue contour of the earth.

Since, at this stage of scientific progress, the tesseral harmonics are

no< sufficiently known, it is assumed by most investigators that the shape

of the earth is an ellipsoid of revolution and, consequently, that all
zesseral harmonics are zero.

_e analytical representation of the zonal harmonic motions for an oblate

ear±h, taken as an ellipsoid of revolution whose center coincides with the

center of _mss, is given by the simplified Vinti's potential, which was

adopted in 1961 by the IAU,

/z
:-- /-Z G @

where _ is the earth's gravitational constant, r is the distance from the

center of the earth to th@ satellite_ P_ is the equatorial radius of the

earth. J are Vinti's zonal harmonics a_ P (sin $ ) are Legendre polynomials
" _ n

of order n defined as follows,



and where

(2,.-I)(2_- 3)

8 is the geographic latitude. For,

n=O ..... _ =I

/

/

A derivation of this potential was presented in an earlier monograph Ref.

(1.O).

However, since the two major works, selected for detailed analytical

development in this monograph (King-Hele and Kozai), are based on Jeffreys

potential, it is necessaryto discuss the form._f this potent_.al. "JeffreTs

potential is defined as follows,

where the Legendre ool_omials P (sin 8 ) have the same definitions as
before- and _._qerethe i_-_") coefTicients are constants, chosen to agree _._th

observatlons, and are deternuned by the relatlon,

, I n

in which M is the mass of the earth, d is the distance from the center of the

earth to a oarticle inside the earth whose mass is m. For,

4
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If, in addition to the ass1_nption t_hat the center of the e]lS osoid of revo!u-

=loll (representing the earth) is coincident _th the center of mass, it is

also assumed that the earth is s_anmetrical with respect to its equatorial
_lane, all of the odd ha_nonics must vanish.

The substitution of the expressions for the coefficients (Bn/M) and the
_o]_omials P in the definition of Jeffreys potential _vields

j j? 2 H(c__(3__s6_3_S )
\r!

(9)+ -- (3,5-_, _'_-30..in2,S +3
35

v_lei_et.he quantities J and H,D (second., third, and fourth harmonics) were
introd1_c_ by Jeffreys.

For the earth, _,dth the center of the e]]_ipsoid of revolution taken as

the center of mass, the vaT ues of the zonal harmonics J, H, D, etc., can be
found fin many papers. SSnce the review and assessment of the material

covered in this t_roe of ref_rnnce is not _.d.thin the scope of this monograph,

however, it is co_sidered adeqnate at, this posit to provide a !_s%, of refer-

ences _,_icb present such data. Aceord_nff].v, the reader is referred to Refer-

ences ] .I, 1.2, ]-.3, and ]..L. Then the re].ationship between Vinti's and
Jeffrey, s' zonal-harmonic coeff_c_ ents is:



Theperturbing transverse or non-radial componentof gravitational
acceleration, T, producedby the equatorial bulge, can be resolved into t_
parts (Figure l) as follows,

- ORBITAL

EARTH'S

EQ UATOR

L or>,

r_ f,lo

1. A horizontal component S inn the orbital plane at right angle to the
radial component R, and such that S • V >- O.

An o_rthogonal component W normal to the orbital plane, and such that

W • h = +l, this component causes the nodal line to rotate.

These components can now be derived from the gravitational potential of

the earth by representing it by the sum of the cantral field and the perturb-

ing potentials,

U ---_-P*Q
r

where _ is the perturbing potential,
$

'

35" .,,_O pr
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i is the orbital inclination and u'is the arz_ent of latitude.
This perturbing potential can now be divided into secular and periodic

pa_%sto facilitate future efforts and to reveal the nature of the perturba-
tion. This step is accomplishedas follows,

_e componentsof the perturbing force can nowbe derived from the perturbing
potential Q: the radial R, the transverse T (tangent to the instantaneous

meridian), the horizontal S, and the orthogonal W as follows,

( g- 7_._zS)

f 3q ,q__

S ....
r 3_ r q

2

/ 3Q

r_ _Z_ 3L r q r $

(The terms in H have been dropped for the purpose of this illustration.)

Using the identities,

- 2 2 c°'c2/-z_

8 2 g o2zz*+  z/zz*

and the relationship,

_2
i

_= _ is the true anomaly



.. -,(::,)( )
2_o 3 a

Since Qsec is a function of a, e, i, these elements have no secular

perturbations. (The same result would have been obtained for the secular

part of Q if terms in P were present since integratSon over a complete period
of the coefficient of H is zero.)

2.]..I.2 Sunz_ry of the Effects of the Perturbing Force on the Orbit

The gravitational oerturbations due to earth oblateness produce secular

and/or periodic changes in the orbits of all artificial satellites. These

perturbations will be developed later_ however, the effects will be sum-

marized here to serve as motivation for the analysis.

1. Regression of the Node

The orbital p3zne rotates about the earth's spin axis in the oppo-

site direction of the satellite motion, restOting in monotonic

regression (for posigrade orbits) of the ascending node along the

earth's equator. For retrograde orbits the node moves counterc3ock-
v_se.

2. Rotation of the Apsidai Line

The major axis rotates in the orbital plane in the direction of the
satellite motion for orbital inclinations i < 63._ °, and in the

opposite direction for inclinations i > 63._ °. The rate of rota-

tion is zero when i = 63.4 °.

3. Change in Radial Distance

As a res__t of the gravitational perturbations, the radial distance

from the center of the earth is subject to periodic changes during

the motion in inclined orbits. More exactly, the periodic change

in radial distance is superimposed on a constant part displacement

which is independent of the satellite position in the orbit. The

superimposed oscillatory part has a period = 1/2 revolution and an

amplitude = I,- 1_,@_2 . 2.



There is also a higher order oscillatory chan_e, for elliptic orbits

only, _.zitha period = 1/3 revolution and an amplitude

2_ Je r_

Change in the Orbital Period

Because of a non-constant angttlar momentum and the change in rad_ai

distance, there is necessarily a change in the orbital period P.

_ types of orbital periods are of interest in the satellite life-

time analysis: the nodal period, P# , from one ascending node to

the n_oct, and the anomalistic, PA' from one perigee to the next.
Since the perigee is moving, the anomalistic period is longer than

the nodal period for orbital _nclLuations i < 63._ °. Thus, by the

time the perigee has rotated 360 c, the number of anomalistic periods

_l be smaller by one than the number of nodal periods For orbi-

tal inclinations i > 63.i.°/the opposite is true. On the other

hand, the period for inclined orbits, whether nodal or anomalistic,

is al_ys slightly greater than for an equatorial orbit.

The changes in the nodal longitude, AS2 , and in the argument of perigee,

_) j are both secular and periodic. These secular changes are produced by

the unchanging direction of the perturbing equatorial bulge _ith respect to

t_ _.orbital plane (that is, by the non-radial or transverse component of

fo rc e ).

%_e changes in the semi-major axis, Aa, the eccentricity, Ae, and the

orbAtal inclination, A i, are periodic; that is, oscillating with the cyclic

cha]kE.eof the satel]ite position _th respect to _ha perturbing equatorial

bu3_p., t.bre e.vactiy, the periodic cban_es Aa and ,de are suDerimposed on

a constant perturbation (relative to a con_ _ ]'_l_t _ " O_ ) ' These _ffects are

prn4uced by the distortion of the central force fie.ld.

2.!, 2 R.._e.-t_.e_:[ 9__ the Available T:ite.ra_ t23;re

2.-_..2.! General Comments on the Papers Reviewed

There is a;_ abundance of technical ],iterature that is concerned with the

pert_rbative effects of earth oblateness on the motion of artificial satel-

lites. There are, however, only few _,rlthorigina3 theories. Thus, most of

the papers duplicate each other and differ only in the degree of sophSstica-
t&on and the order to which the solutions are extended. Some of these papers

consider only circular orbits, or place severe restrictions on either the

eccentricity, or the inclination, or both. Unfortunate34?, comparison of the

solutions presented in these papers is ve_ difficult due to differences in

the nomenclatures, the lack of inter-relationships between the various

para_,eters, and the lack of general 4iscussion and assessment of the remg_ts.

One group of authors concerns itself v_.th the application of the princi-

ples of classical astrono_¢,_. They use basic variables, which are not a_ways

convenient for _nterpretation during the develor_,ent of the theo_/, and _loy

9



arg_imentswhich are, at ti_es, obscure. For this reason, such theories are
more involved and are difficult to interpret du_dngthe various stages of the
development.

There is also a secondclass of papers concerned_.ith inference of earth
oblateness from observations of orbital motion. Suchanalyses are umlally
complicated by choice of variables and the cumbersomeform of the res_fLts. In
most cases, a circular rather than an elliptic generating solution is used.

Theorder of the theo_T is defined, in all the papers, in relation to
the highest harmonic of the perturbSng potential which is employed. Theories
basedonly on the secondharmonicare referred to as the first order. Gen-
erally, the secondorder theories do not imposelimitations on either the
eccentricity or the orbital inclination. All qualitative aspects of the
problemarise in the first order terms; the higher order terms f_uqction pri-
n_rily to modify the numerical values.

2.1.2.2 Methodsand Techniques

_ basic methodsare employedin the literature. Theyare basedupon
the follo_d_ugconsiderations.

Theorbit of an artificial sate.llite is a t_,risted space ctu_ve_mund
about the earth in a complicated v_ve pattern. The complicated wavesof this
curve are removedby iDtroducing a rotatin_g orbital plan% uponwhich the
orbit itself mzy be represented as a plane curve. Since this p_!ane curve is

not a cJosed circ_Lit, some artifice must be introduced to properly define the
orbital motion. The choice of the nature of such an artifice defSnes the

method of osculating ellipse or the method of basic coordinates.

2.1.2.2.1 The Method of Osculating Ellipse

This method has its origin in classical astronon V. The method introd_,ces

a precessing orbital plane and an osculating ellipse in this plane, which

var_ es in si_.e and shape throughout the sate!IN.te motion. _e advantages of

this method are that the var__ations of the oscu/ating elements are small, the

differential equations describing these variations are relatively e_%sy to

deal _dth, and the result of the analysis is the t_Jne history_ of a set of

parameters _¢nich reflect the trend of the perturbation.

The principal disadvantage of this method is that the osculating ellipse

does not represent a succession of satellite positions and hence, it does not

in itself reveal the trend of the motion. Another disadvantage is the failure

in case of ver}j stall eccentricities, resulting from the fact that the eccen-

tricity appears as divisor in the expressions for the perdodic pert1_bations

in the osctO_ating elements _ (argument of perigee) and M (mean anomal_T). This

difficttltv is, admittedly, of an artificial nature and can be removed by using

the combination of e sin _ and e coso_, and also (_.I+ (_) inste_%d of M. ,%me

authors calculate a, e, _ , _.Iseparately and combine then in the radius vector

and in the argument of latitude. The small divisor then cancels out.

I0



_bis method is used by _ozai (Ref. 1.5), Garfinkel(Pef. 1.6), Broln_;er

(_ef. i.7), _rause (Ref. 1.8), Anthony and Fosdick (Ref. 1.9), and others.

!zsak __ _qork (_ef. ]_.lO) is generally considered as belonging to this group, but

!zsak considers himself as a proponent of the method of basic variables, (m_ch

a cla_ is not fully m_bstantiated by his %_e of analytical treatment).

2._].2.2.2 The Method of _.sic Coordinates

In this method the motion of the orbital plane as a rigid body is intro-

duced. _]_ motion is represented by an instantaneous rotation about the
=.

oosition vector r, reflecting the rotation of the ve3ocity vector about r

v_hich, in turn, causes the change in Q(nodal longitude) and i (orbita]. incli-

nations). Such a method possesses the desirable possibility of directly

represent_g a succession of sate31ite positions and reveals the actual motion

of the satellite. _asic rectangu!ar, spherical, or oblate-spheroidal coordi-

nates are used in the analysis, ard the effect of the perturbation are

e:coressed b.v differential equations of motion in terms of such coordinates and

the perturbing accelerations. Str_ib!e (_.ef. 1.12) and King-Hele (Ref. 1.31)

a-_e the principal proponents of this method.

2.1.2.3 Integration Procedures

_Eqe integration procedures employed in various papers depend upon the

sp_cific method used in the anal}%ical treatment of the problem. _ certain

cases, even though t_o papers can be categorized under the same method, the
res_.ective anal_%ical treatments of the basic philosopher (which is character-

i_c of the method itself) may not follow the same line and, consequently,

different integration procedvmes will necessarily apply.

Kozai, _rause, Anthon_r, and Fosdick, whose works were categorized under

the zcLethod of osculating ellipse, replace the tSme &rgn_nent, in the defini-

riots of the rates of the osctO.ating elements, by the true anomaly and proceed

to 5ntegrate these rates directly over a revolution. However, C_rfinkel and

_rotu._er, v_bo were also categorized _nder this method, do not define the rates

of the osc_.atSm_Z elements directly. Instead, they derive the pert1_mbations

in the oscillating elements by Von Zeipel's modification of the method of

De3_t_nay and arrive at closed form solutions in terms of elliptic integrals.

in ids 1-_qar theo_r, Delaunay uses a succession of transformations to remove,

one by one, the periodic terms of the determining Hami]_tonian, _hereas in

Von Zeipel _s modification, a single transfo_ation accomplishes the same

puq_ose. The sec_lar terms, ho_ever, are derS.'ved directly from the H&miltonian.

_D_e integration procedure used in connection with the method of basic

coordinates consists of the follov__ng steps: fir_, the equations of satel-
]_ite motion are defined _n terms of some basic coordinates (rectangular,

zpherical, oblate-spheroidal, etc. ) and then the integration is performed

b_- seek._ng a partictLlar solution Lu one of the follo_._ng forms,

= - = I ÷ ec._o(_"-,_)+Jv ,"
r"
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or

r r.

where _ is the central angle referred to the argvment of latitude u* by the

relation, _ = u* - 90°- /3 is referred to the argument of perigee _ by the
relation, /3 = _- 90o; _ is the Dertv_b_ argument of latitude; _,_ is the
harmonic mean value of the radius, resulting from the distortion of the

centra.7 force field: (v, w) sm.d (c, d) are unkno_,_ functions to be deterndned

by integrat ion.

_The integration process involves a m_mber of artifices arid the replace-

merit of the time argument by one of the coo__S.inates, usual_!_r by ¢ Or _ .

The choice of ¢ or # has the geometrical advantage that these coordinates

are less subject to perturbational variat.lons than is the true anomaly _ ].2en

the eccentricity is S_lmall.

2.1.2.1_ Critical Evaluation of the Papers Revie_d

2.1.2.i.1 The Method of Osc_J1at_g E131pse

This is a c_assica! astronon_v concept based on a precessin_ orbital

p3ane and sm_ oscillating ellipse (in the rotat__qg plane) _.ich is defined by

the instaotaneous position and velocity vectors. The osc__ating elements for

each revolution are obtained either by direct iutegration of their rates of

change, using lagrange's planeta_ equations, or the pert_rbations in the

osc_ating elements are derSved by the principles of Ham_itonian mec_auics,

or by some other c!assic__ astronoz_r artifice (as in the case of Anthony and

Fosdick_ who e_p]oy Lindstedt technique to obtain approxir_te solutions for

the differential equations of satel]3_te motion).

2.1.2.4.!.i The _ork of Y. Kozai (Reference 1.5)

Assumptions: The earth is an oblate spheroid _ith axial s_anmetry O_/iv;

the density distribution of the earth is s_n_metrical about its 8_xis of rota-

tion; the gravitational field is represented by the standard potential with

spherical harmonics from the second through the fourth present; no limitations

are imposed as to the order of ma_gnitudes of the eccentricity and orbital
inclination.

Completeness: This is a complete first-order theory which 5includes

sect?jar and both short- and long-periodic perturbations. A complete set of

vmr]_able oscillating elements is furnished including _pressions for the per-

turbed radius and the arg_unent of latitude. The special cases of e =_ 0 and

i = 0 are also covered. The secu/.ar tenas contain the J2' J_.' and _ har-

monics, the short-period terms are l_ztited to J2' and the loHg-perio_ terms

are a_p_esse_ in ,T2, J3/J2, _nd ,TA./J2.

Eval_mtion: The pert_rbations in the oscillating elements are expressed

as functions of the mean orbital ele_e_ ts, the perturbing acceqeration, and
time h_/making u_e of .7_grangian definitions of the time rates of change. The

time arg_uent is replaced b_v the true anomaly an4 the first-order secular %,

12



second-order secl_]ar Q2' long periodic he and the short periodic QAoaths ofthe perturbing po_enti&-i are derived, anal_ical treatmen_ that fol!ows
is $JmpT<eand provides a clear geometrical interpretation of the problem.
To :_r._ove, for _nstance, the short-period perturbations, one has only to

replace the perturbing potential Q by Q_. in the Iagrangian definition for the
_mz_iations of the osc1_ating elements. _Kozai's is a complete first-order

theory, ve_ rigorous, meaningftO, and easy to follow. It provides a clear

insight into the geometrical aspects of the problem and appeals to an engineer

_dth its straightfo_mrd anal_ical treatment. The solutions are simple,

elegant, and meaningft_.

2.1.2.4.1.2 The }brk of B. Garfinkel (Reference 1.6)

Asst_uptions: The earth is a non-uniform spheroid _th axial and equa-

torial s_m_netrv; the gravitational field of the earth is independent of

longitude and is represented _a _ecial potential function (Oarfinkel's

potential) _rhicb does not fit ey_ctly the standard earth's potential (_.ith

the second and fourth harmonics present), but approximates it closely enough

to _ke the Harm_iton-Jacobi equation separable.

Co_!eteness: The theo_/ is complete in position coordinates only. _he

pe_-t_n-bations in the osculating elements are derived which, in turn, define

tb_ perturbed spherical position coordinates. The periodic chanties are of

the first order and the sec&lar changes are of the second order.

Evaluation: GarfJzkel,s technique involves the preliminary determination

of a non-Keplerian intermedia_ orbit based on an appro_fi_mation of the standard

potential. The approximating potential incorporates a major portion of the

second-spherical harmonic and preserves all of the basic featt_es of the

standard potential. This unique potential affords separability of the

Hsm]i!ton-Jacobi equation in spherical coordinates and leads to closed-form

solution in terms of elliptic _mctions _._th no secular variations of the

fir_ order. The non-Keplerian intermediary orbit is then taken as the

_perturbed orbit in Dela_nay theory. The secular terms are obtained directly

from the determLuing Hami!tonian. To remove the periodic terms from the

determining Har._ltonian_ GarfJmkelmakes use of Von Zeipel's modification of

Dela_a_z's method. Garf_uhel_al_ical treatment of the problem is focused

primarily on the satisfaction of the principles of classical astronon_. There

is no discussion of the geometrical and physical aspects of the problem and
no assessment of the solutions derived.

2.3.2.4.1.3 The "fork of D. Prou_,_er (Reference 1.7)

Ass_v_ptions: The earth is a non-uniform spheroid _._th a_tia! _m_et_

only; the gra_dtationa] field of the earth is Ludependent of longitude and

ma_ be represented by Struble' s potential which is a slightly modified

Jeffrey's potential; there is no limitation on the eccentricity or orbit_a]
in clJnat io_.

Co_oleteness: A comple%e set of ,¢_rkable osctO_ating elements is pre-

sented. This is a complete second-order theory inboth position and velocity

coord_zates. The periodic terms, both of short and long period, are developed

to first order and the sectdar terms are develope_ to second order.

w.
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Evaluation: Prouwer defines the problem in terms of Delaunay variab]_es

by using I.Tami].tonianmechanics. He then applies Von Zeipel' s modification of

Oe!at_uay's method to remove the periodic terms from the determining Hamilton-

Jan, _.rhereas he obtains the secular teems directly from_.e HamJ!tonian. It

appears from the aua.!ytical treatment of the problem that nrouwer' s primar_

intention _,,_sto present a solution satisf_r._nqgthe basic principles of classi-

cal astronon_. From this poi_ of view, Brou_,zer's technique is perhaps one
of the most remarkable. Unfortunately, the author oresents neither a conTore-

hensive discussion, other than of a pttrel_rmathemat]_cal natltre, nor an assess-
ment of the res_].ts.

2.] .2.1_.3_._ The hrork of H. G. L. Krause (Reference !.8)

Ass_nptions: _ne earth is ao oblate spheroid _ith ay__al and equatorial

s,Tmetz_y; the gravitational field of the earth is .independent of longitude and
is r_presented by the standard potential _-_lththe second and fo___th harmonics
present.

Completeness: The solution _s an appro,Nimate first-order theory, since

long-period terms are not derived. Short period and secular terms are lin_ted

to those containing eccentricity up to the third power. Periodic perturbations

are of first order and the sec_Oar are of sec_id order. A complete set of
_r!_ble osc_O.ating elements is furoished. The solutions are of closed form.

Eva]_tion: Lagrange's definitions for the t_me rates of change of the

osculating elements are used, in which the time arg_nent is replaced bv the
true anomaly, and the rates are then integrated in closed form over a revo]_u-

tion. Onl_ short period and sec_]ar terms are obtained. Since .long-period

Dertn_bations are neglected, this is an appro_xdnnate first-order theo_. The

s_ua_!_rbica_treatment is s_ple and straightforward.

2.1.2.4.1.5 The i¢ork of M. T,. Anthony and G. E. Fosdick (_eference !.9)

AssumD_tions: The earth is an oblate spheroid w__th a_ial and eqtmtorial

s_m_uetr_; the potential field of the earth is independent of ]ongitude and

ma_ be represented by the standard potent._al limited to the _rinci_a]_ term

and the second harmonic; the initial position of the satellite is at au apsis;

no restriction is placed on either the eccentricit_ or orbital inclination.

Completeness: This is an incomplete and approNimate first-order theory

in the second harmonic J. Solutions are derived for the perturbations in

radial distance r, speed V, and angtfl.ar momentum P, deviation from the initial

plane of motion @, and the rate of apsidal advance _.

Eva]._?ation: The equations of satellite motion are defined in terms of

the spherical coordinates r, @ (deviation from the initial olane of motion),

(argt?ment of ].atitude). Appro_dmate solutions of the differential equations

are found by the method of l,indstedt, by assuming po_-zerseries e_xpansions in

the second har_onic J for all variables and, then, truncating the series

beyond the first po_._r of J. The truncated series e:_pansions are of the form
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",.#rere u = !/r, P is the s_ug_]ar moment_% and _ is a new independent variable

def'.ned b=7

The quantities _:_th the "o u subscript apply to the t_o-body problem (for v&ich

J = 0), _hereas the q1_ntities _.zlththe subscripts "lu reflect pertl_bations
d_e to oblateness and are detew_fined by Lntegration of the differential eq1_-

tio_s of motion.-_- The analog of the eceevtricity is e:_ressed by the parameter

;fne_e 7 /v is t_e ratio of the initial orbital soeed (at an apsis) and the

corvespond].ng circ.9.ar speed,

Tt iS not ve_r clear how the indeoenae_t variable # compares _.riththe

classical w (initial ar_ment of perigee), nor how the eccentrlclt_r analog

_y deoen_ on the classical eccentricit_T e. The transformations are far

f_-o_:,obvious. The constant $1 is so chosen as to eliminate sectu]ar terms in
t,he solution for u = 1/r expressed as a f_nction of _ . The ne_._variables

e_D_oyad in the anal._ica] treatment do not have a simple geometrical inter-

pretation, and the nat_e of the periodic perturbations, embodied in the

ps_do_-arg_uent of latitude _ , is not defLued. It, is not clear whether the

oeriodic pe,rturbations are short-term periodic, or perhaps a combination of

both short and long periodic terms. It is also obscure as to how the secular

variation in _(the nodal longitude) is obtained.

2,_3,2,/+,2 The Method of.._Basic Coordinates

mhe orbitS_ plane is considered to be a rigid body rotating about the

inst_,ntaneous position vector, and the motion of the satellite in the orbital

pl_ue is along a non-closed plane curve representing a succession of satellite

_sitions. Basic coord._ates are used instead of osculating elements, and the

equations of satellite motion, expressed in terms of such coordinates, are

integrated b_ see!qhug a particu].ar solution of the form

_ e_ccept for _i ]._ich is a constant.

t

7

=
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r p
I+ e _ (_-,,_) ÷ J-v + Jew]

or

, ]a=7= ,' +e ea, CA - ) - Jc + J ed

2.1.2.4.2.1 The ITork of D. O. Ying-Hele (Reference .].11)

Ass_,ptions: The earth is a non-uniform oblate spheroid; the gravita-

tional field of the earth is J_dependent of ].oncitude , s_m_letrica! about the

equatorial pla_e, and is defined bT_-Jeffre_T's potential flulction; the eccen-

tricity e _< 0.05.

Completeness: The theo_7 in itself is self-s_£ficient to describe the

problem completely, but u_,fortunately the author does not e:ctend it to its

fu31 capacity and does not derive expressions for the periodic changes in a

(ser._i-rnajoraxis), e (eccentrieit_f)_ and i (orbital inclination). However,

the fact that King-Hele gives an incomplete set of _,rorkable elements does not

_¢eaken the po%.;erand the originalit_r of his approach, as the analysis can

easily be extended to also cover the periodic changes in a, e, and i.

.Evaluation: King-Hele has developed a novel and powerful method for the

solution of the earth oblateness perturbation problem which is completely

divorced from the classical astronon_r concept of osculating ellipse. His

analysis is very rigorous and easy to follm_. The method assuages that the

actual equation of the plane revere, representing a succession of sate31ite

positions, is of the form Z2 = _/r =[I+ e Coo (_-_) +Jr + Jewl//?
and the equations of satellite motion are integrated by imposing this parti-
mOar solution.

2.1.2.4.2.2 The Uork of R. A. Strub!e (Reference 1.12)

Assumption: The earth is a non-lmiform oblate spheroid s_,mtmetrical

about the equatorial plane; the gravitational field of the earth is indepen-

dmt of longitude and is defined by the standard potential function; there is

no limitation whatsoever as to the eccentricity of orbital inclination.

Cor,%_leteness: The analysis is not completely self-sltfficient since no

procedure is presented for the integration of dS2/dt and for the dt/d_

(_ere _ is the pert_rbed argument of latitude). Instead, Strub3e suggests

the introdlmtion of these quantities into the so3ution via the method of

averaging _rhich he developed in a separate paper (Reference !.13).

