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1.0 STATEMENT OF THE PROBLEM

The purpose of an engineering analysis usually centers on the development
of & system which performs in some best or optimum fashion. However, just
what constitutes an optimum system is difficult to define, even for the
simplest systems, since factors such as realiability, system complexity,
and time and cost of development cannot generally be incorporated in a
mathematical model of the system. Notwithstanding, at some point in the
analysis, it is often beneficial to specify a single mathematical criterion,
or series of criteria, with respect to which the system is to be optimized.

Frequently the system which optimizes these performance criteria is
adjudged to be impractical or unsatisfactory from an engineering point of
view since the criteria themselves, by virtue of their mathematical repre-
sentation, may not contain all the engineering considerations and constraints
which enter into the problem. Even in these cases, however, the device of
specifying a system performance criterion serves two useful purposes. First,
it provides a basis for systematically selecting values for the parameters
which govern the system; and second, it gives one a yardstick for measuring
how well the system could perform if all other engineering canstraints were
absent. The cost or penalty in system performance which these additional
constraints impose is simply the difference in the value of the criterion
function between the optimal and actual systems.

The simplest and most direct approach to determine the optimal system is
one of trial and error. In this approach, several sets of values for the
parameters of the problem are selected and each set is evaluated as to system
performance on a digital computer. However, such an approach has several
drawbacks since any set of parameters selected as optimal is only optimal with
respect to all the other sets that have been tested (i.e., all the trials
that have been made). Thus, since, in most problems, the parameters may assume
an infinite number of different values, the determination of a true or absolute
optimum would entail an infinite number of runs on the computer.

A second approach involves the use of standard mathematical techniques
to determine the optimum system. Foremost among these techniques is the
maxima-minima theory of the Differential Calculus by which a point or set of
points can be determined at which a function takes on an extremum value. This
technique has been used, and to good advantage, in engineering studies since
time immemorial. However, in the early 1950's there arose a series of problems,
particularly in the areas of trajectory analysis and control theory, which
could not be handled within the maxima-minima framework. One such problem
involves the maneuvering of a chemical rocket between two points in space. In
this problem there may be an infinite number of paths or trajectories along
which the vehicle could fly to accomplish its mission, due to the fact that
the thrusting engine can be steered and throttled. Thus, the problem is to
determine some sort of best or optimum path, and the corresponding optimum
time history of the thrust vector. The mathematical technique for handling



such problems is the Calculus of Variations.

The Variational Calculus has interested and motivated mathematicians for
well over two hundred years, with the theory itself reaching a near level of
completion during the 1930's at the hands of G. A. Bliss and others at the
University of Chicago. This material was reviewed in one of the preceding
monographs of this series (The Calculus of Variations and Modern Applications -
SID 65-1200-4). After a relatively dormant period of approximately twenty
years, the trajectory and control problems encountered in the performance of
high speed aircraft and missiles provided a resurgence of interest in this
area - a resurgence which brought about several new developments and theories.
One of these theories, the Maximum Principle, is the subject of this monograph.

The Maximum Principle was developed by L. S. Pontryagin and his colleagues
at the Steklov Mathematical Institute in Moscow. It is essentially an extension
or generalization of the well known Weierstrass condition of the Calculus of
Variations. In this regard, it leads to the same result as the Weierstrass
condition for just about all engineering problems. Its primary advantages
are that it simplifies the development of proofs, gives additional insight
into the computational process of constructing a solution, and allows for the
easy inclusion of certain types of inequality constraints frequently encountered
in engineering problems.

The feature which distinguishes the modern from the classical variational
problem is the occurrence of inequality constraints. The Maximum Principle
was developed in order to handle a certain general type of inequality that
occurs regularly in optimal trajectory and control problems. Unknown to
Pontryagin and his associates were extensions of the classical theory which
took place in this country and which allowed for the inclusion of inequality
constraints using the Calculus of Variations. While these extensions were not
as concise or general as the Maximum Principle in regard to the treatment of
the most commonly encountered inequality, a control inequality, they were,
however, directly applicable to other types of inequalities such as a state
inequality. One of the shortcomings of the Maximum Principle is that it can
n~t be apnlie? wt ot a maj~r revisiorn when t-age oth~r inegual‘ties ar- prercert.

This monograph is intended to provide the analytic framework in which the

subtle distinction between this material and the more classic approaches can be
appreciated. The Maximum Principle will then be used to formulate and solve a
variety of problems encountered in optimal trajectory and control analysis.
The treatment will include both linear and nonlinear systems, and problems with
control inequalities and state inequalities. Several comparisons and parallels
will be drawn with both the Calculus of Variations and the maxima-minima theory
of the Differential Calculus.




2.0 STATE OF THE ART

2.1 Maxima-Minima Theory

The discussions will begin with a review of the pertinent concepts from
maxima-minima theory since the methods used here have much in common with
those used in optimal trajectory and control problems.

2.1.1 Minimizing a Function of One Variable

It is well known that if a function f (x) has a minimum value at x = X s
then the two conditions

d.
—f(x,,) =0
dx (2.1.1)

d*f

must hold. To develop these conditions, assume that the function f has
continuous derivatives of at least the second order and a bounded third
derivative in the vicinity of the minimum point x , and expands f (x) about
x, in the truncated series

£ 2
Fix) -~ fix,) = 7(; Sx + —""7s——z—+ e(sx*) (2.1.2)

where dx =x-x and 6 ( 8 x ) denotes terms of order 8. If f has a
local minimum at X , then, for any x "near" X the right hand side of (2.1.2)
must be greater thén or equal to zero; that is,

£(x) - £(x,)) = 0 (2.1.3)

For & x small, the sign of the left hand side of Eq. (2.1.2) is determined by
the sign of the first term with the result that

£ 8x 20 (2.1.4)

Since § x can take positive or negative values, it follows that (2.1.4) will
hold only if

fx(Xo) =0



With this condition, the sign of the left hand side of (2.1.2) is determihed
from the second order terms, and for (2.1.3) to be satisfied

£ 8x* =2 0
X =

from which the second condition in Eq. (2.1.1) follows.

