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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanies, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports

in the series.
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Volume II
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Volume XIT

Volume XIII
Volume XIV
Volume XV

Volume XVI
Volume XVII

Coordinate Systems and Time Measure

Observation Theory and Sensors

The Two Body Problem

The Calculus of Variations and Modern
Applications

State Determination and/or Estimation

The N-Body Problem and Special Perturbation
Techniques

The Pontryagin Maximum Principle

Boost Guidance Equations

General Perturbations Theory

Dynamic Programming

Guidance Equations for Orbital Operations

Relative Motion, Guidance Equations for
Terminal Rendezvous

Numerical Optimization Methods

Entry Guidance Equations

Application of Optimization Techniques

Mission Constraints and Trajectory Interfaces

Guidance System Performance Analysis

The work was conducted under the direction of C. D. Baker, J. W. Winch,
and D. P, Chandler, Aero-Astro Dynamics Laboratory, George C. Marshall Space
Flight Center. The North American program was conducted under the direction
of H, A. McCarty and G. E. Townsend.
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1.0 STATEMENT OF THE PROBLEM

This monograph will develop near optimum steering eguations for boost
vehicles. However, a very severe constraint will be imposed which will
remove this problem from the spectrum of problems normally formulated in
a rigorous manner and solved numerically on a large digital computer (see
monographs on optimization formulation techniques, SID 65-1200-4 and SID
65-1200-7). This constraint is that the solution must be possible in less
than real time* on a small digital computer of the type employed in the
guidance system of boost vehicles.

Three separate approaches to boost guldance will be developed and
discussed. These are:

1) Path Adaptive (iterative) Guidance
2) Explicit Guidance Employing Guidance Polynomials
3) Perturbation Guidance

These discussions will have as objectives the demonstration of differences
in the formulation of the guldance problem, the development of a means of
assessing the mechanization requirements** for each, and the presentation of
information necessary to assess the potential accuracy, the flexibility

and the limitations of these three forms of guldance.

Path Adaptive (iterative) Guidance as it will be discussed refers to
the use of an approximate sclution to the equations of motion to iteratively
(that is, the solution will be repeated at points along the resultant tra-
jectory) define the optimum steering logic. The assumptions necessary to
generate the approximate solution in regards to the nature of the thrust as
a function of time, algebraic and trigonometric approximations, gravitational
approximations, and time-to-go approximations will all be discussed. The
attention will then shift to the mechanization of the resultant material to
demonstrate the performance of the technique and indicate sections of the
logiec which could be improved to produce more optimum performance. Path
Adeptive Gulidance has been discussed in the open literature by several authors
(References 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 and others). However, an approach
will be taken here which parallels that of two, I. B. Smith and G. W. Cherry
(References 1.1, 1.2, 1.3, 1.4). Minor differences will, of course, be
apparent if the material 1s compared to the references; however, reasons
for the differences will normally be given in way of Jjustification.

The second section of the monograph presents a discussion of another
approach to the development of a path adaptive guldance system. The objec~
tive of this section is the formulation of the guidance problem in terms

¥Real time is time as observed by a stationary clock. The reguirement that
the solution be possible in less than real time assures that subsequent
time will be available for corrective action if it is required.

*¥XNo attempt will be made to assure that the same guldance computer can be
employed in each of the three approaches. Rather, the requirements will be
used to indicate the type of guldance computer which is acceptable.



of polynomials involving the instantaneous state of the system. The major
motivation behind this approach is the fact that a steering logic which is
somewhat more efficient than that mentioned in the previous paragraph could

be obtained at the expense of some additional preflight computations. However,
other motivation and objectives and techniques employed in formulating the
guidance equation will be presented in the development.

The perturbation guidance discussions differ from those mentioned in the
previous paragraphs in that this type of guidance tacitly assumes that the
mission is completely defined before launch, that a reference nominal tra-
jectory is available, and that deviations from the reference trajectory will
be small so that linear theory can be employed to generate the steering
commands to return the vehicle to the nominal trajectory. This approach is
extremely simple since most of the difficult computations can be made before
launch on a large ground based computer. Further, the resultant trajectory
will be more nearly optimum than those yielded in the other approaches to
guidance since the zeroth order steering data (provided on tape) will be the
result of a simulation of the optimum boost problem on an "exact' model of the
earth and vehicle. The method has one major disadvantage, however, in that it
requires large amounts of precomputed data. These data, in effect, limit the
flexibility of the system once it is launched.

The discussions of perturbation guidance are divided into two principal
parts:

1) Velocity-to-be-gained (or required velocity)
2) linearigzed Perturbation Guidance

In the first of these approaches, the velocity required to assure a position
constraint on the terminal state is the controlled parameter. These discussions
present the development of quantities to be utilized as error signals and of
the optimal use of these data to generate the required steering commands. The
works of Sarture (Reference 3.3) and others (References 3.4 and 3.5) are re-
viewed to define the complete analytic framework of the problem. In the second
approach, methods for employing instantaneous measurements of the state de-
viation to generate guidance commands intended to minimize some measure of the
terminal error are discussed. This portion of the monograph will concern
itself with the material of the type presented in References 3.19 and 3.20.

The first and third of these approaches to the guidance problem have been,
or are being, successfully applied to boost vehicles. The second, due princi-
pally to numerical problems implicit in the preflight simulation and con-~
struction of the coefficients of the polynomial is not presently being
considered for application. Thus, major emphasis will be placed on the
iterative and perturbation guidance approaches. These discussions will present
detailed derivations of the equations which will be mechanized and will attempt
to establish the basis for all of the assumptions which have been made.



2.0 STATE-OF-THE-ART

2.1 PATH ADAPTIVE GUIDANCE (ITERATIVE)
2.1.1 Introduction

In the other sections of this monograph, a series of methods are dis-
cussed which are capable of generating steering commands as a function of
time and the state at that time. These methods were developed upon the
assumption that the computational capabilities of the guidance computer are
very limited and thus employ large quantities of precomputed data on the one
hand or guidance polynomials which are difficult to compute on the other.
This section presents an approach to the problem which is capable of over-
coming the major objections to such guidance schemes and which is still
sufficiently simple as to avoid the tremendous computational requirements of
a rigorous variational calculus formulation,.

The mechanism of this formulation is an analytic solution to the optimum
programming problem for the special case of a constant flow rate under the
assumption that an average gravity vector can be defined. While the results
of this process are reasonable, provision has been made to allow for the re-
petitive solution of this problem using the progression of measured states to
achieve a high degree of accuracy,in the largg)without requiring each of the
independent computations to be precise.

The method of analysis is similar to that first prepared by I. E. Smith
in Reference 1.1; however, minor modifications have been made in the procedures
to effect a higher degree of similarity between the results of this analysis
and the results of a precise optimum transfer problem. To s&id in the appre-
ciation of the assumptions employed and of limitations imposed on the analy-
sis, frequent reference will be made to relate approaches to this guidance
concept. The purpose of these references will be to contrast the accuracy
and mechanization differences as well as the relative efficiencies of the
approaches being considered.

2.1.2 Out-of-Plane Guidance

The general boost-to-orbit guidance problem is generally preceded by one
in which the launch time is selected such that the displacement from the
desired plane (i.e., the plane containing the terminal state) is reasonably
small. This step is accomplished in order to minimize the amount of work
expended to turn the plane of the trajectory at the time the transfer and
target planes intersect. Thus, the differential equation for the motion of a
vehicle in this perpendicular (to the target plane) direction can be separated
from the remaining equations with small error provided a first-order correction
is applied. This observation is illustrated in the sketches and formulation
which follow.
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First, consider the definition of the coordinate system

Az

A
S
A
w A
R
/ o
Y
o W,
i
L2

A
X
where ﬁ, §, W are unit yectors with origin at the aim point (ﬁ along the

desired radius vector; W along the desired angular momentum vector); second,
define two orientation angles for the thrust vector in this coordinate system

where F is the applied force vector per unit mass whose magnitude is F and
whose orientation is defined with respect to the target plane by the angle

& . (This choice of reference axis was made to separate the out-of-plane
dynamics to as great a degree as possible from the in-plane dynamics. This
selection was based upon the consideration of the fact that & (t) will be
quite small for most trajectories since the plane of motion can be controlled
to a degree by launch time selection and since the terminal value will in most
cases be very nearly zero in order to assure that the terminal velocity per-



pendiculaf to the target plane will be zero. Under these definitions, the
equations of motion normal to the target plane are

L A
W = Foinon — —',‘,iz 7w (2.1.1)

Now, the thrust attitude angle, o , will be defined such that the change in
velocity parallel to the desired plane resulting from out of the plane thrust
is as small as possible; i.e., the loss function

J :/f(/—mos)a’t (2.1.2)

is as small as possible.

In contrast to a solution of these equations which strives for maximum
accuracy, the guidance problem in general strives for both relatively high
accuracy and computational simplicity. Thus, the first of a series of
approximations will be introduced to allow analytic solution of the problem
by uncoupling the out-of-plane dynamics. It is assumed that the integral of
the corrective term in the equation of motion (that containing gravity) can be
expressed as

-

L — A -
7'[- ZoF Wt =G W =G (2.1.3)

Attempts to evaluate this time average acceleration will be postponed until
the present discussions can be concluded. It is noted, however, that since
the integral itself is small, relatively crude approximations (for example,
truncated series) for both w and r as functions of time could allow the dot
product £ . # to be evaluated independent of the analysis of the in-plane
motion with adequate precision. This procedure doesn't appear desirable
though, due to the fact that subsequent steps (in the analysis of in-plane
motion) will demonstrate the necessity of generating an accurate estimate of
the time average gravitational acceleration, This fact means that G can be
estimated from the equation G = Eévg . W with more than adequate pre-
cision.

Now, since an average value of the gravity correction, G, is assumed

known, the optimum thrust commands for &< = (t) can be determined by
considering the optimization of

I () =/F(/~4aﬂa()dt



subject to the integral constraints

. c 72 - T
T (A) ==W(T W (0 G 7 . (2.1.4)
() () + () +W(0) T+ Z %[[F,ama(dsjdt

. —_ . T
T @)= W(T) + GT+W(0)+/Facecia (2.1.5)
0

But this statement is identical to that of the class of isoperimetric problems
of the calculus of variations; i.e., if the augmented integral I3 is defined
to be

r
=/f*dt
(]
then, the Euler-Lagrange equations for the system become

247 d af*

% dt\ 3x /" °

But, I%* (minus the terms which are not functions of « ) is
A r T 7 .
I*=/F(/~wm)+ A/[/Fma(/;]dé # Rp [ F A o (2.1.6)
° 5 %0 e

This equation can be simplified by integrating the second term by parts as

T, t T -
l[FAZnO(dsd‘é = T /‘Ac;uoﬂdé-/i Fden & ot .
o (o]

This fact allows I* to be written as
T
I¥=/[F(/-Co40()+(/\,Tf A WFaen ) =X, ¢ Focn pg](/,f (2.1.7)
(o]
.or f* as

Frer(r-coam) s FIN(T-2)+ A ] den k. (210.9)



Thus, since f#* is independent of <& , the Buler-lLagrange equations are

>F*

2 20 = Fanat +F[7L,(/"-~L)~/ Az]mo\

and since F # 0,

arr A = "A/(T"f)“/\z
= —(NTHR) PN, ¢, (2.1.7)
= A+8¢

or

- o _ A+ B¢t
TVt Ar82)3

independent of the nature of F.

The values of A and B can be obtained by integrating the equations of
motion (i.e., the constraint equations) and substituting the boundary con-
ditions for the terminal and initial states. This task can be performed for
the general case, however, the resulting expressions are nonlinear in the
constants A and B. This fact means that relatively elaborate procedures are
required to evaluate the constants and suggests that a simpler solution would
generally be preferred for the on-board guidance problem. Thus, an attempt
will be made to approximate sin & for the case where the change in o is
relatively small (relative to one radian) during the burn of any single stage.
For this case

tan &4 = Can (0\*+A0\)

and

A+ Bp - lan VS
gec 2 *

A O (2.1.10)

where for the moment o #* is an unknown constant reference. Now) since Aol
is known, the sine of o can be written as

get ¢ = s (A¥rad)
= _scnol* 4 A coa kX (2.1.11)
(AfBé—tzvuo(*):H-O\*

. ¥
~ Gt AT 4 2 %

C ¥ DOt

m



which again is linear in time. This fact means that a linear sine steering
program will be near optimum provided that the assumption (Aa91 << is
not violated. For this reason, the degree-of-optimigzation will be com-
promized slightly to effect major simplifications in the guidance process and
the constants C and D will be defined by fitting the boundary conditions to
the equations of motion. Note that the angle o * which was introduced for

the purpose of expansion is not required nor can it be from this information
(2 equations and 3 unknowns).

Consider the case where the motion of the vehicle is produced by a con-
stant flow rate motor (this type of operation is characteristic of nearly all
large liquid motors and most large solids); i.e.,

F(9) . Fo
F = /—_-rh(f+tb) (I"’htb)-mt (2.1.12)

where t, denotes the burning time which has ellapsed since this particular
stage was ignited and where both F and m have been normalized by the initial
mass of the stage /i.e., F = thrust/m(o); m=mass rate/m(olz Under this
assumption, the linear sine steering program will produce the following re-
sults for the constraint equations. The terminal velocity is

-
. F(Cr+DE) _] .
T = — t
w(T) /[</~ TR + G| dt + w(o)

o
r

J(0) + GT FC[T It f D Zolt (2.1.13)
(o] T . <~ ols
wi P (et T o) G-t
[»]

W(0) + GT + Fcf, +F,Df,

where

£ = “—fzn[ -2l }
m /=mi,
-7 (/- m¢ mT

f, = : ")/én[ - — ]
m me /—I'Itb
-7 /- mt

= - + & f

” m



And, the terminal positidn is

T .t .
w(T) —-// [(E’(,Cfos_) + Z] dsdit + we)T+ w(o)
o 0O

/- mib) "MS
(2.1.14)

ds dt // scfs o't
= w(o)t w(o)T + — // G- mtb)—mS (1-miy)-mS

. G
= w(e)+ W(0)T + —T2 + A C t Fp D
where 2 ° 3’ 52

7 T / mi
j/ =/{;(t)dt =/—;,'—£n[/ —/-nbz‘.b] dt
0 (-4
G e R = R
m\ -ty /- mit,
T 4 t /1~ mt
g0 ~[ftr0e = [ 5 ‘m'_b""] 7

©

e /‘”"éé

= 7 , L , 3/

em m

Thus, since these equations are linear in the unknowns C-and D, the solution
to the system

W(T) - W(o) -6 T } AN
_ gre (= ’°
w(T) - W(0) ~w ()T - —— 9 g1 |°

can be evaluated as follows:

. t[9: ~F]wm-wl) -7 (2.1.15)
o] " ralg, £ [[w) -~w(o) ~wW(T - =

where



There is one chance for error in this solution resulting from the fact
that A -+ Oas T - 0. This fact requires that the limits for both C
and D be established in order to assure that the solution is always deter-
minate. This step is not readily accomplished. Heowever, by noting that in
the limit W, W, W and G approach zero (the terminal plane is the desired plane),
it is possible to conclude that C and D should also approach zero in the limit.

This solution completely solves the problem under the assumption that
sing{ = C+Dt. Further, though there is no assurance that the approximations
which allowed this solution will also be reasonable, it is noted that suc-
cessive re-evaluations of C and D as the epoch corresponding to zero time is
moved along the trajectory (in terms of w and w) will assure that the process
will converge for all of the cases of interest. However, the degree-of-opti-
mality for cases involving values for which the sine of o cannot be approxi-
mated as specified is questionable).

A slight variation of this approach was employed by Cherry (Reference
1.3, 1.4). However, rather than assuming the nature of ¥(t) for the
purpose of computing the gravity correction, Cherry noted that the linear
tangent steering which results for G = 0 or a constant is approximately
equivalent to linear sine steering. He then assumed a '"near optimum" steering
law

_ A
. * ¥ ur W
ML A= C+DE 4 ‘———‘“,_3/:(&)

This assumption causes the gravity contribution to be cancelled from the
equation of motion and allows C#* and D to be evaluated in a manner similar
to that outlined on the previous pages. However, if a reasonable estimate
of G can be made, the approach outlined previously will always provide a
better estimate of the optimal o = & (t) with only slight additional
complexity.

2.1.3 1In-Plane Guidance

The discussions of the previous section provided the basis for analyzing
the motion normal to the desired target plane (the plane of Tg, Vy). Thus, at
this point the analysis will be restricted to the motion in, or parallel to,
the desired plane. Consider the sketch and nomenclature presented below:

10
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The equation of motion in the instantaneous coordinate frame [%, W x ?_/

R NYY
= - — 3+ F coocx co0o 8 (2.1.16a)
r
. s? 2)‘ .
= = - — S A
u=— - g, (,_ + F coo X aem (2.1.16b)
S
whore o= = (2.1.16¢)

11



F=y (2.1.164)
o
/- I’."l(t *té)

and where the approximate form of the optimum program for e« (m = constant)
was derived in the previous section.

If these equations /denoted by f/x(t), u(t), t/ - x = 0/ are to be.inte-
grated along a path which yields a minimum value for some scalar measure of
performance (for example, propellant expended) defined by the equation

T=@2), T] + [ ¥ [xtt), uit),¢] ot (2.1.17)
#0

where u (t) represents the control vector, then the differential equations
defining the optimal path (control) can be generated by adjoining the system
of differential equations to the performance index

.
T= @), T] + [ ¥ [2tt), wces, ¢] # Xeo> [f[xe), w(®), 4]
%
-2} ot
s [z, 7]+ [ (H-X2)at (2.1.18)

%

where H denotes the Hamiltonian. But the integral of this equation can be
evaluated by parts

/EH—fi)dt = Xxlr+fr<H+)'Cx>dt
tb to tﬂ

so that
J = @ [2(T), T+ N(T) x(T) -X(t) x (¢,)

.
+f {H[x(t),u(t),t]+ NOHOEL
%

Now J is to attain an extremum along the path which is produced by a special
control u = u{t). This condition is obtained by forming the first variation
of J.

s7=[(3E-N)sx]+ ATstJ,t[T[(%’ NT)sx 430 5| dt

(2.1.19)

12



At this point in the solution, the multipliers A are arbitrary. Thus, they
can be selected in such a manner as to simplify the problem. Note in the
previous equation that variations in the control and in the present state

can be specified arbitrarily. However, the variations in the state (X) at
times in the interval [Eo, T/ and at T are dependent [I.e., no a' priori
information is known. 6X(t)/. Thus, the multipliers will be selected such
that the coefficient of 5 X(t) i%}?ero for all tg £t £ T.

AN o= - —
2

x (2.1.20)

_2Y_ i of

74 ax
with boundary conditions (to simplify the bracketed term outside the integral)

oQ

r
AT)= — 1.

AT 2%, (2.1.21)

T

for all unconstrained components of the state at t = T and 85X (T) = 0 for
the constrained components of the state at t = T. Under these conditions,
6 J reduces to .

- T 9H
7= N(t)6xlt) +f == Sudt (2.1.22)
il)

Thus, if &6J = O for arbitrary 6X (to) and Su(t), then

2H _ o (2.1.23)
/4

for all ty, = ¢ £ T,

Now consider the special case of interest in the guidance problem where
minimization of fuel expended for the case of a constant flow rate is the
objective. For this case, the problem reduces to the brachistochrone problem
(1.e., the comparison function is simply the terminal time). Thus, the
Hamiltonian is a function of the end conditions alone. This fact allows H
to be written as

H=X (Feooox oo 8= —= )

r R 2 o (2.1.24)
+)\2{chot.ain1/3—9. (—ro') + ::‘_‘] +7\3(§) t )\‘{(LL)

Now, since F and o« are known functions of time (for assumptions made
earlier), the only control possible exists due to the angle 4 . Differ-
entiating the Hamiltonian to obtain the equations defining the optimal policy
for ,3 yilelds

oH .
5;:0:-7\,Fcooa sin 8 + nyFeook oo B
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or

tom B = —% (2.1.25)
A,
where A\ 2 and >\l are defined by integrating

S 1
A= u Y ZS _ A, = (2.1.26a)

''r r r

X, = S _
2= A, - Ay (2.1.26b)
)13: 0O (2.1.26c)
sy s# r* s

A=A (2 5 s (2.1.264)

The problem encountered at this point is one of computational complexity
in spite of assumptions made separating the out-of-plane and planar dynamics.
This is not to say that solution is impossible; rather, solution seems un-
necessarily complex for application to a small on-board guidance computer.
Thus, attention will turn to further simplification of these equations which
will allow an analytic solution to be developed. Subsequent discussions will
then attempt to assure that the accuracy obtained from a mechanization of the
analytic solution will approach that obtained from a more rigorous formulation.