Evaluation: Strub!e's approach follows basically the concept and the

principles employed by King-Uele and may have been influenced by hSm, altho_gh

KJng-He!e is not reported in Struble_s list of references. The analysis,

however, is extended to yield second-order solutions. Equations are presented

with the burden of proof on the reader; stud the logic of successive steps in

the analytical treatment is indicated in an intricate and confusing manner of
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cress-referencing to various sets of equations. Simi.]arly to King-H_l_.'s

approach, Stmlb]_e assumes that the actua], eq_mtion of the Diane c_rve, r_.ore-

sen__ng a succession of satellite positions, is of the form

' ' [' _]
r

_..z}ere _ is the perturbed ar_ment of 3atitude, and proceeds to integrate the

_,._._l_te equation_ of motion by _6sin_ this solution. The short-period

_ercurbations are isolated in the c and d functions, which are deterz_ned

_tegration; the mean radius _3,, the mean eccentricity e, and the mean argm-

men_ of perigee _ e}dnibit only long-period oscillations (_._th a sect[far

_._i.__!on in _ ). Unlike King-Wele, wDo 6_Oys basic coordinates as vari-

ab)es, Strubie irtroduces the pertl_bed arg_mmnt of latitude _ as the ind_-

cendent variable-X-_-,related to the unperturbed arg_ment of latitude _ by the

identity dX_//d_ --_/(_') r_(d_)/d_ , where, the param_.ter k is not

i_o_ a priori, b_t is deten_ined later in m_ch a manner as to make. _ a_
e}_hibit the ssm_e s_c_ar behavior. The solutions are e._oressed i_ t_s

of the mean inclination io, the perturbed arg_.r_ of latitude _ , the argu-

ment of perigee CO, the eccentricity e, the constants of integration iOo, _o'

%, and t_e functions _i, _2, _3, _I_, '_5, _6, Vl v2. These f_mctions
rep_'esent lengthy collect.ions of trigonometric terms; some of tb_u are ooe-

pa_:e long expressions. Hence, Struble's aualytical treatment appears to be

e}_remely lengthy, intricate, and cumbersome. Ho_,_ever, this is not a ref)ec-

_io,u on the method employed, but rather on the nmth_atical application of the
met_od.

i

2.] .2.5 Selection of Papers for Detailed Development

_e t_ro papers selected for detai3_ed anal_tical development are:

Ki_qg-Hele, D. G. "The Effect of th@ Farth Oblateness on the Orbit of

Near Satellite," Proceed_Ks. oS_ _he Roll Soc_me_. Series A, _o 123+8
(September 1959).

Kozai, Y. "The _.[otion of a Close Earth Satellite,
(October 1959).

" Astronomical Jouz_al.

These two authors were selected because their works appear to be the raost

outstanding representatives of the two methods of approach. Y_ozai's work is

h_sed on the concept of osculating ellipse, whereas the _rk of King-Hele

fol]o_,rs the method of basic coordinates. The anal_ical treatment in both

papers is rigorous and easy to follow. Further, both papers provide c] ear

geometrical i_terpretation of the problem and display original and interesting

characteristics in the restOts and in the approach _$hich are unique. From

the point of view of engineering applicability, these t_,ropapers excel _.rith

their straightfom._rd presentation of this complex problem.

_-_- The n_ independent variable _, according to Struble, preserves some

of the mathematical s_licity of the system which would be lost if the

unperturbed _ _.mre used as independent variable•
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2.1.3 -A:nal_.'_j,.ca% ,D_ev.e,]-o_.t_ep,,t.o.f,_Y_f,a:n_-_.e.:LeJfi Techn_.ic[ue

2.1.3.1 Derivation of the Equations of _.btion

The coordinate frame of reference is the it,;JN kN earth-equatorial frame

centered at the earth; "iN pointing in the direction of the ascending node

of the orbital olane at the earthts equator, kN along the earth's spLu axis,

and 'J_Tcompletes the right-hand system. A vector in this system is defined
by the comp!emA_t of the geocentric latitude @, and b7 the angle • , measured

cotmterclocM_ise from the instantaneous node N to the projection of the vector

on.to the earth's equatorial pTane.

Let _ and r be the posit._on and ve?ocity vectors .of the spacecraft at
som_ time t a_d .T."_ a trait vector in the direction of r ,

F = r[* O-.x)

The acceleration vector J.n _otatJng coordinates is

#: _'Z_ , z _z?** r/3 _ 0.2)

The acce3eration vector r has a. component _ in the direction of L , a

component _.@ ._n the direction _n which @ 4ncreases r an4 a component _¢ in the
direction __n which @ increases. The direc+Aon in which @ _mcreases is repre-

sevted by the tangent to the meridian passing thrm_gh the wosition vector r,
and is denoted by D , a#d that in which @ increases is represented by the
norn_! to the meridian of r and is denoted by _-x-.(See FiDwe l.)

-_b "
All three reference pointings, L , D_, _:, can be defined in terms of @

and @ as follows:

(x._)

Thus, the derivatives _,rithrespect to t_m* are:

X+ : Z',,D" +Z" >,6": (_'_ ,-,4"<J.<_s,,a),<_>"
+z+,<(-2a" +,,Pj c,,<>s):-Z_'_f..,D,s-,5"i: _a

(%h)
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m_d

. lT"c#'.,_,, s ÷## e.,oo) (1.5)

_fv_oatluun.on of _.¢"- and L' from Equations (1.g) and (1.5) into Equation (1.2)

/ie?_ds t,he acceleration vector in rotating eoord_ates,

(z.6)

.=

7
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Thegravitation acceleration vector for the earth's spheroid is defined
as follo_¢s:

17U= _" an+6. / au . / du-- - -- _ A (17)
ar r _0 r.4,_8 a_r

,%_nce, in _2_,ug-Helefs theo_r, the earth is assigned to be ss_metrical _,.a£th

respect to the eq_latorial p?ane, the third bar_aonic H is neces,_ar_i]y equal to

zero and, therefore, U, the gravitational potential function, is given by

U =t-x _., + 3 r---_ (/-3_2E7) _ r_.(._Sc.oo_'@ -30c.oo20+3 (1.8)35

._ . "].I.°Trtmcating this e:_oansion at J and substituting the restu.o_.g e.._oression for

U into (1.7) yie?ds

Finally, term-bT-te__m comparison of the respective components of (1.6) and.

(1.9) _iv_,s

• l_ "_

I d f__., _
=o

r _d_ e d_

2.3..3.2 Preparato_r Steps for the Integration of the Eqt_tions of ?btion

The angles @ and @ _dere defined in the preceding section. Now, t_._

addition__ angles @ and _ _,d.].lbe defined; both of these angles are me_m_ed

co_n%erc2ocl_¢ise fi__the orbital plane from the direction _, which is 90 ° ahead

of the _,_odein the direction of motion. @ defines the position of the space-

craft in the orbital plane and _ that of the perigee point. The inclination

of the orbital plane to the earth' s eqt_tor plane is denoted by i, and the
instantaneous angle of regression of the node N along the earth's eqt_tor by

-_-"'_e-"fourth _onal ha_nic D is neglected in this analysis.
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F_O_e_

It should not be confused _¢ith the nodal longitude _ v_ich defines the

relative to the vernal equinox.

Jmtn these conventions, the fo].lo_6ng orbital relationships exist:

c.¢/0 = _,, i _ ( g ,"n )

cmo8 =.,d_i _o P" (i,I/+)

(!.15)
==

F!ifferentiation of (1.13) and (I.IA) _-6_threspect to ¢ yields

d _ ,.Q)/(/,, d.Q d (!n6)

z

!

d8 d l,-
-_,_ 8 _ =-_ i _ _

d_ dg
(!.17)

No_r m_bstitutLug for s_u @ from (1.]_5), relation (i.17) becomes

or

dEP d_
- _ =__z;_z" _ (# +/2) --

d_ d.#

--(_8) =.,,_t2 _oC#÷n) d_
d# d_

(!.19)

_" sub +_'_ d/d_b (cot O) from (1.16), relation_.3nally, after s_.±_,ution for

(1.19) becomes

d n d _ ) (i"3__' ..,_ * _9( I + = (!.m)

_'L-_ich,upon so]v.i_Z for ddJ/d_, _.elds

(l.m)
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But, from (1.13) and (1.15)

Thus, substitution of these e_qpressions into (1.26) yields

d2

d _ _ ( c_t E),) * _ _ = - ,2 ( di_ dY)._,u_ O.

dZ32
(1.27)

But, from Equation (1.14)

and

I d_o*@
._ga.,_'e-L" _ ,d._,2'g'

by identity, so that substitution of these expressions and (1.22) into (1.27)
_de]ds

_* { on+/_,, d._n (1._)

2.1.3.3 Integration of the Equations of Motion

Equation (1.12) can be integrated _n a straightfon,mrd manner:

(1.29)

where (h cos i) is the component of the an_Dar moment_unnormal to the earth's
equator,

Equation (!.l!) cannot, however, be integrated in a direct n_nner.

Instead, it,_.511 be re_,_itten in a different form sL_Xtab!efor the purDose of
thi_analysis. First, the tLme derivatives _ill be transformed to derivatives
_,_th respect to • ,
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Ter_,s havJ_ng ,_ or Je2 as a factor are neglected in this ana] ysis and

since dQ/d_ has J as a factor_r_", (dQ/d_)2 is consequently neglected.

'D ercfore, the follo_,__ng appro_,at.iions are introdnced:

d_
(i+ --

dY d_ (1.23)

dZD dV

d _-z (L24)

Oifferentiating (] .22) with respect to

d_ _v

which, after substituting fcc _@/d
from (t. 2/,), becomes

d_

d V '_

S_nfi]arly, differentiation of relation (!.!6) _.t,h respect to
d z

d_._ (e._'e) --_.,*L.,,_ (_ ,-n)(/," d"f2 d'l_-,)_

and r_akim_ u,_e of reZations (1.23) and (1.25)

d# d)r d_ _ d#

a_4z
from (].]8) and for a_---_d_

"_-r _ee Equations (1.39) and (I._0).
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(1.30)

Dividing by r s_m2@, (3...$0)becomes

=2.l/J-- u _t _ (1.3])

_ere.u = I/r.

and r4 _elds

•

Thus, substitution from relation (1.29) for r2sin2@, r @,

d I d8

_z

= 2 /_,J _ z h--_ U .,_*.zZ ._d,_Je e.__

Finally, dividing thro_,_h by $2 and using the identity

(z.32)

d / d_) _ d*
d _ ( _,,__ _ d _ = d.-_ i ( c,_t e )

_e].ds

d_ _2
(1.33)

At this point, define

and note that

and

/ I

? a (I- e _)

h* p

#: -- =/_ /,,e c_o(WT,_'
/.,

(i.34)

(i.3v)

(i.36)
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!_t_s, on substituting these e_ressions for _/h 2 and u, Equation (1..$3)

becomes

(1.,37)

,?_.m_oarison of the right-hand sides of Equations (1.28) and (1.37] _Tields• j-- -

d_ d
(1.58)

V_b_ O_J

(L39)

A fSmst order solution for dQ/dO, _¢hich retains terms of O(Je) and

neglects terms of O(J2), can be assumed to be of the form

dI_ =£[/,'eA +O(J-z)]
dW

(1.m)

_{ence

d'_Q d/1

d_r_ = 6 e d] _ (1._)

3ubst_huting these e'_ressions in Equation (!.38) yields

dA
ta_ _ _ + 2 A = 2 c.ao(Y"7_ )

dyr
(1.42)

integratSon of (I.A2) _.th respect to

A:

On _bstituting this _pression for

yields

6.._J. z w

,2

A , F_q1_%tion (]_.Z_0)becomes

(1.4D

d"_" - 3_5,, _ _"
(i. I14)

25



Since A becomesinfinite for n_O.tip3es of 2_, it will be redefin_ by
the follo_dng substitution:

(!.45)

where both u and _ are measured in the orbital p3ane co_mterclock_rise from

its node _fat the earth's eqtmtor; u* defines the instantaneous position of

the spacecraft, and O0 (the argument of perigee) defines the perigee point.

As a res__t of substitutions (1.I_5), relation (1.44) asm_nes the form

(i._)

_£V -_ o _ _o(_,-_) o'_* (1.47)

The first tezn, 21rE, represents the regression of the node due to the

rotation of the orbital plane about the earth's spin &xis as a result of the

earth ts oblateness. The second term, _ eA, represents the effect of the

rotation of the semi-major &xis on the nodal displacement (regression or

precession).

Integration of the second term Jn (1.47) _._.threspect to u* yields

_Tr _ac_

whereA_ is given by Equation (1.87).

Substitution reduces Equation (1.47) to

,gz-v

Ki_g-Hele attaches here the (-) sign because he used (_ + _) rather than

(¢-_) in the basic relations (Z.Z3) and (1.1_).

(1.48)
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It _ow re_aJns to solve the differential eq_ation (l.lO).

2

(z.l_9)

._nis ste_ is accomplished by noting from relation (1.35) that

and from (].IA) that

coo8 =.,_>,zz" _ _"

With th_se substitutions, Eql_tion (1.A.9)becomes

d /

,: =#7 {_--) =

and from Eq_Jation (1.29)

/ d_ (z. 5]0

._ z o (]..52)

At-*.-_:ispoint, _quation (1.21), on using definition (I.AO) for dQ/d_,
reduces to

so that

[ ] (]_._)
=

27



Substitution of (1.54) into (!.51) thus zde]ds

d_
(1.55)

It vms mentioned before that_ in this analysis, terms containing _and

Je 2 are neg]ected. Since du/d_, as derived from Equation (1.36), contains

e as a factor, and E = JL2R 2 cos i, the product_uTd_) -g _ eA _ill have

Je 2 as a factor and is neglected. Therefore,

dT/"
(1.56)

Differentiat__ng (1.56) with respect to t._Jnegive _ as

_" = _c_,,) = )> d CAJ
dt d Y"

(1.5v)

d_ dW 6_" _O_z_ dO (1.58)

But from relation (1.17)

dO
.4g_0 - _._ z" ..,_ P" (1.59)

dk"

and from re].ation (I.5A), after dropping the term _ eA which vrilJ yield

products v&tb: Je2 as a faetor remK[ting from m_Lltiplication by d2u/d@ 2

and du/d@, @ reduces to

(1.6o)

On substituting (1.59) and (1.60) into Equation (1.58),

r" d2_ ' .

)]

is obtained as

(1.6i)
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Since

so that, to the first order, _ is

D2 _rd z_"

d_ .J

and sS._ce from relation (l.ll_)

E 2 = (.7.,2R2 cos i)2 has j2 as a factor, it should be oeglected;

c_oO = ._._d c.+oI:

(i.62)

d2u .- • 2,

(1.63)

du v]i+ -- .<i_'_z'.<_ V" _o *O(J z)
dl"

_e ne_ step is to redefine the te_ r(@ 2 + & 2 sin2@) of Eqt,ation

l _,:l_ Since from (l.!?)

__ "_ _"_"_ _ ',; (1.64)

and from relation (1.29)

it foliot-.rsthat

_,'f+ _'z ) (1._G)

T_]usj substituting for _ from (!.5/_) and neglecting E 2 yields

_ _F/_zz :__ _z z
:-:D'5_:.<.'o): £,_<,Lt _ + ._---D/

+ZE (1* e A )..,,_ L .4._ * z" .._J_ "_I,"]

£Cqce s_n2i cos2Vz = cos2@ by re]ation (I.].L)_the first term in the

brac]:ets of F_quation (1.67) reduces to

_u,_.#d -._v._ aZ _* _ _ <_,"

I-_;_ mz" _o_
=I

(z.67)
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ard, therefore, Equation (]..67) becomes

(i.68)

Subtraction of (1.68) from (1.63) _Tields

(i.69)

_,_ere

_C_mparing (]..69) v6"th the right-hand s_de of (1.50) and dividin_ through

by h2u 2, ore has that

(i.7o)

To solve the differential Equation (1.70), a partic_ar solute_on in the

follo_-dm.g form is asmuned:

[ ] '= L l + e c._o < W-,_ J + O'v +Jew = (i.71)

where v and w are functions to be determined.

Differentiating Equation (1.7!) tw_'.ce_ith respect to @, and denoting

the derivatives of _, v, w by primes,_ie_ds

(I.72)

ere (i - _,)2 _as appro_vimated by (l - 2 B!) because ( _,)2 is of order

30



kdditio_ of (_!.7!) and (1.72) z,_elds

d y-Z * u = L c_o
(1.73)

_u.t, s__mce u au_ its derivatives, on the right-hand side of Equation (1.70),

a_.-effndependent of v an_ _¢, it is given in t_e fo_1

z_ = L I l _ e e._o ( _ ;,d )_

sub_titutin_ u &nd its derivatives fror.lre].at_on (1.74)_, _ in the

ri_ht-hand side of Equation (1.70) prod_.ces

-2 Jl_ IPz[- e c_o (w-_ JC/-_,z_zz c_oz_ )

-_ (_-,x_) ._._2z ._ 2 W"
2

÷ I,, e c,,o(_r-_dJ._b,_Z_z_'+eA _._z_" 1
_-_]_.retbe te_u e2A cos(_-_ ) l,_s neglected because it is o_" order Je2.

The e__-pression tim.(1.75) _._lllbe re_mitten_s follo_,_,

+JL __P_ _;_ (V-._)_;_ __ _._ 2 _"-2 JL _/2 z_ A ._.z_ _ ._,_ _ _ -

_ich can be further simplified

L ,"

,JZ _Z e .aE_ (W-/d)._,t2z_ 2 _" -2 JZ al2Z eA .az_ zl ._zi,ez _"

_uating (1.73) and (1.76) and dividir_ through by L_rlelds

2/# " e c_ ( V-,_ ) +,d _e___ ( W-,,#) + J Cv " ,, v) + Je (w " + w)

JZ z,_r

*JL*R% [c_(W-,d) (5-m_o _'-/- 3.___ _i e._o_ _')

+.,_ (V-zaJ._,,_'L _;,t2 V - 2/I _ _ z'.,_ _" V]

-_ Holding fl constant,

(_.75)

(i,76)

(_.77)
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Since v is the change _n radial distance arising from the second-order

solution in v_ich terms having Je as a factor are not retai_d, _solation of

J(v" + v) from Equation (1.77) is accomplished b_r dropping the Je terms _,
so that

Z 2_ 2 ez"
v" _v = 2-(J-c_o -3-.,_Z,_'_ir_.,_o2W ) (]..78)

Assuming a partic_Jlar solution,

v:A+ Sc_o2_" (z.79)

s_nd dSfferentiatJmg twice

v"=_v/S c_o 2 w-

whence

Substituting v" and v into Equation (1.78) _ie!ds

/ 2/P2(S c._2z._3 ) -
2 2

A __

Z ,_Q z
(,5e._2i -3)

2

Z2/_ 2
8=

6
so that a pa_icv!ar solution of _q_at._.on (1,78) v_ll be as follows:

S e.oozi
V =L*_2 z [

2
_2L' ]÷ - d_o2 1,r

6
(1.SO)

Substitution for (V" + v) from (1.78) in Equation (1.77) yields

(1.81)

-:,_ _' and _" are functions of J.
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m_ere, from _uation (1.43),

/

A= 6.<_,_._W ,_o (3w-,_)]

(!._2)

(1.8.3)

t,omb.nl_i_ (1.82) an4

so that Eqt_tion (i.81) _'_II assume the form

(I.81L)

At this point, King-He!e ngtes that tl_ere is only one way to split

(1.84) 5nto t_o parts _,_thout produc£ug d_ver_ent solutions for Bi and _'U

that is,

,3
(_.s6)
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_q_ation (1.85) is linear and of the f4rst order _,_th r_speet to #'.

2,6"c_o ( t,,._J ,,.6 ".<_ <_"-AJ =o

C

c" 2c

_ " _,_ _( _-_ ) _ 3C_ _A J c_ ( _-_ )

C' . = JZzR 2 (6-_oz-I) _ (V-,4)

U : <.TL2_Z(S_._,oz,"-IJS.,<_ (V-if) C,_(VI/6'J dlg">,-/<'

c]Lz/_z

_" UL'_'_(6"c_o2Z -I) ÷
2 .,<_2CV-,,a)

ZiG) *_il d _ _.jZ2_z (Se_o 2z"-I) =

,QEv ,qEV (1,_)

_TO_: The arbit.ar_j constant K was set equal to zero to avo._d infinite values

for _fl at the l_mi_s 0 and 2_.

T_u order to integrate _quation (1'86), a partiC_llar solution is assumed

of the form

w = K _ (3 _-,a')

w" =-9k" _o ¢3_'-,d)

3

_ _=_- 90 ° according to relation (1._5), fl' = _i a_.d _fi= _.
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2_

5/. z

2+" (_.s_)

.Te(w) is the third-order change in radial distance, whereas Jv is the second-

order change. See Equation (1.TJ). Je(w) is of oscillatory natnre v_th a

oeriod equaloto 1/3 orbital revolution _di_ _qitude oro_ort_onal to

(5/2_ Xe sinai). Jv consists of two parts: (1) linear constant% change over

a revolution: (2) oscillato_r change v_th a oer!od equal to 1/2 orbital

Equation (1.71) _,d_ll now be rewritten as follows:

/ £ [/+e geo(_-,d)]÷JZ (v+ew)
I"

(i._)

;qem_mbering that the flmction v is independent of Je (see cor_ngnt

foi_o_dr_g Equation (1.77)), and that Je 2 terms are not retaSmed in this

analysis, Eq1Btion (1.89) can be _,mitten as

' [ ][ ]- =t l+ee_o(l_-,_) l*Jv_Jew
P

(_.9o)

g'mt from F_uation (1.7_)

_lerefore,

L[i+ /
(1.9i)

''[--=-- l+Jv+Je
P

(1.92)

r'_ G [l -Jv - Jew]
(1.9_)
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_ere

v = L.e,Qz [ 5e.o,oZ.'' -,3 + .,,w.;_z,:'
2 6 (1.9A)

z'_.,u_ z_• e_o f,..°_-,_)
W =2"_ (z.95)

Substituting relations (1.gJ-0 and (1.95), Equatio_ (1.93) can, therefore,

be _,_itten in the fol]_o_iug form:

r = ro [l_jL2p2 ,3-coo2i-,3 ][/ drZ2_ 2 q "2 6 ".,o¢._ zZ" Coo 2 _ (-,9o)

2z/ -j
where

2

represents the constant part d_e to the distort.ion of the central force fie]d.

2.1.3._ Suzz_ry_ of the Change in the Orbital 21ements

2.1.3.1!J.1 Argument of Perigee and __ode

The change in the argument of perige% A_ , is given by Equation (1.87),

/16o

_OEV
- _JZ_,@2(,5-e.#o_z'-I) ,e,_o. (1.97)

The regression of the node, A_2 is given b_ Fxluation (1.&8),

_._ere,

= JL'lPZcao i (3.99)

and

/ /
.Lt _ --

p ao (/-e D
,a-r

: 36



2,1.3._.2 P_d_a! Distance

q_,_,_ relations (!.Z_5)

= Z,_'- 90 °

Z_ = co - 90 °

qua_lons (!.80) and (1.88)-x_to be _itten as functions of the argu-
ment of latitude u_-. l

V =L_ z [ d-_*z'- 3
2 ---_- Cm_2L< (non-_imensionaA) (l.lO0)

w - 2z _o (3# _- _) (non-dimensional) (i.101)
24/

The magnitude of the perturbed radius vector is obtained from Equation
(1.96). Defining

•ich ere

_,ie.Tdsfor r,

r_ /+ c c_o (u *'-_-,)

6 2_7
_(Su'_ (1.103)

_ that

.dr = r- _ =JZ_zI_2F _L_:_
6

_._here_, as given by Equation (1.102) represents the constant change in r
due to the distort,ion of the central force fie].d, and the terms within th°e

brackets represent the periodic oscil3ato_ change ¥_th respect to the con-

s_ no paz%.

<_ or F_uations (1.94) and (1.9_)

3_
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2.1.3.i.3 Ioc!ination

King-Hele does not 4erive an axpression for the periodic change in the

orbital, inclination i. F.owever, his theorT is easS13T e_e_ded to cover this

change.

From Equation (I.II), the %tegral (1.29) and relations (1.13), (l.lA),

and (1.15), it follows that

(1.105)

_[ow, from the geometry alone

di d _ /_ z

.moon relat_o_ (!.!2:) and the fact that @ = u-',"- 90 °

c_o_ = _ L c_o _-=___

Therefore, _q_,a+.ian (3..].06) ca_ be rm.mit+.eu as

dg _p2

-- - /Z J- :--/r, _ L e._o L _zgz _" l%dt

Th_ tSme arg_mtent is now re_!ace4 b_ the ar_nent of latitude u-,','-b_
means of Eq_ation (1.60), where " E : j(_/p)2 cos i

Substitut_ug (!.qOS) _nto (] .].07) a#d ueglect_ng terms 5n _ _de3ds

dL / _z

da" 2 r)_
(1.]_09)

and s._mce by nquation (1.90)

-x'4_- S_nce

''r- Ll+er__oC_z*-_ I _Jv
r 2o

--.. .....

= _#',-- 90 °, it follows that d_z = du*



P_a]!v, i?tegration _,_.thr_spect to h_,,__;ieJ.ds

-_-r__.oe (3_,%.,)](l_.i.-[!)

2.1 _ }..L, _!oda].Period

_Cinc-He]els approach for the dete_m_a_,5o_ of t.be nodal p_riod, P_ ,

Z_d-tV-

_t _ is given b_ Equation (3..60), vNere _ = jL2R 2 cos i

1,._"

r" 2 2

and r is !_iven bv Vq_mtion (!._9)

(_._o2)

(2_.2._3)

(I. Ll__.)

2 27, -2

2

- 2 _oZN) d_

Usinz the definitions (l.9A) and (]..95) for v and w, and integrating

fro[[ 0 to 2_ _de]ds

(i.uS)

_ cos O = sin i cos _ by ?quation (!.lZl.)
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P_ = 2 7,"_--"*"_/ + 3 _ I I _o 2,•-,5]
7 t Ze -JZ'_" z

where t_e anEtO.ar momentum h _._s ass_ued constant and set =

?.T_t, the average p is derived as the ha_uonic mean va!_e of r,

2_ _ 2 J

(l.m.6)

(l.m.?)

whence

2

Considering the momentmu as non-constant, Po in Equation (1.1!6) is

replaced by relation (1.118)

=27, /, 3_e2_j
2 q

(!.3.]9)

or _u tens of

(z.:mo)

where a is the harmonic meam_ average vaq_me of the semi-n_jor a%is given by

=_za[l_ 2.L2_ 6-_2/-8]
2

The change i_ the nodal, period, _PQ , _s given by

Qp ,3

in which (PQ)o is the nodal period of the preceding revolution.

(z.m2].)