Note that it has been necessary to assume that f has continuous second
and bounded third derivatives in some region containing X in order to develop
the series expression of (2.1.2). This condition can somgtimes be relaxed.
However, it is a relatively weak assumption and is inevitably satisfied in
engineering applications.

2.1.2 Minimizing a Function of Several Variables

The extension of the previous results to the case in which X is a vector
with n components is straightforward. Let X denote the vector

with the function f(x) = f(xix?,...,xh) having a local minimum at x  where

X0
X0
X = |
Q .
an

Again, assuming that f possesses continuous second and bounded third derivatives
in all its arguments, and expanding f(x) about x, provides

» / 5 >
fx) - Flx,) = ﬂi 5%, ‘7 f‘z‘zj §x;8x; + 6(6x°) 20 (2.1.5)

or in the vector notation

fo)-fix)=f 8x +2 62 F

7 . 8x+6(8x') 20 (2.1.52)

where & x is the vector

The tensor notation is used in which repeated subscripts indicate sumnation.




and the superscript T denotes the transpose.

Reasoning as in the preceding section, it follows that

P
(2.1.6)

This leaves, on the left hand side of (2.1.5a), the second order terms which
must be positive if x, is to be & minimum point. Hence,

r _ ! (2.1.7)
Sx £, 6x =2 ";‘.xj 8z; 6x; 20

The expression §x” fyx §X is quadratic in the variables 5xi and is
therefore called a quadratic form. Since the Sxi are arbitrary, condition

(2.1.7) will be satisfied only if the matrix

fox, Fz'xz R
(ru) = | Fpr Faxg - Frm
'pz..z, thzz toe rx,.z,‘

is positive semi-definite; that is, if all the eigenvalues of (f;cc) are



positive or zero. Hence, to determine if condition (2.1.7) is satisfied,
it is necessary to either directly compute the eigenvalues of (f__) or

draw upon any one of several theorems used in the study of quadr&ic forms
which assure that (f_ ) is positive semi-definite. One of these theorems
(for example, see RefX (1), page 260) requires that for (f_ ) to be positive
semi-definite, the n determinant conditions xx

'(X’)(' ?_O
{X]Xl ‘F)‘,Xz
>0
.¥XIXZ FXzXz
s £ o5 _
IX, X'XZ XIXJ
fuxe Txpxe fxpXs| 2° (2.1.8)
.f;(' X, -Fx,xl Coe . ‘F*'xn
fxa Sx,.%, Fy,Xa >0
foox, Txax, 0 0 TXaxa

must hold. Note that the conditions (2.1.8) and (2.1.6) above which must be
satisfied at the minimum point X, are the n dimensional analogue of conditions
(2.1.1) in the one dimensional problem.

2.1.3 Minimizing a Function Subject to Equality Constraints

Quite often, problems arise in which a function, f(x), is to be minimized,
subject to a subsidiary condition g(x) = 0. To illustrate the treatment of
such problems, it will be assumed to begin with that x is a two dimensional

and that the minimum point occurs at X, where

x =(“10)
e]
%20
One possible approach to the problem would be to solve the constraint
equation

g(x;,%5) =0

for one of the variables, say X, in terms of X and then substitute this




[

expression into f. The minimum point could then be determined using the
techniques of Section 2.1.1. While this approach is straightforward, it has
the major disadvantage that it is not always possible to solve the constraint
equation for one of the variables in terms of the other. An alternate approach,
and the one to be considered here, was developed by Lagrange in the early

part of the 16th century. By this method, the constrained minimization problem
can be handled in much the same manner as the unconstrained problem.

Since g ( ,x2) is zero, minimizing the function f (xl,xz) is equivalent to
minimizing the atigmented function

F(xs x5) = £ (x,%) + Ag(x,x) =1 (x,x5) (2.1.9)

where A is some constant to be determined. Expanding F in a truncated
series about X, provides

1
Fixy - Fox,) =F;:' 8z, + ,izdzz fi {/;'x' 6’,"’25,):, 6"'8”/2*,';,:, Jz:}+ e(s82)

(2.1.10)

Now, the left hand side of (2.1.10) must be greater or equal to zero for all
x and X, satisfying

g (x)=g(x)=0

Consider x, (and hence & x,) as the independent variable and x, as the
dependent Variable ( is dependent through the constraint equition

g (x1x2) = 0). But sifice A in Equation (2.1.9) can be any constant, it
will™be chosen so that Fx1= Oat x= X5 that is,

.

Fx1=fx1+ /\gx1=0 .

With this condition, Eq. (2.1.10) becomes

.. / -
Foor-Fx,) =F, o, *E{Qtn 82 + 2, 84 8, 67:;_}4-0(67.") ..