The first observation is that the range angles subtended during powered
flight for systems in which the thrust acceleration is of the order of the
gravitational acceleration are generally small. This fact means that the
direction-of-gravity is nearly constant and suggests that a "flat earth" model
can be employed to advantage. Consider the following sketch showing the
initial position vector, the target position vector and the set of unit
vectors (R, S) which could be utilized for the purpose of constructing a flat
earth model (this set conforms to the notation of the out-of-plane guidance
discussion).

14
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In this cooérdinate system (R, §), the direction-of-gravity is unknown as a
function of time. However, as was the case in the analysis of the out-of-plane
motion, an average gravitational acceleration can be assumed. Unfortunately,

the solution of the problem is relatively sensitive to errors in this assumption.
Thus, care must be exercised to assure that both the magnitude and direction of
this acceleration are selected in a rational manner. The estimate recommended
for the generation of this model is, therefore, the time average. Subsequent
discussions will define the procedure to be followed in the generation of this
time average gravity vector. Thus, the present discussion can assume that the
time average has been developed and is known.

The first step in the derivation of analytic steering equations is now
the reformulation of the equations of motion and the Hamiltonian. Consider
the following sketch: N Fcoa

R A
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Under these assumptions, the approximate equations of motion
. . ﬂ N .3
VS-Fmawa +3a| 4

V, = Floa X s +§WJ.A‘»

So that the Hamiltonian for this simple case is

are,

(2.1.272)
(2.1.é7b)
(2.1.27¢)

(2.1.274)

H = N (Feoron coap fi;f) # Ay (Feozan M,@fj,,j-/(’\)f/\s (V) # A () (2.1.28)

and the differential equations for the time varying lLagrange multipliers

(obtained from

- 24

X
X, = 0
o

A =

r

But these equations are uncoupled and may thus be integrated directly to

. T
)\ =
are .
AVS - "/\5
’\vr = -A,
yield
Ag=
X, =
AVs:
er=

So that the form of the steering program discussed earlier becomes

Ay

<

—C,z‘. +C3

-czz‘. +C4

tam 6 =& =

A

)
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(This law is commonly referred to as the bilinear steering law.) The four
constants of this law must be evaluated from the boundary conditions imposed

on the problem. Beforec performing this evaluation, however, it is recalled
that the boundary conditions for the _A can be selected arbitrarily if the
terminal state is not constrained. / (This fact affords the possibility of
simplifying the form of the steering law without attemptlng to solve the
equations of mot10n.l7 For example, -

T
A(T) = 3x

¢=T

3«?\
Thus, if

p#@[sh) , r=c¢=0

Under this condition, the bilinear steering law reduces to the linear tangent
steering law. Note that relaxing only one of the constraints on the terminal

ctata aliminatad +wn Af +ha Fanr conetarta Af intagration (+h s vy
LA LT ClllllilaiLtlu LWL Ul wvile -LULLJ. vuUliovalilvo U.L .LLAUUE.LG-UJ.UII \uuc UWU 11CW bUll_'

stants appear as ratios). This fact and observations of the small sensitivity
of the resultant traijectories to the constraints on the longitudinal position
component (noted in References 1.1, 1.2) have lead several investigators to the
assumption that the performance afforded by the bilinear law can be adequately
approximated using a linear tangent steering concept. The mathematical
Jjustification for this assumption will be presented in the following paragraphs.

The equations of motion
Ve —_— A
S= Fw1 X cor B -/jaug-s

.. . — A
r = Feordd gen 8 '*ézﬂug' R

can be made explicit functions of time to aid the integration process pro-
vided a series of small angle approximations can be made to facilitate
solution. These approximations will produce a slight inefficieney (in-so-far
as propellant expenditure is concerned); however, since the launch time is
selected so that the initial displacement from the desired plane is small,
since most of the boost trajectories for orbital, lunar and interplanetary
flights are characterized by small values of angle between the velocity and
local horizontal vectors at injection, and since to attain this state (in a
near optimum fashion for trajectories composed of an atmospheric arc and a
guided arc) requires a reasonably small attitude angle when initiating the
guidance, the assumptions are believed reasonable,

The first simplification results from the assumptions that the change in
the attitude of the thrust vector for control of the motion normal to the
desired plane is small during any single burning process, and that maximum
amplitude of the angle itself is sufficiently small as to allow the cosine of

& to be represented as
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coraox A/ ~ F(ctoe)?
2 (2.1.30)
~ (/- %— ) ~coz

where the constants C and D are known from the analysis of the out-of-plane
control problem.

The second simplification results from the fact that

- £
Z‘dvﬂ-ﬂ - 2 Cu
-C,t + C3
can be approximated as *
/-ALlan B%

(e 8’208)( /7 8,8 tang™)
tan8Y t 48 (1+lan2a)
= Zan B+ A8 (4ec?3 )

provided the change in the thrust attitude during the period of interest (i.e.,
one stage burn) is small. Thus, it is possible to represent A8 as

(2.1.31)

/ » ‘Czt 7 C4 J
A = ———=|"lan 4
s Mzﬂf[ A -C,t # C_;
(2.1.32)
~clt e
T -t X
where - C; = Clan 3% —Cs

—¢f = ¢ Aecla¥

C; = Cq( = C3 '544!./4"’
x

(Note that the reference angle, & ¥, is unknown at this point. Subsequent
steps will, however, define all required information). Now, since a8 is
assumed small

et 8 = am (3% a8)
’#Mﬂ**ﬂﬁmﬂ# (2‘1.33)
-ctrc%,

-c* *
c,t+c2

= s B* +

coo &*
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and

coo 8= coolB8¥+40.8)

2 g0 S¥ - A8 .auww S* . (2.1.34)
T *

= to0 3% - Tt tCy ot B*
-e%t+ef

The third and final approximation is now made by noting that since the
range angle (from initiation of guided flight to injection) is small and since
most of the trajectories d951rid are characterized by relatively small values
of the flight path angle /sin™~ (F . ¥)_/ at injection into orbit, the
product A8 sin &8 % 1is much smaller than coo 8%, Thus, to the
first order eo8 = e0d 3, This observation means that the equations for
motion in the horizontal direction (S) are nearly independent of the constants
of the steering program, or conversely that this component of the injection
position and velocity can be matched to a good degree without enforcing a
constraint on the program. Finally, since this is the case, the steering
program for A can be modified to reflect the relaxation of the constraint
on S(T) without major error. As was demonstrated earlier, this relaxation is
accomplished by simply equating C; to zero. The result of this step is now

. . ~Czt C
gen B xmp*+[ c—27 # C’;]md* = K, —kx¢ (2.1.35)
3 3

Thus, the problem of defining the constants 02/03*, 04/03* and B8 ¥ reduces
to any equivalent problem of determining Kl and KZ'

The composite constants K1 and K2 can now be evaluated by integrating the
equation for position in the R direction and substituting the boundary con-
ditions. This task, while straightforward, is somewhat involved due to the
number of terms required. For this reason, a shorthand notation will be
adopted for convenience.

7 .
dt / mT

I AR SR A4

o(/—mt,,)—mt m /- mt,

= s A -m7 ~(r-mt (-mié)-mT
& o/(/—n'vt,,)-n'né ”32{ A7 = (mmdy) L |(1 ity
- t
:"'—7,- + ———/ m bf/
m m
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Thus)

P ["‘C‘z)‘c ]( Kpt) # G- R (2.1.36
Uit Z Dt (K, ~Kzt) ? Gy R 2.1.36)

yields)

. L 2
OF 2 AT) ~F(0) ~Gayy RT=F {cosza NI AT AT FACRED

2
7"( '%)k/ 7,
and,

Arzrir)-r(o)-reo)T ——24 §an R72= E,{cokz 93 —[(/ -C;) K, +,(,co]3z

2 (2.1.38)
L (/ - %E.)AQ 37‘}
But these results can be expressed in matrix notation as
AT i T
F f; 12 1 Cb 0] K,
a -
= _(/_Sz _¢D K,
Ar 4 9o g z
F 3 Je b c2
° o (©-%)
{- CZ \ c<
CDf -(1-3)f, ! ~Ccof, * (/- 3 )% K,
N > e (2.1.39)
Cogy ~(1~3 )z 1 ~C05.+ (1 = 23, | K,
_ All AIZ Kl
L
Thus the solution for the constants is
Ka i Azz ~Ap A_Ff
=N ° (2.1.40)
K' A _AZI AU .A_FE‘
(-4
A} = A,Azz ~ A2 Az
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This solution completes the problem of determining the steering equations
for any single stage of a rocket vehicle under the assumptions and limitations
outlined in the preceding pages. Before turning attention to the problems of
generating accurate estimates of the time-to-go and the average gravity (re-
quired as.a part of the mechanization), however, it is noted that a major
simplification of the problem can be effected with slight error for most
cases simply by assuming that since & (t) is normally small

L A = |/

i.e.,

This substitution will reduce the solution just outlined to one which is
identical to that for the out-of-plane guidance. This fact can in turn be
utilized in a guidance mechanization to reduce the storage requirements for
the computer by allowing the same block of logic to be utilized for two
applications.

As a final comment by way of contrast, it is noted that Cherry (References
1.3, 1l.4) approached the problem of in-plane guidance in a completely
different manner. Once again he noted that a modified steering logic could
be prepared which would uncouple the equations of motion and allow him to treat
the problem of in-plane motion as two problems of two degrees-of-freedom. This
observation permits the same logic used for determining the steering constants
for the out-of-plane motion to be used for the remaining problems (without
assuming the flat earth) and assures that the desired terminal state can be
approximated to the desired level providing that provision is made to control
the mass flow rate. The guidance law, however, is not as optimal (in regards
to expended propellant) as that presented earlier because of the fact that no
mathematical justification (based on optimization) for the approximate steer-
ing logic can be prepared. Before discussing Cherry's formulation, it is
noted, however, that his formulation is less complex than that presented
earlier due to the fact that the gravity estimate has been eliminated (this
step results in a less optimum solution). The equation employed by Cherry for
motion along the instantaneous radius is

2
- (Voo 7) o F ooo O sim B

= — +
r 7 -
h v
where - v
7 = .am —
rv
4 =L rF



Thus, .f

y/4 (Voo 3)2
+
r# r

is smaller than the thrust acceleration (the term will normally vary between
-3g and +2g for most orbital, lunar, and interplanetary trajectories of common
interest depending on the time along the trajectory and the mission), then,a

- . . / s 7
perturbed linear sine (Tangent) steering program will be near optimum (proZ
vided again that 8% << Jand «?¢¢1), The law employed is

z

om 3 +C.+D .t
r# r
which yields

~:
I

C,F+D Ft.

Thus, the constants C_ and D can be readily evaluated from the present and
desired radii and radial rates. The fifth component of the terminal state

is controlled by matching the magnitude of the angular momentum at injeection
by controlling the time-to-go. (This final step will be discussed in sub-
sequent paragraphs.)
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2.1.4 Time-to-go

Implicit in the discussions which precede this section has been the
assumption that an estimate of the time-to-go was available. Therefore, at
this point in the process it is essential that several means of generating
this estimate be considered.

The first procedure which is of interest was presented in Reference 1.1
and 1.2 in a slightly modified form. This approach notes that the desired
terminal velocity can be matched as follows:

— —— r—. —
G T e[ Fo Gy
- (2.1.41)

[F‘“ =GV JagT

where g, is the time averaged gravity vector (Section 2.1.5) and T is the
unknown g%me—to—go. But F is not constant in direction, rather it is being
turned to effect the steering which is desired. Thus, there is a steering
loss which will result. This loss must be estimated to assure that a real-
istic time-to-go is generated. Consider the following vector diagram and
define the effective thrust as the component of the thrust vector in the
direction required to match the terminal velocity under the assumption that
there is no steering /R\$

F) g Fes

Fete

At

et | > <

To simplify the analysis, the assumption is made that the steering loss
is dominated by the in-plane steering; in general, this assumption is well
founded; however, the out-of-plane steering losses can be included without
major revision. Under this assumption,

e

&m“ £ cos (B-8%) (2.1.42)

Thus, the first step in the solution process is the definition of the angle
# %, Consider the equation

AVerr = Vi " Vo —360’31-

24



and the corresponding components in the

A A A
R, S, W coordinate system

* * — - - = A
AV, COSX "Srvg™ = V,‘1c Vr.o aavj e R
x _ - - .
DVyg COSAT COSB™ = V5. = V5, Javg " S
Thus A
tanﬂ*: \/q_-— Vro - g“"‘é e R T
- o A (2.1.43)
st VSO ﬁQU% * ST

Similarly, the equivalent out-of-plane steering angle ( o< *) can be defined,
though it is not required at this time, as

/

siw ™= V4 -V - A
AVe“[ Wf Wo javg .W] (2.1.14-[4-)
) The second step in the process is the expansion of the function
(& -p %
cos(B-8%) = cosBcospBX tsinBsinB¥*
= COSA* [CO_SA 7(_ 5/”,6 tdﬂ/@*] (2.1-11-5)
where costs¥ = -’
/ + tand¥
Siv@Bd = K, - Kzt
cos@ = |1 - (K -K,¢)2
~ (2.1.46

/
/- ?(K’ ~k,t)?

A2 K2
= (/_Z—’) + K/./(Zt - 2_sz

= qgt+tbt + ct?

Finally, the_change in velocity in the direction defined by the velocity
constraint ( A Vgrs) can be estimated.

>
/N
Ar/;“ =/FCO.S (B-B)clt aVegr
o

T ¥
Fo COS B
lAVeg‘I = 2

-[ : . [a+ bt+ ct?+ tanﬂ*(K,-Kzt)] di
o (/- lﬂté) -mt
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T £, Cos@*

av, = It et + ct?
! «fs] GC/"hté)—iﬁt( ef + c£%)at (2.1.47)
where
d= at K tangdX
KZ
:(/—?/)*K,tan/e’f
e = b —/\/zfanﬁ‘V
= KI/'(Z—Kata”/G)f
c= — L
2
Thus
= mT
aAv = Fo CcCos {{___ /7 / - :
eff A L /-mtb)
7 /- mi .-
e SN
m me I~mit,
7‘2 (/— mt 7 /_,,,‘.7& 2 - T
+c’—_— ~6)__< b)Ln_/_>
SVieenf = 9T 7 TS (2.1.49)
where

_F mT
OVioea = g L"(/ I mtb)

-mt _ . 2
£ = cos,e*[ g e LT, c(ﬁ) ]
o m
e C(/_Mtb):l
= x
g = focosa [M + —
c
h = Fcosp* [—.]
2m
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Now these two non-linear equations for A Vgrr /[(2.1.41) and (2. l 48)/
involving the unknown Time-to-go and several functions thereof (g 1 K )
must be solved. This solution can be accomplished iteratively by ¥§rst notlng
that the steering losses and the gravitational losses, while significant, are
not dominant. Thus, a first estimate of the time-to-go can be obtained by

assuming _ _ _ _ Yo
aveg (Ve - Vo) - (Vg “Vo§]
A [ T ] (2.1.49)
= —_— M / - —_—
i.e.,

‘estimate

/-y [1 -e 'hM:“/F'] (2.1.50)

m

(Subsequent passes through this set of equations for later estimates can use
the previous solution minus the elapsed time since that solution, i.e.,

—’;n‘un;te =z Th-, - at )

Now,under the assumption that this estimate is sufficiently accurate, the
iterative nature of the solution can be eliminated by expanding the terms on
the right hand sides of equations (2.1.41) and (2.1.48) in Taylor series,
collecting terms to form a polynomial in the correction to the estimated time-
to-go, and solving. First, define the true time-to-go in terms of the estimate
and the correction

T = T + AT

estimate,

(where A T will in general be small since the corrections are small). Next,
expand the terms in the respective equations through the second order for
accuracy

P=) F, -
—_{ : ,zn[c/—mb>—m7”AT = o 7
m

37 (=-miby)-pmT

372 { } [(/Fommt L;sz /]z
%] [w-%-37]] r ol -w-gm-g]

D e L T i e M 1| O

aT*
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and construct the equation

£(T2) Avipen, (To) ~G (T 7o ~ A (7D 2+ f(/‘o)[ , jt“:_,h /_]
Tt, 1

~qCT) AT ~2h(7,) 7, AT * 2—’{

f(T)Fom aT?
(SRR fn,]‘

— Zh (TO)ATZ} = v{ - VO —3 To (2.1.51)

-A_T[(Vf “Vo = qT,) - 5] P 2T {Avﬂz-[(q‘~v°_—jﬂ'zé]}

av 2 4ave Av

Now collecting the coefficients of the powers of AT, it is possible to
write an equation of the form

AAT2 +BaT +C =0 (2.1.52)
where
C=FAVpea ~gT ~hT*-Ay,
F a
B =f— ¢ 2 -
z Ay T T EAT
A= fFm / g2 /a2
= L AN _
2 «f 2 avp 2Zav: h

The solution is now

-G X V 2 .
AT = KZA%M (2.1.53)

where the sign ambiguity can be resolved by selecting the root which most
closely agrees in an absolute sense with the linear estimate of the correction

a4

- c
LINEAR E
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This procedure will enable the iteration process to be abandoned and will
generally produce the desired accuracy. Note is made that a process similar

to the one just outlined was discussed in References 1.1 and 1.2. However,
the approach presented here is considered superior since uniformity in the
order of the expansions used in the reference was not maintained, and since
numerical experimentation has disclosed that many combinations of initial and
terminal conditions require significant steering (i.e., the steering losses
are significant so that the time-to-go estimates while reasonable are not
accurate). Though it is noted that the desired terminal state can be achieved
in spite of the resulting inaccuracy by the simple expedient of holding the
steering angles at their maximum value (i) until the estimated time-to-go
becomes reasonably accurate, the "fix" procedure will result in a much less
optimum steering program.

At this point, attention is directed to the attitude angles o< #% and
/B 3. These angles have not been employed except in the discussion of the
steering losses in the material which preceded these discussions (rather,
combinations of constants were employed); however, it was noted that such
data could be employed by defining o and (3 in terms of a reference value
and a perturbation as
= xX¥ a4

(%4} \/

pzp%rap

This approach was taken in References 1.1 and 1.2. By way of contrast, the
results do not appear simpler nor do they appear to be more readily mechanized.
Rather, as was noted in the discussion of the simplified in-plane guidance
equations, the effect is to distort the similarity in the in-plane and out-of-
plane control problems. Further, no improvement in the degree-of-optimality
is achieved, since in both cases the limiting assumption is that the change

in the attitude during a given burn is small., In way of defense of the
reference, it is conceded that the approach which he outlines will be subject
to different numerical problems than the one outlined here (i.e., the problems
of round-off and loss of numerical significance may be less severe when the
angles o ( /3 ) and Aol ( A/3) are of different magnitudes). It is
also conceded that his representation of the coupling between the in-plane

and out-of-plane dynamics is more general. (The two should agree through the
third-order terms in the series for cos of which should be more than adequate
if the launch time is selected such that the desired plane-of-motion is

nearly attained).

After several values of time-to-go have been predicted in this manner, a
correction cycle can be superimposed on the result to provide improved pre-
dictions early in the flight by employing the memory afforded by the preceding
times. This fact will assure improved accuracy in the generation of the
steering command and better e¢fficiency in the utilization of the propellant
available. However, at this time no experimentation has been conducted to
indicate the best form for this correction cycle.