(z._22)
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2:1.4 Anal_tical Development of Kozai's ApProach -

2oi.4.1 The Composite Parts of the Perturbing Potential

Kozai uses the standard potential function of Jeffreys and includes the

tMr& harmonic, since he assumes asymetry of the gravitational field with

respect to the earth's equatorial plane. Thus, the perturbing potential Q

in Kozai's work is given by,

wheFe _)

(1.z23)

A z = J_

_ 2 H,e o (1.124)A, 5

4z

A,I = D,%_

A2 is of the first order; A 3 and A4 are of the second order. Kozai derives the
periodic perturbations to the first order and the secular perturbations up to

the secor:d order. This potential is transformed using the relation 3

.,_ _ =_),_/_'_ u../) (l.125)

(%-here u* : _/+w
ties

is the argument of latitude), and the trigonometric identi-

! I

/ (z,za6)

_e perturbing potential Q then assumes the form,
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(1.12T)

Since u* - 77+_ , where 77is the true anomaly and _ is the argument of

perigee,

(1.128)

In Equation (1.127), the factors in front of the brackets, (a/r) B, Ca/r) 4,

(a/rj_, are multiplied by terms (free from trigonometric functions in _ and

i snd by trigonometric terms expounded in relations (1.128). The former

products yield the secular contribution of the perturbing potential; the

latter products, involving trigonometric functions in 77 and _, yield the

periodic contribution of the perturbing potential. Terms depending on

only, and not on U , are long periodic; terms depending on _ are short

periodic.

In order to separate the first-order secular, second-order secular, the long

periodic, and the short-periodic parts of the disturbing potential, the
harmonic-mean values of the foilo_ing terms are first evaluated, employing the

relations,
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(1.130)

Z_ / e.,_.)-"_ (/+_

2_r o _ r/

27r " r-

. 3_ e2(i._) -''_"
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Introducing identities (1.128) in the perturbing potential (1.127), and

multiplying the terms within the brackets by the respective (a/r) n, yields

[ upon substitution of the mean-harmonic values (1.131) ] , the four parts of

the disturbing potential,

0,-=y'_ <1__/_"(-_ ' .-_,_h)
a 3

S , .+ , . ,

_ZJt _ F _

I l a t "t " %" 2 03)]

where QI is the first-order secular part of the disturbing potential, Q2

is the second-order secular, Q3 is the long periodic, and Q4 is the short-
periodic part of the disturbing potential. Note that Q4 was obtained by sub-

tracting QI from the portion of the disturbing potential (1.127) which has

AR as a factor.

2.1.4.2 Lagrangian Definitions for the Variations of the Orbital Elements

Kozai uses Lagrange's definitions for the rates of change in the orbital

elements and r_ laces the time argument by the true anomaly by means of the

relation,

r Eo,<,- d_;4 (

where h is the angular momentum per unit mass.

The Lagrangian definitions for the variations of the orbital elements are:

da 2 d¢_
- -- (1.133)

dl _a _M

de 1- e z(_ (7_ a_Z _ _ _M _) (1.13_)
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f( #@ I-_ z 8___ l-e_ _ caoL dE2 (1.135)d_ _ -e.JL --+-- = .....
d_ _" k _ _ a_ 7 _fe ae d L

- -- (1.136)dZ _ a_

d_ / a_
-- (i.137)

de d/W (i.139)
dL dZ

NO_E: a, n, e, i, and_maybe regarded as constant on the right-hand sides of

Equations (1.33) through (1.139) except for n in (I.138) and (1.139). In

those later equations, n must be considered a variable. However, it is a

kno_u_ function of time after obtaining the expression for a (seml-m_jor axis).

2.1.4.3 The Secular Perturbations of the First Order

These perturbations are obtained by replacing Q by Q1 Jn Lagrangian defini-
tions for d _/dt, d _/dt, dM/dt, as given by relations (1.135), (1'137),

an l (i°138). To accomplish this objective, the partial derivatives of Q1

with respect to the elements i_ e, a, must be derived.

eL = -izz u_-7 ( t - e x ) "_ L c,,_ L
(1.140)

(i.141)
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=-p -_ </ -_ (, - -_._,___.)

Substitution of these partial derivatives into Equations (i.135)#
_md (Z.Z38) _e].ds,

(I.Z_2)

(1.137),

,(,__<e_, z-_"eQ,):A= _ .

dM A. (/_ 37

(z.143)

First Order

Secular

Perturbations (1,144)

(i.145)

where,

p = ,_ (/-e 2)

2.1._.4 The Short-Perlod Perturbations

These perturbations are obtained by replacing Q by Q4 in Lagrange's definition

for the variations in the orbital elements as given by relations (1.133)

through (1.138). However, the partial derivatives of Q4 with respect to: M,
, i, e, a, must be derived first.

i a

?aJ

(z.z46)

(z.z_7)
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r _ 2 (_+co)

V -'_'_z- r p r

(l.i48)

_ _
p r2 e

3 rZ .(1.149)

aa - _ a'L_r _ /__.;_2 2\r]

r 2

NC_E: The ter_1 _//__ is equal to dM/d_ . Hence, the

integral of this term with respect to the true anomaly )7 will be M.

S_bstitution of these partial derivatives in Equations (1,133) throu_2h

(I.138) and replacing the time argument by the true anomaly, dt = _d_
yields the following integrated solutions in which the argument

m_st be replaced by the limits of integration _o and _l.

d_
$/'/O_OT

6_ 3

(l;15l)

L

T

4?

z



i

I-e _ a_,,+ 2a -_') st
dM,.o,. = _tdL - _ a_

(_.z55)

48



Here, n _s a variable.

_= _ /* -_ =_ /-2

From (i.151) and (1.150), it follows that,

3
Z

2 a /_ a_ ?a i
a** /(/7_-_-

_q

TheL'efore

_:= 7:o+ : _-'a/

(1.156)
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2.1._.5 The Mean Values of the Short-Periodic Perturbations

The mean values of the short-periodic perturbations with respect to the

mean anomaly M do not vanish, except for that of the semi-major sxis a. This

fact can be shown by considering the point where r = a; that is, cos _ = - e
andM = 71"/2 - e.

Az . ..{/-e_

(1.157)

d_,,,,, =- 7 p" C._Z_o Z,"/-_,, 2 <o (1.1_9)

2f _L2_](i.16o)

__ A,/_),4.:_..,_ z .( / /+ _ze" ),_+,,,,,=-_ _, 6--.-_ _ 2,E ._ 2<.., (1._.6_.)

where

The mean value a of a semi-major sxis a is determined from the relation,

a_ _ _ _-= a_,io I- l-j_2z
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&ud the known value of n, which is given by Equation (1.145). Hence,

(i.i_)

_n_ mean values of the short-perlodic perturbations, as given in Equations
(1.157) through (l.161), were transcribed from Kozai's report. The derivation

of these equations, however_ yields resets which are opposite in sign for
_hor_, dishort, and dQshort, and which are of a different form for d_

short
_d _short. Thus, the derivation of these quantities, using Kozai's con-
ditlons,

.<_.u,zj _ = 0

J = i, 2, 3, .0., n

introduced into Equations (1.152) through (1.156), will be reported. Con-
sider Equation (1.153)

t

e o*o(3_ +2 co)]

_e meson value disho1_c is obtained by replacing e by (- cos _ ) and the
resulting expressions by,

-_:" _'__: _-2-[.o2cr,_,_,_ 2_]

_e tenus cos 2 _ (which is independent of _ ) and cos (4_ + 2_ ) are neglected.
_US,
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Next, consider Equation (1.152),

But, since,

do =0
_THO_T

it follows that,

(1.157)

Similarly, consider Equation (1.154)

dX'2sHolr ,_z C_o z" _'

d e

- -_<:?2<<,:-7._:_:.2<.:I2

But since,

3 2

F-M: e_,,:- 7_ _ 2:. ....

and
..a_d2_---O

j = l, 2, 3, ..., n

It follows that,

Now, the mean value of dQ short is obtained by replacing 6 by ( - cos

and the resulting expressions by,
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/

6

,k_e terms sin 2_ (which is independent of _ ) and sin (4_ + 2 _o ) are

nefilected. Thus,

s

/ A_ (i.159)

_e expression for d_ short is obtained by rewriting Equation (1.155) as
follows •

p'_ 2

,3 e

3 -2. e (6__,2_)1:

' 2p

Here again_

__£_j_=O

J = I, 2, 3, ..., n
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Thus, using the condition that cos _ = - e, yields,

,42 / [ /_7(j_ 7 ,

I ii 2\

Now, consideri_ the identities,

_'_' _r =_-I_ 2_f,_,..-_]

_,,<¢-x<ojo_y :f[_ <_¢-<<,>-.,_,_<o]

. <_F,+2o.,,]

and neglecting the terms sin (4 17 + 2 _ ) and sin (6U + 2_ ) yields

(l.Z6o)

Similarly, dMshor t is obtained as,

__s .,.rf._z_,+__'__/::,_.+_
d/14s,._,<,,.

(l.Z6l)
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2.1.4.6 The Long Period Perturbations

_ese perturbations are obtained by determining the respective deviations

from the mean values of the short periodic perturbations, as defined by Eq.
(1.157) through (1.161). There are no long periodic perturbations of the first

orger in the semi-major axis a. The 10ng periodic perturbations of the
r_naining elements are defined as follows:

d<o_ : d6.o, ' ÷_ ,_ (1._63)

dn,°_,, = dn,,,o,, *4n ,-6,n (2.165)

(1.166)

-_ere the _i , _
me_n values

..... , represent the deviations from the short periodic

Ko_a_ does not present the technique he use_ to determine these deviations.

However, through research of the literature on the subject, some useful

clues were obtained pertaining to the way the _li, _le, _l_ , _l_ and
62i, _2 e, _2_ , _2_ are to be derived.

Re technique consists basically of replacing Q by Q3 in relations (1.134)
through (i.137), remembering that a@3/@M = O, and in adding certain terms

to the basic definitions of d Q/dt and d w/dt.

ff 8, :_ _-- (1.167)
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(1.168)

d = / a4_'+! 4,'+-- 8,e
_z' _' dz'\ / de

(i._69)

where,

A2=----_ _C.Z_z"
P

A_ ( 5 z)

(i.17i)

_-- z/ e

(i.l?2)
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The fu_uction Q3' given by Eq. (1.132), will be rewritten in a more convenient
foz_ for the purpose of the ensuing analytical development. As it wasstated
earlier, Q3 represents the long-periodic part of the perturbing potential.

- q a_ e ¢l-e _) _ L._i_ _ (1.174)

(1.175)

(1.176)

(1.177)

From (1.167) and (1.1?5), after eliminating d/dt on both sides,

_/ A_.p _,,

A _ ?v "2 7 8 ( q-,.Y,e_ "V.) Oo

(1.178)

Sim_!arly, from (1.168) and (I.17_), after eliminating d/dr on both sides,

3 _ A_,

-2 (/-e 2) Av e-.wMzZ _ e._
A z 2__ 8 ( z/- J'.,_ *_)
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From(z.169)=_ (i.177),it fonow8 that,

and from (i.172), (i.178), and (i.179), that

o,(._),_,.=(3*.,e_z._,_)._- A2A_-_-_
dL A,_,X_

\8(I,-.F.,_ 24t \ 2 -I,_,,*_/

-- e ._:,,zi _ x'2-8 "%

de A2 p Az p,7

\8 (e s.4_¢i)J\2 -{_ ¢_ J

The addition of (1.180),

2" j (:t.182)

(1.181), and (i.&82) yields relation (i.169).

Integrating with respect to 6), y_elds,

S.4z p; ,.7 q(¢-d'._._ z ) *

in which the argument &) has to be replaced by the limits of integration

and _!"

In a similar manner, from (1.170) and (1.177) that,

(i.183)

_0
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a_d from (1.170) and (i.176), it follows that,
T

,, =)
,-: /-.e 96)_

•?k _ g

,-k _

g_p _ _, "71 8(_.I-6-._,___")

Fro_a (1.173), (1.178), and (i.179),

( -) (_._87) °

Ad_tion of (i.184) t_ugh (1.i87) yields relation (1.170). Integrating this _
restlt with respect to (oi .yieids.

A_ _. [ /,_-.z/._.',"_..,,:,,2,.,.,

-_A p-----_ e 28 /tq-8_i_X_lL 2-_,A,_=_J (i.188) -

iiA_pz ,56

+ 3 Aa(.,_>.zzz'-e'ee.o_'d) e._o_

in _h_ch _he argument _ has to be replace_ by the limits of integTation _)0

The technique for the _etermin_tion of _2i, _2e, _2_ _ 6Z_ _onslsts in the

59



application of the following rule,

dt _L i (i.189)

where f represents any orbital element and the summation represents the sum
of the partial derivatives of ( 3f/ 6t) with respect to the remaining elements.

First of all, the time argument in relation (1.189) will be eliminated in favor

of the perturbed true anomaly )7through the relationship,

df =_S{l+ / _zr. 3 ,... 3 e

Applying rule (1.189) to the orbital incllnatioD,

By Eq. (1.136) and (i.14?),

a_ a_ * _ :s
(i.192)

Replacement of the time argument by the perturbed true anomaly by means of Eq.
(1.19o) _el_.

a_ = I A_ ._._2L',_z 2:_+_)
(8_),.o,. ,,. 2 r/_ (1.193)

 ,-jJ . 2 <f,c..,></ ,

2 P
The first part of Eqo (1.193) represents the short periodic perturbation and,
since the purpose here is the determination of the long periodic contribution
arising fr9TM the perturbed part of the true anomaly, only the second term of

Eq. (1.193) is to be considered. In fact, it represents the function Bi/a_ ,

6O



(1.194)

Since the effort here is concentrated on long periodic perturbations, only

fu1_etions of 6.)are to be retained in relation (1.194). To obtain explicitly

these functions of _, one proceeds as follows,

e,s

4' (1.195)

/ / /

/ /

,r e "3

(I.196)

I_trodu_±ng(1.k95)and (1.1%) inrelation(1.194)one obtains,

(1.1_)

Let _2 i be the long periodic perturbations in inclination arising from the

perturbed part of the true anomaly. Then, the transformed relation (l'191)

can be _u-itten as,

#_o (I.198)

It now remains to evaluate the partial derivatives of relation (1.197),

7

7

_=

R =

i

[

E

Z
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_z _ = _2/ - _5_2_ (12+I/eQ+ 3_2_5_ 2 (1.201)

Substitution of Eqs.

yield s,

_ -

/-e 2

-'I'D)--'I'D)°: <'"°'>_M 8.n

(1.197) and (1.199) through (1.201) into relation (1.198),

(1.2o3)

Using the relation,

d_ s_ul,)R P 2 2.

(1.2o_)

replacing d_ by,

ly : d¢,,_= A, Zd_ (1.2o5)
(_) _ <_,-s.,,z >

and integrating Eq. (1.203) with respect to _, yields,

= - 5 8(q-s.,_ "z ) _o
(1.206)
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2e is determined in a direct mannerfrom the condition that,

(1.207)

_& the known fact that there lame no long periodic perturbations in a.

_-r-,ere fo_"e,

/-_dz COOZ" _
CO,,_,JS T

(1.208)

_ence,

:..o__,__ - v/7-e"- ,_ _ ,_,_ =o

_,e=- _ _,_:"

(1.209)

(1.210)

Substitution of (1.206) into (1.210), yields,

8_e - p_ c(/-'e_)._,/,zz; /4- . coo2c_z/ ( _'- ,:.,_, _z)
(1.21!)

62Q .m_d _2 w are derived in exactly the same manner as 62i.

,4z ( 7- /d-w,Z_ _" ) -,,_ 2 4:
@ f) _, e _ c"° /

(1.212)
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where the argument 6) has to be replaced by the limits of integration

and 6)i"

2.1.4.7 The Second Order Secular Perturbations

6)o

The secular perturbations of the second order with the A4 harmonic are obtained
from Eq. (1.135) and (1.137) by substituting Q2 for Q. To these must be

adled the contribution of the square of the A2 harmonic; that is, the terms in
A2 •

an _ I aq, +A] (T£mM) (1.214)
dt {_,, d &"

dcu - o_L _ * --
dt (gz e _ J *A_ (TE_M) (1.215)

Q2, as given by Eq. (1.132), will be rewritten in the following form,

A,,,
(1.216)

and the partial derivatives required in Eqs. (1.214) and (1.215) are,

_e /-_ ;_ 7 7

Substituting these partial derivatives into Eqs. (1.214) and (1.215), yields,

\d_--%"_", -+_jj",'_p .A 2 (TERM FO_ Zl ) (2.219)
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9)93( )

* / .-- e _ .A" ( TER_28

2/_"

f-O_ cb )

(1.22o)

_ foes not present a derivation for the second order secular perturbations;

not even a hint. His results for the A22 (terms) do not agree with the

_-esu/ts obtained by other theories. At this time, the apparent discrepancies

_ve not been resolved. Kozai's A22 (terms) are thus, transcribed varbatim.

7
=

e 2 3

(1.221)

where a ts glvenby (1.162),

and

/_= _ (I _-_)

and e are the mean values of the inclination and eccentricity over all

periods w_th respect to M and _).

2.1.4.8 The S_n of the Secular Perturbations of the First and Second Order

Eue _-ates of the Secular perturbations of the first order are given by Eqs.

(l.14B) tlhrough (.1.45). The rates of the secular perturbations of the second

order are given by Eqs, (1.219)and (1.220), with the A2Z (terms) defined by
(1.221) and (1.222). Thus, if_and _ represent the sum of the rates of the

secular perturbations of the first and second order,

i

k

z

L

=.
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: * (1.224)
o_Oz_ \ dt 2_o OROG'R

the corresponding total secular perturbations during the time interval t are:

_2t and &'Jr, respectively.

NOTE: In this analysis only the secular rate of th_ flrst.order for the mean
anomaly M is derived and is given by Eq. (1.145): M = H; Mt = Wt.

2.1.4.9 Perturbations in the Radius _nd Argument of Latitude

The perturbations in r and the argument of latitude u* are calculated for two

reasons: (1) for the sake of completeness; (2) the expressions for short

periodic perturbations in the mean anomaly and argument of perigee are, first

of all_ lengthy and complicated and, secondly, they fall in case of very small

eccentricities. Therefore, it is very useful to combine (M, u)) together with

(a, e) in the radius vector and in the arg_nent of latitude.

Using the relation for the unperturbed increment in the true snomaly,

d_ _ r z dM

and differentiating r with respect to 17, a, e, yields,

dr _ r da

a _ _TdM+a a _rJ_ (1.225)

Now, noting that the perturbed rate of the true snomaly is given by,

_ere_

(1.226)
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C/cl = d_s_o_ r

de = des.oR r

dM = dMs.o_ _ 4- -- --3 A_//_e 2 ._._ 2w

8 p_

3 A_

d_ = d_.o_ ' 8 p_ _zg_26_

(1.227)

and that the perturbed rate of the argument of latitude can be defined as

(_n + _ ),

du_= :.a °//_ * -- /+ _._: de *dc,: (]..228)
r

_LIo_s relatioz_s (1.225) and (1.228) to be _ritten _us,

d,- __ ,4all_3 /- t-

/ A2
._ __ _,n_ :._o2 (7,_)
6 ap

_,Y . _. 3

x:L\
(_..23o)

The Stem Total of All Perturbations_.I.4.10

¢ = _ + dCsuo, r - det,,o.r * de, o,.,,

|_
|_
T_

L

=

|
!
i

1i
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co " coo+ cb l + d_s.on_ - dEO$+_omT Y"d/__.Jo_

.(2= _o +_ _ * dJ'2s,_°,,_-d.F2,,o,_I-d.F).o.,,

I_ = Mo * _ t + d M, ,,o,_

where _ is given by (1.162); _ and_ are the mean values with respect to M

and _; _0, _0) MO are initial values from which periodic perturbations
have been subtracted.
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2.2 THZ PERTURBATIVE EFFECTS OF ATMOSPHERIC DRAG ON THE ORBIT OF AN ARTIFICIAL

S ATE LLI

2.2.1 Basic Review of the problem

2.2.1.i Definition of the Perturbing Force

The atmospheric drag is directly dependent on the following factors:

A. The Drag Coefficient, CD: The drag coefficient C D is a function of

the shape of the vehicle, its projected effective area, A, the accom-

modation coefficient _ , and the orbital altitude, h.

B. The Projected Effective Area, A: The projected effective area is a

function of attitude stabilization of the spacecraft.

c. The Mass Variation of the Spacecraft

m_ The Relative Velocity, VR, of the Spacecraft with Respect to the

Atmosphere: Due to the fact that the atmosphere rotates, the velocity

of the spacecraft relative to the rotating atmosphere differs from the

inertial velocity of the spacecraft. Consequently, the drag force

vector will not lie in the plane of unperturbed motion; and, therefore,

all six orbital elements will be affected.

E_ The Atmospheric Density: The atmospheric density is a rapidly decreas-

ing function of altitude with superimposed effects of solar ultraviolet ........

a_d corpuscular radiation in the upper atmosphere regions (above 200 KM).

Ix other words, at altitudes above 200 KM, the atmospheric density is a

function of both altitude and _ime; the dependence on time being

implicit in the form of dependence on the position of the subsolar point .......

and the amount of emitted solar energy (ultmaviolet and corpuscular).

The d_ag acceleration is analytically defined in terms of these factors as

follows,

_o_._-_S o %

wheme B = CDA/2m is the ballistic coefficient; p , is the instantaneous atmos-

pheric mass density at altitude h above the oblate earth's surface; VR, is

the magnitude of V R.

The dependence of atmospheric density on orbital altitude is usually approxi-

mated by %he exponential functional relationship,

-eC_,-4,.l

where K is the inverse of the density scale height (/<"=-P dh) and Pe

is the density at the instantaneous perigee height, p and K are determined as

a function of both perigee altitude and time fPom a p_eferred dynamic model

k

!!

7_

I

!

±

E
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atmosphere. In this manner, the integration of the perturbative effects is

greatly simplified.

In addition to the direct dependence of atmospheric drag on the five factors

listed heretofore, it also depends in an indirect manner on the attitude stabi-

lization of the spacecraft, the rotation of the atmosphere, and the flattening of

the atmosphere. This indirect dependence is implicit through the projected

effective area, A, (and the drag coefficient, CD) , the relative velocity V R and

the term (h-hp) in the exponential definition of the density, respectively.

A. The attitude stabilization: The attitude stabilization affects the

shape of the projected effective area, A, and through it, also the drag

coefficient,C o. The two extreme cases of attitude stabilization are:

"nose-on," wit_ the longitudinal axis of the vehicle along the instan-

taneous velocity vector (0 ° angle-of-attack), and "broadside," with a

90 ° angle-of-attack. All the other cases are contained between these

two extremes. In absence of information on vehicle attitude stabiliza-

tion, a locally fixed attitude geometry may be assumed. Such locally

stabilized attitude yields a (nearly) constant effective drag area.

Vice-versa, by assuming a constant effective area 0 a locally stabilized

attitude is automatically imposed. Maximum lifetime is achieved by

having the longitudinal axis of the vehicle locally stabilized in the

direction of the instantaneous velocity vector to minimize the projected

effective area.

B. The rotation of the atmosphere: The atmospheric drag in a stationary

atmosphere causes the eccentricity, e, the semi-major axis, a, and hence

the orbital period P to decrease secularly (per revolution), but causes

no secular changes in the argument of perigee _ , the inclination i,

and the longitude of the node _2. In a rotating atmosphere, the drag

acceleration vector is out of the plane of unperturbed motion, and the

three orientational elements will also be affected. The effect of

atmospheric rotation is: (i) to decrease the respective rates at which

a, e, and P vary for i<g0 °, and to increase these rates for i 7 90°;

(2) to decrease the inclination i for all orbits; and (3) to produce

secular regression of the node_of the argument of perigee _ .

C, The flattening of the atmosphere: The flattening of the atmosphere,

assumed to be the same as that of the earth, affects the atmospheric

density through the exponential term (h-hp). Since density varies

rapidly with slight changes in altitude, the effect of the flattening of

the atmosphere is rather significant.

2.2.1.2 The Effect of the Perturbing Force on Orbit Decay

The drag acceleraticn causes a distortion in the shape of the orbit and a

continuous loss of kinetic energy of the satellite to the atmosphere. The net

result of these periodically repeated effects is!

A. A cumulative variation of the orbital elements.

7O



A drop in orbital altitude (increase in potential energy) to compensate

for the loss in kinetic energy. Apogee altitude decays at much hlghep

rates than does the perigee altitude. Thus, an initially circulaP opbit

with uniform drag over its entire path will tend to remain nearly circ-
ular and an elliptic orbit will tend to become circular.

2.2.2 Review of the Available Literature

2.2.2.1 General Comments on the Papers Reviewed

":he literature in the field of general perturbations, as applied to atmos-

pheric drag effects on the orbit of an artificial earth satellite, is very

extensive. Unfortunately, many of the papers duplicate one another and differ

principally only in the manner in which the exponential density function is

developed. Furthermome, most of the works do not include all of the factors

which ape pertinent to the pz_blem, such as the Potation and the non-sphericity

of the atmosphere; and some authors restrict the validity of the analysis by
assu_in_ that for elliptical orbits of eccentricity > 0.i, the perigee alti- .

tude _ay be considered constant, and that the uncertainties in the true varia-

tion of atmospheric density a_ g%_eater than the differences between the |
|

results obtained by them and other authors. Practically, except for some super- i

ficiai comments, no attempt is made by any author to discuss the variation of |

the d_ag coefficient CD and the dependence of the projected effectiv e aPea,

A, on attitude stabilization. Rather, they assume these parameters to be
consYant. Further, the variability of the density scale height is completely

ignored and assumed %o be constant (except for King-Hele). Likewise, standard

atmosphere models (mostly outdated) are considered for the determination of

atmospheric density at perigee, Pp , and only as a function of altitude, com-
pletelF ignoring the dynamic nature of the atmosphere.

2.2.2.2 Me_hods and Techniques

he me_hod most commonly used by the majority of authors is that of general

perturbations; that is, integration of the equations of motion by analytical

methods. _e time rates of change of the elements ape defined in terms of the

components of the perturbing acceleration in the radial (_), local horizontal

(_), and orthogonal (_) directions. Three alternative developments may then be

used: expansion in series in terms of the true anomaly g,_ the eccentric

anomai/ E, and in the mean anomaly M. Most of the papers, however, use the

expansion in terms of the eccentric anomaly E. Denoting by _y the secular

changes in any of the six orbital elements, the series expansion in the

eccentric anomaly E yields:

=

=

ii

=

A ¢ --- (CO_,_TA,t/_ D cao"Zd£

g will be utilized as the true anomaly to be consistent with the notation of

the papers to be _eviewed.
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where the coefficients D are functions of the eccentricity , e, and of the

factor J {n_/-4_e 2 co, _/_ n where _2e is the rate of rotation of the atmos-

phere and n is the mean motion. The density is generally appl.oximated by the

exponential function p=_ e "_*-*D) and expanded in te_ns of one of the three

anomalies. When the eccentric anomaly E is used, the expansion of the density

exponential function yields:

where c7- Kae and Q = K REO f sin 2 i. K is the inverse of the density scale

height, f is the flattening-of the earth, REQ is the equatorial radius, i is
the orbital inclination, u * is the equivalent (O + _ _ and transforming the

true anomaly g in terms of E, the density becomes,

it =l n: I

where,

_2

Q:)

Introducing this expansion for the density, p, in the foregoing definition

for AN, and performing the respective series multiplication, yields:

2.2.2.3 Integration Procedures

The basic approach to the integneation of the perturbative effects of atmos-

pheric drag for orbits of relatively high eccentricity is to consider only the

accumulated secular perturbations per perigee pass. This procedure leads to the

assumption that the motion over the remainder of the orbital path is not signifi-

cantly affected by atmospheric drag. In other words, the drag effect in the

vicinity of perigee is assumed to be so m6ch higher than elsewhere on the oribt,

that it is nearly that of an impulse. For this case, which is assumed to occur

when c > 3) the "asymptotic solutions" are used. The result is tha% the larger

c is,the more accurate are the results.