Now since & X, is arbitrary (i.e., it has been chosen as the independent
variable), it Gan be taken small enough so that the sign of the right hand
side of (2.1.11) is determined by the first term. Hence, it follows that



for a minimum to occur. Further, since the sign &8 X, is arbitrary, it must
be that sz = 0. But,

szzfx2-+ )\gxazo

Thus, for a minimum value to occur at Xy the three conditions

Rt Agy =0
F * Ay, =0 (2.1.12)
?(z,,zz) =0

must be satisfied by selecting the values of X4 and A . DNote

that the device of introducing the constant A gndx%gming the function
F=1f+ AN g has allowed the constrained minimun problem to be treated as

an unconstrained preblem as far as the first necessary condition is concerned.
However, the condition (defining & maximum or minimum) on the second order
terms differs somewhat from that developed in the unconstrained problem
(i.e., Egs. (2.1.1) and (2.1.8)) as will be shown below.

Since the first order terms vanish, the sign of the right hand side of
(2.1.10) is determined by the second order terms which must be greater than
or equal to zero for & minimum to occur. However, unlike the unconstrained
problem, the variables §& and 6x, are not both arbitrary, but must satisfy
the constraint equation which, to first order, provides

gx,l ‘le+gx2 6x2=0

Hence, the condition on the second order terms takes the form

F dz,szFz

Xz,

5 0nbz,+ k& z, 20 (2.1.13)

for 6 x; and 5x2, satisfying

gx15x1+gx28x2 =0 .




. The extension of the analysis to the case in which x is an n dimensional
vector and in which m constraints g.(x) =0, j = 1, m are imposed, follows
& procedure similar to that used in“the two dimensional case. It is a simple
matter to show that the necessary conditions in this case are

X,
27| B | =0 (2.1.14)
F;"
GZTF;xSx z0 , 9 §x=0 5= him (2.1.15)
where F is given by
F=f+ Aj g (2.1.16)

To illustrate the application of these techniques, consider the example
problem where

minimum

f‘__xlzﬂczz
g=x X1

This problem consists of finding the point on the hyperbola g = O which is
closest to the origin.

0

Following the previously outlined procedure, the function F is formed
where )

F=f+ Mg

242+ Magey - 2

The necessary conditions corresponding to Egs. (2.1.12) are

2z, + Az, =0
Rx, *Ax, =0
Xz, =/
from which it follows that & minimum point occurs at
A =-2
Xo=%p=t1




that is, the function f has two minimums.

The second order test requires that

25x12+2811;:‘/‘61,8x2 z0 'F°"81,+812=O

which is seen to be satisfied by both of the solutions.

2.1.4 Minimizing a Function Subiect to Inequality Constraints

Often, the constraints entering a minimization problem are inequalities of
the form

g (00 sy hm (2.1.17)

The standard technique for handling such constraints is to reduce them to
equality conditions through the introduction of additional variables.

Consider the m real variables %; and rewrite conditions (2.1.17) in the
equivalent form

2
gj(r)f-z. =0 ij=lym (2.1.18)

Note that %z; = O if an equality condition holds in (2.1.17), while Qﬁ = Q
indicates a definite inequality.

With the constraints written in equality form, the methods of the

preceding section can be used to determine the minimum point X, Proceeding
as in Egs. (2.1.14) to (2.1.16), the function F is formed where

F=Flx,p)=fx)s Xj(g 0+ 7/ EF

Thus differentiating with respect to X and » and equating the first
derivative to zero provides

Fz’::fl‘." J'Z/.x‘- =0 y L=l

F’(Z = X,'z = 0O

F = 7\ 7 = O

2 2 (2.1.19)
F?m = )\m I?m= O

while the condition on the second order terms is

10




(Fe gy )x‘-z‘ 8z; 8%y +2 A, 5'6'2 20 (2.1.20)

for § X, and 8»7)' , satisfying
2, 8% *27 6,
Sx. =
F2x 0% 120 80, =0 (2.1.21)

’ .+ =
?Mx" 51‘ 27»1 67,,, o
Note from Eq. (2.1.19) that either »; or A; is zero for j =1, m.
The case 7; = O corresponds to the minimum point lying on the boundary of
the admissible region ay (Xo)=0 , while the case A\, = 0 corresponds to
x in the interior g (x,)<0. Also note that Eq. (2.1.20) can be used to

sﬁow that

A, 20 ;= lym (2.1.22)
as follows. First, if % # 0O, then A ; =0 and (2.1.22) holds. If
KW =0 and all 3 x, are set to zero, Egs. (2.1.21) are satisfied

identically while Eq. (2.1.20) provides
2
2 )\J. 6 7,

for 8§y g arbitrary. Thus, (2.1.22) follows immediately.

11



2.2 CALCULUS OF VARIATIONS

The review of pertinent material will continue in order to provide the
necessary background for subsequent discussion. In this section some of
the concepts used in the Calculus of Variations will be reintroduced.

The Calculus of Variations is very much like maxima-minima theory except
that the domain or space over which the minimization is to be performed is
more complex. Instead of determining a point x_ at which a function f(x)
has a minimum value, it is desired that the tim@ history of a function
x(t) be determined for which a functional J, given by

1,.9[{.
J(zeh) = Flt, x,2)at" (2.2.1)

x0¢

is minimized be determined. The integrand f is a specified function of the
variables t, x, and x. However, the particular dependence of x on t, and the
value of J (J varies as this dependence varies) are unspecified.

The procedure introduced in maxima-minima theory was to expand the function
in a truncated Taylor series about the minimum point, and to conclude that the
first order terms in the series must vanish while the second order terms
must be greater than, or equal to, zero. (See Egs. (2.1.1) and (2.1.6) to
(2.1.8).) The extremum was then determined by setting the first order terms
to zero and solving the resultant algebraic equation. The second order
inequality was then tested to determine if the point selected is a true
minimum and not & maximum or stationary point.