Cherry in References 1.3, 1.4 approaches the problem of finding the
time-to-go in a different manner. His approach is based on the assumptions
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that the rate of change of the angular momentum per unit mass of the vehicle

is the moment of the applied force per unit mass (i.e., gravity is assumed to

be along the instantaneous radius vector) and that the steering angles o¢( and
B are <<1. Thus

b)) = | T x Ect>|

= r(t) F(t) cosB )

2
= rt) FCy) [\ _ £ (t)J
Now if an expansion for r = r (t) is assumed, this equation can be integrated
from O to T and the result equated to the desired change in angular momentum.
The problem with this approach is that any expansion for r = r (t) which
matches the two ends of the arc will involve the time-to-go (see the dis-
cussions of average gravity). Thus, it is necessary to utilize a less precise
representation in order to evaluate T and then to resolve the problem
utilizing a more precise series. Assume

_ : /I [~ « - A
l’—r;f/bé,tg Tsz'ro)L"z
[
; .. ¢2
LA R
and 2
cot1 8 = /
T Ca Fa
= . 0._\ dé
then ah [(,;*,“’t*/;?. )(/-déh)"”')é

o e . ;:
ah __ LT (Mo (-t m)F)T
£ #m m2

. o o - P . \2
mér+m r;,(/—tém)-/- /;,(/- sz'")

7 . MT
N =P
m3

This equation can now be solved iteratively by assuming that ( Ar/ro
to obtain a first estimate for T

/ —-mah
A ﬁ"’—;[/-e ’3]
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and then by modifying the process to utilize the complete equation

. 3 2y o2 .
_{Ahh\ + ~ C,_T*[rh ’;*("."—‘ié) %Jn’tT}
Fy “*

1=ty
I:———‘— —-e _
/ —exp

. . . ~ . 2

This latter equation can be iterated (solved by the method of false position)
until convergence to a desired degree is obtained. Further, if it is desired,
the final value of T can be employed to evaluate the constants of the linear
tangent steering program for /3 and the correction to T resulting from
steering can be produced by integrating

7 7 B¢, 7)
Ah = £, 7 ;- =T gt
[r( ’ )[(/-»',té)—»ﬁf] 2

and resolving for T. However, this form of the correction cycle is con-
sidered too involved to be practical. Rather, a numerical correction cycle
is considered preferable if Cherry's method is to be employed and if a
suitable numerical technique can be devised. However, since more assumptions
are required to obtain reliable estimates from this formulation, and since
there could be trouble in the iterative solution process, the former method
is preferred as an approach to determining the time-to-go.

2.1.5 Determination of the Time Average Gravity Vector

As the final step in the derivation of analytic steering equations for
a single stage vehicle, it is necessary to construct a simplified model of
the equations of motion. This process in turn is accomplished by considering
the definition of the time average gravity vector.

- S s
Gug 2.7

where 0

(2.1.54)

This process requires that E be expressed as an explicit function of time.
Consider the case where g will be approximated by an expansion of the follow-
ing form

d -
G=g+ -3 ¢+ AL? (2.1.55)
[
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- - - b
where A is a vector constant used to assure that g(T)=g(rf) . But,

9| . % F. o
dl,  aF at ._ aF | o (2.1.56)
Consider the X component of gravity
-z
7z 3
Differentiation yilelds
« z |*
a2z r r i z «
9fx _ 3 2 2 X
d r r r!
z y u ¥ s
Yx .3 Z 4 £
3¥ 3 r r r?

Similarly for the y and z components. The result is
r Z x x_l 1.1_
r rr r r

-
2’____ ) z
Ho-Z(r-s |£2 £4 s3)) .
3Z 324 22
-r r rr r rJ

where I is a 3 x 3 identity matrix. Thus, since this matrix is known, the 2
corresponding vector d/dt (g)/o is known. This fact allows the vector A T

to be evaluated as
- 2 d"
AT = (s -7)- 2bor
F b at
Note that the product A T is well defined for all times O £ T £ Tpax.

Finally, the time average gravity vector can be computed by substitution
of equations 2.1.55 into equation 2.1.54 and integrating.

- /] . g1 ™ AT’
av = — T + —Z —_ —_— 2.1.58
Favg r[% cﬁlz* 3 ] (2.1.58)
> 2
=5, T, ;T
%*doz+A3
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2.1.6 Extension to More Than One-Stage Vehicles

The analysis of both the in-plane and out-of-plane guidance problems
showed that the steering equations to be mechanized were independent of the
time dependent nature of the thrust. This fact means that such variations as
changes in the thrust due to progressive burn of a solid propellant, or dis-
crete changes due to staging the vehicle do not alter the steering considered
optimal. Thus, the procedures outlined on the previous pages can be employed
without change for multi-staged vehicles of differing thrust levels, provided
that means of estimating the burn time for each of the stages can be formulated.

To accomplish this expressed objective, it is assumed that the various
stages have been designed in a near optimum manner, and that their selection
for a particular mission was based on criteria of optimality which need not
be considered here. It is also assumed that the propellant loadings for the
various stages were selected based on rational logic. Under these assumptions,
the optimal policy for utilizing the propellant is to expend all of the pro-
pellant in a particular stage (adjusted for loss and ullage) before igniting
the next. This being the case, the maximum (average) burning times for each
of the stages can be computed as

T = Wo,
¢ Wog (2.1.59)

At this point in the process, the time-to-go is defined as

n-l

S

=/

where T, denotes the unknown duration of burn of the last stage to be employed.
Now, as before, an estimate of the quantity Tgo is generated by solving
equation (2.1.41) and the velocity constraint equation (2.1.48) dimultaneously.
The equations for this solution are:

- - n-l
AV, = - —gm?[ A (2.1.60)
and
n- F n-1
[A J:e{lz_‘):[A ] _; Lo (]-2t, ); 5;4"(/—-»2 7'_’)>_20[5T"+7:'] (2.1.61)
;e{g AV. Ay, +AV,,> P4 :L:;‘ 7"'7;.]
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where AVj (i=j...n-1) denotes the ideal increment in velocity corresponding
to the maximum burning times for each of the stages below the one of unknown
burning duration; where j denotes the number of the stage which is presently
burning; where AV, is the correction or adjustment in the AV obtainable
from the jth stage to compensate for any ellapsed burning time for the stage;
and where AV, is the required increment in velocity for the nth stage.

The procedure employed to solve this equation is as follows:

1) assume the number of stages n [this step will not be required once
the first estimate of Tp £ Tnmax is obtained (unless subsequent
computations of T, are larger than Tnmax) since the last estimate
of the number of stages can be employed].

2) solve equations (2.1.60) and (2.1.61) for T, in the same fashion
used in the single-stage formulation (in the single-stage case
Verr = |Vp - Vo’+ Vc)'

3) check Tp against the maximum burning time available for the stage.
If T, is negative, reduce the number of stages by one and repeat
the process. If T,is greater than Tnp.., increment the number of
stages by one and repeat the process. If O ¢ Ty < Tnm , the
number of stages and the time-to-go estimates have been defined
and the steering constants can be computed.

The danger in this process is the possibility that the initial estimate
of Eayg Wwill become much less accurate as the burning times increase, due to
the fact that the change in the radius was assumed to be reasonably small in
order to yield a solution for the average gravity. This problem can be
alleviated by defining an average gravity for each stage. However, such a
step requires that intermediate radii be established (iteratively) for the
terminal position for each of the stages. One means of accomplishing this
objective would be to employ the estimation of éavg presented in equation
(2.1.58) to define a trajectory [# - T (t)] ; and Segmentation of this tra~
Jjectory at times corresponding to the stage burn times to provide a means
of generating improved estimates of the average gravity for each of the
stages. (This process should converge quite rapidly, since gravity is not
the dominant acceleration.) The term

n

2ave & i
Fog B
can then be replaced by

B fuy

‘QV’

No numerical experimentation has been performed for this case. Conse-
quently, no estimate of the necessity of the iterative approach is readily
available. Rather, it is noted that unless the problems are severe, the

34



mechanization difficulties and the small improvement obtained for most tra-
jectories of interest would dictate that the approach presented for single
stage vehicles be employed.

2.1.7 Extension to Fixed Time Coasts

No assumption has been made in the previous analysis which would pre-
clude calling the Kth stage a coast; i.e.,

7, =O
b

ay, = 0

TK = 7;0‘5!”

Thus, if the durations of the coasts are added to the total time in the
computations of the gravitational loss, and if the velocity increments for
the corresponding "stages' are equated to zero the result is

AVTorAL - V[ —"{) —§avf
:e[

The probability of error in the estimation of §av is now reasonably
high. Thus, it is recommended that the iterative lOgl% suggested in the
extension to multi-stage vehicles be employed or that intermediate radius-
velocity terminals (¥, ¥ will define the coast arc), be established so that
the total problem can be solved sequentially. This latter alternative is not
unreasonable since the duration of the coast periods can be rationally selected
only by performing a study of the effects of these durations on the requirements
for the boost vehicle. Thus, if a fixed duration coast is to be commanded
(based on simulations of the trajectories, etc.), it is reasonable to assume
that the "terminals" can also be supplied. If so, each phase of the problem
(K consecutive burns) can be considered as a separate problem.

- - n-1 o0
(278 7 7]
4= ~é -

']

)E' Ay, - AV¢+4V,.] ~f [’-_l" A *7;]
oy

‘-=j

The alternative to requiring intermediate terminals (thus losing flexi-
bility in the targeting for the vehicle) is a more complete simulations
capability for the guidance computer, for the crew and/or for the ground based
tracking station.

2.1.8 Results of a Typical Simulation

The material of Sections 2.1.2 through 2.1.5 has been mechanized for
numerical simulation to demonstrate the nature of the solution and the type
of control derived and to define the general nature of the mechanization re-
quirements. This simulation is illustrated in Figures 2.1.1, 2.1.2, 2.1.3,
and 2.1.4. Figure 2.1.1 shows an overall logic for the guidance function and
demonstrates the effects of a time delay in generating new guidance commands
on the system mechanization. Figure 2.1.2 presents the first step in the
process, that of the determination of time-to-go as a function of the error
signals in position and velocity Once the first estimate of time-to-go is
made, estimates of the gravity vector and the steering constants generated
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utilizing the logic of Sections 2.1.5 and 2.l.4 as illustrated in Figures 2.1.3
and 2.1.4, At this point, the gravitational and steering losses are estimated
and a correction to the estimated time~to-go (two corrections are made the
first pass through the process). At this point, a corrected time-to-go can be
predicted from previous memory, if available (this logic has not as yet been
checked)., The revised time estimate is then utilized to predict the guidance
steering constants.

One point of particular merit should be noted here in regards to the comp-
utation of the steering constants. The possibility exists that the estimated
time~to-go will be so poor that the steering constants C and Kj (representing
the sines of the angles o and B at the epoch tg) will be larger than one. If
this situation exists for either constant, the corresponding steering angle(s)
should be set at 4 90° (depending on the sign of C and K1) until the problem
becomes better behaved.

Once the steering angles are defined, the motion of the vehicle is simu-
lated for a small interval of time (the interval for the simulation is m times
the step size of integration, where m is an input quantity intended to show
the effects of appreciable computation times, i.e., time delays, on the
resultant trajectory). The process is then repeated until the time-to-go
reaches negligible proportions of until the magnitude of the velocity matches
that which is required,

The results of two particular simulations are shown in Figures 2,1.5 and
2.1.6, These figures were generated for the problems:

7, = [ 2.x107 R
A
- .5 x 107 s
Pad

+ .1 x 105 W ] ft
- A
Vo = [ 10,000 R
+15,000 §
A

+ 1,000 W ] fps

Fo/mo = 35-
m/mo = .003

- N
re¢ = [ 2.1x107 R
A
+0, S
N

+0. W ] ft
- A
Vf = [ o. R
+25000. §
N

+0, W ] fps
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and

o= [2.x107 &
- .5x107 S
+.1x10° W]t
-l N
v, = [ 8,000 R
+15,000 S
A
+ 1,000 W] fps
Fo/mo = 35.
m/my, =  .003
A
T, = [2.1 x 107 R
A
0. S
+0. W] ft
- A
ve=1[o R
A
+25,000. s
+0. i ] fps

respectively. The figures show the manner in which the position relative

to the desired injection point goes to zero and the nature of the approxima-
tions for the time-to-go and the steering constants. The figures also show
the nature of the gravitation approximation by defining the constants of
proportionality necessary to construct the "average" gravity vector from the
instantaneous gravity vector and the terminal gravity vector. Note that for
the major portion of the trajectory, the components of the average gravity
in the g, direction are nearly constant. (The sharp increase in this factor
late in the flights is the result of indeterminancy in the solution for the
proportionality constants as the elapsed time between t, and ty goes to zero,
i.e., 8o = Ef. No problem was encountered in the definition of the gravity
vector itself). This fact implies that studies of the gravitational model
employed in the analysis might reveal an extremely simple yet highly accurate
empirical relationship which could be used to replace the present computation
of the time average gravity vector.

Figure 2.1.7 demonstrates a measure of the off-optimum nature of the
solution. Presented is a plot of the first estimate of the time-to-go for a
series of problems identical to the samples which were discussed but with
different components of velocity in the R direction at the time guidance is
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initiated. Also presented is a plot of the "true" time-to-go for the same
runs. Note as the amount of steering increases (zero steering occurs for

fo 2~ 9000 fps), the initial estimates become increasingly poor due to the
assumptions made in developing the estimate. In all cases, however, the first
estimate was better than that obtained without consideration of the steering
losses. For the purposes of contrast, this latter estimate and the corre-
sponding true time-to-go is also presented. Of particular interest is the
fact that the initial guesses without the steering losses are valid (under an
assumed accuracy constraint, e.g. 10%) over a smaller range and that more fuel
(Ttrue) is required.

These results by no means exhaust the evaluation of the adaptive (itera-
tive) guidance scheme. They are intended to show the nature of the solution,
and to demonstrate possible revisions which will make the process more accu-
rate, more efficient, and/or more flexible. Thus, continued effort in this
area will be followed with great interest. However, the simulation does
serve to indicate the approximate nature of the mechanization requirements
(no attempt has been made to optimize the FORTRAN coding or core storage as
would be the case in a true self-contained system). The resultant require-
ments are;

Time-to-go 1000 octal (including steering losses)
Gravity LOO octal
Guide 500 octal

1900 octal

In addition, the following general purpose subroutines were mechanized:
square root, natural logarithm, sine, cosine and dot product. The exact
length of these routines is not known.
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2.1.9 Extension to Constrain the longitudinal Component of Position at
Arrival

The discussions presented in the previous sections have been directed
toward the formulation of the boost guidance problem in which only the radial
and lateral rates and the terminal radius and lateral position were constrained.
The present discussion is intended to introduce an approximate means of con-
straining the longitudinal displacement and rates.

Consider the equation for longitudinal motion

S = Fesot oo 8 *7-""} s

where cos e« is assumed to obey equation (2.1.30)
sine{ is assumed to obey equation (2.1.35)

and consider the approximation of cos /3 by employing the identity

cooB8 = V- on?a8

/. - /
=/ amts = /-2 (K,-K,t)? R
This equation can be utilized to generate the solution for S(T) and S(T);
howevér, the solution will be non-linear in the constants K] and K2.

Further, there will be a set of four (4) boundary conditions which must be
matched by selecting these two constants. Thus, in general, the equations

will not yield a unique solution even under the assumption that they can be
easily solved. This fact has lead to the partial reformulation of the

problem around the lines suggested in equation (2.1.29). That is, additional
constants will be introduced which will be selected so as to satisfy the
terminal constraint on longitudinal motion.

Consider the equation (2.1.33) and (2.1.34) which can be expressed in

the form . a+r b / dt de 2
e 8 = = — ~ =T hadd
e r ot c(afJé)(/ 5 (C <qy
~ /! ad Lo
bl [a+(,&- c—)t] —z ¢%ec)
= Ky - K, ¢
Similarly

_ c+/t

~ ! a¢
Cos = g(crié)(/—z
! ed
clerz-=9) 4]

KKt

t

]

]
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These linear approximations are required since the solution to be performed
on the guidance computer must be linear in the steering constants to avoid
iterative computations. Note that while terms involving t“ could be easily
added to the representations of both the sine and the cosine, there would be
an insufficient number of boundary conditions to provide the constants with-
out employing the dependence of these functions (at prescribed epochs) in the
form

5m1ﬂ + coszB = ]

However, since this identity has not been employed, it is highly pro-
bable that the resultant equations will be valid only for relatively small
ranges of initial and terminal states. No attempt has been made to determine
if this limitation exist or the severity of its effect on the steering program.
One saving grace exists though since the results of the sample problems in-
dicate that the steering angle ,3 is quadratic (roughly) in time. Thus, /3
is roughly linear and

/3coo/3 = Fd'z (Sm/e))

= - K,
or
o L 4 gt t 2
a LU SRR
= K- Kt

Since this result is the same as that obtained in the previous series of
approximations, it is assumed that the result is sufficiently accurate to
allow for an approximate solution to the equations of motion.

Now, under the assumptions that these approximations are valid for some
traJectorles, the steering constants K R K and K, can be evaluated by
employing the solution presented in equatlons 2.1.37) and (2.1.38) by simply
changing notation.

The result is

AF A, A, O O Ky

Ar _ Ay A, O O Ky
as O O A, A, K,
4s O O A, Azz Ky
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where AF = F(T)-F(0) ‘fav, )

2

-
2 L - roT
Ar=r(7')"’(0) ?avi 22

AS
2

$(T)-8(0)~F,," 8T
a I’
$%

-$O)T

AS = S(T)-5(0)- 5}‘",

A, A, A, , A, defined in equation (2.1.39)

Finally, since the coefficient matrix relating the steering constants is
partitional as it is, the solutions for the constants is

{&,} _ A_,{ Ar
/(3 Ar
ké .
{ka‘}: A—/{A$>
As
A = ! [Azz A,
A —AZI Au

A =A A

where

1z = Alz AZI

and the "optimum" steering angle is given by

(J - kyt
- Kt

Tan 8 =

Note that because of the previous approximations, the solutions for the sine
and cosine of 3 are independent and that the constants K, and K, are
identically K; and Ky, respectively. This fact allows the” approximate con-
straint on the longitudinal motion to be added or deleted from the guidance
solution as desired without modification to the formulation by simply bypass-
ing a portion of the logic. Care must, however, be exercised to assure that
the assumptions impliecit in the development are not violated.
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2.2 EXPIICIT GUIDANCE EMPLOYING GUIDANCE POLYNOMIALS
2.2.1 Introduction

The develorment of rocket vehicles that are capable of injecting multi-
ton payloads into orbit has established the need for a guidance system that
differs from those that were developed for ballistic mlssiles. Further,
the high cost of the vehicles, along with thelr utility in the Apollo program
to carry astronauts makes it necessary to have a guldance system with a
high degree of reliability. These objectives can be attained by increasing
the flexibility of the guidance system to make it compatible with the charac-
teristics of these vehicles. For example, the enormous thrusts that are
generated by the early stages are normally achieved by clustering engines.
Therefore, if one of the engines fails a discrete variation in the thrust
would result at an unpredicteble point on the trajectory. This failure would
not, however, effect the total energy available to complete the flight but
would result in a lower rate at which energy is available; this fact would
in turn slter the shape of the trajectory which can be flown. However, if
the guidance system has been designed to accommodate this type of failure,
it is still possible to complete the specified mission.

Further, the large vehicles are expected to be used for a variety of
different missions. Thus, a guidance system with sufficient flexibility
to be used for each of these missions without major redesign or modification
is highly desirable due both to considerations of cost and reliability.
And finally, the complexity of these vehicles are such that the probability
of their achieving lift-off at a specific instant is small. Thus, the gui-
dance system must be designed to compensate for these variations.

The objective of this section is to explore one approach to the problem
of providing a guidance logic adequate for all of these requirements. To
this end, the following paragraphs have been prepared.

2.2.2 Preliminary Considerations

In the discussion to follow, it will be assumed that a navigation system
is available that indicates the vehicle position, veloeity, acceleration, and
attitude in a continuous mode. For example, such a system could be either
inertial or radio navigation. If an inertial navigation system is used, then
accelerometers are mounted on a gyro stabilized platform and the position
and velocity of the vehicle are computed from the accelerations that are
measured using these instruments. If the radio guldance system is used,
one or more radar units will observe the distance of and direction to the
vehicle, and this information will then be used to compute the position
velocity and acceleration.