For nearly circular orbits, e is small and c < 3. In this case the

osculating atmosphere remains a good approximation throughout the orbit, all pamts
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of which contribute significantly to the integrals of the changes in the orbital

elements_ and the asymptotic solutions become useless. The integration is,

therefore, performed over the entire orbital path between 0 and 2 7T . The

resulting solutions are called the "General Solutions" and are applied to cases

where c < 3.

_!e Gene?al Solutions for the Case when c & 3

cc_o£
The integrals in _ cosnE dE, in the definitions of the changes in

the orbital element dV (as indicated in the preceding sectio_)l are expressed
by most _uthors in a sequence of modified Bessel functions I _cj of the first

kind. This is usually done by first transforming the powers ncosnE into

multiple angles cosnE and then, using the definition:

7

4ccJ =
t, e.,,_,a"

nf dE

where

d!(i',._,)!
n : 1,2,3,... a

Finally, the hi_her orders of the Bessel functions are expressed in terms of the

zero and first ordeals using the following reduction fommula:

However, these two steps can be combined to express the integrals of

e c cosE cosnE dE directly in terms of the modified Bessel functions of the zero

and first order by the application of the following table:

L

!

J

i

=
=-

l i" <"_c_£d£
£_ fe = I _c)

_!; °" Ec_<,__rd£:I_Cc)
L, co)

C.,



I 2, _ 6 Z_ (C) +
I+ g_ + (C)

The integrated form of the general solutions (c _ 3) for the secular

changes of the orbital elements will then assume the following form:

C ' C _

The Asymptotic Solutions for the Case when c > 3

When c > B, very accurate analytical solutions can be obtained bY cousid-

erlng the accumulated secular changes per perigee pass; that is, by assuming

that the drag effect in the vicinity of perigee is nearly that of an impulse.

This assumption is made when c _ 3. The larger c is, the more accurate are

the results.

The integrated solutions for this case, called the "asymptotic solutions,"

can be directly derived from the "General Solutions" by replacing the modified

Bessel functions Io(c) and Ii(e) of the zero and first order with their
which defined asequivalent asymptotic expansions I_(c) and I_(c), are

follows:

, ec( t 9 75 )Z- _ -" I+--+-- ÷ *
° _ ac 12Bc 2 I02¢c J "'"

e e ( 3 Io# 10S )Z, A _ I 8C 128. 2 102¢C"

or _n a general form

j

L e-Z[I,E(-/)j.1
i; 1

j/ (8,
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As before, the higher-order functions can be reduced to lower order by the use
of the recurrent relation

C,I=4,_ A

After substitution of the expressi6nsf6rthe asymptotic expansions of the

modified Bessel function in the definitions of the "General Solutions," the
exponentials ec and e"c will cancel out, and the "aymptotics solutions"
w_ have the following form:

_ =- (Co_sr/_,_r)/_#_ I(_, + _ a,
6 "J E-" g (c)

,(bo* 4.3 c' 4)y,'(c)]

_ere the coefficients (ao, al, a2) and (bo, bl, b2) have the same
values as before.

I

2.2.2.4 Critical Evaluation of the Papers Reviewed

2.2.2.4.1 The Method of General Perturbations - Bessel Functions Introduc@d
in the Solutions

This method is based on the principle of osculating ellipse with binomial

series expansion in terms of the eccentric anomaly E, and the integrated

secular changes in the or_b_tal elements per revolution expressed in terms of

mod!fied Bessel functions of the first kind of the argument c = Kae:

The Work of T. E. Sterne (Reference 2.2).

Assumptions

E

=
E

The atmosphere is non-spherical and rotates with the angular velocity

C2e of the Earth. The resultant aerodynamic force acts in the direction

opposite to the relative velocity_ R of the satellite with respect to the =

rotating atmosphere. The atmospheric density (P) at any altitude (h) above

the oblate Earth is approximated by the osculating exponential atmosphere -_

_o=Fpe-_h-_p) , where Fp is the density at perigee, hp is the perigee
height, and K is the inverse of the density scale height. The Earth's

gravitational potential is taken as that of a point mass; the factor
= K R_n f sin 2 i is assumed to be < 0.2 in the expansion of the exponen-

t lal form of the atmosphere.

C,_,mpietene ss

Asymptotic solutions for the case of eccentric orbits are presented for

the secular changes in all orbital elements. For nearly-circular orbits, how-
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ever, only the secular change_n the orb_ta! period is presented ("General
Solut_on" type).

Evaluation

All the factors influencing atmospheric drag are included. The analysis

is more rigorous and accurate than the other analyses reported in the litera-

ture. However, in view of Sterne's assumption that Q 4 0.2 and that he

neglects powers of Q greater than 2, his results are somewhat less acct,-

ate for satellite altitudes _ 200 n.mi. This limitation is not considered

serious, however, since the formulation can be easily extended to include

powers of Q higher than 2.

The Work Of F. Kalil (Reference 2.3)

Assumptions

The atmosphere is oblate, has the same flattening as the Earth, and varies

exponentially with altitude. The atmosphere rotates with the same angular

velocity as the Earth. The gravitational potential_f the Earth is taken as

that of a point mass. Sterne's assumptions, that __ <! (ratio of the
rate of the Earth's rotation and the mean motion of the s_ellite) and that

Q = K REQ f sin 2 i is < 0.2 for orbital altitudes _ 200 n.ml., are retained;
the eccentricity is contained within the boundaries of 0 _ e _ O.O1.

Completeness

Only the "General Solutions" are presented for three of the orbital ele-

ments: the semi-major axis, the eccentricity, and the period of nearly

circular orbits (0 _ e _ O.O1). The expansion of the exponential form of the

atmosphere is extended to include powers of Q through Q*, thus making the

results fairly accurate for orbital altitudes lower than 200 n.mi.

Evaluation

Kalil uses Sterne's approach, his technique and assumptions. His work

is primarily an extension of Sterne's analysis to the case of nearly-circular

orbits. For this case, Sterne derives only the solution for the secular change

in the orbital period, whereas Kalil proceeds to derive also the solutions for

the semi-major axis and the eccentricity. In summary, Kalil's paper is limited

to the special case of nearly-circular orbits and does not include solutions
for the Changes in all orbital elements. The solutions ("General Solutions")

for this case could be derived from the "asymptotic solutions" for eccentric

orbits, when expressed in terms of modified Bessel functions, by simply replac-

ing the asymptotic expansions of the Bessel functions with their regular

definitions.

The Work Of P. E. El'Yasberg (Reference 2.&)
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A9_!_9,t_pn__s

_e atmosphere is stationary and spherical, me atmospheric density is

aprroximated by the exponential osculating atmosphere. The gravitational

potential of the Earth is that of a point mass.

Cor_plet ene ss

Incomplete. The theory is limited to the hypothetical ease of spherical

noN-rotating atmosphere.

_¢_ Inat ion

It appears that this work was influenced by Sterne (that is, it generally

follows his approach and technique). Failure to include all of the factors

which affect atmospheric drag, however, restricts the analysis and limits the

secpe. In addition, further assumptions and approximations are made in deriv-

ing the '_symptotic Solutions" for eccentric orbits.

=

The Work OfG. E. Cook and D" G. Kin_-Hele (Reference 2.5)

Ass_mT_ptions

The atmosphere is spherically symmetrical and rotates with the same angu-

lar velocity as the Earth. The air densitz is approximated by the exponential

function p = p_ [ 1 + b(r - rp)2]e-(r-rp)yHP, where Hp and b are taken
constant over a-revolutiQn. The density scale height at perigee, Hp, varies

l_nearly with perigee altitude, Hp = Hp_ + k(z_ - rpe), in which k is a
co,_stant and < 0.2_ the Earth's gravitational potential is that of a mass

point. The orbital eccentricity is < 0.2. The parameter b is assumed to

be related to the constant k, b = k/2H_

Completeness

q_e non-spherlcity of the atmosphere is neglected - incomplete set of

orbital elements. Only expressions for the rates of change Aa and Ax

the seml-major ax_s, a , and the parameter x = ae are presented. The

solutions do not apply for eccentricities e > 0.2.

of

_sluation

Solutions are given for the secular changes Aa, Ax(x = ae), the perigee

droo from its initial position ( rDo - r_, the ratio of the current and initial ........
periods, and for the current time" % add total lifetime tL in orbit for the

cases of: 0 & e & 0.025 and 0.025 a e &0.2. Also, the variations in perigee

drop and orbital period as a function of (t/tL) , as well as the total lifetime

tL as a function of the initial period To, are given.

The analysis is rather cumbersome and difficult to follow. In the process,

n_cz_erous assumptions are made and subsequently modified, so that the intricate
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inter-relationships in the development have to be mastered to follow the

analysis. As an illustration, the original assumption of linear variation of

the density scale height H with altitude is replaced by several intricate

relationships in an effort to show that particular constant values of H for

the entire lifetime may be used. To add to the confusion, subscripts are not

sufficiently defined. In the case of eccentric orbits, the subscript "o"

appears to refer to the zero-t_me conditions; this assumption is difficult to

verify. In the case of nearly circular orbits, it appears that the subscript

"l" is used to indicate zero-time conditions; but again, no clear definition

is given. Numerous approximations are also made without apparent Justifica-

tion. For instance, _n deriving a solution for the perigee drop for the case

of eccentric orbits (_N 73 ), "a" was set equal to ao. Finally, no reason
is given why it is assumed tn_t air density variation follows the law:

p = p_[1 + b(r-rw) 2] e-(r-rp)/Hp , and no attempt is made to introduce the
oblateness of the atmosphere into the analysis.

2.2.2.4.2 The Method of General Perturbations - Bessel Functions not Intro-

duced in the Solutions

This method is based on the principle of osculating ellipse with Fourier

series expansion in one of the three anomalies and the secular changes separ-

ated from the periodic changes in the integrated solutions.

The Work Of I. G. Izsak (Reference 2.6)

As sum_t ions

The atmosphere is spherical, rotates,__with the Earth, and is approximated
__)-5 The Earth's gravitationalby the empirical power function p = pp

potential is that of a point mass. %Up - _/

Completeness

Incomplete. The oblateness of the atmosphere is not included. There is

no distinction between eccentric and nearly-circular orbits. The solutions

for both cases are combined in a single set of solutions.

Evaluation

The assumption of a spherical atmosphere and the approximation of atmos-

pheric density by an outdated empirical power function makes the analysis both

incomplete and questionable. The basic equations for the rates of change of

the orbital elements are taken "verbatim" from Sterne's paper. The expansion

of the density power function by the method reported by Smart (1953) makes the

coefficients of the series in the integrands rather cumbersome. Because of

the use of a power representation for the atmospheric density variation, the

integrals are not suitable for development in Bessel functions. Instead, Izsak

uses indefinite integrals, integrates the rates of change of the orbital ele-

ments with respect to the eccentric anomaly, and obtains a term in E (free

from trigonometric functions) and a series of terms in sin JE. Next, he
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_repLacesthe "free" E by (nt + e sin E), and thus obtains the secular and
the periodic changes. Normally, whendevelopmentin Bessel functions is used,
the respective solutions have the secular and periodic changescombinedtogether.

TheWorkOf Y. V. Batrakov and V. F. Proscurin (Reference 2.7)

Ass_ptions

_e atmosphere is stationary and spheric_j[l_ symmetrical. The air density
is approximated by the function: p = .A(_o_,_ _) , where A and B are con-
stunts. The Earth's gravitational potenti'al is" taken as that of a point mass.

Com___ lel eness

I_complete. Two-dimensional analysis. The rotation and non-sphericity

off tl]e atmosphere are neglected. There is no distinction between eccentric

an_ nearly-circular orbits. The solutions for both cases are combined in a

single set of solutions.

E_¢aluat ion

'_f_eperiodic and the secular terms are separated in the solutions. The

second and higher-order secular terms are only suggested. The power of the

author's approach is weakened by his neglect of the rotation and non-sphericity

of the atmosphere, as well as through the representation of air density by an

outdated and questionable model. The expression for the change in the longi-

tude of perigee, _ , has the eccentricity in the denominator which, fornearly

circular orbits, would make the perturbative variation in the perigee direction

approach infinity.

2.2.2._.3 The Method of Canonical Variables

!Dds method Jf based on a generalization of the method of variation of

a#oitrao_ constants. The equations of motion are defined in canonical varia-

bles, and the development of the drag acce].eration in power of eccentricity

a_i in m_tiples of the mean anomaly.

Th_ Work Of D. Brouwer and H. Gen-lchiro (Reference 2.8)

i

!

Ass_nptlons

_he atmosphere is stationary and spherical. The atmospheric density may

be represented by a spherical exponential model from the perigee height upward.

The @nsity scale height is constant. The drag effects can be linearly super-

imposed upon the effects of Earth oblateDgs_ to the first order.

Com_l_ _,enes s

_o-dimensional analysis, because the rotation of the atmosphere is not
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included. The oblateness of the atmosphere is also neglected. No distinctien

is made between nearly circular and eccentric orbits. Numerous simplifying

assumptions are made. The drag perturbation effects are superimposed to the

solutions of the drag-free problem.

Evaluation

Equations of motion for the canonical variables which are solutions of

the drag-free problem are developed first. Next, the drag accelerations are

introduced and expanded in powers of e and multiples of the mean anomaly.

Finally, the integration is performed by the method of successive approxima-

tions. The Oth approximation corresponds to the solution of the drag-free

problem. The solutions are ve_ lengthly and extremely cumbersome. Because

of the superimposition of the drag-free problem, the solutions fail at the

critical inclination. The power of the author's approach is greatly weakened

by the neglect of the rotation and non-sphericity of She atmosphere, by the

spherical exponential approximation p = p_ e-_(h - hp) of the air density, and

by assuming a constant value for _ , the inverse of the density scale height.

Furthermore, the effectiveness of the theory is greatly reduced by the unfav-

orable series convergence in the case of low perigee heights and also in the

case of values of (_ _ ! ). The analytical treatment is more concerned

with satisfying the c]assical astronomical principles than with actual satellite

engineering needs.

2.2.2.4.4 The Method of Variation of Parameters

This method is based on the prlnc_ples of general perturbations; the

transformation of variables in the basic equations of motion, using either

non-dimensional variables (_ = REQ/r,N = _RE_2)or dimensional# = I_ = h) ,
where h Js the angular mamentum, and the application of the Krylov-Bogoliu-
boff averaging method over a full revolution.

The Work Of E. R. Roberson (Reference 2.9)

Assumptions

The atmosphere is stationary and spherics_,Thea_K density can be repre-

sented by the exponential function p = p_e-aP_Kl/r - ±/_), where p , is the
air density at distance p = a(1 - e2) _rom the Earth's center and K is the

inverse of the density scale height taken as a constant. The radial component

of the drag acceleration is small and may be neglected; the eccentricity is

assumed to be small, and therefore, powers of e> 1 may be discarded.

Completeness

Two-dlmensional analysis. The effects of the rotation and oblateness of

the atmosphere are not included. The radial drag acceleration component is

neglected. Solutions are derived only for the decay of eccentricity with the

semi-latus rectum p, the decay of the semi-latus rectum p with the true

anomaly, and for the "growth" of the true anomaly with time. The analysis is

applicable only to nearly circular orbits.
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_'aluat ion

The analysis is not rigorous. It does not include all of the factors

affecting the drag forces which are assumed to act tangent to the path of

motion. The angular momentum is assum@_constant. The atmospheric mode], used

is outdated (Kallman, 1952). Powers of the eccentricity higher than one are

neglected in deriving the solutions; thus_ the solutions apply only to nearly-

circular orbits. The preliminary solutions for dp/d_ and de/d_ (where

is the true anomaly), which were obtained by the Krylov-Bogoliuboff averag-

ing method, are subjected to intricate manipulation to derive expressions for

e _nd p by an iterative process. The process requires the use of tabulated

v__!ues for certain definite integral functions. It appears that there is an

error in the solution for de/d_ (Equations 28 and 31). The averaging

K_-glov-BogolJuboff method is questionable, as it leads to the invariance of

the perigee.

Tl_e Work Of B. Billik (Reference 2.10)

Ass_LPtion_s

The atmosphere is stationary and spheric_l. The air density may be approx-

imated by the exponential function p =_ e-K(r-REQ), _rhere pp and K are

matching constants (K is the inverse Of the density scale height). The oer-

igee altitude remains invariant for eccentricities > O.1; for e > 0.1, the

modified Bessel functions of all orders are assumed to be equal in the defin-

ition of the asymptotic solutions.

Completeness

Two-dimensional analysis. The effects of the rotation and oblateness of

th_ atmosphere are not included. Incomplete and obscure deflnitJon of the

constant 0_ Jn the exponential model of the atmosphere. The conclusion

resulting z rom the application of the Krylov-Bogoliuboff averaging method for

the Jnvariance of perigee altitude when e > 0.i is far from being true and

weakens the power of the author's approach.

-i

i
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_z_luation

The author attempts a survey of 30 references listed but limits himself to
E

a brief discussion of about one-third of the referenced papers. The main body

of _he discussion and the analysis are centered on the author's earlier report
dated December 1960 andlisted as his seventh reference. The survey is based

entirely on a two-dimeosional analysis of the drag problem_ the effects of the

rotation and non-sphericity of the atmosphere are ignored. Sterne's paper, i

_fe..ts of the Rotation of a Planetary Atmosphere upon the Orbit of Close

Sa_ellites," is listed among the references_ but it is not discussed. In |

reporting Roberson's solutions for the case of nearly-circular orbits the author 1 7

replaces Roberson'a definition for air density by his own definition, i
P = __ _-K(p - REQ ) . When deriving the asymptotic solutions for eccentri_
_orbits with e > 0.i, the author assumes the modified Bessel functions of all

orders to be equal. All the reviewed papers, according to Billik_ may be used
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for adequate lifetime calculations and the differences between the results

obtained by the various authors are smaller than the inherent uncertainties

in the knowledge of the atmosphere, implying that a three-dimensional analysis

is unwarranted.

2.2.2.5 Selection of Papers for Detailed Development

Two papers were selected for detailed, analytical development. They appear

to be the most outstanding papers in the up-to-date literature for the follow-

ing reasons:

A. They include all the factors which affect atmospheric drag.

B. The analysis is three-dlmensional, very rigorous, and easy to follow.

C. The analysis applies to eccentric as well as to nearly-circular orbits

(including circular orbits).

D. The only simplifying assumption is that ½ (_-_-) , half of the ratio

of the rate of the Earth's rotation and the mean motion of the satellite

is _ 1/30 for close Earth satellites; therefore, ¼ (____)2 is 40.001 of

the leading term in the definition of the relative velocity of the satellite

with respect to the atmosphere and may be neglected.

E. The solutions are expressed in an elegant form convenient for computer

development.

The two papers selected are: "Effect of the Rotation of a Planetary Atmosphere

Upon the Orbit of a Close Satellite," by T. E. Sterne, ARS Journal.

October 1959, Volume 29, No. lO; and "Effect of an Oblate Rotating Atmosphere

on the Eccentricity, Semi-Major Axis and Period of a Close Earth Satellite,"

by F. Kalil, The Martin Company, Baltimore 3, Maryland.

2.2.3 Analytical Development of Sterne's Technique (Asymptotic Solutions)

2.2.3.1 The Acceleration Caused by the Perturbing Force Acting on the Spacecraft

Assuming that atmospheric drag is the only perturbation force acting on

the spacecraft, the vector of the drag acceleration can be defined as follows:

where B is the ballistic coefficient(CDA/m) and _R is the velocity vector

of the spacecraft relative to the atmosphere,

#-- 7- (2.2)
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The _nertial velocity vector V is given by,

where _ is a unit vector in the outward direction of the position vector _,

is a unit vector perpendicular to R in the osculating orbital plane_

completes the right-hand frame.

The rotational velocity vector of the atmosphere, _ATM' is defined as

(2.4)

=

where _e is the rotational rate of the atm0sphere in rad/sec, _qd

tmit vector in the direction of the Earth's spin axis

is a

(2.5)

so that

Substitution of relations (2.3) and (2.6) in Equation (2.2) yields,

/-e_- L/-e_£

+_/_(I-e_E)_ ._ __,o
Ne_:t_ the magnitude VR is Ca!cu!ated,

_z=_ _ I_(ez_._E ./._) _2_,_t_ ('{2e /-_/F-_-_-_°L1

._(l-e_£)x.f2 _ (/-_,_ _)

Now, def_ ning,

d

(2.7)

(_.8)

(2.9)

and s_ostituting into (2.8) yields,

_--: T

:=

=

L
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(2.1o)

/ l+e_L 71 /- e_- +I_l 2
/+e_oE

(I- _ d_o_C)3
(/-.,_ _ ,_..b.._)(2.11)

I ,_ec_o,E

Now, making use of Sterne's observation that _ is always less than 1/15 for

Earth orbits, the function under the radical can be expanded in a series. The
third term will be smaller than ½(_,--_)_; that is < 1/450 times a number

smaller than !. Hence, the third term will avera@e O.OO1 of the leading
term and can be neglected. For the same reason, _ d2 _ 0.OO1. In the binomial

expansion all terms after the second may be neglected so that Equation (2.11)

is approximately

/,',,_E (/-d /e_z/ (2.12)

The vector VR
parameters,

in Equation (2.7) will be now expressed in terms of the

/ - _ c_o E (2.13)

Substitution of Equation (2.14) in Equation (2.1) yields,

where VR is given by (2.12)

I-d (/-_ec__,¢)" 1
I-e _- ]

2.2.3.2

(2.1_)

Rates of Change of the Orbital Elements Caused by the Perturbing
Acceleration

In the previous section the acceleration of the perturbing force was
derived:
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where VR
respect to the atmosphere, as defined by relation (2.12),

_= -B_p fIRE _ eSllV£ _-Vff_-I/-d {l- eCOS)Z).S

is the magnitude of the relative velocity of the vehicle with

I -e 8os£ i_ e COS E-

(2.16)

(2.11)

Thus_ since the inertial velocity vector _ in the osculating R S W frame_

_s given by Equation (2.3):

V = _r_ @@ e31N£+S i_-e-E ) (2.18)
/-eg_S£

the energy change, dE /dt, per unit mass may be found from the definition of

work _Lone on the vehicle by the perturbing force:

d_e = z . =-saS p vR :/+eco E)g
dt 77_

I- d I- e C0S£)7$e e-E7 (2.19)

But the total energy is,

(2.20)

r 7

Thus_ it fo]iows bY differentiation that,

_/a.: .A_.L dE = _ Q.Zd£ 2 d_: _ dE

d7 Z-_ d7 2 d_ _ d7 a _---zd7
(2.21)

A2tef substitution of dE /dt from (2.19) and using the definition of VR
from (2.17)

_//-eZcosej- k / +eCOSE/ dE

The r8%e of change of the angular momentum h per unit mass is equal to the

exte_al moments produced by the perturbing force,

(2.23)

a
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But, the vector h can be defined as

(2.24)

Thus, differentiating Equation (2.24), one obtains

dh= dh W÷h "

Comparison of the W components in relations (2.23) and (2.25) yields,

(2.25)

dA =
de

_zU- e co._E.)s = ,"3 (2.26)

where S is the component of the perturbing force in the direction of

given by Equation (2.16)

5 = - B o_ p VR i _-e2- f - d ( I- e COS £ ) 2]' 77_ J (2.27)

or, after substitution of VR from Equation (2.17)

But, since

h =J.,uaO-eZ) = Mnv/77- ee (2.29)

one has that,

e 'z = /-,h 2' (2.30)

Thus, differentiation of (2.30) with respect to time, yields

2.8 de - - 2/'/_d,# + h do..: - _ 2. d/_ - h (2.31)

* H_ is the component in the direction of -S
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is given by relation (2.22), dh/dt by (2.26) and (2.27), while by

_ _mJ_- _ (2.32)
cL

_u--_ V_Za- =v_-_ (2,33)

o_ de_-2B_ (z-ez)p_+_ ee osE (/-d z-eeos__ _,
dT - -e CO3 £ I÷ e COY E J

•L 2-_F--e9 • Jd

The motion of the node is the same as the motion of the projection. _,of

(angular momentum) on the equatorial plane. Since h_ is perpendicular to

the node, the motion of hp and the node is produced by the component of

_/dt in the direction of the node.

Comparison of the respec_$ive S-components of d_/dt in Equations (2.23)

and (2.25)_ after replacing W by da/dt _ ) yields,*

_d_ : - r_/ (2.26)
de

Applying this relation to the component of_/dt in the direction of the node,

hence)

h 51N_' dfl = r_4/S//V_ (2.37)

o"t

in. r _ sJN u . r _ 5/lv u
(2.38)

d_ _s the angle through which the angular momentum vector is rotated in
time dt

=

_L

Z

_T



But, from Equation (2.16) and the value for V R from Equation (2.17), it
follows that,

z_ec_, dl___(2.39)

Substitution of this expression for W is relation (2.38) yields,

_hus, substitution of the expression for

(2.40) yields,

__ Ba'P-I'_'INZ_ F_e,.C._s=g (,_

(1 - e cos E)2 sin 2u in Equation

,+ L-U
(2.4l)

- 2 eco_÷ (z-c _)co5 j _
The time rate of change of the orbital inclination is related to d&/_t ms

will be shown. Indicating by the subscript "o" the conditions in the unperturbed

orbital pl_ne,

(2._2)

Now, let _ be the inclination of the perturbed orbit relative to the unper-

turbed orbit, i.e.,

But, from orbital relationships,

The term (cos 2_ sin 2@) is an odd function of

nothing to the integral _'"

@ and will contribute
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5J tv /-.o ,51_ U.,_
51M [, -

5/_' tz (2.44)

Solving these three equations simultaneously for cos i yields

Substit.3tion of the expressions for sini and cosi into relation (2.42) yields,

F_n_.].lyj differentiation with respect to time, and taking the limit as

.&_2 _ O, yields,

O_¢,,._IM& _,.,Q.. f I _-_I (2"48)

Substituting the expression for _ from relation (2.40), it follows that

2. "_ Z t

1-51M 2_5//a_@ =/+C05 2&) CDS_.