A similar procedure is used in the Calculus of Variations. It is assumed
that the functional J has a minimum value at x(t) = x (t), and then J(x(t))
is expanded about J(x (t)) in a truncated Taylor seri®s. By a reasoning
process analogous to That used in maxima-minima theory, it is a relatively
simple matter to show that the first order terms in the series expansion must
be zero for x (t) to be the minimizing function, and that the second order
terms must be greater than, or equal to, zero. However, the process of
equating the first order terms to zero provides a differential equation
(rather than an algebraic equation) which the minimizing function x_(t)
must satisfy. This differential equation is referred to as the Euler equation.
Again the second order condition serves as a test that the solution is
minimizing and may also resolve certain ambiguities which arise in solving
the Euler equation.

3# Dots over variables indicate differentiation with respect to time.

12




In the series expansion process by which the conditions on the first and
second order terms are developed, it is necessary to assume that the solution
x(t) is "near" to the solution x (t), just as it was necessary to assume that
the point x was near to the poing X in the maxima-minima development. However,
unlike the maxima-minima case, the Goncept "near" in the Variational Calculus
can have several meanings. The particular meaning needed in the series
expansion process is somewhat restricitve in that it limits the type of
comparison solution, x(t), to a rather narrow class. A less restrictive
interpretation of the concept '"near" led the mathematician Weierstrass to
another necessary condition which now bears his name and is somewhat stronger
than the Euler condition. In the following paragraphs, both of these conditions,
along with a third - the Legendre condition - will be developed, first for
the one-dimensional problem and then for n-dimensional problem with constraints
imposed. A fourth condition, the Jacobi condition, will be discussed only
slightly since it is rather difficult to apply in most engineering problems.

2.2,1 One-Dimensional Lagrange Problem

The one-dimensional Lagrange problem consists of determining the time
history of the variable X(t) such that the functional

t’; zr

J (xet)) = Flt x, X)at

£ x*

(2.2.2)

is a min . The point (t°, x°) denotes the lower limit of integration,
while (t, xf) denotes the upper limit. It is assumed, to begin with, that
these points are fixed. The problem is X
represented graphically in the sketch

to the right v(vh;re tl(mrge possi‘l(alc; time f— —
histories, t), t) and t) are
shown. n 2 3 ,,_‘(.D

Many well-known problems in analysis
can be put in the form of Eq. (2.2.2).
For example, consider the problem of Xl ¢
determining the curve of shortest arc '
length connecting the points (t°, x°) t° +f ¢
and (tf, xf). In this case, Eq. (2.2.2)
takes the form

tf 2f
J =/J/ rx L dt

tix’

where the integrand represents the differential arc length along the curve.

Returning to the general problem, assume that x (t) represents the
minimizing function, and let x(t) represent a neighgoring solution in which

13



x(t) = x (t) + 8 x(t)

where § x(t) is the difference in x and x, at the time t. Expanding
J(x(t)) in a Taylor series about J(x (t)) Provides

Jlxw) ~J (2, b)) =/ (?5x’§£5x)dt

X X

f a2f %
2 Iz 2 8x° 2— 6x8x+ 6z)dta:/é(df)dt

Ixox
(2.2.3)

where again ©( § 3?) indicates terms of order 3 ©. Since Sx and &x
are arbitrary, it will be required (as in maxima-minimal theory) that & x
and & X% be sufficiently small so that the sign of Eq. (2.2.3) is determined
from the first order terms. Hence, if x (t) is minimizing

I(x(t)) = I(x (2)) =

oF o .
Jza_x 6x+ g;al)dt 20 (2.2.1.;)

[+

and

But the sign of (2.2.4) can be reversed by considering a new solution X, *y=
Xo (£ % 8X, () such that 8xl(t)= - 8 x and Bxl -8x, from which it follows

that
;
of 3af _.
d - (2.2.5
/( Y N >c/t o )

4

and, since the first order terms vanish, the second order terms must satisfy
the inequality

f, .z 2
d°F 2 > f 2 .
é X b >
0/(”1 X L2 BX8X t 37 B X )dt > 0 (2.2.6)

for § x and 8§x sufficiently small.

14




Eq. (2.2.5) can, however, be put in a more usable form by integrating
the second term by parts to provide

_f'

¢
d >
3\‘5)(} ,L/ M7 f)axdtzo
3% o 4 Ax dt X

Since & x is zero at both ends of the interval (t°, tf) and arbitrary in
the interior, this expression reduces to the well-known Fuler differential
equation

3_f_£_3_f_o 22)
3X  dt aX (2.2.7

XxX=Xx°;t=1t°

x=xf;‘c.=tf X

is used to compute the arc xo(t.).

The assumption that & x and 3 x
are small (which is necessary to develop
Egs. (2.2.6) and (2.2.7) restricts the
class of comparison solutions. This
fact is shown in the sketch to the
right. In this sketch x (t) represents
a neighboring solution for which % x
and 5 k% are small, and x,(t) represents i \
a solution for which 5 x is small but +° +f t
8 X is large. A variation §x=x - x
such that both §x and § % are small is c8lled a weak variation, while a
variation for which only 8 x is small is called a strong variation. Thus,
conditions (2.2.6) and (2.2.7) can be used to determine a minimizing function
xo(t) only on the class of functions x(t) which represent weak variations of
x (t). Another condition is needed to determine the minimizing function on
te class of strong variations. Such a condition was developed by Weierstrass
in the 1870's.
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Let x_(t) represent the optimal

solution &nd x}(t) a neighboring solution .
which differs Trom x_ on the interval constant siope X [
[t°, t<], which has & constant slope Xolt) ,
% on the interval [tl, t2]. (See (4 |
sketch). Since x (t) is minimizing, ! ! !
° \ | Xo(1) [
~ - | | X () ]
' . [
'to .tl ,LZ -t'f
@ . ©) {
T, @) ~T(x,83) = [ #0x,, X, £ )dt ~/,r(x° Ko, t)dt = O
o ©
But this expression can be rewritten as
Jis ;
> {f(x,)x,)t Y-f (X0, X, ,t)}aﬁ./{{(x,)i,,t)—f(x,, k,,,t)} dt Z 0
o (2.2.8)