The guldance process is defined as the plan by which the navigation
information is used to control the flight of the vehicle. TFor a rocket
vehicle this process will take the form of two sets of equations. The first
set is defined as the steering equations and is used to compute the direction
the thrust vector should have for the vehicle to achieve the desired flight
path. The second set of equations 1s used to compute the engine throttle
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setting. In general, this seeond set includes (1) the time of thrust initia-
tion, (2) instantaneous thrust magnitude, (3) time of thrust termination.
However, the large liquid vehicles presently being built have fixed thrust
englines so that the instantaneous thrust magnitude can be controlled only

in a small region about the nominal. As a consequence, only the times of
thrust initiation and termination is generally computed.

A number of different guidance processes have been developed. Among
this set, are those for which the steering equations have been intuitively
selected. For example, one of these schemes orients the engines so that the
thrust acceleration is in the same direction as the velocity-to-be-gained.
(The difference in the velocity vector required to achieve the specified
terminal position at some future time in free flight and the instantaneous
velocity vector). In this system the navigation system is used to monitor
the vehicle flight, and the thrust is terminated when the velocity-to-~be-
gained has been driven sufficiently close to zero. The time of thrust
initiation is selected to give some desired end condltion, with the ald of a
simulation of the process. It is probably possible to freeze a process of this
nature and engineer extensions that will handle particular missions. However,
the previously mentioned objections still persist, the (1) the knowledge
of the applicability of a guidance process is limited to one mission; (2)
the degree to which the process reaches 1ts theoretical optimum is not known.

For reasons such as those mentioned, the decision was made to start
afresh with new concepts that were independent of vehicle and mission
configuration. The objective of this new approach was to develop a guidance
process which would adapt to the particular vehlcle and mission being flown
(thus, the designation path-adaptive). In this approach, the same basic
guldance plan will be applied to all missions and configurations, with the
steering and throttle equation being selected to minimize a particular loss
function.

2.2.3 TFormulation of the Guidance Equatlons

In order to gain some insight into the areas over which an optimization
of the guidance mode may be made, consider Figure 2.2.1

by MISSION TRAJECTORY

2, POSSIBLE FLIGHT PATHS

P —— =

Figure 2.2.1 Choice of Flight Path
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In this figure, the flight space is assumed to be two-dimensional, and the
objective is to achieve the mission trajectory. The mission will be repre-
sented mathematically by the set of equations

Fi (s g5 Z,4,¢)=0  i=1/,2,3 (2.2.1)

where the solution to the system of equations in x, y, i, i, and t 1s,

of course, not unique, since any peint on the curve represents a solution.
Therefore, rather than choose one particular solutlon as a standerd injection
point, the mission is left specified in a functional form. This degree of
generality assures that guldance may be generated at any given point 1n the
flight, 4, , which is which is "best" in the sense of some scalar com-
parison function and which will satisfy the mission.

If desired, an arbitrary form of thrust direction history could be
assumed, and the corresponding optimization for the best solution of the sys-
tem of mission equations (2.2.1) mede. It seems wisest, however, to seek
that form which is optimum over all possible functional forms and to use the
one function of that famlly which alsoc provides the optimum solution to the
mission eguations. That is, among all steering functions which result in
flight paths that have end points that satisfy the mission conditions, the
one that minimizes some specified quantity is sought. This type of problem
is treated in the Calculus of Variations, where theory exists that is useful
for singling out the one particular desired function.

2.2.4 Semple Steering Function Solution

In order to obtaln a guide to the approach and methods necessary to
implement the adaptive guidance mode, using the concepts of the Calculus of
Variations, it is helpful to consider a simplified problem; thus drawing
attention to those steps that are characteristic of the methods applied to
actual flight problems.

The particular problem considered was selected for two reasons. First,
a closed form solution can be given for it. Second, the simplification of
the problem allows a closer exposition of the salient features of the approach
taken.

Consider the flight of a vehlcle in an inverse square gravitational
field that is propelled by a rocket having a constant thrust and mass flow
rate. This physical situation can be represented by the following system
of equations.

PR —
T T m (2.2.2)

/ +(m2 (¢-4,)
£Z=A,-K*22 (2.2.3)
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where

.. - ] KZ
. . Y
: / ° A’ = A coo 9 - T e 2.2.
i, 4= T Pr f’ ( 5)
Assume the initial conditions
7
'to, 40 s ¥, é_-,-o ’ (;)o (2.2.6)

o0 be known and that the mission criteris expressed by equations (2.2.1) are

to be achieved with a minimum thrust time (tp - ¢, ). The steering function
which does this can be determined via the calculus of variations to satisfy
the followlng equations

N L
A = 7;[7‘.(2”2’?’2)"3)\2 zy] (2.2.7)
%, - X .
o= = [anzy 20207 - 27)) (2.2.8)
0=\, 000~ Ny am 6 (2.2.9)

(where the initial conditions for the Lagrange multipliers for each component
of the terminal state which is unconstrained may be selected arbitrarily and
where the remsining multipliers must be determined by trial and error)
together with equations (2.2.2), (2.2.%4), (2.2.5), and the end conditions
expressed by equations (2.2.1) and (2.2.6).

This set of equations constitubtes a two-point boundery value problem.
One form of the solution would be the set of functions (i), (t), Ji(t)
that meet the stated requirements, based on the absence of any disturbances
in the interval from ¢ to £, . If a solution is obtained based on a
state which is taken later on along the mission trajectory, the same set of
functions z¢t) , A¢) and 6(t) would be obtalned.

However, as soon as & disturbance occurs, & new set of solutions will
result., Thus, the solutions .z¢¢) , ~2(#) , and O(t) are in turn functions
of the inltial conditions and could be written explicitly as functions of
these parameters. In particular, the functlon o) evaluated at

t= ¢, 1s
0) =0ty 1, 5, A ,(%:-)] (2.2.10)
[+]
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This equation expresses the solution of the desired thrust direction in terms
of the measured state at the initial epoch. The remalning end conditions,
while they are not given explicitly, can be expressed simlilariy.

The resulting set of equations for the unknown end values in terms of
those that are known may be thought of as a second form of the solution to
the two~-point boundary value problem. The most lmportant of these, however,
are equation (2.2.9) and a similar expression for #p . Thus equetion
(2.2. 9) is the steering function and the expression for {, would be the
thrust termination funection.

The success of path-adaptive guldance 1s determined largely by the qua=-
lity of the equations that are mechanized in the guidance computer. This,
in turn, depends on the nature of the function necessary to accomplish the
desired results and upon the manner in which it is prepared for the computer.
However, guidance functions that represent the optimum exactly (to measursble
accuracy) can be expected to require more computer complexity and weight
than simplified approximations to these functions that produce approximate
optimms. Thus, trade-off studles are required to determine the allowable
degree of approximation for each of the applications.

2.2.5 Anaglytical Approach to Guidance Function Representation

The form of the solution of the two-point boundary velue problem dis-~
cussed previously (equations (2.2.1) to (2.2.9)), may be attempted analyti-
cally. Conceptually, this solution could proceed as in the following
simplified example. (Analytic solutions to more complicated problems are
discussed in Reference 2.1 and 2.2)

Consider the problem of steering to a point in the ( /V,V’) space from
arbitrary initial conditions

Us Y (2.2.11)

to the fulfillment of the misslon criteria.

Ay ~H =0 (2.2.12)
Vp-v = o (2.2.13)
If the equations of motion are
A = S/noc (2.2.14)
[
V = oos K (2.2.15)
and if the objective of the guidance system is to minimize - 2,
application of the calculus of variation provides the eqpati ns that define

X as

59



=0 (2.2.16)

,Zz =0 (2.2.17)
4, tosex - 4, simex =0 (2.2.18)

These equations have the solution
X =0, (2.2.19)

Thus, upon substitution of this solution into the equations of motion and
integrating from 7 to %f .

My — Ay = (€ - ty) SIN g (2.2.20)

Vg = Vo =(tf - ¢,) L0S5 o<, (2.2.21)

This system is then solved fbr'/4¥ and p, substitution made into equations
(2.2.12) and (2.2.13).

dp -y = (& -t, ) SINXo (2.2.22)

Vi- Vo =(tg -t,) LOS K (2.2.23)

The simulbtaneous solution provides the steering function

X, = Qe Zam o (2.2.24)
V; = Vo
and the cutoff function
t; = ¢ +1[(a; -k,) (- ¥, )# (2.2.25)

Now consider the more realistic problem discussed in section (2.1) in
its most complete or in its simplified form. For this problem, the equations
of motion are more involved and the varilables are coupled with the result
that no simple solution for the Lagrange multipliers or the corresponding
steering angle can be obtained. Thus, the analytic solution (or simple
iterative solution) required for an onboard guidance computer cannot be
realized. This fact has lead to an empirical approach to the problem; this
approach will be presented in the following sectlon.
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2.2.,6 Guidance Function Generation Using An Empirical Approach

For this approach, the two-~polnt boundary wvalue problem represented by

equations (2.2.1) through (2.2.8) is solved numerically for a particular assumed

set of initial conditions, equation (2.2.6). This process is repeated for
a large variety of values that lie within a region that contains all of the
disturbances that the vehicle is designed to withstand. Thus, a tabular
representation of the guidance functions is constructed which mey then be
approximated by a polynomiael. This task has thus become a curve fitting
problem for a function of several varisbles. No general theory presently
exists to accomplish this objective; however, some relatively good resultis
have been obtained using intuitive procedures.

For evaluation of this approach, a test problem was postulated. The
task was to derive a steering function for the vacuum flight of the second
stage of a vehicle. Thus, the initial point 1is the cutoff point of the
first stage. No cutoff function was employed, rather it was assumed that
the fuel would be burned to depletion. (The application of this technique
to other tasks is discussed in References 2.4 and 2.5.)

was +

ha N aoe R111~ naad +no hnilad +ha +ahla far +ha
Lo Lo U 1l LuiCuviln wa o

The px dure used uild the table for the s
isoldte & family of optimum trajectories orlglnatlng fro the area of the
first stage cutoff conditions and satisfying the terminal end conditions.

The family consisted of 126 trajectories for which variation had been made

in the upper stage thrust level. It should be noted that each point on any
one of the trajectories was in fact another initial conditions, thus
providing another value for the table. For each trajectory of the family,
points were read every five seconds to provide a time history of the steering
funetion.

n
ot
(1]
D
H

F
..3

>

5]

3

;]

+

J

D)

£

6, | 1o, 55,270, (F/mDs | (2.2.26)

Since this mission is independent of time, ¢
function.

o does not occur in the steering

The curve fitting procedures chosen to represent (2.2.28) was the method
of least squares, since it was felt that this process would lead to a polymno-

mial form that is especilally convenient for an on~-board computer. Further,

the polynomial that was used to approximate equation (2.2.26) was of the form

0,= aw, +aw,. + 3wy ... & W (2.2.27)
where V%J are generalized product functions of the type
=2yt z _ 2\ (2.2.28)
| ?U 7 m

and where the indices range over the set that includes all postulated powers
for the various factors in the series (h, k, p, q, r and s; generally these

powers must be assumad, the guidance function determined, flight simulated,

and the exponents empirically optimized by trial and error).
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The choice of the particular powers for the variables to be contained
in the set of indices will depend on the function being simulated. A method
for selecting these indices is not yet available, however, for any particular
choice it is desired to find the best set of coefficients, a; . Thus, at
this point it is assumed that the polynomial has been empirically defined and
that the problem is now to define the best set of coefficients in the sense
that the sum of the squares of the differences between the values provided
by the polynomial and optimum values of © are a minimum; i.e.,

[ = f‘: [Q:_Qf (2.2.29)

/4
is a minimum (where, ©  , is the optimum value of the thrust attitude). But
the computational algorithm for defining the a's is

-1
a=[mMm7] Mg (2.2.30)
where a, 9,’
a ’
= az o= %
= g = ’
“ :’ &s
a v
L Qi
-M/u VV,z e vy i
Ix-" wz' sz . o . WZJ'
M = WJI Wsz . v - W’j
- W W

Note that the index J ranges over all of the tabulated points and that the
number of tabulated points exceeds the number of coefficients, i.e., .
(This latter requirement assures that a solution can be generated)

By varying both the selection of the tabulated points and the specific
polynomial form used in the fitting, the residuals can be modified so that
the loss function of equation (2.2.29) is as small as possible. The final
criteria of goodness of fit, however, must be a welghing of the number and
complexity of terms in the polynomial against the degree of optimization and
accuracy of meeting mission conditions achieved by the polynomial. For
fitting the 12,600 point tabulation, various approximating polynomials up
through third order were investigated, (Reference 2.3) and it was found that
a third order polynomial of eighty-four terms proved the best compromise
representation. This conclusion is predicated on the observation that the
errors in the control deflections relative to the true optimum policy were
of the order of .l5 degrees while assuring that the storage limitations of
the on-board computer were not exceeded.
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In conclusion 1t is noted that while the entire discussion of this sec~
tion of the monograph has been slanted toward the two dimensional problem,
the results are valid for the three dimensional problem as well. The solution
will in all cases be more complex due to the fact that additional terms in
the equations will be required (unless the in-plane and out-~of-plane motions
are separated as discussed in section 2.1). However, the concepts are
unaltered.
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2.3 PERTURBATION GUIDANCE

This section of the monograph will deal with a class of guidance
schemes which will be referred to as perturbation guidance. This name has
been selected because each of the schemes in some way relies on the closeness
of the true flight to precomputed information that ‘has been computed for a
specific reference flight. In other words, a significant amount of computa-
tion is done on the ground prior to the flight for a particular mission in
order to minimize the amount of on-board computation. Since the preflight
computation is performed with a particular mission in mind and with a nearly
exact model for all forces acting on the system, it is assumed that the
preflight results will be in the "neighborhood" of the actual flight results.
It is this '"closeness" of the preflight computation that is the basis of any
perturbation guidance scheme and which affords accuracies comparable to those
obtained if a large and very fast computer was used for real time computation
during the actual flight. As long as the actual flight does not differ signi-
ficantly from this "nominal" or reference trajectory, the precomputed infor-
mation is sufficiently accurate to allow the guldance scheme, which is
designed by approximating some quantity by a Taylor series,to correct for
measured deviations in position and velocity. The original assumption of
closeness to a nominal trajectory permits the Taylor series to be truncated
after first order terms in most cases without introducing intolerable errors.
This approximation then permits the use of the more powerful techniques of
linear analysis in many cases.

Although the technigques presented herein have many similarities, certain
peculiar features have been singled out in order to distinguish the schemes.
It should be noted, however, that any attempted organigation based on these
peculiarities is artificial since similar mathematical techniques are used in
conjunction with all of the guidance schemes. In this light, the organiza-
tion of the section will now be presented. These discussions are divided
into two major parts. The first part, 2.3.1, deals with guidance schemes
that use the required velocity concept (defined in text). The second part,
2.3.2, presents a class of guidance schemes that reduce the nonlinear equa-
tions to linear perturbation equations. Following the derivation of the
equations for each of these guidance schemes, a control or steering section
is presented. Since it is usually desired to optimize the control in some
sense, the determination of the optimum control policy involves the use of
calculus of variations, Pontryagin's Maximum Principle, and/or dynamic
programming. A sample application of each of these approaches is included.
Section 2.3.1.2.3.1, Optimum Steering for C* Guidance, i1s an application of
Pontryagin's Principle. Sections 2.3.2.2.1 and 2.3.2.2.2 are respectively
applications of calculus of variations and dynamic programming. It should
be noted that a detailed discussion of the variational techniques used in
these sections is beyond the scope of the monograph. However, all of the
required information may be found in other monographs of the series
(references 3.22, 3.23 and 3.24).
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Before continuing with a detailed analysis of the various Perturbation
Guidance schemes, it is worthy to note some of the features of each so that
the advantages and disadvantages of each can be kept in mind as they are
presented. Figure 2.3.1 is a table that compares and contrasts the three
main types of Perturbation Guidance schemes, Delta Guidance, C¥* (or Q)
Guidance, and Linearized Perturbation Guidance. These three schemes are
compared on the basis of performance, optimization, errors, application and
mechanization.

2.3.1 Required Velocity Approach

The guidance schemes in this section share the use of the required velo-
city concept. (The required velocity is defined as the velocity that is
needed by a vehicle in order for it to reach a specified position at some
specified future time under the assumption of free flight from its present
position.) The two schemes presented in this section are two different
mechanizations of the equations for the required velocity. The idea behind
both of these methods is to provide a simple means of updating the required
velocity as the vehicle progresses along the powered flight. By measurement
of acceleration of the vehicle the first concept, Delta Guidance, expands
the required velocity in a Taylor series about scme nominal burn-out point.
A good approximation of the required velocity for a point other than the
nominal burn-out point can then be found by substituting the position coor-
dinates of the vehicle into the Taylor expansion. The position of the
vehicle at subsequent times is then determined by integrations of the total
vehicle acceleration. This scheme provides a continuous knowledge of the
required velocity for purposes of steering and is capable for compensating
for errors at earlier epochs.

The second guidance scheme that used the required velocity concept is C*
(sometimes called Q) Guidance. This scheme is a means of continuously
updating the velocity-to-be-gained (the difference between the required
velocity and the current velocity.) Measurement of the thrust acceleration
provides the information that is necessary to continuously update the
velocity-to-be~gained such that the vehicle can be steered properly.

Acknowledgement is given to C. W. Sarture (reference 3.3) whose material
on Delta Guidance was of significant assistance in the preparation of this
section of the monograph.

2.3.1.1 Delta Guidance

2.3.1.1.1 General Discussion. The object of Delta Guidance is to provide
a reasonably accurate value of the required velocity throughout all phases of
a powered flight. However, since the expressions for the required velocity
are quite complex and non~linear, an "exact" knowledge of the required velocity
as the vehicle progresses in its powered flight would require a tremendously
large and fast computer performing real time computation. To remove this
problem, it has been found that a Taylor series expansion as a function of
position and time about the nominal burnout point provides a sufficiently
accurate value of the required velocity for any position or time along the
nominal trajectory and at the same time produces a significant reduction in
on-board computation.
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Figure 2.3.1 A Comparison of Perturbation Guidance Schemes

Mechanization

Optimization

Application

Errors

Delta
Guidance

c* (or Q)

Linearigzed
Perturbation
Guidance

Compute required velocity
by substituting present
position and time into a
polynomial. Steering
involves taking cross
product of two vectors

or simple integration.

Continuously solve a set
of first-order differen-
tial equations with thrust
acceleration as a forcing
function. Steering
involves taking cross
product of two vectors.

Precomputed matrices and
vectors are fed from a
computer. The state is
compared to nominal and
a control deviation is
generated by a matrix
multiplication,

Nominal trajectory is
non-optimal; steering
can be optimal.

Reference trajectory
can be near optimal,
Steering will be near
optimal if burning
time is short compared
to the constant for
the system,

Nominal trajectory
is near optimal,
Perturbation control
can also be near
optimal.

Ballistic
Vehicles
(Minuteman)

Boost-Coast
Injection

Boost-Coast
Injection

Highly accu~
rate as long
as vehicle
remains close
to nominal.
Moderately
inaccurate if
widely off
nominal,

Accuracy
deteriorates
if trajectory
differs from
nominal for
which matrice
were computed.,|

Highly
accurate in
all respects
as long as
deviations
from nominal
are not too
large.




It should be noted that while such an expansion has advantages from the
point of view of real time computation, it has corresponding disadvantages in
that there is no guarantee that the vehicle will adhere to a nominal trajec-
tory, especially at the beginning of the guided fllght where the vehicle is
its farthest from the burnout point (Taylor expansion point). It should also
be noted that since most computation is done prior to the actual flight,

(the results of these computations are the Taylor series coefficients), any
mission change requires complete pre-flight reprogramming inecluding, at a
minimum, a new set of Taylor coefficients.

In general, the expressions for the required velocity are quite complex
and cannot be written explicitly so that differentiation and expansion in the
Taylor Series is possible. A grossly simplified problem employing a flat
earth can be analyzed in order to demonstrate the theory involved. Following
the flat earth analysis, the more practical numerical techniques that are
utilized in the preflight computations will be discussed.