I(_=-e''-('- " I= t"i- C_..S2[_

so that ¢¢..._, .,O..e.

=-Bo. ,,oz,,

(1-_ CoSg)_

z e')- z eco_ E + (z-_Ocos'_ [
]

The term sin 2_ sin 2@ _s an odd function of

nothing to the integral, fz_"
0

@ and w_ll contribute
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The rate of change of the argument of perigee _ resulting from the motion of

the node (assuming that the in-plane perturbing forces are zero) is equal to

du/dt.

d_ de

From orbital relationships we have that,

..5 IM c; 5iN n fa
- (2.52)

where _ is the inclination of the perturbed orbit relative to the unperturbed

orbit.

Elimination of _ between these three equations yields,

Differentiating with respect to time and taking the limit as

obtains

= 2T o e

AQ--'* O, one

(2.55)

where dQ/dt is given by Equation (2.41).

The subscript "w" in Equation (2.55) indicates that this is the change in

contributed by the nodal motion which is caused by the component of the

perturbing acceleration normal to the orbital plane.

The contribution to the change in _ caused by the R and S components

of the perturbing acceleration in the orbital plane is equal to -(#_/_)_, which

is thenegative change of the true anomaly @ caused by the perturbing accel-
eration. This derivative must not be confused with (d@/dt), which is the

rate of change of the true anomaly @ in an unperturbed Kepler orbit. Hence,

) (2.56)
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_le perturbing accelerations in the R and _ directions (in t_4 Orbital

plnr_c) _Lll tend to rotate the perigee in the opposite direction of motion and

ch_ge the orientation of the velocity vector, which must remain tangent to

the instantaneous osculating ellipse at any time. This will result in a change

d 7/dt of the flight path angle. The rotation of the perigee causes also a

ch_ge Jn @.

From the definition of

"g = TAX/ l+ e coae
(2.57)

it follows by differentiation that,

( 1 81M 8 °_e (2.58)
d _ _ e (c._ o . e) _ e +

cL_ - /, e • + z e ce% e _ _, 1+ e_ +z_ _.ose dt

But since,

I. e"+ z e _ae = (/+ e cos_) Q+e cosE) (2._9)

Eq_:_tion (2.58) becomes,

(2.60)

Hence,

Next, the value of

e _5E

J

dYldt

(l+e coal) _ (2.6l)

in Equation (2.61) will be determined.

If N is the component of the perturbing acceleration normal to the

velocity vector V in $he orbltalplane, then

d_
(2.62)

I
I

L :
L :
L

I
I
[
|
i

7

=

V = _Z_
(2.63)

91



6J/,/ _ =
e 5/,,_'_

/_tCO_zE

(2.64)

(2.65)

Substitution of relations (2.63), (2.6_), (2.65), in (2.62) yields

From Equation (2.16)

= -
,_fE

e sl_E

(2.66)

(2.67)

(2.68)

Thus, substitution of R and S from (2.67), (2.68)and VR from (2.17)
yields,

(2.%)

From Equation (2.35)

_-iI÷_ CO'SE (d_._.e = -_o,f O- _') 5-_ Co5_ / -_

,3.,_e,(I_e CoSEXZC_SE_e_e CO._E)_ _
When relations (2.69) and (2.70) are substituted for dT/dt and

in Equation (2.61), it follows that,

(2.7o)

de/dt
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Since (d@/dt)* is an odd function of E (because of the factor sin E), the

integration of this term over the interval (0, 2_ ) to derive the secular

perturbations will contribute nothing. Therefore, when this reasoning is

applied to relation (2.56), it follows that,

(2.72)

Z.V_" . 4e

e_ a) = = 0

o _ S o
0

(2.73)

Hence, the only change in m over a revolution is caused by the W-component

of the perturbing acceleration and is given by Equation (2.55).

{

=!

!

2.2_3.3 Determination of Atmospheric Density Allowing for Earth Flattening

Vet F accurate analytical approxi_mtions can be obtained by expressing

the variation of the mass density ° O_ in the vicinity of perigee by the

osculating exponential atmosphere,

_: 0,- _p)

p (2.%)
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where p is the atmospheric density at altitude h above the earth's

spheroidal surface, PD is the atmospheric density at perigee, K = -d/dh

log e p ) is the &nv_rse of the density scale height, and

(2.75)

h, = _ (I-e)- ap (2.76)

The radius, R, of the spheroidal earth at any point, whose geocentric

latitude is 8 , is given by

(2.77)

where,

z_- _' (J- _/") _ Z f
A-O__) , - 2-F 0-_)" (2.78)

and where f is the flattening of the Earth.

Thus, R and Rp are approximately

R = G. (/- _:sl-_ s,,J_.) (2.?9)
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In view of relations (2.75), (2.76), (2.79), and (2.80),

(2.80)

it follows that,

Def< n_ rig,

C = ._0-.,_

(2.8l)

(2.82)

Z

K '_sGt _ st_ c (2.83)

equation (2.74) reduces to,

-c(,-co56)
io =p?e

2,. 7..

(2.m,)

_+_here

=

}
m

* In the expansion which follows, the odd powers of sine @ are ignored

because they contribute nothing to the integral_ *_
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Hence,

* -G-" (a.es)

Thus, collecting terms in po_ez's of sin g and setting _,,z_ =/vO7_-_ ._._£
/ - ¢ _o z'"

one obtains
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Equation (2.86) will assume the form,

e cos 2 I

Substitution of (2.88) in Equation (2.84) yields,

(o_.88)

(2.89)

Please note that Sterne retains only the coefficients QI and Q2" His
re_L_oning for doing so is that for close Earth satellites

Q = K R;_ f sin2i < 0.2 t and hence the powers of Q > 2 (which appear in the

coefficients Q3 and Q4) are small, and the error incurred will be only about
O.16 percent. This observation is quite true for orbital altitudes of about

200 n.mi., 8nd the higher the altitude, the smaller will be the error. However,

at 200 n.m_., Q _ 0.5 and not 0.2. Thus, the error resulting from the dele-

tion of the coefficients Q3 and Q4 v__ll be about 3.4 percent. Hence, for
orbital altitudes below 200 n.mi., terms through Q4 sho1_d be retained.

Si:;erne introduces a new variable in the derivation Of the asymptotic

solutions and retains only the coefficients QI and Q2,

(I - _ (-.05£) z

q

[ 2. Y_

Substitution of Equation (2.90),

(2.9o)

(2.92) in relation (2.89) yields,

:[/,o = ,_p e "2. ( /_e )z c :/-e)'_\/-e +I -_ +4f/-e)'/ (2.92)

c = K_e

97



2.2.3.4 The Average Secular Rates of the Orbital Elements

The time derivatives of the orbital elements a, e, _ , i, _ , were derived

previously and are given _oy Equations (2.22), (2.35), (2.41), (2.50) and (2.55),

respectively. The average secular** rates of the orbital elements are obtained

by integrating the respective time derivatives over one orbital period P and

dividing by P. These average secular rates per unit time will be denoted by
a dot and the subscript "sec."

.0. --
5£¢- (2.95)

II

ltt¢c. "i; (,B<,_._,ni. O-ec_a,gl" V/I-e'c_s'¢ -d ;_iL
7_.)7

,@

+ Co5Z_ C2e"-O- zeus6+ (z-eZJ6osa_;q c_E
O- e c.ose),- j

60 = - coax5.A. (2.97)
,ill' c 5&'e...

=;-? (2.98)

"Secular" means monotonically increasing _ith time
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2.:_3.5 Integration of the Time Rates of the Orbital Elements - Asymptotic
Solutions

The asymptotic solutions apply only to eccentric orbits for which c > 3.

The integration of the time rates of change is performed over a revolution of

the satellite. Subsequent division by the orbital period yields the average

rate of change in each orbital element throughout the revolution. It should

be noted that the orbital elements and the parameters d, c, and Qi' appear-
Jng in the integrands of the respective integrals defining the changes per

revolution are considered constant during the interval of variation so as to

n_a);epossible the integration in closed form.

Sterne introduces the new variable_

Z

_qero

so that_

(/-.J.)+(/÷d) e co e= (/-

- (l-_L)+O-d) _ e

or_ _f k is rlefined as

/+,d
'_" -- ('/-- 6{)-/" (14-_) e (2.'102)

99



Likewise,

Finally,

Zy,_×
dE=

_/,-o-_-_
i

d.

(2.104)

(2.1o5)

Combining (2.103),

[(I-d)+O+_)e_se]2

I

(2.104) and (2.105) yields,

y_ , z_t V4"_

A'2/_--V_O-zke_-÷k_ _-,jdy

where

A--

Fo-a)+ c<+,z)e_ ('+_)" -d. /
- _,__, ,-_

(2.106)

(2.107)

Substitution of Equation (2.106) in (2.100) yields, after manipulation

in the denominator)

k_ y2 k'e= "/) dyz --_ (l-Z "6- ÷ c--_z-y
• _8,_ "A I 2 f

-----_ j -Ej,,oj,, ,, o,, _. ,_<_ __,_zs'_ = " /c ( J-Z'c'E- /,) Y " - -C-t( ' "_ ) y-,'` Z c" " /-_ J

Now, expanding the denominator in powers of y2 , ignoring powers

the integrand becomes, except for the factor p ,

' "+ " <'°"
ke , y = I+-- e ;-_'_.,j Y-2-E'Y + c* 4c

(2.:L08)

> 4,
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_herej

4e

= / - 8/:e- __e, (2.no)

s ('J-_")" s- _ e \1-a" / s

Thus, substituting the result of multiplication of (2.109) in Equation

(2.108) y-ields,

4_a2A z +_ Y' + c_ × d/ (2.112)
o

But, from Equation (2.92),

P ---_ e + 2 _, yz l Q, 4a 4Le_ ('l-e) 7- C" ('l-a) z 4" Y4"/- (2.113)

Replacing p in the integrand of Equation (2.112) by relation (2.113),

and m_Lltiplying, _rill yield the following new integrand, excluding the factor
e-y2d_.,

1 +
I + 4q (,-_)']

For the sake of simplicity, the following definitions are introduced,

8Q,

F, = _ + (1_e)_ (2.1]._)

These definitions reduce the _ntegrand given by Equation (2.114) except for
the factor e'Y=dy, to
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g y_+ 3_ y_
/ --P 4c. 3zc" (2.1z7)

So that Equation (2.112) becomes,

Y*),:Zy (2.118)

The asymptotic solutions are based on the assumption that when c > 3 ,

the upper limit V_E of the integral may be approximated by _ without a

great loss in accuracy. This assumption is r_asonably valid since, for large
values of y2 the order of magnitude of e'Y _ is much lower than that of a

polynomial in (y2/c).

Thus, making this approximation,

Now, since the inteRrals introduced can be evaluated as,

0

z 2.

./'E' 3,, =g --Z-
The average secular rate of a can be written as

(2.:E9)

(2.120)

(2.121)
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_Thechangein the period follows directly from asec,

S_larly,

Z_r

• 2B_ @-e")/" Cz÷e _5 t5 (/,,o p _/_ V,__,._. s
G

/ + ecos_']

cr

• _8_ o-e'_r.1 c,-_)+ o+,o e _ r- s EL
d

0- ec,_)( zc_s_ - e- e _s=_)] dE (2.124)
20-eO

Introducing the new variable 2, as defined in Equation (2.90) yields,

zO-e _)

Likewl Se, ,-

(/-_)+(;+=_)ec_5_ = -_)+(,+=_ - O-_)*O+,l)e

e O-c_sz)z]-(_)_''-°1-'*,_¢,__o._][,-c,-_-)-,__,

"" 5.1("'4: /- E-V-_ ) ,-* c z /-e = /-i'_

4E'(,+

(2.126)

103



p

where,

/--/-W..
A = (2.127)

Finally,

[, Y']/-e_c°s=E = l-e= (/-c ,'= _ Z" _-'-E= _ :2.128)

dy

2..C

(2.129)

For the sake of convenience, the polynomial of (2.125) will be designated

by P(E), and the coefficients of the transformed P(E) polynomial (resulting

from the change of variable) will be denoted as follows:

16 eW.,
5=

(J -d] -," Ci +_)e

Using this notation, the polynomial (2.125) will assume the simplified

form 3

-- (2.130)

Combining relations

grand of (2.124), except for p

( I-d)+ O_ol.)eC#Se

Vj-_=c°5_e

where

A-

(2.126), (2.128), (2.129), (2.130) yields the inte-

(1_._ yz. 3,s Y=

me= y= ¢,1. Y_ I/ Y*-
_+7--_"z _,-z'-v/---

_c

0-_I,)+ @ +d.)e

c_y (2.131)

7_

I -_ / -_(' @--
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B

5£c

Substitution of Equation (2.131) in (2.124) yields, after the multiplica-

tion in the denominator,

P o

+ 37.c_. -,

As before, expanding the denominator in powers of y2, and ignoring

po}_ers > 4, the integrand becomes, except for the factor p , ,

-' ( "° 4 [= /++r_ / ..... 4c_- y,_/_ 3__ /+I-e _" _r--- T" S

- "-_ (,-_-'-"__(,""-_4_*__']
,p

= / + ÷. _. :_+_, y*
+--_ Y + sZC"

where, after replacing the parameters _ and

Q3 4_=- e4k.e+.-- I - _"

(2.134)

s by their respective values,

-¢.

Substituting the result of the multiplication of (2.134) in Equation

(2.133) yields,
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p

where, from Equation (2.92),

(2.138)
c_ ___ i]

Replacing p in the integrand of Equation (2._137) by relation (2.138),

and multiplying_the new integrand, except for e-Y2dy_beeomes,

,(_.__o.._,,+_ E¢,°o. (_+,_-)/ + _---y + O-eDw _ ._ O-e)'- 7_-&-_

Defining for convenience,

(2.139)

_=4 + o___ (2.z4o)

the integrand given by Equation (2.139) becomes, except for the factor
e-y2dy,

3zg* Y_ (2.142)

Th_s,

p T#" (2.143)

Again, as before, replacing the upper l_mit of the integral by _ , yields,

i

Sg_ ,o,je 7+_
P ) -o 4-C

o6
×_+ _ Yl _Z(2.144)

The asymptotic solution is obtained by using relations (2.120),
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e -,-- /÷ 8--£,s_c P

The secular rate of the nodal longitude, _ , can be derived in the same

manner, from (2.95), 2ff

• _ (_
o

I'* _

- z _ _5_ + (2-e_)_i_E_ d_

_,o:-p,,,.w-zp¢,-_'_,'- ,,--;_ E_
dE

Introducing the new var:labl.e

(2.146)

(2.147)

y2, as defined by Equation (2.90) yields,

"-"" "1 E'- "" "°"+ _l-_ (/-c,__) = 0-_ '_ U:-;I_ + o-e)"

Lik ewi se,

(l-d), (/_)e_E = (i-_)+ (/+d) l- (l-d)e

= [(,-_)+O+d)e] (I- j_e-_)

I
-- -- I_ _ i., e ] "Q,.

1

_- (I .e

So that the product of (2.149) and (2.150) becomes,

Yje_

(2.i_9)

(2.15o)
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/-/" e 6o5E

Similarly,

z. z yZ_. F.
1

W

-1
2@ = y_ e =" y#[

../.
#-e" g l_e = d= (2.3.52)J

_1-2-
dE = ,I=-_

2C

l yz y÷
_g _ (2.153)

So that,.

I_e zl _i._ ="

f _ "-\4v+-l j (2o15).i - )

,__.,C_.)_JdY
Multiplication of relations (2.151) and (2.154) yields,

' k, rA= - ,',',:_ I + _--_ + _---_)+4" - ×

4-

F:knaZly, multiplication of (2.155) by (2.148) yields the integra_ct of
(2.147), except for the factor p

:__-/,-< _)<,-o_"t,-- / (Z ../-e
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,-- _-c/ + 4 e(5 +a e )l_. e ,. + W 7 z Y- _ l÷e l - e ,_

_f

+ O-e_ _ _IY*_
d Y

Defining for convenience,

ii I -e _"

(2.156)

(2.157)

where,

_g

 i;7-

,9 _-ej -16 \ _-e,I

(z-e z) (2.158)
4.- 3Z

(/-e) z

/
(2.159)

the i_re,rand of Equation (2.147) becomes, except for the factor p,

;3ubstitut!on of relation (2.160) for the integrand in Equation (2.147)

yields, /2-_

-- - - --- U-d. _1 (1 - e)" -I- z

__-£as an error _n hiS expression for fl
(2.161)
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Now, from Equation (2.92),

P = Pr _ + Y +,--_-_ _ c,-+--'-7"-C-++ Y_+c"c,-+r (2.162)

Replacing p in the intege_nd of Equation (2._61) by relation (2.162),
and multiplying, the new integrand, except for e'Y dy, becomes

, @,-+._,_y.
Finally, defining

, [+;.+.,++,(+.,<.+,+÷ 'zsmLlY* (2.163)
(,-j_j

(2.1694.)

- (2 _,) /zs_.,_ *" /_l -/" _f_ {I "# (2.165)= f':, C,'- '=_" +-e C+,-e>+

the integrand given by Equation (2.163) becomes, except for the factor e'y2dy,

g +" _ "" " (2.166)/,__yZ,__
vc 32C z y

and hence,

-'+++(_° +lr'"+/c,+_4S""(,<'"+'+"'I=- P+ lk I,+i *-_ y -3-_ y d/ (2.167)
o

As before, replacing the upper limit of the integral by_ yields,

O0

_. ,_,X)('+7_f+"(,_+..++..__y s-_y ) J,
o

and the asymptotic solution is obtained by using relations (2.120),

(2.168)

._e (ZgaOe'_"+'2wlI d /-c 62 2_( P,,+* 3_*" 1A +-..- '-2-5; 7_I- ]--_e)(l.e)A i+ <9---$+12.--_o.-;] (2.169)
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The secular changein the inclination is obtained from Equation
7g

<.,:_ p__ J' .__E) _ J--_----_I_E]
O

(2.96),

\ p_ e_o2_ V'l-e_o'E -d l,e _-_l _ (2.]_To)
0

+(Z-e z) c_oX£]dE
_.e integrand of tile first integral is shown for eonven!enee as a produet

of 2 factors: the first factor is:

--(/-d _ +2/__ ?.+

The second factor of the integrox_ (the one _n the brackets) is given by

Equation (2.155),

\i+_ 32c_L \/,--_ +1,_ + I-----e-7)

8e 2 )( +_'11y+]_y. t/-e z/J+(,3 ]_e2

Multiplication of Equation (2.171) and (2.172) yields,

#-

_e _e _ +/4
+ 8 I+e I+_ l'e x I-e "_ )

' (+k3-,--_)-,,i-_j

(2. ]72 )

(2.173)

l_lus defining,

{" l-e _ i l-e l-e _ (2.]_74)
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_( ___<_2_o_ ,_(_(iT)(_-8_')__eJ_e_'_,_($217_
Equation (2.173), which is the transformed integrand of the first integral

in Equation (2.170), except for the factor p , becomes,

J-_ -d J-e J; * _'' y2÷ y+'-_ a2c_ dy (2.176)

Substitution of (2.176) for the integrand of the first integral in Equa-

tion (2.170) yields,

= _ [ Ba£2_
k Pn

where, from Equation (2.92),

f ", u2 + J2 . z/J

_'c " a2_ _ >"J dy (2.17r)

_ _'.,., _1(2.J-78)

Replacing p in Equation (2._177) by relation (2.178) yields the new inte-

grand, except for the factor e-Y_dy,

, (,...,o , , Z ,,o:,(J + _ + _-Y_-'-)Y + s--Tg, - o=---_ 2+___-
(2.179)

÷ y,- g-_l
Defflnlng for _onvenzence,

the integrand given by Equation (2.179) becomes, except for the factor e-y2dy,
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/ +. F,,"'" y,- ¢ F____ )/"
,4._. 3 z c,-."

So that

O

../-

+ r,-y_+ r;-o _]4--T 3zc. y dy
Finall.v, replacing the upper limit of the integral by

(2.182)

(2.z83)

yields,

-/- F,,--_____ y, _ & y_ (2.1_)+c. z2c----_ dY
m_d the asymptotic solution is obtained by using relations (2.120)_

+ J=,'"___i.sF;"] (2.185)

£_aluation of the second integral in Equation (2.170) oroceeds as follows:

¢/"

o

s 2

I -k e go56
r _ . , °

, _ e integrand of this integral is exactly the same as. the integrand of
Qbec given by (2.147). The only difference between Qsec_ as defined by

Equation (2.147), and (_sec) part is in the coefficients preceding the
respective integrals. The former integral has the factor sin2_ and the

later has the factor sinicos2_ . Hence, wheu this difference is accounted

for, the asymptotic solution of integral (2.186) is obtained from that for

Qsec' which is given by Equation (2.169),
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Hence 3 the total perturbation in orbital inclination amounts to,

(2.188)

 oc,,-, ,°he,ot t

+ cos2 /,'-----F','.- /j
The final orbit element considered is det'ined by Equation (2.97),

(2.189)

where _sec is given by Equation (2.169).

2.2.3.6 An Alternate Technique Leading to Standard-Form Solutions in Terms
of BesselFunctions

In deriving the asymptotic solutions for eccentric orbits for which
c _ 3, Sterne introduced a new variable 3,.2= c(1 - cos E) to reduce the inte-

grals to a suitable algebraic form for integration.

A simpler and more elegant technique can be used by expanding the inte-

grands directly in powers of the eccentric anomaly, E m and expressing the

solutions in terms of modified Bessel functions of the first kind ,Io(c ) and

Il(C ) of the zero and first orders. Using this technique, the solutions are

expressed in a standard form which is applicable to both eccentric orbits

("Asymptotic Solutions") and nearly circular orbits ("General Solutions").

Indeed, to obtain the "Asymptotic Solutions" for eccentric orbits from the

standard form of solutions, the modified Bessel functions .Io(c ) and Il(C),

are replaced by the corresponding asymptotic series expansions. Likewise, in

order to obtain the "General Solutions" for nearly circular orbits, the modi-

fied Bessel functions • Io(c ) and Il(C ) , are replaced by the corresponding
regular series expansions. In view of this fact_ it is irrelevant whether the

analysis is originally performed with the "General Solutions" or the "Asymptotic

Solutions" in mind. However, the former concept is more convenient for our

purposes and will be applied here. The "Asymptotic Solutions" will then be

obtained as indicated.

The average secular rates of the orbital elements are obtained by inte-

grating the respective time derivatives over the orbital period P and

dividing by P.

If the average secular rate of any of the six orbital elements ts denoted
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by V , it will have the following general form according to Equations
(2. sec93) through (2.98),

(2.191)

where

aO _ 3 (2.392)

and where powers of cos E > 4 are neglected because the respective coefficients

_ contain powers of e generally of order (n-l) or n. (In Sterne's anal-

ysis, powers of e > 3 are not retained.)

It remains to express the density p in terms of the eccentric anomaly
E. From Equation (2.89),

In the ensuing expansion of the functions of E (which multiply QI and

Q2) in powers of cosE, only terms containing powers of e _ 3, for the first

function, and powers of e < 2, for the second fL_ction, will be retained.

This step _s taken since Q1 and Q2 are of the order of Q and Q2--

respectively.

(2.194)

4-

3
= I + 4-ec_- 2cos_-Se¢osE+Co_+4ecca s (2.195)

With these expansions, Equation (2.193) becomes,
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d c ! oo_P = _ Ie ÷

(2.196)

Thus, substitution of relation (2.196) in Equation (2.191) yields,

(2.197)

Now, the second and third integrals become,

WP

8 _" o* (4-_o e+_,) cose- z,:Voeo_-- z(4% e+_,) e.os sE

(2.198)

(2.199)

The following integrals, modified (regular) Bessel functions Io(c ) and

Il(C ) of order 0 and 1 (first kind), can be utilized to evaluate _sec'

_r

e d_ = 7_ Zo (c) (_._oo)
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_7

C

o

fr

Tf

cosE dE = 77"Z, ( c
(2.201)

_,. ZI (C)_ (2.202)Cos"EolE= 17" o(c) c

f g__ CoZEdE =

f d e-_g 4--co_5Ed_- =
v 0

[ " de c_'_'- _JE d_ =

Multiplication of relations (2.200) through (2.204)by the coefficients

of the first integrand yields the solution of the first integral in Equation
(2. L97),

= /_' [/O(o÷_z +_. _- +. c-._z ).2-°e (c)

(,_ ,_,. _,,,,.,,.+ .2_r, _'_*'lz(c)-] (2.206)+ , + o_ _ c cz cT)
Multiplication of relations (2.202) through (2.204) by the coefficients

of the second integrandj and retaining only terms with powers of c in the

denominators, yields the solution of the second integral in Equation (2.197);

more precisely, of integral (2.198),
fr
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Multiplication of relations (2.203) through (2.205) by the coefficient

of the third integrand and retaining only terms with powers of c > 1 in the

denominators, yields the solution of the third integral in Equation (2.197)_

more precisely, of integral (2.199),

_r

C

3_ _ (¢ %e+ % _o CcJ-_ (4%e,%J- c

4___.__O_o<,,e + _x, )] _, _ (2.208)

Substituting relations (2.206), (2.207), and (2.208) into Equation (2.197),

and combining all terms v_th Io(c ) as a factor on one side, and those with

Il(C ) as a factor on another side, the follo_ring "General Solutions" are
obtained for the case of c < 3; that is, for nearly-circular orbits,

(2.209)

Tb, +
where

_3 3 c_
+ (2.2].0)

3 (3o(° e"÷ _c_,_+c<_)cg, = (_ _oe._,)- -£ (2.2n)

bl

(2,214)

118



a --_(_ o(o# +% ) (2.215)

In order to obtain the asymptotic solutions for eccentric orbits (c > 3),

the following asymptotic definitions for n = 0 and n=l,

Re_ce, the as_nnptotic solutions are:

÷(bo. °'

where the coefficients (ao, al,
both types of solutions.

a2) and (bo, bl, b2)

(2.217)

are the same for

In order to obtain the solutions for the individual secular changes of

the orbital elements_ it is necessary only to determine the respective

coefficients for each case and introduce them in relations (2.210) through

(2.215). The respective solutions will then be given by Equation (2.209) for

near-circular orbits (c S 3) and by Equation (2.217) for eccentric orbits

(c > 3).