Under the assumptions that the interval [tl s t2] is small and equal to the
differential dt, and that & x and 5% are small on the interval [t°, t1],

condition (2.2.8) becomes, to first order
t=¢'

S af >f
/ (a(xa,xo,t) BX + (X0 o, t)gi) o2 +{f(x,,x)t)—f(xo))?m t)} dt]zo

(=4

(2.2.9)

Now, integrating the first term by parts and noting that x, must satisfy the
Fuler condition of Eq. (2.2.7), provides

t=t!

£ . . .
{:).((Xo,x.,,t)dm[{(xo,x)t) -(CXO,Xo,t)}dt} o)

But
Sx¢t') = x, (t) ~-x,(t)

{x, @t?) =X, (t‘)} - { X, (%) - X,(t')} + { Xo (1*) —Xo Lt’)}

"

B . t=t
O-X dt 4 )(odtJ
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Substituting this result into (2.2.9) and noting that the time tl can be
any time in the interval (t°, tf) provides the final result

y . * . - . f .
E{X,xo ,Xo) t} =f(Xer X, t) -{(xo,xo,t>-(X—xo):—ﬁ(x,,xojt} =0

which must hold along the optimal solution xo(t). This inequality is referred
to as the Weierstrass condition.

A short summary at this point seems appropriate. Eqs. (2.2.6) and (2.2.7),
which must hold along the optimal solution, provide a function x (t) which
yields a smaller value for the functional J than any other functZon x(t)
for which both 8 x = x(t) - x (t) and 8 X are small. A larger class of
functions are those for which’ sx is small while 6§ % may be large, and the
Weierstrass condition in (2.2.10) is a condition which must be satisfied
by the function which is minimizing on this larger class.

It is apparent that if xo(t) is minimizing on a certain class of functions
C (x), then it is also minimizing on every subset of this class. For example,
if

J (xo(t)) < J (x(t)) for x(t) e C (x)
Then

J (xo(t.)) <J (x(t)) for x(t) ¢ Cl(x)

where C, is contained in C. ILikewise, for xo(t) to be minimizing on a
certainTclass, it must also be minimizing on every subset of the class.
Hence, any necessary condition which must be satisfied for x (t) to be
minimizing on a subset of the class is also a necessary condition for
J_c‘;(t)_ to be minimizing on the entire class. This property will be used
again and again to develop additional necessary conditions which the mini-
mizing arc must satisfy. From this property, it is a simple matter to
conclude that the conditions on the first and second order terms of the
series expansion, Egs. (2.2.6) and (2.2.7), which were developed for
xo(t) to be optimal on the class of weak variations, must also hold for
x_(t) to be optimal on the class of strong variations. For convenience,
tBese necessary conditions are summarized below:

(1) Weierstrass Condition

. . ) SN
f{x,x,,,x,,,t}:fcx,,x,t)—{(xo,xo,t)*(X~ )35 Z° (2.2.11)
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(2) Euler Condition

2¢  d 2f o
;; ~-d_t-_3_§‘ - (2.2.12)

(3) Second Order Condition

f
d*f 2. ¢ % o Y (2.2.13)
— 83X 8X + —5 2 t =20 e
[{3)(18)( +axax5 x axzsx}d

for 8x , & X sufficiently small.

The second order condition in the form shown in Eq. (2.2.13) is generally
too complicated to apply to most engineering problems of interest. Fortunately,
it can be reduced to two simpler conditions which are equivalent to Eq.(2.2.13).
The first of these conditions is the Legendre condition which can be developed
rather simply from Eq. (2.2.11). The second is the Jacobi conjugate point
condition.

From Eq. (2.2.11), it follows that
E{X)*")Xc)t} 20

which must hold for any X if xo(t) is optimel. Specifically, it must hold for

where .BJ.C is small. Thus, the E function has a minimum value of zero at
X = X, and, hence, its first derivative,’e/axmust vanish at X = X and

(az E> . i S
U sz T e 8xz 20
a 2 & » a Xl

X %-%,

Since 8§ x is arbitrary, except for the requirement that it be small, it follows
immediately that along the minimizing curve xo(t)

3

aX‘(X”i”t) 20

(2.2.14)
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This inequality is referred to as the Legendre condition.

The development of the Jacobi condition is somewhat more involved. ILet
K denote the value of the terms on the left hand side of (2.2.13); that is,

2

£, 32 23, O _ ..
:/<“gx2+ — 8 X6y #58K")at . (2.2.15)
[+

dx*? AX X 3x

It follows that K can never be less than zero if x (t) is the minimizing arc,
and since the value of K varies with 6 x(t) (also % %(t)), there is some

value of & x for which K takes on a minimum va.lue, say . The Jacobi
condition is said to be satisfied if 2 0. . < U, the Jacobi
condition is violated and the arc x, (t) 1s not minimizing.