2.3.1.1.2 Derivation of Equations
2.3.1.1.2.1 General. The required velocity expression in the most
general case will be a function of position and time, i.e., Vp = F(x,y,z,t).

Each component of Vp can be expressed as a Taylor Series of a function of
four variables as follows:

2 2 7 V
F(x,y,?,t) =4"(xo,é(o, 9o,g)+(Axa;+ Ay —+A99;+ A.ta—t)ﬂz’ﬁ’g’t)

%

I 7 VJ
2/ [Al— Afa;*A? 5+Ai—:| f(z’,/,?,f)f. ..

(2.3.1)
The x component of Vp then becomes
oF oF F aF
v, = )+ 2. F, G
R, \{210+37-(z x°)+3y (y 7’0)“ 3 (9 ?°)+9t (¢-¢,)
l[ a"‘( fe ( 7*
2: ax2 1-2, 7 y) (9 ;a 3!’2 (¢-4, ) (2.3.2)

2 2 ¥4

F I°F
+3zy(z z)(;( ;{,,)* (z-zo)(‘;-;o)v*ﬁ(z-z,)(z.‘—z‘,)

67



A*F I*F 2%E
+;f—gz(§/-f,)(z-to)s;‘é; (%'0%)(3';,)*9?—% (;{-;{o)(f 4)
22 Q{F 2 (2.3.2)
9?4" (; f/’a)(z z, )+ 2??7( (3 ?,)(;( 7 a py (5 -5 )(E-20)
32F a F al :l
7., (% —— (¢4, )31,
92_49 )'f‘ %( )(% }(p 3 3 - NIES

where»& is the nominal burnout velocity in the x direction. Similar expres-
sions résult for Ve, and Ve As mentioned above, the partial derivatives

are usually evaluated at the - nominal burnout point (x_, ¥,, 25, to) SO that
the accuracy in the representation improves as the de51r98 termlnal state is
approached. These partials are retained as constants throughout the thrust
phase. The required velocity then is a function of present position and
present time.

2.3.1.1.2.2 Simple Flat Earth Example. An over-simplified flat earth
problem employing a uniform gravitational field will now be analyzed so that
the previous theory can be interpreted clearly. Consider a short range
ballistic vehicle whose target coordinates are designated by (xp, yq, tp),
where tq is the desired time of impact. The free flight rectilinear equa-
tions of motion for this problem are:

X, =X,V (i-4,) (2.3.3)

o =H Y (zhf‘,)-é; (t-4) (2.3.4)

More specifically, the equations for the required velocity for free flight
target impact at the designated time from any burnout point (xb, Vs tb) are

X - X,
Ve, = PRy (2.3.5)
/ 2
v o= 4823 () (2.3.6)
2# (f'r' ib)

The partial derivatives for these expressions can now be formed in a straight-
forward manner by treating the burnout coordinates as variables.
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DVex _ =/ WVex _ PVey . Tr-%

Ors -t 2y, at,  (t,-¢,)"

2
ey _ o ey _ _ 7 m,us«r-ynéguf—f.)_?
7%, dy, (dr=ty) £y (¢,-4,)°

If the nominal burnout and target parameters are assumed to be
Xy = 85,000 feet ¥y = 123,000 feet ty, = 70 sec.
xp = 1,212,000 feet yp = 0 feet tp = 392 sec.

then the partial derivatives become

- 2V,

% = -310 X100 9 Vay =0 9"" = /0.9
2x¢ 9}2 (A
9\/"(-_.0 %:-3,/)(/0'3 %=-I7.3
92’6 2%6 9t6

The only constants remaining to be determined are thus the nominal required
velocities at the nominal burnout point. These can easily be determined
from equations 2.3.5 and 2.3.6 by employing the nominal burnout and target
parameters. The result is

Vey, = 3500 fi./ e

*o

Vo =4800 . J.aec.
by, 7/
Hence, the Delta Guidance equations for the required velocity in this parti-
cular case become

Ve, = 3500 (3.1 x10™°)( x -85000) +(/0.9)(¢ - 70) (2.3.7)
Vo, = 4800 = (3.] x/o")<7— 123,700)-(17. 3)(¢-70) (2.3.8)

The required velocity is used by the steering law in order to insure that the
thrust is in the correct direction in order to satisfy the desired terminal
condition. The following sketch illustrates the guidance loop for Delta Guidance.
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The discussion of steering policies for this and other schemes is presented
in section 2.3.1.3.

2,3.1.1.2.3 Numerical Technigues. In a more realistic problem, the
equations for the required velocity cannot be found in a form which will
allow the partial derivatives to be determined analytically. However, the
numerical values for the partial derivatives at the burnout point can be
determined by simulation +techniques. The name given to the most frequently
used technique is '"targeting'", a method of determining the best values for
the partial derivatives in a least squares sense by equating the Taylor
Series for the required velocity at some perturbed burnout point to the
corresponding value of the required velocity for the same perturbed point

as calculated from the best available equations. If the number of perturbed
points investigated is equal to or greater than the number of unknown
constants in the Taylor Series, then a '"best" estimate can be found for the
partial derivatives evaluated at the point of interest (burnout point).

The required velocity for a point slightly perturbed from the nominal
burnout point can be mathematically stated as

Voy = Vo, (%> g 302) (2.3.9)
. sz = VR’ (z,;(,?, ¢) (2.3.10)
Vey = Ve, (%2415 %) (2.3.11)

Thus, the Taylor series (retaining only linear terms) for the required
velocity can be expressed as

an = Vgro"' sz (X‘Xo)*/(xf (y'fo) +kx9'(? -?o) + kz{(z"fo)f... (2.3.12)
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where VR = the required velocity of the nominal burnout point,
X

(o]

v Ve

x ox Rom.

Ve,
¥ oy

L, = Lo
*3 3}

nem.

Y,
th 3tx

Aom.

and X,, Yos Zys to = nominal burnout conditions. Similar Taylor series can
be written for Vp and VRz' It should be noted that there is no limitation
to the process which would preclude the inclusion of higher order terms in

the series. Indeed, these terms can be added simply once the coefficients

are determined on the ground.

Now, since the perturbed point is assumed to be specified (neglecting
errors in the estimate resulting from IMU errors, etc.), the only unknowns
in equation 2.3.12 are the partial derivatives. The problem now becomes one
of finding the best numbers to use for the partial derivatives such that the
values chosen form a "best'" fit in the least squares sense.

The classical method that is used on this type of problem involves the
minimization of the mean square error between the values predicted by the
Taylor Series and those calculated. Thus, if the error is defined as

€ =ka,;(x’?’3’“-%¥o--k"” (I‘.-Zo)

‘KZ’ (?‘.—}/‘)‘/(x; (9;;,)°Kn(z“.-é) (2.3.13)

where i represents the jth perturbed point and if N perturbed points are
investigated (N = the number of unknowns), then the mean squared value of
the error of all N points is

2_ 4 2 2
éx—ex,+€x2+... ez/u (2-3-114-)

The best least squares choice for the unknown constants can be found by
setting the partial derivatives with respect to each of the unknown para-
meters equal to zero. The result is a set of simultaneous equations in
which the number of equations is exactly equal to the number of unknown
constants. Expressed mathematically,
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2¢, — = 26, —o. t2é L2 . +2€ s 2%
Bzzy aKy, z asz N 9K%’
J€ € a€ €
2e, —F =R€y K +2e,, 22 ¢, ..+ 26, 2€xv . 0
9Hx? 3#2} DK xg 9”13
€ 2¢& € d€
2e, —% = Ze,, —X +2¢,, 2 ...+ Zey, o=
IKyg dKxe 2K, K
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€
€y ziﬂ + éxz alz ...+ €y 7€ pur =0
2Ky FKyy PKRyx
e 7€ ¢
€z 2ot €q —E2 et Exn W =0
9Kzf 3ny 3k’f
€ 7€ €
ez,z_i‘+ezz77‘_“+.,,+ema_£’i:o
BKIZ Y] 7; gﬂz;
2¢ 7€ €
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Now, since the partial derivatives in these expressions are

IE ..

e (g, - 2,)
3kzz & o
€ 4; _
ny (4 ~4o)

a -—
yy (3730

(¢ - 2,)

it

unknowns K,y ny, Koo L

2

Iy .o (2.3.152)
-0 (2.3.15v)
(2.3.15¢)

(2.3.15d)

(2.3.16a)

(2.3.16b)

(2.3.160)

(2.3.16d)

(2.3.172)

(2.3.17p)

(2.3.17¢)

(2.3.17d)

equations (7.3.16) are seen to be a set of simultaneous equations in the



The least squares solution to equations (2.3.16) is

K, = (BwB)'B'wav, )
x Ry
where Kxx
_ K
Kx =
Kez
Kyr
X, -x, -4 Z-2, £-2,
8= .
v 4y Y EamE, 2,4
W = weighting matrix which can be used if desired
zSVRx = vector of errors in series representation
V} (x,¥,2,t) - V; .
X X

with an identical form of solution for the vector constants K& and K%.

2.3.1.2 C%* Guidance
2.3.1.2.1 General Description

The C%* (sometimes called Q) Guidance scheme is another method that uses
the required velocity concept discussed in the previous section on Delta
Guidance. More specifically, this scheme uses a differential equation in
terms of the velocity-to-be-gained as a means of updating target information.
The velocity-to-be-gained is defined as the difference between the present
true velocity and the present required velocity, i.e.,

V_= (ryt) -V
Vg = Vo (nt) -V (2.3.18)
The continuous knowledge of the present velocity-to-be-gained then provides
the information required for steering. The differential equation developed
in the following analysis is a second order differential equation in V_, with
the measured thrust as the forcing function. Hence, the velocity-to-be-
gained is known as a function of time providing the C¥* guidance equation is
forced properly. The appropriate steering for C* guidance will be presented
in section 2.3.1.3.
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2.3.1.2.2 Derivation of C%* Guidance Equation

The velocity-to-be-gained is defined as the difference between the
required velocity and the current velocity, i.e.,

yfy,(;,e)—\_/ (2.3.19)
Thus, the derivative of equation 2.3.1Y is
y’= Ve () -V (2.3.20)

Now, since Vp is a function of both position and time, its derivative is

. v, dr av
vV, (r,t)= =8 = , Z=R 2.3.21
v, (r, r at + 7 (2.3.21)

so that equation 2.3.20 becomes
= = V+ — -V (2.3.22)

where V has been used for g% .

The total acceleration of the vehicie is given by V. This function
is the sum of gravitational and thrust acceleration, i.e.,

V=a,+g (2.3.23)

Substituting equations 2.3.19 and 2.3.23 in equation 2.3.22 yields

Ve Ve

, _ Ve v I _ . 2.3.2
yg 2[ (\_/2 —7)_', 2£ a, 2 ( 3 l&)
or
vV v )4
fZey - =R + “:_'Z—Q-r‘z (2.3.25)

Vg = v
¥ ar R oar ¢ A
This equation can be simplified if the definition ot required velocity
is employed. Consider two vehicles, A and B, at the same point in space.
Both vehicles are to satisty the same terminal conditions at the same time;
however, vehicle A has already acquired the necessary velocity in order to

terminate correctly and is presently in free flight, having terminated thrust.

Vehicle B, on the other hand, has not acquired its required velocity and is
still thrusting. Since vehicle A is in free flight and experiences no
thrust, the following 1s true:
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__.3A
\_/?A, .
=V
Ve, = Va
a-, =0

and equation 2.3.25 for vehicle A becomes

_ % Ve, _
0= arA Yo, ¥ Sp T #a (2.3.20)
A
or
- %& vV, + a_LEA = g.l VvV, = 9'. Vv
2.7 or, AT gt gt A dr A (2.3.27)

This result is expected since it states that the only acceleration that
vehicle A experiences 1s that of gravity. However, since vehicle A is at
the same position as vehicle B, and since both have the same terminal
constraints, they must have the same required velocity vectors. Furthermore,
both vehicles are experiencing the same gravitational field so that each
point on the thrusu trajectory can be compared to a free flight vehicle that
has exactly the same required velocity and gravity veciors. Of course, each
point must be compared to a different free flight trajectory since the
required velocity is continuously changing.
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Finally, if all points on the powered trajectory instantaneously satisfy the
required velocity and gravity vectors of some free flight vehicle at the
same point, then equation 2.3.27 is also true for the powered flight, i.e.,

éﬂéﬁ v oVa

4° ar %t S5 (2.3.28)

along both a powered and free flight trajectory. In this light, equation
2.3.25 becomes

. Y
or
. ayv
\_(7 + "9_5 \./_? = —Q_'T (203-30)

2
The matrix '£% evaluated along the nominal trajectory is called the C* or Q
matrix. Thus, in conventional notation

V,+c¥ Vg = —a, (2.3.31)
i ¢

This equation provides a scheme for computing the velocity-to-be-gained
from the measurement of the thrust acceleration. The object of the steering
policy will now be to use the velocity-to-be-gained and its time rate at
various epochs to drive Vg to zero. The choice of the steering policy
depends on the quantity that is desired to be optimiged; thus, families

of logics can be proposed. Steering will be discussed in section 2.3.1.3.
In fact, an optimal program including a discussion of the closed loop will
be presented in section 2.3.1.3.2.1.

2.3.1.3 Steering

Guidance schemes, in general, and those that use the required velocity
concept in particular are usually divided into two phases, the atmospheric
phase and the vacuum phase. The reason for this division is that the
vehicle cannot tolerate excessive structural loads due to aerodynamic effects.
Thus, since the major strengths of the vehicle are axial, the loads must be
near axial during atmospheric flight (i.e., if there is steering, it must
be "gentle" in nature.) However, after the vehicle leaves the atmosphere
(or more correctly, after the aerodynamic loads are reduced below a specific
level), it may be subjected to the more violent maneuvering that may be
commanded by the guidance system. For this reason, the steering is usually
run in an open loop manner during the atmospheric phase in order to prevent
any violent commands that might occur during this phase. The open loop
steering is, in general, designed to keep the vehicle as close to the near
optimum nominal path as possible. The nature of perturbation guidance
schemes requires this closeness to the nominal in order to assure the
accuracy during the steering phase to be guaranteed.
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 Acknowledgement is given to D. F. McAllister, D. R. Grier, and
J. T. Wagner whose work on the optimum steering for the powered phases of
the Apollo Mission (reference 3.5) was used in the preparation of this
section.

2.3.1.3.1 Atmospheric Phase

The atmospheric portion of the flight usually consists of a vertical
rise for a prescribed period followed by a transition turn. The object of
the transition turn is to rotate the vehicles attitude and velocity vector
by an amount known as the "kick" angle., This kick angle defines a zero
1lift (gravity turn) trajectory through the atmosphere such that near nominal
(optimal) conditions are attained upon entry into the vacuum phase. One of
the simplest ways of implementing the atmospheric phase of steering is to
mechanize a program of vehicle attitude or attitude rate based on sensed
data. During the kick, yaw attitude is usually held to zero, while pitch
attitude is commanded.

A more complicated loop steering scheme that is used during the atmos-

pheric phase is called velocity steering. In this scheme, the desired
vertical velocity is written in terms of position and time for the atmospheric
phase of the flight. The true vertical velocity is then compared to the
desired value and a pitch perturbation command that is proportional to the
difference is generated. The pitch perturbation command is then added to
the preflight nominal pitch command (which is also a function of position
and time) to generate the total command. The primary advantage to the
velocity steering method is that trajectory perturbations, as reflected in
the variations with respect to the nominal trajectory, are greatly reduced
during the atmospheric phase. On the other hand, this method introduces
smaller stability margins at vehicle vibration frequencies because of the

more active attitude control system.
2.3.1.3.2 Vacuum Phase

Once the vehicle is out of the atmosphere, structural constraints can
be relaxed and the steering system can begin to perform its primary function,
that of reducing the velocity-to-be-gained vector to zero. One obvious
method of driving V, to zero is by thrusting in the direction of V_,. This
method could be usgg for either Delta Guidance or C* Guidance sincg both
methods calculate V, either directly or indirectly. A simple mechanization
of this steering law is obtained if the vehicle is given an attitude rate
command that is proportional to aqp x V,, where ap is the thrust acceleration
vector. The verification of ap x'V s%eering can be made by considering the
rate commands that would be generaféd for various orientations of ap and V,.
The vector ar x V, is zero if aq and Yg are aligned and no attitude change
is commanded. Ifgthey are not aligned, however, an attitude rate command
in the an X V_ direction is given and the vectors begin to realign. Since
the C¥ Guidanfe Scheme generates V_ as well as V_, another type of steering
that nulls the cross product of tﬁgse two vecto;g is suggested. In other
words, V, can also be driven to zero by keeping the Yg vector antiparallel
to Eg instead of ap. As a matter of fact, it is shown in section 2.3.1.3.2.1
that“the V_ x ¥ method of steering is optimum for C¥* Guidance in the sense
that a minPmum ®mount of fuel is consumed.
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A comparison of the steering schemes indicates that these two methods
in general are not equivalent. This can easily be seen by considering the
expressions for ap and Yg in each case. For the ap x Yg case

a, Y

or a, = ar

SIS s |

Employing the C* Guidance equation (2.3.31) it is seen that

, [~2 *
= - -c*vy =-<__71+c
% 2 -f V, )y’
Similarly, for the V, x jg case
Vv,
v =- £y

= 7 -c*
g,—(;fl T v,

So in general, the steering schemes are not equivalent. The following
sketches give a pictorial interpretation of the two steering schemes.

e X .V, STEERING
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In each of these sketches the nulled condition is assumed. The appropriate
steering can be verified if misalignments are considered.

An interesting adaptation of V V_ steering to Delta Guidance by a
numerical differentiation of the vgﬁocit§—to—be—ga1ned for V_ could be
conjectured. (It is recalled that ap x V, Steering could be applied
readily since Yg was not needed). Such a differentiation process would
introduce a noisy V_, however, and may deteriorate the end performance in
spite of the more optimum steering law. Simulation studies would irdicate
the best method to be used for a particular mission.

Other steering schemes using the velocity-to-be-gained require a
knowledge of nominal steering commands for the entire flight. It should
be noted that cross product steering made no such requirements. V, can be
driven to zero by interpreting its components as error signals. A suitable
attitude command would consist of the sum of the nominal command and some
combination of the appropriate component of V_ (typically proportional plus
integral). The following sketch shows how sﬁ%h a scheme could be used to

null one component of Yg for either C¥%* or Delta Guidance.

[: So (£)

4. - <r
L THRUST >
4
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U
|

X GUr DANCE

EQUATION

If a vehicle wanders from the nominal trajectory by a substantial amount,
the steering commands could be larger than tolerable. This results in
nonoptimum use of propellant. In order to alleviate this problem, a
nominal velocity-to-be-gained can be precalculated and a less stringent
error signal such as the deviation from nominal of Vg can be used. Further,
by introducing a weighting technique, the error signal can be weighted
lighter at the beginning of the flight when V (required velocity) is not
known so accurately (as in Delta Guidance).
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2.3.1.3.2.1 Optimum Steering for (3 Guidance. In section 2.3.1.2.2 the
C%* guidance equation was shown to be

_\;/3 + C* Vg = -ay : (2.3.3.3)

The mechanigzation of this equation with a steering law constitutes a closed
Joop guidance scheme as illustrated in the following sketch:

CX =¥ Ct)

Ve . Vg 5 Vg conTrROL
V, ———— Vg -ag —c"vs STEERING

-(.—_——-I INTEGRATOR 8
vy

I~

rvar SENSORS | g VEHICLE
v | oywvAarics

The object of the following analysis will be to determine a steering policy
for this loop. The simplest steering policy would be to drive the thrust
acceleration in the direction of the velocity-to-be-gained. Usually, however,
it is desired to maximize the performance in some sense. The following
derivation presents the formulation of conditions necessary for a steering
scheme to be optimum and shows that cross product steering ensures the
reduction of the velocity-to-be-gained vector to zero while maximizing the
burnout mass of the spacecraft (minimize propellant consumed). It should be
noted that such an optimization problem requires the use of Pontryagin's
Maximum Principle. Since it is beyond the scope of this monograph to present
this principle in rigorous detail, the reader is referred to reference 3.23
for an introductory explanation.