2.2.3.6.1 The _ Coefficient for asec

Equation (2.93) may be rewritten in the form,

D _4 3"

• ;_/
J=

-_ (2.21_)

2-

O- d) (r,- z Je "" " 'e,_,'-Y e ws,q) (_.22o)
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e 2
(/-e 2_E) -_ = /+ -- _o_ - * .... (2.221)

2

and multiplying relations (2.220) and (2.221), neglecting powers of e > 3

and substituting the resulting product in the integral (2.218) yields,

17"

P (2.222)

= I

a

_, = ZO8

e¢. = 0

_ST -Z_o ' (/-,:Z) _

P P (2.223)

When the values of these coefficients are substituted in relations (2.210)

through (2.215), it follows that,

120



je _it. .

gg_ = 2e(j+_)- i e

• _ _ 7.

b, - I+ e_U=,_,.,._ -)- -_e(J÷o+[_ e_EJ_++j+_)

i:>_.= 2e(J÷z)- 2 + '_c. _,e (j,z)

(2,224)

Knowing

relation_
sec3 the change in the orbital period is obtained from the

p = 3
z P

(non-dimenslonal)

+(bo + -E b, + _,.

2.2.3.6.2 The a n Coefficients for
set

Equation (2.94) may be re_rritten in the form,

_ zO-eD (l-
Series expansion in _erms oi cosE yields_

(2.225)

(2.226)
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(l_e _c_s_) _'_ e _
(2.227)

(I-JJ +O+d) e c_sG

J - e _- C.05 zE
= O-,Z3+eG+,LJeose +{_-,z3 co.s_+ _-_6 (2.228)

O-d) ?O,,l) e case\
2.

It will suffice to assume that,

,Z _ d
zO-e*) Z

Also, since d << 1 (approximately 0.06), terms containing e3d

neglected.

(2.229)

are

Hence, the second term in the second brackets of the Integrand in (2.226)

becomes,

Multiplication of (2.228) and (2.230) yields,

(2.230)

(2.2.31)

Addition of Equation (2.229) and (2.231) yields the integrand in (2.226),

except for the factor p,
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_hlls 3

_o = -- (I-d)
2

_, = (l-d) "÷ e"d"
e

_- = -E (I-d) (z,sg)

_, = _ (1+ s,_')
e _

2.

eO_ST _ Z 8,,. ( I - e) _-

P p (_.233)

These coefficients, when substituted in relations (2.210) through (2.215)yield,
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2.2.3.6.3 The a n Coefficients for
see

Equation (2.95) may be rewritten in the form,

- ze cos_ ÷ ('z-eb _5 _E!d_

Series expansion in terms of cosE yields,

(2.235)

(2.236)

O- J.) -," O+d.) e _..5_

I+ e CoSE
= 0-_)+ 2ed a_sE-2_4_._+ ....

(2.237)

*t i - e"CD_ = I - _z cos "_ +-
(2.238)

Multiplying (2.237) and (2.238), it follows that,

I'-1" e C_z_.SE

I.

(2.239)

Fina]i[y, multiplication of (2.239) by the second brackets of the integrand in
(2.235) yields,

- - O-2e_Q-,O-zec_+ -,,z_-T

-t-C÷e'4+esP_s_ "- e (I+_.,-Z]_5*E + ... (2.2_o)
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Where 3 again, the terms containing e3d were neglected.

Substituting relation (2.240) for the integrand in Equation (2.235) yields,

+(_ O-d) - e_ O+_d.))a'5 " "gsed "e :)_-e_*_O__ld_-
2" (2.241)

Th'_s

o4,

P

_ _ 2)- -(! ze O-d_

= -2e

e _.

= Z(I-og) -i (IY-Sd)

- 4 ed 4- e _

= - e"()-t ._,_)

P,,_ (2.242)

3L_stltuting these coefficients in relations (2.210) through (2.215) _ill

yield,

O-e_)O-d)

- -_-."[ , , z o - d )(/- _e'-]
(2.243)
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2.2.3.6.4 The _, Coefficients for ise c

Equation (2.96) may be rewritten in the form,

, =_F8,_o-.._"]
2 i P ( l -c e._oz J Xvi-/;- { J-;2-_-_ j

+ e.ooZ_.,li-e'_c_'_E <i-o';,'</'_')e_E]F,, , i'_
7,,-_Z L/L"<_- '<

(2.244)

However, the second part of the integrand is the s_me as the integrand of

sen in Equation (2.235), except for the factor cos 2_. Therefore, the

respective integrated solution will be the one found for _ sec' except for

the constant term. Hence, the _n coefficients for the second part of the
integrand of Equation (2.244) are exactly those in (2.242) and the correspond-

ing an and bn are those in (2.243).

The first part of the integrand in (2.244) is the product of,

(/-ec_oA-,)'z=I-Z_ #.eoE +¢_c,_ozZ- (2.245)

and a second factor, the expansion of which is given by relation (2.239),

= O-d) - zeo-z,Oc_sE+ e'O-ss,dJC_E + e3co&(2.2.6)

Thus, substituting relation (2.246) for the first part of the integrand

in (2.244), and remembering that the second part of the integrand is the same

as the integrand of _sec in (2.235) except for the factor cos 2_, yields,

r [<,_=,,_
(2.247)

Hence, the o_ coefficients for Part 1 are,
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Part 1

OI.o = I-_

_, - -2e(/-zd:)

Z

£DUsT" Ba 2)..e S j,,4 Z

P 2P_
(2.248)

St_stitution of these coefficients in relations (2.210) through (2.215)

yields

Part 1

_2

bo

b,

b_

e-P..

= (l-E)+ T O-_3E)-

= Zed ÷ se,-(i+ 3d)

= c,-d>--_

= - zeU-z_- )-_-2C,-,3E.)_---
e z

= O-d)--E CI* _d)-_ -

= 2.e - x C/- d.)+ ,,_,__._.e

(2.249)

Attaching to. the sh, bn coefficients for _ in relations (2.243),
the subscript " _ " for proper identification, and _tlplying each of them

by the factor cos 2_U, yields the coefficients an3 bn for ise c by adding
(cos 2_)an2 and (cos 2_)b n. to the corresponding coefficients in (2.249),

that is," _
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Part i

+

Part 2

C_,oZ =

0.1£ =

_ I "L "-

bog =

b,_, =

bgL =

_o + C_o52_ _ZoA

bo ÷ cas zm bo_

bz -I" (_x_S2_ bz £ (2.250)

2.2.3.6.5 The a n Coefficients for
sec

These coefficients are the same as those given for
solutions are related as follows:

_sec" The two

(_)5_: - cosL .6_ (2.251)

2.2.4 Anal_t!cal Development of Kalil's Technique (General Solutions)

2.2.4.1 Reduction of the Time Rates of the Orbital Elements to Integrable Form

The "General Solutions" apply only to near-circular orbits for which

c _< 3. Kalil uses basically the _approach employed by Sterne for the derivation

of the drag acceleration vector, FnD ; that is

z, _ _ (, d
+ _/ _ slJo; _s u O-e c_) _" (2.252)

where VR is the relative velocity of the satellite with respect to the

atmosphere,

(2.253)
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Kalil also uses the same definitions for the secular rates of the orbital

elements a, e, P, as derived by Sterne and sunmlarized in Equations (2.93),
(2.94), and (2.98),

2"3/"

,-ee_-_ r _

_ _i l• (2.255)

D -- _8<_ i/,__;---__ (_- _ de _._
/"#" e

Kalil, however, does not present in his paper solutions for _sec,

and _ For the sake of completeness, however, the solutions for
_e_e three or_talC" elements will be included in this analysis; and, for this

reason, the respective definitions will be transcribed in the form presented

by Sterne by Equations (2.95), (2.96), and (2.97),

0

Z
_gg

P

z_

2o _vVT_"- CP ]J- e '-_ "e

•..t-cas2_ _2_-0-

d i-eoe_.$_\( _-

Z ¢ _$ _"/("- _'_ _l_g I _" (2.258)

(_._e = - C_-_L --_-sc¢.. (2.259)
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Let V sec represent the secular rate In shy of the six orbital elements,

z_

k -# -_o P_ (e) 2E (2.26o)

where f(E) represents the polynomial expsmsion dn powers of cosE of the
integrands (except for p ) appearing under the integrals in relations (2.254)

through (2.259).

Po_ers of cos E>4 are not retained In the expansion of f(E), because

the an coefficients generally contain powers of e of the order of n or

(n-l), and powers of e >3 are neglected in this analysis. In fact, Kalil
even neglects the power e_.

Once again, the density p will be given by Equation (2.89); that Is

z . v .£6

f ...,,_ £ _Sl

J

where the coefficients Ql' Q23 Q3' Q4 are given by Equation (2.87)2

(2.262)

(2.263)
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K_il appears to have three errors2in these coefficients,^which have been
corrected: (l_ in Q_ he has (l^-^e)2 instead of (1 - e_)j (2) in Qp

he has (1 - e_) iBste_d of (i - e_)_j (3) in the third term of the expression

for Q33 he has Q_/24, instead of Q4/4.

The term Q was already defined. However, the definition is transcribed
here for completeness.

where f is the flattening of the Earth and K is the inverse of the density
scale height.

At this point, the functions containing the eccentric anomaly in Equation
(2.262) are each expanded in _ series. However, in the expansion of

[_&_/C/-e_E)] m powers of e_ are retained] whereas in the remaln_ng three

expsmsions, only the first-order powers in e are retained. This procedure

was adopted due to the order of the respective coefficients Qi , i = l, 2, 3, 4.

2

(2.265)
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Substitution of (2.265) into (2.262) yields,

4-- _ _ e _- ¢co s ('5 - _ z c eos'_ +ca_a-t @e eose_

(2.266)

and the

z_

_fF

substitution of relations (2.266) and (2.261) into (2..260) yields,

dt_SE 4-_ CDS_ " eO$_"4-

-/" ,:Z, e.os'F_] dE"
..J

4- O. _ +

- (z.,a° e÷%)co_e-(_%e_-z'Y, e+_)eo_e]dE
2_

Oz ?'" _- 2(,,%e+_e,)e_,'eo "t'C4_o _+'::'¢ ,)C_,_- 2_.,, _

4-_,,_s'_ Y-(4-w,,e4-_,)_s_'_]_ "

+ o

. sot, c_.os$-,,-_(_,x. e-,-_,)_.& - _. ¢.o-_

e_r - (6.%e+%3 eos*__]d_

@.f e e°°_e [o<4 o +C,_,e+%) Os_- *t_omS_-¢fl%_+_,) r-osne

+ _%e.os'_a+ _ (e_Yoe+ %) cos.-._cY, e.os_

- 4t.(e_oe+,:,t,)_s_-t _(ocos_+(8%,e-_,)eo_]alE]
(2.267')
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Note that in the multiplication of the function f(E) which is defined

by Equation (2.261) by the polynomial adjoint to Q1 in Equation (2.266), the

te_s containing _2 e or higher were not retained; while in the multiplication

of f(E) by the polynomials adjoint to Q2' Q3' Q4, the terms containing
_,e were not retained.

2.2._.2 Kalil,s Integration Procedure

Kalil integrates Equation (2.267) in the following manner:

A. The f_ve integrals in Equation (2.267) are combined in one single

integral by collecting terms of the same powers in cosE.

B. The powers cosnE are then converted to multiple angles cos n E by

the application of the follo_dng transformation table:

2 c_o*E

8_f

16 e_o °-f

C. The terms in cos nE of the same multiple angles are collected.

Vt The integration is performed term by term through the use of modified

Bessel functions of the first kind. The individual integrals are

defined as follows
Z_

f ee_ca5 D E JE = 2_I n (C)

O

E. The final solutions are of the form,

_)s (Coast) -g ne°= - p z  'pp e
"i'i=0

n (%)
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where the coefficients kn are functions of an, c, QI_ Q2, Q3 J Q4"

It becomes obvious, from the foregoing presentation of the required

algebraic manipulations for deriving the final solutions, that Kalil's approach

is cumbersome, tedious, and also inconvenient. In addition_the form in which

the final solutions are presented has the following disadvantages:

Ao It involves the modified Bessel functions of all orders. To reduce

the Bessel functions of higher orders to those of the zero and first

orders_ the recurrent reduction formula

B.

must be used, which means additional algebraic manipulations, collect-

ing terms, determining the new coefficients of Io(c ) and Il(C) , etc.

The Q1, Q2_ Q3 _ Q4 parameters do not appear explicitly in a suitable

form for s_-itching off some of them when it is desired, as - for **

instance - for comparison with Stern% who retains only Q1 and Q2 •

Instead, these parameters enter in an intricate form in the An
coefficients.

Ce The fundamental rule that the power of the parameter c, appearing

in connection with Ql' Q2, Q3, Q4_ should never be lower than the

order of the subscript of the-respective Qn, is not obvious in Kalil's
form of the final solutions.

2.2.4.3 Alternate Integration Procedure

For the reasons listed and in order to avoid the inherent, lengthy alge-

braic manipulations, the five integrals in Equation (2.267) will not be com-

blned_ rather, the integration of the individual terms in each of the five
integrals will be perfomned directly (without converting the powers of cosE

to multiple angles) by the use of the table of integrals presented on the next

page in terms of modified Bessel functions of the zero and first orders.

The multiplication of the individual member integrals by their respective

coefficients is indicated at the margin of the table of integrals. There are

five column of coefficients corresponding to the five polynomials in Equations

(2.267). It _lllbe noted that not all of the coefficients of the last four

polynomials appear at the margin of the table of integrals. The reason for
this being that the products of the coefficients of the four polynomials

(having the parameters Ql' Q2' _' Q4 as factors) by the corresponding inte-grals should not contain powers c lower than the order of the subscript
i

of the respective Qn"

The integration is extended up to terms containing cos9E. Kalll neglects

in his derivations powers of e >2. In this analysis, only powers of e > 3

** or if it is desired to neglect the oblateness of the atmosphere in which

case Q1 = Q2 = Q3 = Q4 = 0
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_e neglected, except for the terms having QI as factors (where po]¢ers of

_re not retained) and for terms having Q2' Q3' Q4 as factors (where only
the first power of e is retained).

Using this alternate integration procedure and the table of integrals,

the _ntegrated solutions of Equation (2.267) will assume the following form_

once ,ill terms having I0 8nd I1 as a factor are collected.

2ff

o

_-. = I"o

_se d6 = .T.,

Zl}"

• Io o *)C_._s E d E - ,. -I- + -_ .T 1

l_rr

_o

s,zj

q" _7t.3

Q-J (T)a.

-F Z<_e + _z)

3e4o

?
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j.._w/' ce''s_ s 2 _, . /./ Z + z.+

2..'11"

_e C da S G 6 _ 9

t-lP

! _ Cco.s_ "7

_J e cosEde
/ 17 12.*\

=- _ _!+ -G+ -_ )-T.o

/ Is 1'7_ ?z.o_T

,Z7/"
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' Thus,

_h_._e3

the general expression for the change in ar_v single element assumes the

_- - "---_., _r'_,e _ o.7¢.3 _,%*J_7 a

_ e_ e3__ +--a'Cb'+3--=C_ bz elK_b 3

°-3 }"- _°_ e'-; b,. /_ (c) (2.268)

_3 3_

c a_-

z (a_ e","2.%e+,:,ez)c2, = ( z o<. e , o_, )- _- .

a, = Olo-7 (#<oet,_")
4: Z@

as - (_<oe+_)- 7%' -- C_%e*o_ )
C _

2 8

7 z 48

h = Ca%e+_3-7_o +_ <,_:.e+_}- j go

389-

(2.269)
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2.2.4.3.1 The O(n, an, bn

CKo = I

Coefficients for _sec

_1 = 2je

¢M3 -- je

_÷ -- 0

co_sr = e 8__ O-d) _ j =

l+d

J-d'

(2.27o)

3 ez Z l" 1_e(j+_)- E 0 *J +-i)

w

I
m

2, 1_,,

ze (j+z)- --_f--E_e G + z)

g 3_£
I - /-£ e 6 _-3)+ c--i - c_ e G +_)

C

m
D ee 0" *)- & +

_,;t_. 4-8

_--z"eO*,q- -_. + z,_j eG,,._t)(2.zn.)
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2.2.&.3.3 me

2.2.4.3.2 The an, _ b n Coefficients for Psec

'Eney are the same as for asec, because

h --_p

The constant factor for P is obtained as follows_

an, an, bn Coefficients for ese e

(2.272)

(2.273)

% = _(Id)

% = U d)Z,eZd z

= -_(1"ol)(2 *Sd)%
2

= _ (l"Yd =)%

_ e J

%--E

COA./S T = 2 _0.. ( /-e'2,)

(2.274

e _ eZ(/÷Sd_ ) ,3 e"_
,;Zo = e (I-d)(t,, 3d) + _ -2--_ *27

3
a, = (I-d) z* eZd -2C e (/-of)(6_d)

ed (/_d) _ "_[(/-d) z÷ Zd(Z'd)]az = --_ e

= _[¢/d_ ,_'d<32,,_]aj (l-d) z +eZd (3 -2d) -Eed(I-d) ÷ Z,V z

o,, = _ u u_ _'2[ud;L e'd ('/3d)_+ -E"ed(/ _; U J÷_',J _¥ _d)]
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e3 e 2
___ _+ (l+Sd 2)_ 3 e"

bo =(/-d) _ * (l-Td'D 2c

b, = e ( l-d)(3 *d) - (l-d)2 + c2dJ * _-i e ( l-d) (6 +d)

7Z

_ 241 38_
c---J ed(/-d) + _ [(I d) 2*e2d(z/-3d)]

(2.275)

2.2.4.3.4 _'_le an, an, bn Coefficients for _sec

% = _ (l-d)(l-2e])

% = -2e
e z

_ = 2(l d)-Z(/+3d)

COX/ST = BoD_,,_,_Z_

2_i7_ T

(2.276)
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e 2

-_[2U-d;--__q s-d)]_, = -2e [/+ (I-d)N-2e2)]- 3 3

oz = - (/-d)(/-2e Z) +_ e El+2 (l-d) (/-2e_)]

4' _g [l*3</-d)</-2e'_]_ = - x_ [ / +J </-d) </ -2e _)] * g ('/- o') </-2_ "_)- _ e

24 [/_4(/_dj(/_£eZj]__S(/_d)(/_2e2 )a_,= -(/-d)U-2e 2) ,"_ e

-+--_ e384p,4(/_d)(/_2ez)l

_o -- -2e</-2a) +e3-_</-d) +_-_e_</,3d) 2 _), 8+-_ c (x/d +e -j e _ {/*3d)

B = (/-d) _ (U,d) 3c2(S_d)]

s_ = -.2_[/+.2,'/-d)U-.2e')] + </-U)</-.2eg- _ e

b_---s_[/,_,U-d)</-2_')]+-_</-u)</-2_')-7 _"**[/,_'U-d)U-S_')]

+_8 78B [i,,4(/_d)(l_Ze_)]-_ (I-d)(t-2e 2) - -_z e

z

(2.277)

141

=

=

L

=



2.2.4.3.5 The _n' an, bn Coefficients for _sec

0

% =-2etl-2d) + c._:_2_ * (_,

----- e _

o_z -_ (I-13d) + _ 2 _ _ (OEz

% = e" + e_2_ .(ocj

oF_,.o )

o,.0,,_)

o,,,.d,,o )

8= ..(2e ax._l

e z e3
ao = (l-d)+ - (I-13d)--- +(a o or -_s,_)*_Zu

2 c

3
= 2ed +_-ezf/+3d) + (Q, o# .('1,_: ) * _ 2_o,

ZC

(2.278)

8
'_,z (/-d) C

J 4a_ = 2e(Z-d) - (/-d)_ _-_e(£-d) ÷ (a 3 oF ,:<J * c._o 2_

_ 38¢cz,/ = (i-d) - 24c(3-Zd) ÷ (i-d)
C

o

e (3-Zd) ," (a.,,, o,'.f2s_,J)c_o.z_

e z .2 as
bo = -2e (I-,2o I) .,_3- 2C--(I-13d)+ _-z

*(_ o,:.,_s__) . e_2_

e" jb, = (l-d)---_(l÷3d)- ed- c-_"y e'_(/,,3d) *(b, o,:..Qs.,._.)s* c8o .2_

2. /5
el-d) , e +( z_x x_,,_) .

/6 e +8 96
b, = (/-d)--_- (Z-d) _ (/-d) --_-_ e (Z-d) ÷('_ of A,,<J _ c#o 2co

b_, = Zef3-_d) --_(/-d) + _/'¢4 (3-zd)- _"i8 (/-d)

4-

7_8

c "/

(2.279)
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2.?_-L,'o3.6The an_ an, bn Coefficients for

They are the same as for _ sec because

sec

(2.280)

2.2__-&.4 Reductfion of Kalil's Solution of a for Comparison
sec

K;_lil's original solution for a is given in the following form.
Nee

_,.---28."</-,,';',,z_ ¢-"[4 4 *q4 +¢& +s.4+44 +8s4] (2.28l)

Hovevev, reduction of the higher orders of the modified Bessel functions to

the zero and first orders yields,

(2.282)
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e 2

Q' Q' e'Cj'"*zti" +f2,3 Q"= 2-ce 0 +u-sp c_

4s, Q_
Q_ee <j-z,/,j.+ 2-;+/o5-j=_Oc_ O+s>+Js_

Q_ e (j"+#)8_=ziop

I

0

l

_#_
C

2#

(/" -a)
12//, 16 ]
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Kalil has a typographical error in the first term of the Bq coefficient.

He has (6Qz/c), while the correct form should be (6Q2/c_)_ This fact

is substantial by virtue by the argument that the power of c should never

be lower than the order of the subscript of the respective Qn coefficients.

He also has an extraneous e2 term as multiplier of Q3 in the BA_ coefficient,
which is odd since e2 terms do not have to appear even in connection with Q2.
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2. 3 THE EFFECT OF LUNI-SOLAR PERTURBATIONS ON THE ORBIT OF AN

EARTH SATELLITE

2. 3. I Basic Review of the Problem

2, 3. I. i Definition of the Disturbing FOrce

By the attraction of the disturbing force, both the earth and the satellite

obtain an acceleration in the direction of the disturbing body. Hence, the

specific disturbing force, acting on the artificial earth satellite, is equal

to the geometric difference (vector difference) of the direct disturbing

attraction acting on the satellite and the indirect disturbing attraction

by which the satellite would be acted upon if it were placed at the earth's
center.

The disturbing acceleration Q of the moon or sun is normally defined by_,:_;:_

where r, rD are the geocentric position vectors of the satellite and the

disturbing body, respectively, p is the distance from the disturbing body

to the satellite, G the universal gravitational constant, and m D the mass of
the disturbing body.

Defining by R andD to be the unit directions along the position vectors r

and r D, the vector Q can be written in a more convenient form for subsequent
resolution into components,

The parameter i/p3 will now be eliminated through the use of the law of

cosine s,

'_ The Symbol Q was also used to denote the perturbing potential of the

Earth
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where _b is the angle subtended by the unit vectors l_and D; that is, R. D =

cos _b Binomial expansion of the function in the brackets, now yields the

relation in its most useable form

- (JJ "

3

Substituting i/p from this expansion and setting K = _.zO/G J ,

3/"

',%/ z_ r'o/ \ IJ

where powers of (r/rD) higher than i are neglected. It is assumed that the

geocentric distance r of the satellite is never greater than approximately

1/i0 of the earth-moon distance rD. (If greater distances are assumed,
additional terms must be considered).

I

The disturbing force Q will now be resolved in the directions R, S, W;

where R is a unit vector along r, S is a unit vector in the osculating plane

90 ° ahead from R-, and W is the unit normal to the osculating plane_of the

satellite. If (A, B, C) are the direction cosines of the unit vector D (the

pointirg of the disturbing body), relative to the N, M, W orbital frame of the

satellite, and u;: _ the argument of latitude of the sate'llite, then

5 = -,gz_u'* ,'_u"

Thus, the components of the disturbing force Oin the R,

are,

[= -/_r (I-,3e_o z _) + -_
O

S, W directions
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2\ _1\

w = .slur coo 4-} _ I-s_ 2 (c)

where

2. 3. 1. Z The Effect of the Disturbing Force on Orbital Decay

,The magnitude of the effect of the disturbing body on the orbit of an artificial

earth satellite depends on the position of the disturbing body in its orbit. The

disturbing effect of the sun (or the moon) also depends on the orientation of

the satellite orbit and its nodal position with respect to the orbital plane of

the disturbing body. These effects on orbital precession of the satellite may

support of oppose the effects of each other or the earth's perturbative tendency.

Thus, the apsidal rotation, caused by luni-solar disturbing forces, is by far

more complex than in the case of perturbations caused by earth oblateness.

First of all, the perigee does not move uniformly; secondly, the apogee moves

differently and in a less pronounced manner.

Fortunately from the standpoint of most analyses for close Earth satellites,

the uncertainties in the coefficients of the earth's potential function overshadow

these perturbations, thus they can generily be neglected. However, these

effects become more and more significant with increasing distance of the

satellite's orbit from the earth's center. For highly eccentric satellite

orbits with apogee radius of about I/I0 of the Earth-moon distance, the affect

of luni-solar perturbations on nodal precession and apsidal rotation approaches

rapidly the order of magnitude of the effect of Earth oblateness.

The significance of luni-solar perturbations on the orbit of an artificial

Earth satellite was pointed out by Kozai after a detailed examination of the

orbit of Vanguard I. He found that the perigee height displayed a significant

periodic variation which could be attributed neither to atmospheric drag

effect nor to any of the harmonics of the Earth's gravitational field. Such

perturbations may become particularly significant when resonance occurs;

that is, when perigee moves in step with the sun and the moon. In such cases,

a progressive change in perigee height may amount to the order of 1 NM per
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day over a period of several years. When resonance occurs, the eccentricity

is the most important orbital element, since any change in it affects the

pe_'igee radius, which influences the satellite's lifetime. By expanding the

ex_:_ression of the averaged rate of change of the ecdentricity over a revolution

and including all the perturbing influences in it, G. E. Cook has determined

the 15 possibilities for resonance to occur.

Z. 3.2 Review of the Available Literature

Z_ 3.2. I General Comments on the Papers Reviewed

The effects of the disturbance of a third body on the orbit of an artificial

Earth satellite have been investigated recently in several papers. Most of

these papers, however, are subject to certain limitations or are applicable

to circular orbits only. Some authors (e.g., Spitzer, Reference 3. l)

use the simplified lunar theory and, thereby, introduced the assumptions

inherent to such theory of small eccentricity and small inclination of the

satellite's orbit to the orbit of the disturbing body. Most authors, however,

use general perturbation techniques applicable to artificial satellites, without

lirr_itations as to eccentricity and orbital inclination of the satellite. However,

son_e of these papers give explicit expressions only for the secular terms

[K_)zai (Reference 3.2), Blitzer (Reference 3.3), Lorell (Reference 3.4)]

w_ile others fail to give general results [Musen (Reference 3. 5), Upton

(P_eference 3.6), Bailie and Musen (Reference 3.7)] and concern themselves

with the effects on particular satellites.