To show these facts, it will be necessary to minimize K. Note that the
coefficients

Y €
axt 2axdX | ak?

are known functions of time, once the arc x (t) is given. Hence, K is a
function only of b x(t), and that particula? & x(t) which minimizes K

must satisfy the Euler condition of Eq. (2.2.12). Note also that if & x(t)
is zero over the entire arc, then K = O and the Euler condition is satisfied
identically. To rule out this degenerate case in minimizing K, it will

be required that & x(t) satisfy the integral condition

.f
G (8X)= ez—/sxzct)dé =0 (2.2.16)

(¢

where € 2 is some real small quantity. Also, since G( 8x) = 0, minimizing
the quantity K is equivalent to minimizing the quantity K where

K=K+ AG=K

and where A is an arbitrary constant to be chosen so that Eq. (2.2.16)
is satisfied.

At this point, K will be written as:
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f
,?z/{;“ SX2+ 24,4 Sx 8X + frz 8X° - /\sz}dtw\ez =K

o

and the Euler condition will be applied [Eq. (2.2.12)] to determine the
minimizing & x(t). The resultant relationship is

d . .
df{ﬂti 8X+fxx SX} :(w‘xx* )\) 8X +fyg X (2.2.17)

The &x(t) satisfying Eq. (2.2.17) provides the minimum value for the
quantity K given in Eq. (2.2.15). This solution can be determined by
multiplying (2.2.17) by 6 x and integrating the first term by parts, to
yield

1.

f f
Sx[c;& §X +€yq Sx] l((,;; X2 +afye 8x8X Hxxsxz)dtmfsx’dt =0
[#]

o]

Since B x is zero at both the initial and terminal points of the integral,
a comparison of this expression with Egs. (2.2.15) and (2.2.16) provides

_ 2
Knip = A E (2.2.18)

Thus, if A\ 1is negative, the Jacobi condition is violated and the arc is
not minimizing. If A is positive, the Jacobi condition is satisfied. To
determine the sign of A , Eq. (2.2.17) is rewritten as

¢

N dk | XX L d

&X + 85X +8x[’x‘ Taox & Fa ] =0
fxx fxx

Assuming the strong Legendre conditions of Eq. (2.2.14) is satisfied with
f.. >0 over the entire interval, and noting that this equation is a form of
t§8 Sturm-Liouville equation for which a rather general theory has been
developed, the theory of the solution to the Sturm-Liouville equation can
be applied to determine the sign of the quantity A .
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The Jacobi and Legendre conditions together are sufficient for the second
order terms in Eq. (2.2.13) to be greater than, or equal to, zero. However,
while the Legendre condition is rather easy to apply, the Jacobi condition is
not. For this reason, the Jacobi condition is seldom employed in analyzing
engineering problems. Hence, in the treatment which follows, no further
consideration will be given to the Jacobi condition or its implications.

To illustrate the applications of the necessary conditions, consider the
minimum surface of revolution problem in which it is desired to determine
the curve connecting the two points [t°, x°] and
[tf, xf] such that the surface formed by rotating
the curve about the t axis is a minimum. In
this case, the quantity to be minimiged
(the surface area) takes the form X

- —

X

(‘
T:Zﬂ’[x /_/)'(Z Jt ‘.,
(4]

The Euler condition requires that the minimizing curve satisfy the differential
equation

df xX o
I{l//u’(z }: I+ X

By direct substitution, it can be shown that the extremal is a catenary of the
form

t-—b)

X = a cosh ( Y

where a and b are constants selected so that the boundary conditions

are satisfied.
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The Legendre condition requires that
X - a

(—Vhf;(z_)s i cosh® l—c{_g_j =0

If x(t) > 0 along the arc, then it follows that a > O, and that this condition
is satisfied. The Weierstrass condition yields

ﬁ%—wwk?w Xt —(/*).()'()} >0

where x denoteg the derivative along the extremizing curve (i.e., the
catenary) and X denotes any other derivative. Again, it is a simple matter
to show that the inequality holds provided x > O along the optimizing arc.

2.2.2 N-Dimensional Lagrange Problem

The n-dimensional Lagrange problem is concerned with minimizing a
functional of the form

J = ff £ (t, xl,xz,...,xn,;'cl, xz,xn) dt
[

or in the vector notation
f

J= f £ (t, x, x) dt

(o}

where x is the n dimensional vector

*

n

The necessary conditions which the extremizing arc must satisfy are essentially
the vector equivalent of the scalar conditions developed in the preceding
section for the one dimensional problem. The method of development is

exactly the same,
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The condition that the first variation (i.e., the first order terms in a
series expansion of the function J about its minimum value) vanish for the
minimizing arc to be minimizing on the class of weak variations leads to the
n Euler equations

of d(af o
dx: ot a&)"o )t 4 (2.2.19)

Note that the form of the Euler equations above is the same as that given in
Eq. (2.2.12) for the one dimensional problem. The Legendre condition, which
must be satisfied for the second variation to be greater than or equal to
zero, is expressed as

% 2*f ' \
axz  3xaY, A%, 3Xn
. :
(9 f) ‘ z 0
X ;
X 32{ )z‘( o az{‘ (2-20&))
3%, 0% %, 3%, ax i

that is, the matrix (—%-;Fz-) must be positive semi-definite along the extremizing
arc. Finally, the Weierstrass condition becomes

. . LK F .
£ :f(xlxo)t) ‘{(Xo) Xort) -Z_ (X"f xio) (Xo)xo )t> =

by X (2.2.21)

where x_ denotes the derivative along the extremal and X denotes any other
value of the derivative.