There are many ways of formulating the state equations for the variable
mass vehicle. However, the ideal approach involves the use of variables
which uncouple the equations being processed. Appendix A presents several
approaches designed to accomplish this objective and substantiates the
choice of variables used for the following analysis. Let

X, = Va, (2.3.34a)
X2 = V4, (2.3.34b)
Xa = Vg, (2.3.34¢)
Xe¢ = G lgp “"‘[ r"lﬁi'?] = Ve 1"‘[%%)0)] (2.3.34d)
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L=

t, = T;L (2.3.34e)
. %72

“z = &~ (2.3.34f)
QT

Us = G (2.3.34g)

Uy = — ey | ; (meo)y  (2.3:34h)

m(t) ~ m)
where

V4, = components of Vq

Q1; = components of a,

il

G, = IC_(_T, thrust magnitude

Ve = escape velocity of exhaust gas

It is desirable to express equation 2.3.34 in principle coordinates, i.e.,
eigenvector directions of C¥, in order to simplify the algebra involved in
the analysis. If such a coordinate system is employed, equation 2.3.3.3
becomes

. 1 r - — 1 — T
Va,| [Ar o o Vg, AT,
Vg, |=|lo Az O Vg, |~ | a2 (2.3.35)
\'/33J 6 o A3 V33 LaTB
or
A o© 0
¢c®*=1o A, o©
o o A (2.3.36)

where all components are taken to be along principle axes.

Now, Note that

. m) mR)| _ rh (L) (2.3.37)
X4 = Ve[ m() m(o)] Ve “mt)
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But, since \j m(t)is the thrust of the rocket, i.e.,

Ve mit) | -ar (2.3.38)
m(t)
and since
WO
me (2.3.39)
Xq: Ve Uy
Thus, equation 2.3.34 can be written in the following state variable form:
X, = A X, t Ve wy U (2.3.40a)
Xp = AaXp # Ve Uy ly (2.3.40D)
Xs = A3X3 + U Uy Uy (2.3.40¢)
Xy = Vely (2.3.404)
or in matrix notation as
[ 7 [ ] 7 ] N
x' )\' O o O r)(, FVQU¢. o o O Fu,
X[ |0 Az 0 0 Xz |, O Veuy © O Uz (2.3.41)
X 0o 006 O X o o0 o u
_4_ L 4 L ‘f_l L 6_ L 4-
or
X=AX + BU (2.3.42)
Finally, the adjoint equations to this set are
'p/’ A, ©0 o o] 'P,'}
Al_ o A o ofl| A (2.3.43)
2 o 0 A3 o P3
A |© 0 & o]
or - - }
S __ a7
p=-AF (2.3.44)

See section 2.3.2.1.3 for a discussion of adjoint equations.
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At this point the generalized Hamiltonian defined below is introduced
H=PT-X = BX +P Xt PR, +Py X,

2 BAX F Vedy) )+ P (A Xp # Vellytty) (2.3.45)
+ P (A3 X3 + Ve wntlz) + P (Ve Usy)

and the performance function is defined to be the burnout mass, i.e.,

Sr= XelT) = Ve n [:’ﬂ

(2.3.46)
m (o)}
In standard functional notation. Equation 2.3.46 is
X
sr=c-x, =[000/] | "7
X24
2.3.
X3, (2.3.47)
X‘f‘r

Now, a necessary and sufficient condition for maximizing the functional, ST,
is that the Hamiltonian, H, be a minimum with respect to the control vector
at every point of the path subject to the terminal condition that

_PTT = f'(-t= 7) =-C" (2.3.48)

Thus r r
P(E=T) =-¢ =

(2.3.49)

or

(2.3.50)
But, since P

L= 0, then Ph = -1 for all t so that equation 2.3.45 can be
rewritten as

H= MBX, #4358 Xz + Ay P X3 # Ve Uy [F)U,-szuz Ay 1]

(2.3.51)
A, O o X, u

B B0 A ool + VeUsd[P P B]luz| -1

O (o] A; X3 u3
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or

o= PX(-c*) X¥ r Ve[ P*Tu* -] (2.3.52)
where
u* = a7
= ] a7l

This is the H function that is to be minimized with respect to the control vec-~
tor at every point of the path. Before proceeding, it must be remembered that
u,, which is defined to be m /m, is limited to the allowable range of

—D & Uy &0 (2.3.53)

where lrhl
O = max -

This constraint states that there is a finite amount of thrust available and
that the direction of thrust cannot be reversed. In order to determine the
control that minimizes H, it is necessary to investigate al] possible values
of the second term 1n the above equation: 1 €.y Vel P U -1 . Consider
the two cases, (1) \P| >1 and (2) 0 ¢|P | 41:

(1) [f?[) 1 . For this case, two choices of control are possible. One
choice of control would be = 0. Under this choice the control term of
eqpatlon (2.3.52) would be zero. A smaller value of H can be realized, how-
ever, if 4 is chosen to be -D and[P* T¥ - 1] is chosen to be some p031t1ve
guantity. Under this choice of control

~o[P*Tu* —/] (2.3.54)

is most negative if P Ty* — 1 is made as large as possible; i.e., in the
limit

, -
¥ = =
f*‘g’f:/f/ or _L£ /£¥/
Hence, if P¥=1 +the control that minimizes H is
- P~
Uy = =0 ux = 1% (2.3.55)
(2) 0 ¢|P') ¢1 . For this cgse, since O ¢ [P]¢1, then [P T~ 1

must be a negative quantlty (P Tu <¢1). Thus. U cannot be p051t1ve and the
minimum value of H is attained for the choice y =0, i.e., if O <|P 141, the

control that minimizes H is qh = O,

In summary, the optlmal control law is to burn at maximum thrust in the
P¥ direction as long as |P*] >1. When [P ¢ 1, terminate thrust, Thus, the
thrust vector during powered flight may be written as
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L

(2.3.56)

where
a, = |a,]

It is desired to determine the optimum steering in terms of the velocity-
to-be-gained. Thus far, it has been determined in terms of the adjoint varia-
bles, In order to accomplish this transformation, it is first necessary to
write the solution to the adjoint equations.

At

P’ = o e "= - (2-30573)

P, = pge Azt (2.3.57b)

Py o= ye Mt (2.3.57¢)

ZAE 2_-2A,% 2 -2t I

z=|px| [ofe Mt pfe et 2N T s )
Now, the state equations (2.3.35) can be written as
. P,

Val /\,Vﬂl - Gy = (2.3.58a)
- R

Vo, = )\avﬁz - ar — (2.3.58b)
. P3

Vg, * Az Vg, - QT 3 (2.3.58¢c)

Uéing results of Section 2.3.2.1.3, these equations can be integrated from
t =0 to t to yield

Va (1) = Va (o) eMit tf\Ct-’r) ar(T) €2.3.5%)
40 = vy () Mt - A=) ST (1) gy €223

o

¢

. Ast_[g Aot ~T) Qr(T) 2.3.5%
Vaz(i)-\/ﬁz(o)e 2 /Q 2 1) P (T)d ¥ (2.3.59)
o

85



t
. At_ [, Ae-T) 2r<T) -
vﬁs(t)- vgj(o) e’3 a/e 3 207 P3(T)dT  (2.3.5%)

This set of equations can be evaluated from time t = O to the cutoff time s T,
by substituting the terminal value of the velocity~to-be-gained (zero), i.e,,

-
AT-71) ar ()

) AT
Va,(T) =0 = Vgl(o) e \0/2 s A & (2.3.60a)

.
Vg2l 20 = g, (o) eAzT‘/e"‘U‘T) D p gy (2.3.600)
; 2 (%)

T
- AT A;(7-7) a,¢w)
Vg, (T) =0 = Vg}(o) e .;l;/e 37-7) ;C’}‘) Pa(m) d ¥ (2.3.60c)

or
-
AT MCT=T) &) =T
Vf}/(o) e = dée _— e od (2.3.62a)
T r) AT
AT _ Ao (T-T) _Q_T_(____e T dT (2.3.62b
by, Co0) e -Bge Z07) (2.3.62b)

Vg (o) el
3

-
/\3(,7--’7') aTC’r) e_A3’Ydry
xle T (2.3.62¢)

Now the constants o« , 8, and 7 can be found as soon as the integral
in equations (2.3,.62) is evaluated; and therefore, equation 2.3.56 can be
used to find the thrust policy as a function of the velocity-to-be-gained, In
general, the integrals of equation (2.3.62) are not easily evaluated. However,
the exponential can be expressed as a Taylor series

#A2 e

e~ T 20,74 — T e (2.3.63)
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and higher-order terms can be neglected if A, T <¢) . This approximation
is not very unrealistic when the burn time is compared to the time constants
of the adjoint equations, Under this assumption, the first two terms of the
Taylor series suffices in equation (2.3.62).

ol Cr-2A,7) 37,3 dT = '{7, (o) (2.3.642)
o
7 @7 C7)
ﬂo (/-24;7T) '—;—C;jd'l" = ij(oj (2.3.64Db)
7 Qr (7 - W
b’[(/ 2A;7) = o 2, (0) (2.3. 64c)

Since the method of integration of equations (2.3.64) is the same, only
one integration will be performed. The solution to the others will be written
by analogy. This integration will be performed by parts after first writing
the equation in the following form:

v

" T2(T) ZCP)
Va T
QT(’}'.) C(Té?> -
‘ —zZAlT dr|r=Vg (o) (2,3.66
/ zm 47 ’\'[/ 2 (7) } 9 (2.3.66)
[#] [+
. . T
and substituting ICT) = / ar ) o+
/ 2 ()

to obtain

# {4 I ~zA,[T I(T) —/JC'r)d?—] = Vg,(0)  (2.3.67)

o

Now, assuming that I(7) can be approximated linearly over the interval 0<% <T
as

,
[z(rar = 17 (2.3.68)
(7]
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(This again is not an unrealistic approximation since the burn time has been
assumed small compared to 1/A.) allows equation (2.3.67) to be written as

oﬂ{I(T)—Z)\,T-I(T%‘ ,Z(A,)%,T -I(T)} = Vg,(0) (2.3.69)

or
ok[I(T) -/\,T'I(T)} = o&[l- /\,T] I(T)= Vq,(0) (2.3.70)

A similar technique can be used for &, and ¥. The results are stated
below.

o([/—/\,T]I(T) = Vg, (0) (2.3.71a)
,g[/— /\ZT)I(T) = vja(o) (2.3.71b)
U[/~A3T]I(T) = Vg,(0) (2.3.71c)

Thus, the solutions for &, &8, and 7 are

Ve, (0) s
= ! .3.72
A TTATIZ( (2.3.722)
- Vg L0
Vg, (0)
5= e ,\3731(7) (2.3.72¢)

But, since the approximations n T¢¢1l have been made

= [+ A
/= AT e/

is valid, and equations (2.3.72) become

88




Vg, (0)
z(7)
l/ez o)

FA))
V33(0)
7

oA =(/+A,T) (2.3.732)

B =Cl/4 A7) (2.3.73b)

y=(/tAT) (2.3.73c)

Now that the coefficients to be adjoint equations have been determined in
terms of the initial velocity~to-be-gained and the eigenvalues of the C*
matrix, the initial unit control vector u*(o) can be determined by the defini-
tion in equation (2.3.55b) as a unit vector in the _13 direction.

(1+4,7) Vq,00)
(14 AT Vg,(0) (2.3.74)
(1#A37) Vg, (o)

a* . /
©F oz

-3 0 - - - - -
However,l since u” is a unit vector, it is not necessary to include the coeffi-
cient 777375 . Rather, it is sufficient to write u” as

(1+A,7) © o}
¢ 0)= unit o (/tA,7) o Vq (0) (2.3.75)
o o (1+A7)

with the understanding that once the vector
(1#AT) Vg,(0)
(1 #2,7) Vg (0
(/+ 437D Vg,(0)

is determined, it will be scaled to a unit vector by dividing by its magnitude.
For subsequent times, the optimum control is defined by the condition

[/ =X, (T- t)] ]
U*ld) = unit [/~, RZ(T-U]
[l~713 (T—t)]

\
which, under the substitution of the time-to-go (t__) defined by t o = I-t
becomes &0 &

[ (/ f/{,tgo) (o) (0]
ul) = unit o (/rAdge) o0 | Yyt (2.3.76)
1 o o (14 At
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Equation (2.3.76) gives the optimum thrust vector orientation o drive Vg to
zero at time T while minimizing propellant consumption for a C° guidance
schene,

It is now desired to find a steering scheme (no attempt will be made here
to show that the resultant scheme is unique) that satisfies the condition of
equation (2.3.76). This objective will be accomplished by assuming a candi-
date steering law for C* guidance based on nulling the vector product

V., XV

-3 Y%_

and proving that this steering satisfies the conditions of equation (2.3.76)
(thus, is optimum in the sense that it minimizes the propellant consumpt@on).
Nulling the quantity V, x ¥_ in effect forces ¥ _ to be anti-parallel to V_ for
all t, O£t £tg0. This beh&vior is due to the %act that the cross produc

is gero if the two vectors are parallel, anti-parallel, or if one or both
vectors are zero. While thrusting, the only possibility for nulling this

cross product is if V, is anti-parallel to Vg. That is, this steering policy
produces a thrust vector in theagé direction which is anti-parallel to a unit

vector in the Vg direction (for t),i.e.,
Vg Lo ¥
Vg v
or
y \
Vo = - 23
*q Vo Yy (2.3.77)

The desired thrust can now be found by substituting equation (2.3.77) into
equation (2.3.33) to obtain

-V "
:\‘/a tc¥yy = -ag (2.3.78)

or

Q = -—C,‘ .._j'. 2.3,
But, in principal coordinates, the C” matrix is

(2.3.80)

2>
el e
© o

o O
O

>
w

_C"{ =
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Thus, equation (2.3.79) becomes

A o (o] Vg| . Vm
- A My
a,= |0 A O Vg, v 13
0 0 Ajj|Ve, v,
o -
(A, 'T% o o Va,
\V/
= At ;i o Va,
Vs
A
L Jd L A
[~ V. T (Va7
1225 o 3
Vs
= !2 o) /+.23}!§ vaz
Va V%
Al Vi
) o) 1+ 221 | vg
L V’ 4 L 3.

Finally, since the time-to-go can be approximated as ( L% / \{7) = ty"

(2.3.81) can be written as

i i
V.
Q- i% 0 Ithty, O |V
o o I+ )\3tj°
and the unit vector in the thrust direction is
1+ A tga (9] (»]
Uunt{| o 1#2tg0 O Vg
fo) (s} 1+ M3tq0

(2.3.81)

, equation

(2.3.82)

(2.3.83)

But, this result is exactly the equation that must be satisfied for “optimal"

performance as specified by equation (2.3.76).

Thus, the cross-product steer-

ing scheme is optimal in the sense of minimum fuel consumption for C" guidance.

The use of V, x i to generate a proportional steering rate command suf-

fers from two related éources of error.
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cross product also approaches zero, thus reducing the gain of the control
loop. Second, since V, is not exactly coincident with the acceleration vector,
a small turning rate must be given to the acceleration vector in order to

drive K to be anti-parallel to V,. This turning rate can be calculated by
cons:Lde%:Lng the time derivative 3]‘. a unit vector in the Eg direction, l-.vg-
d d(V Vy Va = Vi Ve
2(1,,) 7 — __5)= 2Va” ¥4 Vs (2.3.84)
de=v3" dE\ 2
Ef 7z

Since ly, is a unit vector, its magnitude does not change in time and its
total derivative is

&
x
I
™

(2.3.85)

d
'_t‘(.!.\/y) =

Further, if W is taken as the pitch and yaw rotation rates of the unit vector,
then w must be perpendicular to lvg. In this light

a
w -_z.vj Ya‘(_z_vﬁ) = _Z_vs X[.‘*Q X lvﬂ] (2.3.86)
So
Vy UV, ~ V, Vi 1% Vo V.
W = Lyg X R I MR I 74
Vﬁz Vﬂ Vj
Vo XV,
W = _f_zl (2.3.87)
Vg

Hence, the turning rate of the vehicle is proportional to the misalignment of
Ig and ][ wnich is the policy of cross-product steering.

Since equation (2.3.87) prescribes infinite turning rates as V -0, it
is customary to command the turning rates as

w = K(YqX _‘75) (2.3.88)

where K may or may not be a function of V Writing w in pitch and yaw com-
ponents, the command rates become

we = ~K (Vg x Vg, ~ VaaViax) (2.3.89)
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Wy = K(VgyVgy = Y%y Vax) (2.3.8%)

In summary, the optimum steering for the velocity-to-be-gained c¥ guidance
has been found to be yg x Eg (cross product) steering. First, the steering
conditions for minimum fuel~consumption were determined., Then, ¥V, x V_ steer-
ing was shown to satisfy these requirements. Finally, it was shown th
vehicle~command rates must be proportional to ¥, x V_ in order to maintain the
anti-parallelism of zg and Mg as required for cross-ﬁroduct steering,

2.3.2 linearized Perturbation Guidance

Linearized Perturbation Guidance is a scheme that takes advantage of the
assumed fact that if a reference trajectory and control is specified for a
flight, the actual trajectory will be "close" to the nominal trajectory. This.
“closeness" enables the nominal-nonlinear equations to be reduced to a linear
set of first-order differential equations with time-varying coefficients., The
techniques of linear analysis can then be used in order to relate control
deviations to position deviations from nominal as the vehicle travels along
the trajectory. The section begins with the basic linearization techngiues
and presents the solutions to the linear time-varying second-order differen-
tial equation. The solutions are then related to the guidance problem.

2.3.2.1 Formulation of Linearized Perturbation Equations

2.3.2.1.1 Linearization Technique. The nonlinear equations of motion for
a vehicle can be written as

X = F(, X (), V(+) (2.3.90)

where X(t) is the state vector
U(t) is the control vector
t is time

£
F is a function vector [f }

n
It is assumed that a numerical solution has been generated with some prespeci-

fied control law that is optimum in some sense, and that this nominal trajec-
tory and the corresponding control as functions of time are
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During the actuyal flight, the vehicle will follow a trajectory X(t) which
differs from X*(t) due to errors in the system and in the model used to gener-
ate the nominal solution. Thus, the associated control, U(t), required to
correct for these errors must be computed. The perturbations in the state and
control vectors are

5X(8)= X (&) - X (&) (2.3.91a)
U )=V (t)- U (L) (2.3.92b)
So J
d d *
= == X(t)- =X @ )
dt[tSl“)] o Xw- X (2.3.92a)
and
S ywm-2UX
I [5 W= ” (2.3.92b)

Now, the nominal trajectory and control relationship is

9 ¥ = F 6, X7%0, U @) (2.3.93)
at —

Thus, from equation (2.3.92a)

lex @] =FXm, Uw)-EEX W, U't) (2.3.9%)
at =

However, since the actual trajectory is assumed to be close to the nominal tra-
jectory, the term F(¢,X (1), lf(tv can be expanded in a first-order truncated
Taylor series about the nomlnal i.e.,

FaX®, UW=FGXW, U (t))+——' oxm+_ sUW  (2.3.95)

where

X = X - X
sU W= UW)-U k)
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the Jacobian matrix of F with respect to X

evaluated along the nominal trajectory

9F ! the Jacobian matrix of F with respect to U

—_—
aZfl* evaluated at the nominal control law

Note that terms for deviation in time are not included. This deletion is the
result of the fact that a fixed final time is assumed.

Equation (2.3.94) now becomes

d * 3L
< ¢ —| 8X(¥)
dt(s X(£)= E(4, X ), V(&) + x| 8%
b
(2.3.96)
+ 22| s - £¢¢ X)) UHE))
aJ
or ¥
o SF 2L
_Z(S X(ﬁ)) = % §X () t U :U(t) (2.3.97)
*

At this point, a rotational change will be accomplished by substituting

Q/
-

- = - s X(
A(t) 3% | X () X(
B(E) - 2_3; W = SV
»*

so that equation (2.3.97) assumes the familiar time-varying linear differen-
tial perturbation equation

x(t) = AR U(E) # B(E) &« (¥) (2.3.98)
2.3.2.1.2 Homogeneous Solution., The homogeneous solution to equation
(2.3.98) is

e = Pl X, (2.3.99)
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where x, is the state vector at time t =‘t° and ¢ (t, t,) is the state-trans-
ition matrix which is defined as the solution to the following matrix differ-
ential equation

o—’dé- @(t) to) = A(H) @(tJ £,) P (2.3.100)

Equation (2.3.99) can easily be seen as the homogeneous solution by taking the
derivative of equation (2.3.99) and employing the definition of @(t, t,)

_§<t> = é(t.lta)z;o AD @(t)to) Xo
A(E) L)

11

(2.3.101)

n

> E(t) = A(E) X(Y), (2.3.102)

which is the homogeneous equation.