Th_ greatest inconvenience of almost all the papers, from the point of view

of applicability and of combining the perturbation effects due to various dis-

turbing forces, lies in the choice of the reference plane which, in most cases,

is taken as the plane of the disturbing body [Moe (Referencd 3. 8), Geyling

(IReference 3.9), Penzo (Reference 3. I0), etc.]. The inconvenience of such

a reference plane increases with the number of disturbing bodies, Since, in

each case, a different reference plane and consequently transformation of

_zariables must be used. Only a few of the papers use the inertial earth-

equatorial system as the reference frame and, among them, the paper of

G. _. Cook (Reference 3. ll) deserves special attention.

As a _e, it appears that all the theories on the subject are of first order,
the assumption being that the ratio of the satellite's radial distance (r)

from the center of the earth to the earth-moon distance (rD) _ O.1, so that

all terms greater than the first power in (r/ro) may be neglected in the

e_ansion of the disturbing function. A further simplification is introduced

by asst_ming that the disturbing body is fixed during one revolution of the

satellite. Such simplification makes possible the integration of the rates

of char_ge of the osculating elements and is justified by the fact that the

_me_u motion of the satellite is by far greater than the mean motion of the

disturbing body. However, care must be taken to assure that the results are

accurate for satellite motions near resonance. For these cases (if not for

all), a time average position for the disturbing body should be employed.
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2.3.2.2 Methods and Techniques

The method most commonly used is an extension of the general perturbations

theory. The rates of change of the osculating elements are defined by

Lagrange's planetary equations in terms of the R. S, W components of the

disturbing force, and the respective changes per revolution caused by the

disturbing force are obtained in closed form by direct integration with

respect to the true anomaly. The great majority of the pepers assume that

the disturbing body is fixed during one revolution of the satellite and, then,

restrict the applicability of their methods to the case when the geocentric

orbital radius of the satellite S 1/lO of the earth-moon distance.

A paper by A. V. Egorova (Reference 3.12), also based on the principles of

the general perturbations theory, uses a degree of sophistication which, by

all standards, appears to be questionable and inefficient. This paper

expands the disturbing function in powers of eccentricity of the satellite

(this step is quite unreasonable for many applications due to the large values

of the eccentricity involved). The author then tires to avoid the

difficulty by performing the integration "by parts" with respect to the

eccentric anomaly and using the true anomaly of the disturbing body as

the variable of differentiation. For the sun, the integration by parts is

done ohly once; for the moon, the integration is done twice. In both cases,

the residual integrals are neglected.

A few authors, like Geyling, use the Hamiltonian approach and present the

effects of the luni-solar disturbing forces in terms of variations in the

satellite's position. The disturbing body in these analyses is not assumed

fixed during one revolution of the satellite. Rather, circular orbits are

considered for these bodies with respect to the Earth.

In all of the papers reviewed, with the exception of those by Cook and Kozai,

the luni-solar perturbations on the satellite orbit are evaluated with respect

to the orbital plane of the disturbing body as the plane of reference; that

is, the lunar obbit plane and the ecliptic. This approach constitutes a

great inconvenience since, for most of the cases of interest, the main

source of perturbation is due to the oblateness of the Earth. For these

cases, it would be necessary to detenTine the respective perturbations

caused by each disturbing body (sun, moon) over a revolution of the satellite,

resolve these perturbations individually into a common reference frame (the

inertial earth-equatorial frame), add the resultant perturbations, and

adjust the orbital elements before continuing the process for the next
revolution of the Satellite.
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2.3o2.3 Integration Procedures

To mske Oossible the analytical integration of the rates of change of the

osculating elements, the disturbing body is as_med to be fixed during one

revolution of the satellite and the time argument in Lagrange's definitions

of the rates of change is eliminated in favor of the true anomaly through the

relation_

F 2

where h is the angular momentum per unit mass and 77 is the true anomaly.

me integration is performed with respect to _ over one revolution of the

satellite. Normally, both secular and periodic terms are combined, but the

two types can be separated at the expense of a reasonable amount of algebraic

manipulations, if desired. However, some authors give explicit expressions

for the secular terms but fail to give expressions for the periodic terms.

The solutions are generally of the first order. However, G. E. Cook does

Include second-order terms for the argument of perigee. It is of interest

that the solutions are functions of the direction cosiness (A, B, C) of the

disturbing bo_ pointing with respectto hhe N, M-, W orbital frame Of the

sa_ellit% where N is the node of the satellite's orbital plane at the

refcrenoe plane.

2.3.2.4 Critical Evaluation of the Papers Reviewed

2.3.2.4.1 The Method Based on General Pe_urbations

Th_ s theoz_g is based on general perturbations principles and the integration

of Lagrange's planetary equations with respect to the true anomaly over a

revolution of the satellite. The perturbations in the osculating elements

are ew_uat_d either in the inertial earth-equatorial frame of reference or

•,_Ith respect to the orbits_ plane of the disturbing body.

2.3.2.4.1.1 The Work of G. E. Cook (Reference 3.11). Assumptions: The

distu_-bing body is fixed during one revolution of the satellite; the ratio

(r/rD) of the geocentric radial distance of the satellite to that of the dis-
tu_bing body _ 1/lO.

Completeness: Complete first order theory with respect to (r/rD) of the
alsturbing function; h_gher orderterms included only for the argument of perigee,

no e_qgllcit ex_.ressions are given for the secular perturbations; rather, they
are c_bined together with the periodic perturbations in the solutions.

The chsnges in the orbital elements are evaluated }r_hh respect to the inertial

eerth-equatorial frame of reference.

_g_l_lation: The analysis is simple, easy to follow, and provides clear

geometrical interpretation of the problem, the solutions are concise and

mes_ingful. The gTeatest advantage of Cook's work lies in the choice of the
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earth-equatorial inertial system as the reference frame. The fact that he
does not separate the secular studperiodic terms is not a serious disadvantage,
since this canbe easily accomplished. Ho_ever, no real needfor such separa-
tion seemsto exist. It would not be a difficult problem even to extend the
analysis to include higher order terms for all of the osculating elements,
rather than for the argumentof perigee only.

2.3.2.4.1.2 TheWork of Y. Kozai (Reference 3.2). Assumptions: The geo-
centric radial distance of the satellite is very small as comparedwith that
of the moon(Kozai does not ssjf how small; however, ratios less than 1/lO
should satisfy this restriction). The first term of the disturbing function
maybe neglected. The inclination of the orbital plane of the disturbing body
to the earth's equator is constant over a year.

Completeness: Incomplete first-order theory, since solutions for the secular
perturbations only are given. They are evaluated with respect to the earth-
equatorial frame of reference.

Evaluation: Anslysis of this paper is hamperedby the lack of definitions and
by the lengthy form of the disturbing function. However,evaluation is further
complicated by the fact that no indication is given as to whether the disturbing
bod_vis or is not assumedfixed during one revolution of the satellite. Finally,
no reference is madeas to howthe argumentof latitude and the nodal_longitude
of the disturbing body (the moon)are to be determined. (The inclination of
the lunar orbit to the earth's equator is defined in terms of the inclination
and the node relative to the ecliptic and the obliquity and is assumedconstant
over a year. This assumption is not encountered in any other theory. ) These
factors notwithstanding, the greatest disadvantage of Kozai's paper is its
incompleteness, since ex_plicit solutions are presented for the secular rates
of changeonly.

2.3.2.4.1.3 TheWorkof J. Lorell (Reference3.4). Assumptions: No
assumptionsare specified in the paper. However, from a comparSsonof Lorell's
results with those for the secular changesreported in other papers, it was
deducedthat the usual flrst-order theory assumptionswere made;that is,
the disturbing body is fixed during one revolution of the satellite, and the
geocentric radius of the satellite r is muchsmaller than that of the dis-
turbing body.

Completeness: Incomplete first order theory. Only expressions for the
secular changesin the osculating elements are presented with respect to the
orbital plane of the disturbing body.

Evsluation: The paper lists only the secular rates of changein the osculating
elements. Noderivations are presented. Neither the assumptionsnor the form
of the disturbing function are spelled out. The bulk of the paper is devoted
to the graphical description of orbit behavior. Thus, from the analytical
point of view, Lorell's paper is of little appeal.

2.3.2.4.1.4 The Workof M. Moe (Reference3.8). Assumptions: The disturbing
body is fixed during one revolution of the satellite; the geocentric radius
of the satellite is __1/lO of the earth-moondistance.
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Con_leteness: Complete first-order theory. Solutions incorporating both

secular and periodic changes are given for all orbital elements, except the

meal _uomaiy. The reference plane is the orbital plane of the disturbing body.

Evalu_tlon: The analysis is simple and based on the geometrical interpretation

of the problem. An estimate of the error due to the neglect of higher order

terTflsin the expansion of the disturbing function is also presented. Both

the periodic and secular terms are combined together in the solutions. If it

were not for hh e inconvenient choice of the reference plane which is the

orbital plane of the disturbing body, Moe's paper would be most appropriate

for engineering purposes.

2.3.2.4.1.5 The Work of P. Penzo (Reference 3.10). Assumptions: rD
(geocentric radius of the disturbing body) is much greater than r (the geocentric

radiu_ of the satellite) and the disturbing body is fixed during the interval
of _riation.

Completeness: A complete first-order theory presenting the combined secular

and periodic perturbations in all osculating elements, with the exception of

the mean anomaly. These perturbations are first evaluated with respect to

the pione defined by the pointing of the satellite's perigee and that of the

disturbing body and 3 then they are transformed into the frame defined by the

orbit_l plane of the disturbing body, the X-axis being in the direction of

the satelllte's ascending node.

Evaluation" The greatest disadvantage of Penzo's paper lies in the inconvenient

and peculi_.r frame of reference with respect to which the changes in the osculating
elerrents are evaluated. The transformation from this reference frame to that

of the orbital plane of the disturbing body and/or to the earth's equatorial

fr_e _s very cumbersome. Further, the transformed solutions relative to

the fo_er frame do not provide a clear geometrical interpretation.

2.3.2.4.2 The Method Based on Hamiltonian Canonic_l Equations

This ohe _y is based on Hamilton's canonical equations and a time dependent

moving coordinate frame always centered at the satellite's position in unper-

turbel motion. The effect of the disturbing force is presented in terms of

va_iations in the satellite's position in Cartesian coordinates of the moving
frame.

2.3.2.4.2.1 The Work of F. T. Geyling (Reference 3.9). Assumptions: Circular

motion of the satellite; the ratio (r/rD) of the geocentric radial distance of

the satellite to that of the disturbing body is assumed small, but it is not

specifies how small (again, a ratio of approximately 1/10 should suffice as an
upper llmit).

Completeness: A first-order theory in Cartesian position coordinates _, _ ,
Z

relative to the moving, time dependent, frame whose origin always coincides
with the position of the satellite in unperturbed elliptic motion. _ points

ralially outward and _ is in the plane of the nominal orbit in the direction

of anomalistic motion, kr_V perturbation in the path will result in satellite

displacenents about the origin of this moving frame. The effect of the variation

r

=

=

!

=
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in _ is to change the orientation of the orbital plane. The effects of the

variations in _ and _, are restricted to changes in orbit shape and timing.

The disturbing body is not assumed fixed during one revolution of the

satellite; and, therefore, the disturbing function is time dependent. No

explicit expressions are given for the changes in the osculating elements.

Evaluation: Geyling's paper may be considered outstanding inasmuch as the dis-

turbing body is not considered fixed during one revolution of the satellite.

Ho_rever, the greatest disadvantage lies in the failure to present explicit

expressions for the changes in the osculating elements. Even more serious is

the limitation _¢hich restricts application to circular orbits.

2.3.2.5 Selection of Paper for Detailed Development

Based on a review of these papers, the following paper was selected for

detailed analytical development, G. E. Cook: "Luni-Solar Perturbations of the

Orbit of an Earth Satellite," The Geophysical Journal of the Royal Astronomical

Society, April 1962, Vol. 6, No. 3. This solution is the result of the
observation that the analysis is complete, rigorous and straightfoE_ard.

Further, the changes in the osculating elements are evaluated with respect to

the inertial earth-equatorial frame of reference msking it possible to combine

these changes with those produced by other perturbation forces.

2.3.3 ___ytical Development of G" E. Cook's Appro_ach

2.3.3.1 The Disturbing Force Due to a Third Body

Let r and rD be the geocentric position vectors of the satellite and the dis-
turbing body, respectively, and P the position vector of the satellite with

respect to the disturbing body, so that,

Z (3.1)

Also, let RS andRE define the positions of the satellite and the earth with

respect to the center of masses 0 (see Figure 2), so that,

154



777s (SATELLITE)

0

CEAJT£_ OF MASSES

Figure 2. Geometry of the Three-Body Proble_

The satellite Is attracted by the disturbing body of mass m D and by the

earth of mass m E . The differential equation of the satellite, including

these t_._ forces can be written as,

"- /# # (3.3)

where raS is the mass of the satellite and G is the universal gravitational

constant. Simllsrly, the earth is attracted by the disturbing body and the

satellite, and the differential equation of the earth, including these two

forces, Is of the form,

-- F

"--: _o + G _, s -_F -- (3.4)_ _D ---G_.° _. r _ r_
o

_=
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Thus, subtracting (3.4) from (3.3), and _ifferentiating (3.2), yields,

r +G(_ + _s)r_ G_o +

Denoting the right hand side of this equation as

and replacing _by relation (3.1), yields,

(3.6)

/ r _ r° / / _

where R and _ are unit vectors in the directions of r and rD, respectively.

Now, from the law of cosines,

p = ro *r -2r% _=ro

whenc%

i+ -z _ :-_ +3
WJ

3 {_ /_5_o2_ (3.8)_-_-

Thus, substituting (3.8) in (3.7) and neglecting powers of (rlrD) > i, yields

wher%

(3.10)
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bn_i _ is the angle subtended by the vectors _ and _D or R and _.

In order to determine cos _ and the components of the disturbing force Q in

the R, S--,W directions (which _ll b_e defined later), the following preliminary

derivations are required: Let_ND, MD, _D be the unit pointings of the orbital

frame of the disturbing body; ND being the node of the orbit of the disturbing

bo_r at the earth's equator_

G = z:-C_°4-2o +J"_Z2o _ k(O)

(3.11)

where i, j_ k represent the unit vectors of the earth-equatorial inertial

fr_e; i pointing to the vernal equinox e.nd k aligned with the earth's spin

_:is. (iD ,QD) are the orientation elements of the orbital plane of the dis-
turblng body relative to the earth's equator.

FIDm the ephemeris, the geocentric position snd velocity vectors rD, rD

of the disturbing body are obtained, from which thepointing of the unit normal

WD is determined,

roxro

W° - i_ x _I --z'Xw * y'y" ÷ _z_, (3.12)

Comperison of the respective components of W D in (3.11) and (3.12) yields_

C_o Zo = _'_

X_,V

_ (3.13)

Since the geocentric vector r D determines the right ascension _D and

declination 8D of the disturbing body, the argument of latitude uo can be
calc1_lated as follows :

e_OZZo = _ 8o e._ (°Co-_Co)

-_ /_/o- _ % (3.14)
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No_¢ the unit direction D of the disturbing body can be defined in the NDMDW D

fr_e,

Substitution of the definitions of ND and MD from (3.11) into (3.15) yields,

(3.z6)

w

Let N_ M_ W be the orbital frame of the satellite; N is the respective node
at the esa_th's equator,

(3.17)

W = L_i _.k_-j_._L_ ,.-_-_:

The unit pointing _ of the disturbing bo_d_r_as defined by Equation 3.16) is

now transformed to the orbital frame N_ M_ W of the satellit% by forming the
dot products of _, by N, M 3 W, respectively.

/t_[ _ a'o d_ (d'_ -d2 o )+ 8_o Lo _ _o _ (d2 -./2 0 )J

+ c_ i C_ Zo _ _'o)]

h __ --

= MA + M8 ," WC

Now the R, S, W directions can be defined in the N, M, W orbital frame of
the satellite,
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where u* is the argument of latitude of the satellite. Finally, the direction

cosines of the unit vector D_ as defined by (3.18) _dth respect to the R, S, W

pointirgs g_ven by (3.19), are

c_o _ = D" I_ = _ e._ u _ , S _P,v_,

(3.20)D'_ =-A_;_ u +Se._ _

D.W =.C

The components of the disturbing force Q, whiah is defined by Equation (3.9),

In the R, S, W directions ean now be obtained by forming the dot products of
and R, S, Wand then making use of relations (3.20). Let R, S, W be the

eon_onents of Q in the directions of R, S, W 3 then,

(3.2z)

_=@.S = (b.5)

=3!Lr{ABc_o2_-_CA_-B ').u;,,_2 _ *

(3.22)
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W-- Q.W
(3.23)

Hence, the vector Q assumes the follo_ring for_1 in the R, S, W, frs_e of

reference. __(A¢ /
..,# / 4_ -- _ . "_ --

+FAB _ 2_: --(/_2-8")_ 2:,],_ ,e( 4 _ , , 8._._,)w
"/ _F 2 J (3.24)I F _ _..r * "*,Zl-

Z\ r_ IL L. J

1 -- --J

Note that the first pa%t of Q represents first order effects; the second part

represents second order effects. Also note that, by Eq. (3.18),

,4= :._O_o e._(.:2-.:2o)+e._oLo.,_ _o .a.c',_(.Q-.Do)

* _' ( _., _, .._ _o )

A, B, C, are the direction cosines of the polnt!ng_of_the disturbing body
(unit vector D) _th respect to the geocentric N, M_ W, orbital frame of the

satellite, where N is the node of the satellite's orbital plane at the earth's

equator. In the definitions of A, B, C, the non-subscrlpted elements i and

pertain to the satellite and the ones with subscript "D" pertain to the orbit

of the disturbing body. All the orbital elements of both the satellite and

the disturbing body are defined with respect to the i, J, k, geocentric
(inertial) earth-equatorial fr_me.

2.3 •3.2 Lagrange 's Planetary Equations

Lagrange's planetary equations e}_ress the rate of change of tl_ osculatSng

elements in terms of the components of the perturbing force R, S, W. R is the

component in the direction of the geocentric radius vector of the satellite,
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S is at right an_le to R in the osculating plane, and W is normal to the

osculating plsme,

ale l_grange equations are:

d_

dt _ T*

oz r c_o 4L

dL _

dF _ Z
Z/

(3.26)

d_

where h is the 8mgular momentum per unit mass, n is the mean motion, u* the

argument of latitude, and _ is the true anomaly of the satellite.
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2.3.3.3 Integration of the Time Rates of the Osculating Elements

Cook's theory is a simplified first order theory which neglects (except in the

calculations of the change in the argument of perigee) the second part of the

disturbing function Q (as defined by Equation 3.24), which has (r/rD) as a
factor. Further, it is assumed that the angular velocities (mean motions) of

the sun and moon are sma]_[ enough, as compared to the angular velocity of the

satellite 3 to consider the disturbing body (sun and moon) to be fixed

during one revolution of the satellite. This implies r << rD. In fact, the

theory is limited to satellites for which r/r D _< 1/lO; that is, the radial
distance of the satellite from the earth's center should not exceed one-tenth

of the moon's distance from the earth. The simplifying- assumption, that the

disturbing body is fixed during one revolution of the satellite, makes possible

the integration of the instantaneous rates of change of the orbital elements

over one revolution of the satellite to obtain the respective changes per

revolution.

The error incurred by neglecting the highgr order part of the disturbing function

(,Equation 3.24) is of the order (r/rD)3/2. Since (r/rD)< O.1, the error

is less than 3 percent. The error incurred by assuming that the bod_ is

fixed for one satellite period can be _argely eliminated by placing the

body at the time average position for the interval in question.

As a first step in the solution, the time argument in Lagrange's equations

is replaced by the true anomaly through the relation,

_ dd__t d_ d_/= (3.27)

whence,

dj_ (3.28)

However, since the main changes in _ and Q are those due to the earth's

gravitational field, and these changes are proportional to J (second h_monlc),

the retaining of (d_of_ + cos i _nI_t) in Equation (3.28) would result in

coupling with the effects of the gravitational field of the disturbing body,

and such coupling effects are not considered in this first order theory.

Hence, within the range of accuracy of Cook's theory, it will be valid to set_

r 2

= 7 <s,-/
In the ensuing integration process, the integrals of the follo_rlng functions
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<*_e

(i +e _7)

2._ 3.3.1

Z

: (i+s c_)

G-

2_r

The Change in the Semi-Major Axis

(3.30)

= 2a ,_

6/da 2

r 2

lb ''-<, }

2)"

_/_" (/-'')ZF^,_ __ I(,42 n')_a d/° -"

By relations (3,30),

o
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Therefore,

Ja=O
(3.32)

2.3.3.3.2 The Change in Eccentricity

de

z_e

:3-_8r,I

+

+

8K (/-e;
m

._,,t

• / 2 ; . 0._7:e.:o2 +e:._o2

, o r_.:

By relations (3.30), the value of this integral is:

[ 4 (3.34)

2.3.3.3.3 The Change in Inclination

/I/

(3.35)
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By _elatdons (3.30),

2_

/" :
0

?he:cefore,

/ii _ (3.36)
2_2 /__e, A(2+3ez)+Se2(A_o2:w+B4g,_ 2_

2.3,3.3.4 The Change in Nodal Longitude

r s _u 3KCr_r

(

Using relations (3.30) one obtains,

3 r /gC
(3.38)

2.3o3.3.5 The Ch_%nge in Argument of Perigee

/+_

(3.39)
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2 3

3K (/-_ ) {r / 1

2_

0 Z_" I-:E: ",if3 -: (Az'8 (l"_:'_')-so--e°_d_
o

By relations (3.30),

The first integral :-(2Y)_e(/:-_ -(2_,-)

Therefore

Aco * _ _AS2 -
(3.40)

The second-order terms of the disturbing function Q become significant for

the argument of perigee, especially for moderately small eccentricities.
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2.3.3. R.6, The Change in Mean Anomaly

By relations (3.30),

The second integral =('2_,){/+Se z,-_e _',)_(,2_)(/-g _)-J-,.,(Z_)(/,"-_2){/-_2) "_'2

(3.43)

He[_ce_ upon

one nas_

;ntroduc#ng the value of ( _ + cos i _D) from (3.40) and (3.41)

L_M = _/ + I- 3

(3._)
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2.3.3.3.7 The Changein Perigee Radius

The changein perigee radius, Are , is obtained from the already established
fact that _a = O, s_d the rel_tion,

from which, it follows that,

A_ ---aZ/e
(3.45)

By inspection of the expression for _e, as given by Eq. (3.34), and the S
component of the disturbing acceleration, as given by Eq. (3.24), it is

observed that _rp can be expressed in an alternate form as a ftmction of the

S-component evaluated at perigee,

(3.46)

Hence, by (3.45), (3.34), and (3.46), one has that

s _e/__a J_e_ (3.47)
_/-e

Since _a = O, the mean motion, _ and the period P do not change to the

accuracy of this simplified first order theory.
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2.4 T]G_EFFECTOFSOLARRADIATIONPRF__SUI_EONTHEORBITOFANEARTHSATELLITE

Z. 4. i Basic Review of the Problem

2.4. i. i Definition of the Perturbing Force

The _nechanical action of solar radiation pressure on reflective and absorbing

bodies can be interpreted on the basis of either the electromagnetic or

quantum theory. According to the Quantum theory, solar radiation can

be in-erpre_d as a flux of photons; each photon has an energy hV and a
momentum-- where h is Planck's constant, p is the frequency and c is the

speed of light. If N is the number of photons which fall on a unit surface

norn_al t%the sun's ray in a unit time, and S is the corresponding energy,
then N = and the momentum imparted by the photons to a unit surface
in a unit _iVrne'is

0

in units of [ /WA._ _]provided the surface absorbs all of the photons.
[LEIUG 2"14x(T/M£) j

If the surface partially reflects the incident radiation, then the reflected

photons which carry momentum in,he opposite sense will impart to the
surface an additional momentum _-- , where 0_ is the reflection coefficient

c

which depends on the reflection properties of the surface and which may vary

between 0 (absolute black body and 1 (specular surface). Hence, the total

radJazion pressure on a un_ surface (normal to the incident ray) per unit

time, when et_ 0, will be c_ (l + _). In general, when the ray falls under an
c

incident angley to the surface, the radiation pressure F is,

F= 3 (/+oc) eOS z r
C

Let S be the power of solar radiation on a unit of the earth's surface per
P

unit t_me, called the solar constant, and d the mean distance earth-sun.

If d is the distance of the satellite from th°sun, the corresponding solar

constant S at this distance will be given by,

Upon substitution of this expression for S, one has that,
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7- LzE_--Z_--'Cr/_'_J'J

The acceleration experienced by a body, of mass m and effective cross-

sectional area A, under the influence of solar radiation pressure is

determined as follows,

= A -,co )fdo__'
"_ =(_An)F _)(T) (i +_ k--j-) OOS2_ "" 'E/VCTtY

The ratio A is constant for a spherical s_tellite,

For _'nnon-spherical satellite, both- and ¥ vary with the orientations
m

oi the sun and of the satellite.

m

In vector notation, the perturbing acceleration _canbe defined as,

where Dis a unit vector in the direction earth-sun, given by,

_) = ._. COsA o + "] Co5 g SiN A p _- _ SIN E SiN A o

: .i...(c°"¢_E_ +,IN%) cosAp+J --(e°S2_-'ClN'E_s/NA°2.-_)

-I- K 5/A/ g StNA D

AD is the true celestial longitude of the sun and _ is the obliquity.

The pointings in the inertial earth-equatorial__frame of perigee P, t_e
direction O normal to P and the unit normal Ware defined as follows,

A f

_OS _Loose_,) cos .l'Z - SINW 5iN n ) + O t_5(,.J SiN.¢_

+ cosJ Sl,VoJcosn)+ K s/Jv,c __l_i

= _. F_'OS"%__ CO,((xJ+.O.) + SIN_ __ c'_gSCGJ-.P-)]
L ,2. 2

' ]+ o _5_ m_(w+n)-s/_2A_ s/_(_-._) . KsiJv,isiAt_
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_ _ SIN X. SJN.n - j sinJ.coszz + K eo_ £

i i

The direction cosines Aa, B :,_,C _,_of D (earth-sun pointing) in the P, Q, W

frame are obtained by dot products which, after some algebraic manipulation,

yield,

_ _ sIN ____StN(Ao 4 n +oa)
2 2. 2 2

-- -i2 ÷(02+ SIN J., E SlN(A O +.[2-¢,.)3
i

,g _. 2 2

" [ E4- / SIN_& S/N_ S/N(Ao-6J)-[5/N(AD+(_O

2
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0 =
. 2

-s/_z _s__E s/_(A _-_a) +sm_:s/N _ s/N(%+a)

-/- 00.9 A_ SIN E 51IVA D

Hence, the unit vector D will have the following form in the P,

frame

Q, W

and the perturbing vector accelerationJ in the same frame will have the

following definition,

Now, let R be a unit vector in the direction of the geocentric position

vector of the satellite, and S a unit vector normal to R in the osculating

plane. Then, in the P, Q, Wframe, R and S are defined in terms of the true

anomaly q as,

= _ cos_I+ _ s_ 71

__=-ASJNr/÷ _ 0os7

Fin__ally__ z the components of the perturbing acceleration __ in the direction
of R, S, W can be determined as,

,e=j,.,e

s =.#,•_

W = ._ • V_'

= -__(A'<osq +B_s#vq )

= - _ (-A"s<#q ÷8"l'os"7>

= -j-_C _
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2.&.1.2 The Effect of the Perturbing Force on Orbit Decay

An earth satellite is, among other things, subjected to both the gravitationa 1

force of the sun and to the solar radiation pressure force. These two forces

act in preceisely opposite directions. Since the earth experiences nearly

the same solar gravitational acceleration as does the satellite, the net

e£fect of the geocentric force, due to solar gravitation during one

revolution of the satellite, is very small whereas, in the case of radiation

pressure effect, the resultant acceleration of the satellite is considerably

h_gher than the corresponding acceleration of the earth and is strongly

dependent on the area-to-mass ratio of the satellite. Therefore, the

radiation pressure effect has to be taken into account.