A fourth condition, the Jacobi condition, can also be developed. However,
as pointed out in the previous section, this condition is usually too
difficult to apply to be of any use,

In the treatment of both the one-dimensional and n-dimensional Lagrange
problem it has been assumed that the initial and terminal points are fixeg;
that is, that the value of x at t = t° as well as the value of xat t =t
have been specified. Frequently this is not the case, and the limits of
integration are allowed to vary over specified surfaces in the (x,t) space.
This case will be treated next.
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2.2.3 Boundary and Corner Conditions

Consider the n-dimensional Lagrange problem in which the integral

J = -Yf £ (x, x, t)dt
(o]

(2.2.22)

is to be minimized subject to the boundary conditions

and

X

n3%

X =Xx° = . at t =

: € ,0) - .
v (xGt') =0 L

)

3
i
X

to

(2.2.23)

In this case, the upper limit of integration (xf,tf) is not specified.
Rather, the terminal state is required to be on the surface defined by the
m constraint equations ¢ (z*,t)=0;;=im.

If the problem is one dimensional, then ¥

the
the

curve in the (x,t) space (see sketch),

and

both the arc x (t) and the terminal
point (xf,tf) For which the functional

surface,¢(x'y2f)=0 , on which
upper limit must lie becomes a

the problem consists of determining

o

J has a minimum value. ~ -

2y EHf) -0

Since the y¥. of Eq. (2.2.23) are 1°

zero, minimizing the functional J is _
equivalent to minimizing the functional J where

T —.ff(x,i,t)dt MY

d

* Repeated subscripts indicate summation,
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and where the .y are constants to be determined. Setting the first variation
of J to zero, a condition which must hold for J to be minimizing, provides

¢ f
Y, EXd

8T {s %x+ §X-)dt + f }»f —d Z4 )]
/( - ) dt ’u/(éx"dx‘+3£dt

where the fdt term is due to the fact that the upper limit of integration can \
vary. Integrating the first term in the integrand by parts now yields

y f
{ —_ . £ +|f¢ . f 2 . - T O\Re g
8] /K L))SXLCH:*I' df] [ )(,:SX;L f'/4"‘( 'C/X" *3 dt

Note that the variation 3% x(tf) is the difference between a neighboring
arc and the optimal arc at the time tf ; that is

X, |
5x(tf) =x (tf) - xo(tf) \

while the differential, dx.,, in Eq. (2.2.24)
is the difference between %he two arcs, but at
different times, since the terminal times
along the two solutions are not the same.
From the sketch to the right it is a simple
matter to show that to first order, jx

constraint

Surface
and dx are related by )(f —=-1 : de !
H ) i
. ¥
dx = dx - x dt t° € {:
or in the scalar notation
5xi = dx, - %, dt (2.2.25)

where X, denotes the slope along the optimal solution at the terminal point.
Substitiiting (2.2.25) into (2.2.24) provides

55 = f [0y 2(53)} sxdtef(F -Gy 22 ) st (P TE)ax!]-0
o b +

(2.2.26)
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Consider a special subclass of neighboring solutions, all of which pass
through the sa.me texm:ui;al point as the optimal solution. In this case, the
quantities dtf and dx.® in (2.2.26) are zero with the first variation
reducing to

$3 :fﬁi{xfc%(ff(;)} Sx. dt (2.2.27)

Since the b x;are arbitrary, it follows immediately that the Euler equations

d Y =0 4 =
fxi - % (fxi) =0;i=1,n (2.2.28)

must hold along the optimal solution.

The expression for the first variation in Eq. (2.2.26) reduces to
Eq. (2.2.27) only for a special subclass of weak variations; namely, that
class which passes through the same terminal point as the optimal solution.
Hence, the Euler conditions of (2.2.28) are necessary only for this special
subclass. However, as pointed out in the previous section (Eq. 2.2.11), any
necessary condition which the extremizing arc Xb(t) must satisfy to be
minimizing on a subset of the class of possible variations is also necessary
for xb(t) to be minimizing on the entire class. Hence, the Euler equations
of (2.2.28) must hold for all weak variations of the minimizing arc x, (t)
whether these variations pass through the same terminal point as X, of not.

Returning to the general case in which the neighboring and optimal
solutions do not go through the same terminal point, it follows from the
above arguments and Fg. (2.2.28) that the first variation of (2.2.26) takes
the form

_ . dY;
A €. X. Lo
6T {f ‘(X;’& Uﬁ_a:;}d“{{

Q3%

The n + 1 differentials dt and dx%q re not 811 independent because
of the m terminal constraints of (2 2 23) Consider the first m

, f
B‘fg }CIX}.J -0 (2.2.29)

differentials . as dependent through the constraint equations
¥, =0; 3 ="1l,m gnd the remaining dgm+2, ...dx as independent.
Now, since the «j are arbitrary, selec% the «; , ;=1 m, so that the

coefficients of dxl, dx2,. dxh in Eq. (2.2. 29) éanish that is, so that

fRotmi =0 5 <= /)m (2.2.30)

26




.