Two of the properties of the state-transition matrix will be useful later
in the development. They are

@(“—utl) = @(t_“Q) . @(tz)t,) (2.3.103)

$(t.,t,) = I (the identity matrix) — (2.3.104)

2.3.2.1.3 General Solution. The state deviations can be controlled by
proper choice of the control deviation, u(t). However, in order to determine
the effect of the control on the state at a later time, it is necessary to
know the general solution to equation (2.3.98). As will be apparent, the
general solution to equation (2.3.98) alone is not sufficient knowledge for
determining a control law in itself,

The general solution to equation (2.3.98) is obtained by the introduction
of another set of equations called the adjoint equations. These equations
reduce the problem to a straightforward integration problem in which there is
no cross coupling in the state variables, The proper choice of the adjoint
equations can be determined by considering the derivative of the product
ATt 4,0 2 (D) » where & (t, t,) is a matrix of variables for the
adjoint system. (This matrix will be defined during the steps which follow.
At present, the elements of this matrix are unknown.), and where "T" represents the
(conjugate) transpose of a matrix.,
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That is,

d_a;[l\f(tdo)zé(t)] = A(4 ) X(R) + K(¢, ) L(t)

= A, o) L) + A2 ,2) ACE) K(E) + A2, 25) B(2) U(¢)(2.3.205)

Now, since the elements of MA(t, ty) have not been Sp601fled they can be
selected to satisfy the equation

N(t,t,)=—A(2,t,) A(t) |
(2.3.106)

with the boundary conditions A (tg5, ty) = 1L

Thus, equation (2.3.105) reduces to

LI e 1) | = At t) 806 @s.0m

The integration of this equation is now seen to be straightforward. The
result is

N6, t,) X(8) = Nlto,t) X(¢s )*/A(‘é to) B(E)U(E)  §(2.3.108)

Now, employing the fact that A (t,, t,) = I, the solution for x(t) is
obtained as

¢
Z(E) = /X (¢,¢,) [yt,) +/A’(§,to)3(§)g(§)d5 (2.3.109)
Z,

Hence, the general solution for x(t) for all t > t, has been determined in
terms of the adjoint matrix,

Now, consider the derivative of the product

A(t,8) St e,) .
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That is,

52[/\7-.(&) t,) @(f:,t.)] S j\f(i, ﬁ,) @(f.)t,) # j\T(tJ i.) @(t)io) (2.3.110)

But, substituting equations (2.3.100) and (2.3.106) reduces this equation to

AR )G, e)] = Rt A $ietn) .
L
r N, YA P(EL) =0 (Null matrjx)
so that
N ¢
/\T(t.;ta)¢(éj éa) =j\-':(f'o)£b) @ ({-thO) +/0 dt = 17T = 7 (2.3.112)
t,

But, if

N(tt) Pt t,) =T (2.3.113)
then

d(t,¢,) = (L) (2.3.114)
or

Fltto) = AT (68) (2.3.115)

Now using the relationship between @#(t, t,) and .A(t, t,), equation (2.3.109)
can be written in terms of @(t, t,) as

é
x(t) = Qe t)X(E) 4 é(%t,)/./\f(&t.)B(§)_¢£(§)a’§ (2.3.116)
o

¢
= B (LRt + /@(a, t) P (B o) BE)U(E)LE  (2.3.117)
to
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But

N(E, L) = @_/(EJ t,) = § (¢, %) (2.3.118)

So, finally

P S
X&) = Pe, ) Xty + [ $ (4,0 BEBUMBIE | 2319
Zo

Equation (2.3.119) is the general solution to the differential equation

X (€£) = A(¢) X&) +B(¢) Y (¢) (2.3.120)

Note that this solution is independent of the adjoint parameters and requires
no inversions.

2.3.2.1.4 Fundamental Guidance Equation. The derivation in Section
2.3.,2.1.3 gave the general solution to the first-order perturbation equation.

A slightly modified form of this equation, known as the fundamental guidance
equation, is used extensively for performing error analyses, generating require-
ments, commanding corrective maneuvers, making linear prediction, ete. This
section will derive this equation and give some of the interpretations of it.

The general first—-order perturbation equations will be rewritten for con-
venience,

d X (€) =A40¢) X (£) +B(¢) U (%) (2.3.121)
a¢
Now, since )
A (t)éo) = —Ar(t)/\-(t_)to)

an adjoint system can be defined as

Xty = AT (A (2.3.122)

where N\ (t) is the state vector for the adjoint system.

Thus, an analysis similar to that used in Section 2,3.2.1.3 can be used to
derive the useful combination of the two systems of equations.

Consider the derivative of the scalar product of A\ and x.
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LA, x> =LAV AL XY
= TA,;XD+{A,AX+8U)
= -4 7,
(2.3.123)

i
PN
>

L
ook

i
N

V)

N
>

.
1N
~

where (A, X )= QA -x=inner product of two vectors

Integration of equation (2.3.123) from some initial time, t = tos to a final
time, t = T, yields

T T TT
A(T) Ty = A (1, X (L) -—-fA(T)B(Z')é((T)c/r
%

0
or

,
) x (M= Nt x @)+ ) AUT) BLT)U(D) dr (2.3.124)
£

This equation is generally denoted by the fundamental guidance equation.

5o far, no constraints on the systems of equations have been specified,
However, the proper specification of these constraints reduces equation
(2.3.124) to a more useful form. One constraint that can be specified is the
terminal state deviation, x(T). This constraint can be expressed as some max-
imum allowable deviation at the end of the powered trajectory, It is noted
that though x(T) does not explicitly appear in equation (2.3.124), it does
appear in the form of the inner product of {\(T), %(T)> . Thus, if the appro-
priate choices of the components of A (t) are made, a particular component of
x(t) can result from this inner product. For instance, if the inner product
is desired to be x7(t), the choice of Z,KT;_is

0O
A(T)=| O

[ OJ
It should be apparent that in order for the left side of equation (2.3.124) to
be written explicitly in terms of x(T), a different adjoint vector is needed
for each component of the state vector.
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Z, (T)
AN(T) x(T) = [/oo...o] Z,(T)

i

2, (T)
Ly (T

[z, (T)
X, (T) z(T) = [oroo... o] 2, (T)

%, (T)

%, (T)

Z, (T)
X, (N z(T) = [000...1] |z, ()

£, (T)

[ x, (T)

Equation (2.3.124) can be written for each adjoint vector that was selected in
these constraint equations. Written in matrix form

T
AT) x(T) = N(4) 2(8)+] A(T)B(T)u(T) dr (2.3.125)
?

(-}
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X(T [100...0
O

AM={m|=(010...0|=1

i}

Z,mi Looo ...

(AT T () X L), ()
Ar(to)z a;(to) = )121 (t,) hz?(éo) .. .>t2:‘ (‘i‘.,)

) D, ) A,:z(t.).'.','x,,;(t,)

(N, (0] [ 2, 8) X (E). . A, ()
A = | X, ()= Xpyd) 2y, (3).. . Xy, ()

el bow oo oo, @)

nn

Now that the boundary conditions of the adjoint equations have been spec-
ified, these equations can be integrated in reverse time from t = T.

At)= -AT(+) A(t) (2.3.126)

A= 1T (2.3.127)

Thus, for a given state deviation at an arbitrary time, t, the only unknown
term in equation (2.3.125) is the integral. (A1l other terms are known since
the terminal and present state deviations are specified and the adjoint equa-
tions have been integrated.) Hence, the control that is necessary for a pre-
scribed terminal-state deviation is implicitly contained in the integral of
equation (2.3,125). This information is useful in determining possible control
for the remaining portion of the powered flight.

A simple example would be the determination of a constant control vector
(for the remaining powered flight time) that would satisfy the terminal state
deviation specification. Consider the following:

fA(T)B(T)é(a’T =D
to

where D is known from the specification of present and terminal-state
deviations and the adjoint equations.
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Since u was arbitrarily selected to be a constant vector for this simple example,
it can be factored out of the integral

TT
[f/ur) 8(7) dT] =D

%
The integral can now be found since A (T) and B(T) are known. The constant
control vector is thus

a -/
U= [f/\-QT)B(’Z’)dTJQ

¥

(]

2.3.2.2 Optimum Control

The basic formulation and solution to the linearized perturbation equation
has been presented in Section 2,3.2.1. Although this information is necessary
for a complete understanding of the problem, it does not explicitly give a
solution to the control problem. In other words, the material presented so
far is suitable for use with a control that is known beforehand but is not
sufficient to determine a control law as such. The theory must be extended
further in order for it to be useful in control law determination. This exten-
sion will be realized by optimizing the performance in some sense over the
entire trajectory.

The optimum control problem has been studied extensively in recent years,
and as a result, a large amount of literature is available on the subject.
However, since the methods of analysis, while different, are analogous and since
it is impossible to discuss all of the available material, several of the more
important variations will be presented.

Acknowledgement is given to W. F. Denham and A. E. Bryson whose work on
terminal control for a minimum-mean square deviation from a nominal path
(Reference 3.19) was used in the preparation of this section. The material
presented an optimal linear control generally seen in text books on optimal
control of discrete-time systems., Reference 3.26 presents more advanced con-
cepts in optimum control theory as well as the basic deviations.

2.3.2.2.1 Terminal Control for a Minimum-Mean Square Deviation from Nominal.
In Section 2.3.2.1 the linearized perturbation equations for a nonlinear system
were derived and the general solutions were written in terms of the state trans~
ition matrix and an integral that involved the control deviation., However, the
determination of the control deviation that is necessary to correct a state
deviation is not easily accomplished since the control must be known beforehand
in order to evaluate the effect of the control on the state deviation at a
later time, Further, it is usually desired that a control policy be optimum
(in some sense) and that the on-board computation minimized. Thus, this dis-
cussion will be initiated with the presentation of a convenient control scheme
for the linearized perturbation equations.

In this scheme, it is only necessary to multiply the state deviation by a pre-
computed matrix in order to find the desired optimum control deviation required
to guarantee the correct terminal state, However, in order to achieve this
simplicity, the burden of the computation has been placed on the pre-flight
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NOMINAL NO/MINA L
STATE '; ‘fj i CT‘/’Z f /”;;D CONTROL
VAR/IABLE STORAGE VARIABLE
STORAGFE STORAGE
x N\
% l Uy
4 vee) STATE ;
4 DEVIATION_| m11/1 7121 1 F R u(t) -
CONTROL
- DEVIATION Y®)
X®)
STATE
“ DETERMINATION VEHICLE
TRus" BEHAV/IOR CONTROL
STATE AND/oR ESTIMATION
VAR/ABLES

simulation., Thus, in addition to the optimum nominal trajectory computation
that must be performed, it is also necessary to determine the matrix multi-
plier, A (t), as a function of flight time. This latter objective is not
easily realized since the solution depends on many parameters such as terminal-
condition constraints, optimization desired, weighting, etc. However, the
following discussion is designed to present the derivation of the A (t) matrix
for the control such that the mean value of a positive definite quadratic

form in the control variable deviations is minimum,

As in any terminal control problem, it is necessary to define the terminal
conditions that must be satisfied at the end of the control time. If the nomin-
al trajectory and nominal control are followed for the entire powered flight,
the vehicle will arrive at the terminal point with the desired terminal condi-

tions
E[Q_C(T),T]

where Y is a column matrix of "P" known functions of X(t) and t, (P *w)
and T = terminal time.

Since nominal conditions are not followed exactly, it is necessary to define
the terminal point by choosing some scalar function 2 [X(T),T] , which
satisfies the desired terminal constraint, i.e., control is terminated when £
is satisfied, Such a formulation enables the terminal point to be defined in
terms of a desired constraint equation rather than in terms of the independent
variable, t. This feature is advantageous since the nominal-terminal time, T,
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may not be the time at which {1 is satisfied once deviations in state and con-
trol are experienced at-any point in the trajectory.

Using previous results, the linearized perturbation equations are

5—; LCE) = A X(R) # 81U () (2.3.128)

In Section 2.3.2.1.4, the general solution to this equation was found (with
the aid of the adjoint equations) to be

T
AT (D) =) 2 (8)+ ) AIBD w(T) d7 (2.3.129)
2

o

where Jﬁ?(t) is a matrix of multiplier functions.

The boundary conditions must now be given to the matrix of functions, AT(t).
This step is accomplished by introducting two different matrices, A, (t) and
Ng (t) each of which satisfies the terminal conditions

AT =(;?-‘”2=T

(2.3.130)

T 20
ANa= (33)

If these conditions are used in equation (2.3.129), the following is obtained

(6¢) =_/A,<t)3mg<u @i, x), (2.3.131)
T
“6n) =[A’n () BRYY(E) dt +(A;x)m. (2.3.132)

where
(8¢)  =(A" z)

= geT (4 =7

(60),  =(A;x)
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and where

N, (2) , Ny (¢) denote the mabrix of multipliers defined by
matching the boundary conditions for both
¥ and N, respectively,

The terminal point is defined to be that point when N is equal to some
specified value, i.e., the control is terminated when dQ = 0. However, small
deviations from the nominal trajectory produce changes in the value of T, dT
and in the total derivatives of ¥ and N

dy = (8¥) AT (2.3.133)
=7
dn=(8Q) + O.dT (2.3.134)
£=T
where
- Y 9dY dX
Y =<7ty o0 (2.3.135)
at  dX dt |
., 30 20 dX
: 2. 016
1 at+3>—<dtt-7 (2.3.136)

Substituting equation (2.3.131) into equation (2.3.132) yields

T .
dy = /A.; BYUE) gt + $dT + Al (£,) X(£,)= O (2.3.137)
t

o

T .
d_{)_://\};_ BUYUE)dE+ D.dT + AL (£)X(£,) =0 (2.3.138)
¢

[+

It is now desired to have these terminal constraint equations independent of dT.
This objective is achieved by solving equation (2.3.138) for dT and substituting
the result into equation (2.3.137).

-

d¥ = [Ny BOOUIIE £ Ny (t) X(Ee) =0 (2.3.139)
to
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where .
T 7 LS
Av_r)_': A'.( _:!T)-A-‘L . (2-3-11-}0)
i

A 0 1s again a matrix of Lagrange multipliers. Equation (2.3.140) determines
the values of the elements ofj\?n, the boundary conditions being given by

Ay (T) = (35" -t aﬂ) (2.3.141)
v X A 33X tar

Now that the constraint equations have been determined, a performance
index must be specified in order to establish some measure of optimization.
In general, though it is noted that the performance index need not be limited
or to the control deviation over the nominal trajectory, these criteria serve
as very effective measures of the performance of a system. (Any positive def-
inite quadratic form can be considered to be an allowable term in the perfor-
mance index as long as it is associated in some way with the performance.)

For purposes of illustration, a simple quadratic form of the control

deviation will be used for the performance index. This form is the type which
would be employed if fuel consumption was of major concern. Assume

.
Y% —_/_gaf Y Ut dd¢ (2.3.142)
2o

where ¥ is an arbitrary symmetric, non-negative weighting matrix chosen by
the control engineer and rewrite equation (2.3.139) as

.
ds"—/A;n_B(uga)c/t ~ AL (R X(4,) =0 (2.3,13)

Now, variations in V with respect to u can be found once the equations are
joined by another matrix of multipliers,'VT.

.
v :ﬁgrb’g ~ VAL G BU)IEE VT [cj‘f’ —A:,n(t,)i(to)] (2.3.144)

Zo

-
&8V =/(ng X~V ALoB) S UGt (2.3.145)
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But, for an extremum in , = 0, This equality occurs when the integrand of
equation (2.3.145) vanished, i.e.,

2u7Y -V A ygB = ©
. , iy (2.3.146)
= 3z ViAya B8 Y

Now equation (2.3,148) can be written

'a 7 -
dY¥ —/Ajm_e;f X7 s Apn Vdt = Aya(ta) X(t) =0 (2.3.147)

o
or
T _ ! v
C/V*Av_o_(to) X(t,) = Ej(ta) (2.3.148)
where
-
T2, = / Ny BY Ay, dt (2.3.149)
0

Now the multiplier matrix which was introduced can be seen to be

Vit = 257 Ct[d¥ Aot X(&)]  (2.3.250)

Finally, the control deviation can be found in terms of the state deviation
from the transpose of equation (2.3.146).

T _ T 7 -

"

(2.3.151)

u = 5 AW T [ay - a7 e Xt

Equation (2.3.151) leads to the final relation between the control and
state deviation when d¢ 1is set equal to zero,

U = =¥ '87@) A, (&) T L) AT, (&) X(Eo) (2.3.152)
Yo L AN
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In the way of explanation, d#¢ specifies the terminal constraint deviations
that are desired based on currently available information. For simplicity,
these desired deviations will not be considered here, The interested reader
will find information regarding terminal constraint modifications in Reference

3.19.

Equation (2.3.152) can be mechanized in two methods. The first method
can be thought of as a discrete-time system in which a major computation cycle
occurs at intervals that are spaced by minor computation cycles., The second
method utilizes the computer's speed to run the problem as though it were a
continuous control problem., The following paragraphs will describe the calcu-
lations that are necessary to mechanize this guidance scheme in both the con-
tinuous and discrete modes.

First, the choice of the nominal trajectory that satisfies terminal con-
ditions must be made. Then, the elements of the A(t) and B(t) matrices must
be determined along the entire nominal trajectory. Having determined A(t),
the matrix of functions J\yuz(*) can be determined by integrating the adjoint
equations backward in time from the terminal point with the boundary condi-
tions of equation (2.3.141). Now, J(ty) can be determined, since all com-
ponents of its integrand have been determined. Further, the limits for the
integral are from tqo to T, so J can be evaluated at the same time the adjoint
equations are integrated, since t, varies and T is fixed. It 1s also conven-
ient to tabulate 7' (¢) B7(¢) Ay, (1) as the integration progresses since
this information is needed during the execution of the guidance scheme,

The remaining parameters in equation (2.3.152), J"Qt,)xzﬂ(t,) , can
also be determined while the integration of the adjoint equation is being per-
formed. However, if the discrete-time approach is taken, these parameters
need only be known at certain epochs of the flight. If the time t, is taken
as a sample point, the following mechanization can be implemented for the dis-
crete~time case during a time interval,

Discrete-Time Process
(]
gzménal Nominal
3 a.e -1 - -1 - Control
Xa.rla.ble T @) A v _Q_(fo) BB Av'.ngt) Variable
Storage | Storage
Uo @)
.
R +
Multiply Multiply | 2
U)
State Vehicle
¥“~—— Determination - ‘ Behavior <
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In the previous mechanization, the state is sampled at predetermined epochs.
The sampled state is then compared to the nominal state for the same epoch,
and a state deviation for that epoch is determined, The state deviation then
undergoes two multiplications. The first matrix is precalculated for the par-
ticular sample epoch,but the second matrix is a sequence of stored matrices
that are fed to the guidance system at such a rapid rate that it makes the

matrix look as though it is a time-varying matrix. The remainder of the scheme
is straightforward and will not be discussed further here.

The mechanization of the continuous-time approach is shown below.

Nominal Nominal
Stat b 5 ~f - Control
Variable FEIB) A, (6) T A (E) Variable
Storage Storage
V. @&
X,(4) Lo
~XW) | multiplier U ;,\gp
) U
X (0 v
State Vehicle
Determination < Behavior

The main distinctions of this type of mechanization are: (1) the precomputed
multiplier matrix is stored as a sequence of matrices for the entire flight,
whereas in the discrete-time case, part of this multiplier was known only at
sampling epochs; and (2) the state variables must be known as a continuous
function of time (or as close as possible) for the continuous-time case; the
state was only needed at sampling epochs in the discrete-time case.