The effect of solar radiation pressure becomes significant at orbital

altitudes above 500 NM, and is particularly emphasized for balloon-type

satellites for which the area-to-mass ratio is large. There is a marked

difference between the solar radiation pressure force and the solar

gravitational force in that the former becomes a discontinuous function of
time when the satellite enters the earth's shadow. If the satellite is

continuously in sunlight, the force is continuous. In this case, the short-

periodic perturbation effects could be neglected. However, there is the

possibility that such effects will be cumulative. Therefore, the short-

periodic terms must be retained in the solutions. There are, however, no

secular orbital variations due to direct solar radiation pressure though the

amplitudes of some long period variations may become significantly large

and may represent the principal contribution to orbit decay. Finally, it

is noted that all elements, except the semi-major axis, contain long period
terms.

%_iie the effect of solar radiation pressure on ordinary satellite is very

small, it may produce significant changes in the perigee height of satellites

w_th high area-to-mass ratios. For certain resonant conditions, this effect

acctmulates monotonically and drastieally affects the satellite's lifetime.

(The change in perigee height, due to the influence of solar radation pressure

was up 3.7 miles per day for the lOO foot Echo balloon, and up to 0.7 miles

per day for the 12 foot Beacon satellite). In general, during a complete

orbital period, solar radiation pressure causes a first order perturbation

of all six orbital elements. However, when the entire orbit is in sunlight,

solar radiation pressure has no effects on the semi-major axis or on the orbital

period. When the orbit is r_ot entirely in sunlight, the semi-major axis, as

well, is affected by short period variations, therefore, this element is

not subject to significant perturbations.

For certain combinations of orbital altitudes and inclinations, the effect

of solar radiation pressure builds up monotonically, seriously affecting

thm orbit lifetime. There are in all 15 possibilities when resonance may

take place. However, most interesting resonance occurs when the perigee

of the satellite moves in step with the sun. In this case, oblateness

keeps approximately constant the angle between the perigee pointing and

the projection of the earth-sun line onto the orbital plane is approximately
constant due to the earth's oblateness.
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Hence, solar radiation pressure can increase or decrease the eccentricity

monotonically. The critical argument for this type of resonance, in the

terminology of celestial mechanics, is (_ + _0 - As); A is the celestial
longitude of the earth-sun line, ( A - G) is the sun's _ongitude with respect

S.
to the line of nodes, and wis the perlgee longitude with respect to the same
line. The condition for this resonance is: (_ + • - A ) = 0. When resonance

s
occurs, the eccentricity is the most important orbital element, since any

change in it affects the perigee radius which) in turn, influences the satellite's
lifetime.

It is interesting that a circular orbit (in a first order theory) remains

circular under the influence of the gravitational attraction of a third body,

but tends to become ecliptic under the influence of solar radiation pressure.

This can be explained by the fact that the gravitational attraction of the sun

acts on both the earth and the satellite but, due to the small area-to-mass

ratio of the earth, solar radiation pressure affects only the satellite signi-

ficantly.

2.4.2 Review of the Available Literature

2.4.2. 1 General Comments on the Papers Reviewed

The literature on the effect of solar radiation pressure on the orbit of an

earth satellite is very limited because, until recently, it was considered

that this effect was negligibly small as compared to the influence of earth

oblateness and the effects of luni-solar gravitation. The few available papers

to date were prompted by the need of explaining the discrepancies between

theory and observations of satellites with high area-to-mass ratios. Papers

on the subject were written by Musen (Reference 4. 1), Musen-Bryant-

Bailie (Reference 4.2), Parkinson-lones-Shapiro (Reference 4.3), Cook

(Reference 4.4), Kozai (Reference 4. 5), Wyatt (Reference 4.6), and Geyling

(Reference 4. 7).

The work by Musen appears to excell that of the others in that it includes

resonance for the case when the perigee moves in step with the sun.

However, he neglects the effect of the earth's shadow. The work by

Parkinson and associates is limited to the discussion of nearly circular

orbits, the amplitude of the perigee height oscillation for a special case of

resonance and, in particular, to the displacement of the geometric center

of such orbits. Parkinson, however, includes the effect of the earth's
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shadow. Cook's paper presents an analytical technique for the evaluation
of the perturbations in the osculating elements, but does not indulge in a

discussion or an assessment of the physical and geometrical aspects of

the problem. This is true also of the work by Kozai. Both Cook and
Kozai consider the effect of the earth's shadow. Wyatt restricts himself

to the investigation of the solar radiation pressure effects on the short-

ter!n secular variations in the orbital period. Geyling's treatment of the

problem is based on Hamiltonian mechanics and the variations in satellite

position referred to a time dependent moving frame whose origin always

coincides with the satellite's position in unperturbed motion. The treat-

ment, which is very involved, does not provide a clear geometrical

interpretation of the problem. Also, Geyling investigates only the special

case of circular orbits.

the theories expounded in all of the papers are of the first order. Some

authors (Musen-Bryant-Bailie) neglect the effect of the earth's shadow.

They justify this by the fact that the earth's shadow causes changes in

perturbation amplitude, without altering the nature of the perturbation. It

is unfortunate that most authors do not specify clearly what assumptions

thc v have made in regard to factors SUCh as: the nature of the perturbing

function, re-radiation from the earth, whether the radiation is totally

absorbed or partially reflected, and whether the radiation flux is assumed to

be constant at all times.

Z. 4. 2.2 Methods and Techniques

Musen _derives the expressions for the rates of change in the osculating

elements, caused by solar radiation pressure, by the method of variation

of vector elements. He introduces the vector element (e P), where

is the perigee pointing, to determine the perturbations within the orbital

plane. Cook and Kozai use Lagrange's planetary equations, which define

the time rates of change in the osculating elements in terms of the com-

ponents of the disturbing acceleration. The same method is used by Wyatt

to define the time rate of the semi-major axis, disregarding the rates

of the remaining elements, as his paper is limited to the investigation of

the short term secular variations in the orbital period only. Geyling uses

the Harniltonian approach to dynamic problems, a time dependent dis-

I "nturo1 g function and a time dependent moving coordinate frame centered at

the satellite's position in unperturbed motion. Only variations in satellite

positionwitn respect to this moving frame are considered. Parkinson's

paper is not based on any method in particular, as Ir is concerned only

with the displacement of the geometric center of nearly circular orbits and

the amplitude of the perigee height oscillation.
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2. 4. 2.3 Integration Procedures

Musen eliminates the true anomaly, on the right hand sides of tne expressions

defining the time rates of the osculating elements, by expanding the dyadic

products of the vector elements variations in Fourier series with respect

to the true anomaly and retaining only the constant terms in this development.

Since he neglects the effect of the earth's shadow, the rates of change of

the osculating elements are integrated directly with respect to time over a

complete revolution of the satellite, provided that there are not sharp

resonance conditions. Parkinson integrates the time rate of the displace-

ment of the geometric center of nearly circular orbits with respect to time.

He is not otherwise concerned with the changes in the osculating elements.

Cook and Wyatt eliminate the time argument in favor of the true anomaly T]

ahd integrate between the limits _ 1 and D2; l]1 is the value of the true

anomaly where the satellite leaves the earth's shadow and _]2 where it enters
the shadow. Cook does not present, however, a technique for the determina-

tion of these limits. Wyatt developed an approximating tecnnlque for

their determination. Kozai performs tne integratlon with respect to the

eccentric anomaly E between the limits E l and E2, and recommends
numerical methods for the determination of these limits.

2.4. 2.4 Critical Evaluation of the Papers Reviewed

2.4.2.4. I The Method Based on General Perturbations

The tneory is based on the principals of general perturbations and the

integration of Lagrangets planetary equations with respect to either the

eccentric or the true anomaly.
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2.4. Z. 4. I. i The Work of Y. Kozai (Reference 4.5)

Assun_ptions: The parallax of the sun is negligible; the solar flux is

constant along the satellite's orbit if there is no shadow; re-radiation

from the surface of the earth can be neglected.

Corr_pleteness: Complete first order theory with the effect of the earth's

shadow included. Expressions for all six orbital elements are presented.

Both short period and long period terms are combined in the solutions.

The reference frame is the inertial earth-equatorial system.

Evaluation: Kozai presents equations without derivations. The nature of

the perturbing function is not discussed and many factors inherent to it

remain unexplained. There is no comment as to whether the radiation

pressure acceleration is constant at all times or varies with the orientation

of the satellite with respect to the solar pointing. The solar flux is assumed

constant along the orbit if there is no shadow, but it is not specified whether

the radiation is totally absorbed by the satellite or either wholly or

partially reflected. All these factors should be clearly defined, and the

perturbing function should include them as parameters in order to make the

analysis complete and meaningful.

2.4.2.4. 1.2 The Work of G. E. Cook (Reference 4.4)

Assumptions: The force produced on the satellite by solar radiation pres-

s;Lre is independent of its distance from the sun; the magnitude of the force,

while the satellite is in sunlight, is constant for spherical satellites,

whereas for non-spherical satellites a suitable average value may be used.

Completeness: A complete first order theory, including the effects of

the earth's shadow. Solutions are given for all orbital elements with the

exception of the mean anomaly. They include both short period and long

period terms. No technique is presented for the evaluation of the limits

of integration.

Evaluation: The approach is an extension of the analysis on luni-solar

perturbations. The integration is performed in terms of the true anomaly,

but the limits are left undetermined. There is no discussion of the problem

or an assessment of the solutions. Cook does not indluge in any discussion

about the nature of the perturbing force either; only a few assumptions to

this effect are made.
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2.4. 2.4. 1.3 The Work of S. P. Wyatt (Reference 4.6)

Assumptions: The radial acceleration of the perturbing force is

=A z C

where L is the total power output of the sun, r = 1 a.u., c is the speed

of light,®A the average cross-sectional area of t_he satellite, and m is its

mass; the orientation of the vector Tis fixed relative to the satellite's

orbit during one revolution; the magnitude of f is approximately constant;

re-radiation from the earth's surface may be neglected.

Completeness: Incomplete first order theory,

variations in the orbital period are considered.

shadow is included.

as only short term secular

The effect of the earth's

Evaluation: The analysis is incomplete and restricted in scope. The

frame of reference is the orbital plane of the satellite with the X-axis

in the direction of the intersection of the reference plane with a perpendicu-

lar plane which contains the sun. Special cases of orbital orientation and

shape are discussed. A quasi-general solution for the limits of integration

is derived, by expanding the determining equation in powers of eccentricity,

which is inefficient because of slow convergence. It appears that Wyatt's

paper is primarily concerned with the interference of the nature of the

atmosphere.

2.4.2.4. 1.4 The Work of P. Musen (Reference 4. i)

Assumptions: The perturbing force for non-spherical satellites is not

constant; the effect of the earth's shadow may be neglected.

Completeness: A complete first order theory in the long periodic terms

only, since the affect of the earth's shadow is not considered. The effect

of a special case of resonance, when the perigee moves in step with the

sun, is investigated in detail.

Evaluation: The analysis and development of equations are based on vector

elements variations. The equations for the scalar osculating elements are

deduced from the equations for the vectorial elements. The basic vector

equation is

GM d(_) = r'o.i-

d_
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_here Pis a unit vector in the perigee direction, Fthe vector acceleration

of the satellite under the influence of the radiation pressure and I" is

Herri,k's function , where

r, v are the position and velocity vestors, and I is the planar unit matrix.

Tihe long period part in T_is separated from the short periodic one by

expansion into Fourier series and retaining only the constant terms in the

development. Since the effect of the earth's shadow is neglected, the

theory, although very interesting, is not sufficiently rigorous for practical

applications.

Z.4, X. 5 Selection of Paper for Detailed Development

From the critical review of the available papers on the subject of the

perturbative effects of solar radiation pressure on the orbit of an earth

satellite, it was concluded that the paper by Y. Kozai, "Effects of Solar

Radiation Pressure on the Motion of an Artificial Satellite, " Smithsonian

Institute Special Report No. 561 /anuary 30, 1961, is the best for analytical

dewdopment for the following reasons:

I. It presents a complete first order theory.

2. The analysis is rigorous and includes the effects of the earth's

shadow.

3. The techniques used are simple and straightforward.

4. It suggests a method for the determination of the shadow boundaries.

2.4.3 Anal, ytical Development of Y. Kozai'_ Approach

2. 4. 3. 1 The Perturbing Acceleration

_he perturbing acceleration due to solar radiation pressure acts in the

opposite direction of the earth-sun pointing. 'x':_Denoting the perturbing

acceleration vector by 5, its magnitude by _, and the unit vector in the

earth-sun direction by D, it follows that,

l£N¢77/ (4. I )
9 = - .9 (riME) 2

::_'._Actually satellite-sun pointing; however, the two pointings are almost

coincident.
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where, as derived in Section 2.4. 1. i,

z

(r/ME) z

in which A is the effective cross-sectional area of the satellite, m its

mass, S the solar constant (that is, the power of solar radiation on a

unit of t_e earth's surface per unit time), "tis the reflection coefficient

(0 for absolute black body and 1 for specular surfaces), c is the speed of

light, d the earth-sun distance, d the distance from the satellite to the

sun, an_ yis the incidence angle of the sun's rays to the surface. The

ratio (A/m} is constant for spherical satellites and so is the incidence

angle y. For non-spherical satellites, both (A/m) and_vary with the

orientations of the satellite and the sun.

The direction cosines A".', B::% C'_ of the unit vector D, with respect to

the P, Q, Worbital frame of the satellite (where Pis the perigee

pointing), were already derived in Section Z. 4. i. I, so that it can now be

defined as,

L5 = 4-
(4.3)

(4. 5)
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£ E

(4.6)

+ ex,_/.,_._._ E ._..-,_ A o

in _\,hich A D is the true celestial longitude of the sun, E is the obliquity, i,
are the Inclination and the nodal longitude of the orbital plane of the

satellite relative to the inertial earth-equatorial frame of reference, and

'_,is the argument of perigee of the satellite's orbit.

Note that in Kozai's notation,

A _-- - S(O) =-S

B _'= -T(O) = -7- (4. 7)

C _ =-W(O) =-W

where the "0 _'argument refers to the true anomaly.

in _iew of relation (4. 3), eq. (4. i) can now be written as,

- - +48 (4. 8)

Now, defining by R, S, W,three unit vectors in the respective directions of

the radius vector r of the satellite, the direction perpendicular to r in the

osculating plane (such that S " V < 0), and in the direction of the unit normal

to the orbital plane, it follows that,

(4.9)

=

where I]is the true anomaly.

The components of the perturbing acceleration 3 (as given by eq. 4. 8), in

the respective directions of R, S, W, are obtained by forming the dot products

of L.: by R, S, W,
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---j(A*_.oy,8"_,.F)

W = -JC _

(4. 1 O)

In Kozai's notation,

2.4.3.2

¢_ ""

W = aJ_ 2 --y W =o'_2FW(O)
P

Lagrange's Planetary Equations

°IP r']da = 2 e._&z _ _ S (/ ' e coo
d_

(4. 11)

(4. 12)

d_
(4. 13)

dl P"
_ Wc_o_ ,_

dt (4. 14)

dt - 7_ W_z
(4. 15)

(4. 16)
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dM i__e_Ir(d(z _.¢2)J (4. 17)-w- 2 R+ + e.#o zd_ d_

where h is the angular momentum per unit mass, _q the true anomaly, and

u-* the argument of latitude, u;'.'= _ + _.

2. 4. 3.3 Integration of the Time Rates of the Osculating Elements

It< order to make possible the integration in closed form of the time rates

of the osculating elements, Kozai assumes the direction and the nagnitude of

the perturbing acceleration, as well as the orbital osculating elements, fixed

over a revolution of the satellite. Further, he assumes that the solar flux

is constant along the orbit of the satellite if there is no shadow, and that

t_-ere is no re-radiation from the surface of the earth.

The perturbations of the first order over a revolution are derived in closed

form by eliminating the time argument and the true anomaly _ in favor of

the eccentric anomaly, E, using the relations,

= l-e a ,A- (4.18)

C,aoE -_

e.ao_ l-e e._ ,£

/-e 2

l+ee.¢_ - / _ e U._ E

and integrating between the limits E and E , where E l is the eccentric
1 2

a._omaly of the point of the satellite exit from the shadow and E 2 that of the

point of the satellite entry into the shadow.

2. 4, 3. 3. i The Change in the Semi-Major Axis

db
(4. 19)
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By relations (4. 10),

Therefore,

s = -_'(-A*_.¢, e*_,¢)

da 2

d_ _/-V_--_

Now, applying relations (4. 18) yields,

d_ 2 Y

dE _z
(-A _E, 8 *_/-v¢__ _E)

Finally, the perturbation in the semi-major axis, Aa, is obtained by

integrating with respect to E between the limits E 1 and E Z,

II_ = A*_oX _8_/-v'_-ie _ _E (4.20)

where A ',_ and B':'are given by (4.4) and 4. 5).

2.4.3.3.2 The Change in Eccentricity

d_

(4. zl)

By relations (4. 10)
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Therefore,

Now, elimination of dt and r] through relations (4. 18) yields,

ae d L_E - a_z 2 2 A
e._E + - e._2E

2

Fi_al!y, integration with respect to E between the limits E l and E 2
produces the perturbation, be, in the eccentricity,

(4.22)

where, again, A;._ and B;:'are given by relations {4.4) and (4.5}.

2.4.3. 3.3 The Change in Inclination

dz r

an /+ e emo _

By relations (4. 18),

(4. 23 )
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and

dl :( l-e eo_ £ )_dE

Now, substitution of these relations reduces eq. (4.23)to

,__,_ :c" F
dE _z///--eZL

e.aoco (eoo£ -e ) -¢'_ ._,_a,_ _'I( I -e e_ £ )

,c.[ (=- a_/Tz _ e,_ c,., (/,e_) c_E-_ e_2£ - 2

_ e_ a_ 2£)]-/)-e _ _ co .,_A- 2 "

The perturbation in inclination, Ai,

respect to E between the limits E
1

is now obtained by integrating with

and E 2,

JC*I / e 3 E)

°
--!

where C* is given by relation (4.6).

Z. 4.3.3.4 The Change in Nodal Longitude

(2.24)

dn r _ u _ //f_-e_ _u_ CF,_= = - JC" (4.25)
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B}_:..,elations(4. 18),

and

(t+e oy )

Substitution of these relations reduces eq.

dE

(4. Z5) to

The perturbation to nodal longitude, Af_ will come out as the result of

integration with respect to E between the limits E 1 and E Z,

(4.26)

2.4.3.3.5 The Change in the Argument of Perigee

(4.27)

B'y relations (4, 10),
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Therefore,

_'_-J "_fA"fj+-""_l-g"
l+e_ j-_i--at

But,

I÷
l ÷eceo_

/ - _ _ X +.,_Y_ 2",E

/- e coo E /- e ce_ E

..,#._E ( e.,_E -_>

and

dE
dl = (l-mcao£)

Substitution of these relations produces,

Integration yields,
I

g
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The Change in Mean Anomaly

By relations (h.lO),

±her_fo_e,

But,

/+ee.,_ I+ 0'4

by relations (4.18)

(h.29)

6

_______y______ _E -_

I+ e_em.of'/ /-e "_

._._,"/

d_ = (j- _ e._-_>-) _

S 1i stitution of these relations yields,

Integration produces

anz /_/]-i_'ZY IA *((l +ez.) _,_E - 7,_._v2£- _eK)

- 8_/7_ -_(c._E- _2
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Now, substituting this expression in eq. (4. 29) yields,

2M
.-. a ,_t. i

l
(4.30)

2.4.3.4 The Changes in the Osculating Elements when the Satellite Does

Not Enter the ]Earth's Shadow During One Revolution

When the satellite does not enter the shadow during one revolution, the

limits of integration (E , E_) become (0, 2n) and consequently all terms
depending on trigonome_ric_unctions of E vanish. Therefore, relations

(4.20), (4.22),(4.24), (4. Z6), (4.28), and (4.30) reduce to

ha = 0 (4.3])

/-Je = -338%" /V'/--e_
aR z

(4.32)

8 d._odo

ai = 3JC* _zaM_, /_/Z_ (4.33)

(4.34)

Aw = 3 JA*_ _ zzT.t2
a_2e (4,3.3)

I (4.36)
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3.0 RECOMP_NDED PROCEDURES

The .material presented in the body of this report can be utilized in two

dist,inctly different processes. First, the formulations can be employed to

estimate the magnitudes of the perturbing influence of any particular force.

For this application, either of the approaches for the earth's oblateness

perturbation can be mechanized depending upon the type of data desired.

Ho'_ever, the number of these applications is relatively small compared to

tho_e which exist for a technique capable of estimating the effects of all

perturbing influences in an efficient manner. (This second process is

extremely important since, for many cases, it affords the advantage of avoiding
n_erical integration in the construction of the motion of a spacecraft.)

In this second application, however, similarities in the construction of

she general perturbations solutions for the various effects dictate Shat a

particular approach to the earth's perturbation, characterized in the text

by Kozai's formulation, be employed. This opinion is based upon the relative

s_nplicity for the higher order theories, and the fact that the perturbations
w-hich are evaluated are more compatible with the outputs of the other

perturbations analyses.

The basic ass_____ptionemployed in attempting to construct a semi-analytic

model of the spacecraft's trajectory (an analytic theory will not be practical

for the case where more perturbing influences are encountered. Thus, a

combination of analytic and numerical techniques will be presented) is that

the coupling of the perturbing effects is sufficiently small as to allow a

particular element (e.g., _to be written as

t

= _z (0) */d dt
o

where j denotes the type of perturbation (oblateness, drag, extra-terrestrial

gravitation, or radiation pressure),n denotes the number of steps taken in

the approximation of the integral, and the change A is evaluated over the

time interval corresponding to the ith step. In this procedure, the pertur-

bations in each element are evaluated for some specified period, the results fo

a]l perturbing influences summed and the estimates for the elements for the

next, step predicted. This process is depicted in the following sketch:
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elements ÷

oblateness

atmospheric drag _
extra-terrestrial

solar radiation

other

perturbations

In the strictest sense, the elements are being numerically integrated,

though numerical extrapolation formula are not employed. However, it is

important to note a major difference between the approach and that which is

normally applied in the generation of a trajectory by direct integration

of the accelerations. This difference is, that the step size can be

extrememly large (relative to the purely numerical approach), since the

primary error in the process (the coupling between the perturbations)

is small for most trajectories for relatively long periods of time and since

the secondary errors due to roundoff and loss of numerical significance are
reduced by increasing the step size. (These facts are the direct result of

the analytic integration process utilized in the construction of the solution).

But, because this approach is a form of numerical integration, a measure

which can be utilized to judge whether or not the step size is too large
(small) must be constructed. One such measure is the difference in the

perturbations as evaluated from the elements resulting from the previous
step and those obtained by utilizing elements of the form

!

j=l

tL

In this latter case, the perturbations are evaluated for the ith force

(oblateness, drag ...) based on elements which have been modified to more

closely represent the average elemer_s in the absence of the ith influence

(i.e., an attempt is made to introduce the coupling of the perturbing forces).

The computational methodology to effect this solution is presented in

Figures 3.1 and 3.2 for the case in which position and velocity data are

desired for input and output. This approach has been employed in numerous

studies with considerable success. One such study was performed in the

definition of orbits for the I_ Satellites (Ref. 5.1). In this study, it
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was desired to maximize the lu_r gravitational perturbation on a highly

elliptic earth satellite orbit to aid in the definition of the lunar potential

!_nction. However, a severe constraint was introduced (the satellite was

required to have a one year lifetime) which required that the study be per-

for_rtednumerically since there was the tendency for this perturbation to reduce

perigee altitude below safe limits. While the application to this problem

wa_ not without incident, the results so closely agreed with the numerically

integrated trajectories that launch windows and preliminary trajectories

could be generated from the simplified program logic. This fact drastically

reduced the computational load associated with the development of precision
trajectories.

Since this degree of precision was obtained in a case where the magnitudes

of the perturbations were large, and since the formulation provides an extremely

efficient means of generating a trajectory, the method presented also has

application to completely self contained guidance systems. This application,

however, does not appear extremely important in the light of current C&N

systems approaches due to the extreme emphasis in such systems on minimizing

the cost, size, complexity ... of the system. In the future, such an

application will probably become feasible (application appears to be limited

pr_arily by the lack of availability of a small low cost general purpose

comFuter of sufficient capacity to perform this task in addition to the others
required of it).
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I'r_y, _,h I

Ielements for the trajectory

T_
Evaluate t_ c oe_'t, urb_t!o_ I

( A %) u_i_g the o_c_!_t_: e7 em_nts I

je_

Evaluate the perturbations}
( A am ) utilizing the
modi _i-ed elements

./=I

<>

Error is Error is too

acceptable smallm-lncrease
step (h) is ok step (h)

_

UPI_TE osculating elements using

of perturbations

perturbations obtained from

'I

'"'the

the modified elements

i compute r 3 V3 etc. I
and print P_ q,

and the elements g : g,_

Figure 3.1 Overall Computational Logic
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Complete

perturbations
In_uced by

oblateness

AtmosphericDensity

Compute C A for
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Compute the atmospheric]i rag perturbation forthe satellite
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Compute the solar

radiation per-

turbation if it is

significant

Compute the extra

terrestrial per-
turbation resulting

from all significant
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Compute other effects

if desired electromagnetic

drag re-radiated light

pressure, ...

Secu.lar and periodlc7

perturbation in the/

_ e_:ents J

I reference atmosphere
and any variations

(sun spot,...) which are desired

the theory for these perturbations

was not considered due to the fact
that the effects are very small

for most of the satellites of

interest and the fact that the

theories available fail to be

mathematically satisfactory
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