2.3.2,2.2 Optimum Linear Control. Optimum linear control, as discussed
here, is a method of determining control deviations by a simple multiplication
of a precomputed matrix by the state deviation. The technique is analogous to
a discrete-time sampled-data system in that it divides the control interval
into a number of smaller increments and determines the control for each incre-
ment as a separate problem. The control that is selected must then extremize
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the performance index which represents the cumulated performance over the
entire trajectory.

Since the previous control scheme and the one suggested in the preceding
paragraph are simply different implementations of the same idea, it is expected
that the schemes themselves are similar. First, it is noted that both schemes
. determine the control deviation by the multiplication of the state deviation
and a precomputed matrix. Second, as it will be seen, both schemes also use
the same type of performance index, i.e., a positive definite quadratic form.
Thus, the primary differences exists due to variations in the methcds used to
compute the multiplier matrix in the two schemes; the results should agree,
at least to the first-order, with those provided by the previous formulation.
It is recalled that the multiplier matrix in the previous scheme was deter-
mined by the multiplication of the matrix of functions (which were inte-
grated backwards in time from some terminal condition) and other parameters
of the system. In contrast, the multiplier matrix in this section is deter-
mined by a dynamic programming approach. That is, the multiplier matrix is
determined for the last step first. Then it is determined for the next to
the last step based on extremizing the performance index for the last two
steps. The process continues in a step by step decision process to the epoch
of flight initiation., The result, as in the previous scheme, is a series of
multiplier matrices for each increment. With these introductory remarks in
mind, the optimum linear control derivation will now be presented.

Consider the following nominal trajectory which has been divided into N
control increments

and consider a general performance index which accounts for state and control
deviation for the increments from n to N

N
— 7 . N ] T g R
T = ns =§n[ UL QL XL (L) U (L-1) y, e (& /)] (2.3.153)

where Q; and J i are arbitrarily weighting matrices determined by the control
engineer. Finally, define the minimum loss associated with Jy_npi+7 as
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Larnp = :;/': Tn-nes (2.3.154)

That is, I .8 the value that Jy.p+1  takes for the sequence of controls
from tn_q go ty—1 that minimizes Jy_n+1 . Any other sequence of controls
during the same time interval will produce a loss function that is greater
than or equal to Iy_p47 Now, if the minimum loss from t,.; to ty is Iyen >
then the minimal loss from ty to ty is

Luenss = G(n-1) [XT( M) Qn X ()4 UTtn-1) ¥ UCA-1) I~—n](2.3.155)

This statement is obvious in that it states that if an optimum control policy
from time t 5 to ty, i.e.,§u (n)... _(N-J)}- has been determined, then the
minimum loss for the interval [t_, t y] is determined by the choice of u(n-1).
Of all the possible choices for u(n—l), there is one that will minimize equa-
tion (2.3.153) and the value of Iy-n+1 1is thus determined.

Now consider the loss for the last step

Z,= ,)[ XTN) QN XIN) + U7 (w~1) 8py U (V- ’)] (2.3.156)

But the state vector and control vectors of one time can be related to the
next by the discrete-time form of equation (2.3.119), i.e.,

Xwv) = @N_, X(N=7) + &y U(N=T)
(2.3.157)

where ¢N—l exp (Ats) = the state transition matrix

A -1

ts
/[e.xp Alts-T)] BdT

Thus, substituting equation(2.3.157) into equation (2.3.156), the loss for the
last increment is found to be

-
Z, = (:‘(;‘_/){[@Nﬂ X(N=1) ’“A/v—/ﬁ’(”‘/)] Q~[¢N_, X(w-1)+ B py _‘!(/V")] (2.3.158)

+_uT(-/) v o (N~/)}
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Now, expanding and collecting terms yields

on T _ ) I PPV 7 _ ] XC/V'/)
Z, =:2~_,) {_x_T(N_/) §’~_,‘?~ t}N_I_&(N 1)+2 y’(n-1) A,Y/QN Py, X .

(R.3.159)
* QT(”"’) [A/Tv-/ Qu An-y + XN]_L_((/V‘I)}

so that the minimum of Jl’ which is I, can be found by determining the solu-
tion to

2d <o
2 UTewn-1)
or
287, 0nd, , X4 2| 8], By Byt af,v] UN-1) =0  (2.3.160)

Solving for the optimum contrcl for the last step yields

-1
Un-1) = —[A;_, On Apey * a'] 85, on®,_, Xv-1)  (2.3.161)

or

U = a X w-1) (2.3.162)

where ag is defined from equation (2.3,166).

The optimum control for the last steg is thus seen to be a linear combin-
ation of the state deviation of the (N-1)th step. /If the previous state
deviation must be estimated, it can be shown that the optimum estimate of
x(N-1) suffices for x(N-1),

Equations (2.3.161) and (2.3.167) can now be used to determine the minimum
loss for the last step.

7, = { XD B, @B X (V-1 # 2 X7 (N1 &) O By XOH)

# g’(ﬂ-/)a,[afy-, Qn Apw * b’,y] a,’g (ﬂ-/)}

_)ST('V"){ ¢~_, O ¢,v-/ t2q, 47,:,'_/ Pn ¢/v_/

te,| a7 Qn x| Q] T XN~
,[ -1 @n Qn- JN] l}-— 2 (2.3.163)

X7(wn-1) B X(N-1)
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It is thus seen that the minimum loss for the last step is a quadratic func-
tion of the state deviation at time N-1 (the beginning of the last step).

The optimum control for the last two steps can be found by employing
equation (2.3.150).

oo {)_(TM-/) Q-1 X (N~1) + U (N=2) §p-y UCN-2) I,} (2.3.164)

L 7 uw-2)
but
z, = X'(wn-0) Biwn-0)
so _run va T
22 = yw-2) {)_( (W-1)Qu-y X (W=D + U (W-2) ¥, 4 (N-2) (2.3.165)
+ XT(N-1) B, X(N~) }
or

- mun
I, “a(,\’/-z){lr(’v")[o”" # P,] X(N-1) *QT(/V— 2y (y”_/ Q(A/n?)} (2.3.166)

But
Xw-0) = @,  X(N-2)* 4, , d¥-2) (2.3.167)

Therefore, as before, the optimal u(N-2) can be from the solution of

27,
dUTN-2)

e[ Owert B ] B, XD #[ 8 gy 7) Mg ¥ Wy | W -2) 20 (23.260)

Finally,
-
U (n-2) = ~[ 82 (4 #5) Am-z # 8y | A2 (Bwerr ) 8, X (4-2)

or

Un-2) = a; X(n-z) (2.3.169)
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and the minimum loss can be found from equation (2.3.166) as

I, = X7(wv-0) [q”_,#? ] X(~v-1) * XTw-2) @y ¥prey @y X(w-2) (2.3.170)

Now, recalling that

X Cw-1)

¢”_2 _X(N‘Z) + A,y..z é/(/V—Z)

Py X¥-2) + Apyp @7 X(N-2) (2.3.171)

reduces equation (2.3.170) to
T .
Z,= [f(/v-z) q);v-z* X7 (n-2)@; 4;-2_] [QN_,+e} [ By X(N-2) +4~_zaz',_r(-z)]

FXTN-2)Q, Xy, @7 X(N-2)

= )_(T(/V~Z){¢,,,T_z fCPM, # F)_] Do 227 a; } X(wv-2) (2.3.172)
where
F1 =05 (O #P) Apez + X, (2.3.173)
Thus, writing equation (2.3.172) in the form of equation (2.3.163)
T, = X(¥-2) P, X(N-2) (2.3.174)
where

Pz = Pue By ?2) @y, ~G, £ (2.3.175)

This procedure can be extended to the nth step as follows:

Yln) = @y X () (2.3.176a)
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Ay pgs * ‘Fy—.ln AC?-/[Q" *P/V-o} ¢n-/ (2.3.176b)
Fr-n *© [Arn-/ (Bn*Py.p)Bn., # "77] (2.3.176¢)

PN-nH = ¢ﬂ7'."/ [Qn ? gf—n] ¢’1-I ~a~_n*, F/y._” a/\7/.~,1+g2'3'176d)

Po = O (2.3.176e)

The use of these equations should be apparent from the previous discussion.
The feedback matrix, aT—n’ can be found by starting with n=N and iterating

back to n=0.

N

The sequence of steps is shown below:

1.

2.

3.

5

. Compute F v
- T
fo = A,V-/(Q/y %AN—/ £ Ty
Compute a']r_

o
al = - F, A% (G f/{) By,

.
= - {A n-1 PN By * XNJ A;-/ Pn Pu-,

Control for time tN—l to t’N is

un-1) = a, X(N-1)

Compute P,
- 7
7= ¢N*/(q} *ﬁ] ¢/V-/ ~Q, 4 q/r
Compute Fy
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B

6. Compute ag

Q; = - /‘;‘lﬂj\hz (@ w-y 7‘70/)¢/v~2

7. Control is

UN-2) = af X(N-2)

The general flow chart for this process is

X(n) —— a,_, > 4(n)

T

- — T
aA/—n,t/ - ’;/~,7 A/\/—/(‘Pn "PN—n) ¢n—/

v

- A7 - 7
P/Y—/)-,l/ - ¢n—/<0n r 8\/—/‘) )¢’7—/ a/V'/h"l FIV-/) a,y—n*/

F = A, (@, Fuen) B8 ey * &n

The actual mechanization of this optimal guidance control scheme would consist
of the storage of all of the elements for the "a" matrices from time tq to t,..
The control deviation can then be established by a multiplication of the stale
deviation for the particular time of interest by the current feedback matrix,

aN_n .

An example of the application of optimum linear control follows: Let
dr anddr be the position and velocity perturbations from some nominal trajec-
tory. The deviations at time t, can be related to those at time t, as follows:
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|
dn @ &, 810 @,

= |- — = - b ol PO 6Vo

81 B! Gyl |80 g, | ~ (2.3.277)

where 8:20 is some velocity correction that can be made at time t,. This
equation can be thought of as the discrete-time form of the general solution
to the linear system

X(/) = ¢a.£((0) LA _C_((O) (2.3.178)

A loss function for this process can be defined as the square of the position
deviation at time t,, i.e.,

T, = -5_,-/-5_5 = [5!} sr‘l] —O_E-—O- 8'- (2.3.179)

Under this particular choice of a loss function, no penalty is placed on the
fuel needed in order to perform the control correction. In "real life" prob-
lems, this choice of a loss function would be less than ideal since the loss
function in effect forces the position deviation to be minimum at any fuel
cost., Ideally, it is desirable to use a loss function that not only weighs
the position deviation, but also the control deviation, since the nominal tra-
Jjectory 1s optimal.

Using the standard notation, the following definitions can be made from
equations (2.3.177) and (2.3.178).

x= 35 u- sy, a,- %
57 < X
-

A
56

The loss function, equation (2.3.179), may also be written as

T, = X ¢/ X, (2.3.180)
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I o
Q :[0 OJ x/:o }%:0

Thus, the previous results of this section, in conjunction with consideration

of the problem of one interval, define the control as follows:

u(0) = a” X(0)

7 _ = 7
a/ - = f-o Ao Q/ ¢o

0.0 2,
. R b rol||® 1@,
- -lgal orier ) g
] i) 242

-0[#, ]

The optimum linear control is therefore

U(o) = a,’ (85)

or
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A simple verification of this answer can be made by determining the
position deviation, §r;. Substitution into equation (2.3.175) yields

8h = 4,84 19,80, + &2 Vs
@ 80 + P80 + P, [‘¢¢_ @ 80 - 5'_}] (2.3.186)

=0

It should be noted that the results to this over-simplified problem are iden-
tical to the "Fixed Time of Arrival" scheme that is presented in Reference
3.25. The reason for the similarity is that only one control increment was
analyzed and that the only performance criteria for the mission was the posi-
tion deviation at the end of the increment., The answer to the previous prob-
lem is not so obvious when a more complicated loss function is considered or
when a "loss" is associated with the control deviation.
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3.0 RECOMMENDED PROCEDURES

The material presented in the previous discussions i1s applicable to a
series of boost vehicle guldance problems. However, since the guidance
equations are but a smell part of the total guidance loop and since the
selection of the guidance equations should be based upon consideration of
the required performance from the total loop, the reliability and cost of
the system, the mission success criteria, ete., any attempt at this point
to select a specific set of guidance equations for general application will
fail. This observation is strengthened when it is realized that the primary
differences in the results of these applications as observed in terms of the
mission is in the flexibility derived. Thus, since no set of guidance
equations appears to have a clearly defined advantage for all applications
prior to comsideration of the total guldance loop, & definitive decision
will be deferred until the monograph on guidance system synthesis 1s pre-
pared. However, general preferences for the guidance of boost vehicles
of the present and near future can be presented.

The simplest of the schemes (perturbation guidance) 1s applicable in
varying degrees of sophlstication to the boost of ballistic missiles, small
scientific payloads, and manned satellites (vhere the trajectories are well
defined before launch and where retargeting has been ruled out as a possible
event). In contrast, while the more complex mechanizations of the explicit
and adaptive guidance approaches do not preclude application to the same
missions, the cost of the system, resulting from more elaborate instrumenta-
tion and a larger guldance computer, will generally preclude application to
those missions which do not require flexibility. Thus, the adaptive mode
of guidance will probably be restricted, for the time being, to the more
demanding missions such as manned lunar and planetary escape trajectories,
and extraterrestrial soft landing. This application is Justified for these
mission phases due to the complex manner that the mission pheses are tied
together and due to the varlety of abort and mlssion redefinition possi-
bilities which exist (to derive usefulness from a partial success).

Finally, in the case of the adaptive type of guidance, the two forms
would appear to have the same type of computational requirements and appear
to impose the same order of mechanizational complexity. However, since the
iterative path adaptive guldance mode of section 2.1 requires less targeting
before the vehicle is launched, this approach is preferred for the more
sophisticated applications over the guidance polynomial appreach of section
2.2,

Mechenizations of the material presented in both sections 2.1 and 2.3
are illustrated in the respective sections. Thus, reference 1is mede to these
sections for such information. These discussions show the unique capasbilities
of the guidance equations and illustrate the degree of optimization attained
in the process.
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APPENDIX A

Formulation of the Vaeriable Mass Vehicle Problem

This appendix will present a straightforward formulation of the varisble
mass vehicle and then show why a different selection of the state variables
is desirsble in order to avoid cross coupling the state varigbles in the
solution. A conventionsl formulastion would assign the state varisbles as

follows: z, = Z, Vo = Exuausr Verociry
;= 2
Z, = x; u©* + U faj =/
Ey = 2,
. 72 (¢)
==V
C4 c o (t) ']
£e-y 7O, (A.1)
. " e (t)
_z 0 .——-
6 © me) 3
where #7(¢) = vehicle mass

% 4 X34 Xy = position of vehicle with respect to target

s s % o velocity of vehicle with respect to target

In addition, the following state and control definitions are made

»’(f):x7
#(t) = “v (A.2)

So the state equatlons become

'i, = xy
i (a.3)
% = zé' .
R 179
Z,, = Ve *4 l(,
z?
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Z-= V. — U
<3 cz72
. Uy,
x, = Vo — U
4 e% 3
Z, = T4

where the admissible control is
r4
OfL(t)sp

This formulation seems reasonsble since the conbtrols u«, 4 WU, , u, determine
the direction of thrust and the control wu, determines the magnitude. How-
ever, it will be shown to have an over complicated solution once the Maximum
Principle is applied. This fact is seen in the following analysis.

It is required to determine the control vector compoments ., W, , U;
eand WUy such that the relative position and veloeity between the vehicle and
some target are reduced to zero while X, (¥=T) is a maximum, Applying
Pontryagin's Maximum Principle, it is desired to maximize 5/ = &-X, vwhere
c, =7/ and the remaining components of C are to be determined. For the
system of equations, (A.3), the function K (x,p,u,t) becomes

Ly
Az, Ptst)= p,tp % +p %+ Fe =
?

Z.
[zm +4, 5 4,8 —7:/2] (A1)

The system P , thus becomes

£= P =p;=0
A=A
Ps= "P2
A= P

&,
A= Lluararnryn]

l

(a.5)

Now, according to Pontryagin's Maximum Principle the optimum control vector
is determined by minimizing H ( X, P, « ,¢) . However, equation (A.k4)
and (A.5) are somewhat "over" complicated since the determination of the

optimum control vector components is dependent on X and P,

7 >

and Py , in turn, is dependent on the control vector components and
Ky . This "over" complication of equations (A.4 and A.5) resulted
from the definition of X, as the mass of the vehicle. It is seen that

the process of state varigbles for the system which involve products of

system states and control vector components should be avolded wherever possible.
Fortunstely, it is possible to do so in the present problem if an alternate
control vector component « = is defined such that
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. al/

Z.= V. — &
5 e Z7 Z
. U,
X, = Ve — &
4 °a7 3
Z,= "4

where the admissible control is
L
O 4 (t)cp

This formulatlon seems reasonsble since the controls w«, , WY, , u; determine
the direction of thrust and the control u, determines the magnitude. How=-
ever, it will be shown to have an over complicated solution once the Maximum
Principle is applied. This fact 1s seen in the following analysis.

It is required to determine the control vector components u. , W, , W,
and Wy such that the relative position and velocity between the vehicle and
some target are reduced to zero while %X, (t-T7) is a maximum, Applying
Pontryagin's Maximum Principle, it is deslred to maximize S5;r = ¢-%X, where
c, =7/ and the remaining components of C are to be determined. For the
system of equations, (A.3), the function 4 (x,p,u,¢)  becomes

&Ly z,
W2, Prtst)= prytpp Xt e -;[”,/’y*”z/% ﬂf,fz‘TP,] (a.4)
7 [

The system P , thus becomes

=P =py=0
A= "PA
Ps= "P2
R= "Ps
“y

22 [L(/Pv +"2P.f+“f1pa]

!

p= W
(A.5)

Now, according to Pontryagin's Maximum Principle the optimum control vector

is determined by minimizing H ( X, P, « ,¢) . However, equation (A.}4)

and (A.5) are somewhat "over" complicated since the determination of the
optimum control vector components is dependent on X, and Py »

and P, s in turn, is dependent on the control vector components and

K q . This "over" complication of equations (A.4t and A.5) resulted

from the definition of %X, as the mass of the vehicle. It 1s seen that

the process of state variables for the system which involve products of

system states and control vector compeonents should be avolded wherever possible.
Fortunately, it is possible to do so in the present problem if an alterneate

control vector component « . is defined such that
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= X5

Z,= %,

2= el l,

Zo = Ve ly Uy

Z, = e 4

2'7 = Ve Y, (A.6)

The control vector component «, is introduced such that =«x, in equation (A.3)
is essentially absorbed. It is important to note that X, in equation
(A.6) 1s no longer the mass of the vehicle since «, is no longer the mass
flow rate. Actually , wu, 1is defined as

w7 (¢)
Us (¢) = -
»(2) (A.T)
Thus,
T:
z,(7) = 2,(0) *[ Z,dt = z,(o>-vcj" im’l
N - v w7 (0)
Z,07) = 2, (0) = Ve Loy, m(2)| =y, Lag. [wm] n.8)

where «%(o0) 1s arbitrarily selected as zero without loss of generality.
Thus, for minimum mass expenditure it is desired to minimize A,(T) OF,

equivalently, it is desired to minimize S = f.x _(T) .

In terms of @, , the function H(x,p.u t)and the P system become

HZ PoU,t)=p 2yt P+ p 2, + Ve Us[“:ﬁ# +42/0:*‘{1/%+P7]

(4.9)
R=B=p =0
Pe=-R
P =~ p, (A.10)
R=-R
7 =0



Now, since

P=0, ()= p,(T)= -/

s therefore,

Hlx, Py tyt) = B +p X+ B X * VU [a,;%*”g %t 4% "] (A.11)

A comparison of these equations with equations

o acsmdeaes

~ -
an &

vantage gained in the use of

alternate definition of x,

(a.]
T e

-

(&

The previous formulation was part of a more
general st on th -
tion of Pontryagin's Maximum Principle to optimum control o;dz v&riaglzpii::a

space vehicle performed at NAA by D. R. Grier.
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