Then (2.2.29) becomes

<F
. 3y S
= -4 0 . __J . . d =
87 =(« {5 Rotu, - )dt +(fx‘f,u¢é_x'>d)&] o
L

where the subscript on dx. ranges from m+l to n. But since dt and dxi
are independent for these variables, it follows that & J will vanish only
if

Y
..... - J:
f fxéx; P A S o
Y
R . d -0 ‘= mil,n
f"f/a"a)g y p)

Collecting the results, the arc x (t) which minimizes the functional
in Eq. (2.2.22) subject to the termin®l constraints of Fq. (2.2.23) must
satisfy the n differential equations

d Y20 4 =
i‘xi - % (fxi) =0;i=1, n (2.2.31)

and the boundary or transversslity conditions at the terminal point

‘/'J':O J J ={,m
. 3\’. -
X, fﬂ/‘j;:—_ = ye=ln (2.2.32)
A

* dY,
‘F"{)&' X +/“,t. ———atJ =0

Note that Egs. (2.2.32) are consistentx}n thgt they constitute a set of
n+l+m equations in the n+l+m unknowns 5 t", and ay

Two observations regarding the development of this set of equations can
be made. First, the differential constraints, Egs. (2.2.31), and the
boundary conditions, Egs. (2.2.32), are uncoupled in the sense that the same
set of differential equations must be satisfied by the minimizing arc
irregardless of how the terminal constraints may vary (that is, the same set
of equations holds whether the terminal point is fixed or moves along a
surface in the space). From this fact, it follows directly that all differential
constraints necessary for the fixed end point problem are also necessary for
the variable end point problem. Thus, in addition to the Euler equations, the
minimizing arc must also satisfy the Legendre and Weierstrass conditions of
Eqs. (2.2.20) and (2.2.21).
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A second observatien concerns the role of the multipliers «,. These
multipliers are used in much the same way as the constants A; in the constrained
maxima-minima problem of Section 2.1.4. By introducing these multipliers,
the constrained variation in the terminal conditions (constrained by means
of the equations ¢; = 0O) can be treated as an unconstrained variation. This
technique will be used again and again throughout the report.

As an example, consider the prgblem of finding the shortest distance from
a point (x°, t°) to a curve ¥ (x, tf) = 0. In this case the integral is

£

j:/ /7")'(z ot

o

with the minimizing arc consisting of a straight line along which i is a
constant. The boundary conditions of (2.2.32) become

vixttf) = o

X Y
J—,——+,«—— -0
V/fxz X

/ r X 4
2T .,

V/+kl 3t
and reduce to

Y

. (dv)
X =| — =_ 39X
dt /), W

plimal z

ot

through the elimination of the multiplier

Since the slope along the curve ¥ = 0 is given by~(3*/3{»QéV/ax),this
expression proves that the minimizing curve and the constraint ¥ = O are
orthogonal at the point of intersection.

In addition to the boundary conditions which the optimal solution must
satisfy, there are alsc intermediate conditions along the arc which must
hold if the arc is to be minimizing.
Specifically, certain conditions must
hold at a corner point where the
derivative x is discontinuous. These
conditions will be developed below.

~
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In developing the Fuler conditions of Egs. (2.2.31) and (2.2.12), it
has been tacitly assumed that the derivative % is continuous along the
extremal arc, a condition that will not hold if the arc has corners (see
preceding sketch) resulting from sudden control changes, etc. At a corner
point, say . = tl the derivative x is not defined. Hence s the functional
J which is to beminimized is rewritten as

£] . £ .
J = f £(x,x,t)dt +f £ (x, x,t)dt

+
o tl

Now forming the first variation and equating it to zero yields

t— . .~
§3 = —%—‘28x+-§%6x)dt+ fF(x, %, ¢) dt

o

tF
-$0x %%, 1) ax +[(3.£8x+§£8>&)dt =0
Bt N dX 3YX

-

but in each interval [t°,£] and [t*, t¥] the second term in the integrand
can be integrated by parts as

3;5,(,1{,3‘ §X - fﬁ(%)Sth

Thus, the variation § J reduces to

.
§Tz0 :J %‘i ~d—i(%>]5><dt
f

tr ax—dL( )] prdt
s [ Fat +"_:_;sx]\{~[€a£ + 2‘ sx] l

But the integrands are clearly gero along an extremizing arc since they are,
in fact, the Euler equations. Thus,

, Y t
57 ={FO%7 dt + 004,184 -

e L
{{(’("‘ y BRI (XK )tJ5XzH " ©
<
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Now since
§x, = dx, - x dt
i i i
this expression becomes
. .- af e . 2 :
_{(ﬁx)x )53 (60,0 )—(nx,xgw—a—*-icx,x*,wx;)} dt

(2.2.33)
{3—()( X7 t) (x, x* t)}> = 0

If the corner is unconstrained (i.e., the corner is not required to be on
some specified surface) then dt and dx are independent (the corner can
occur any place), and Eq. (2.2.33) rediices to the two conditions

af ' f” (2.2.34a)
X, ax;
. i}
o 3f $ro= 6 - of % (2.2.34b)
IX; IX;

These conditions are usually referred to as the Weierstrass-Erdman corner
conditions.

As an example of the application of these conditions, consider a one
dimensional problem of the form

{
by :/(/4,\"‘)'/’- G (X, t)dt
[~

where G(x,t) is any function of x and t. If the minimizing solution has a
corner, then at the corner Eqs. (2.2.34a) ani (2.2.34b) become

(A . 4
—_ _L- . G(X)t) - G(*,t)

Ty TS S [P [P

from which it follows that

X = X
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and that the optimal solution can not have any corners.

2.2.4. General Treatment of Equality Constraints

Often problems arise in which a functional J is to be minimized subject
to subsidary constraint conditions. These constraints generally take one
of three forms.

(1) Integral Constraints

The functional J is to be minimized on the class of
functions x (t) satisfying the integral condition

.f
/G,(x,k,t)dl: -% =0 (2.2.35)
(4
where k is a specified constant.
(2) Surface Constraints

The functional J is to be minimized on the class of functions
x(t) lying on the surface

G, (x,£) =0 (2.2.36)
(3) Differential Constraints

The functional J is to be minimized on the class of
functions x(t) satisfying the differential equation

GB(x,:'c,t) =0 (2.2.37)

In many cases more than one constraint of a certain type will be imposed,
and frequently problems arise in which all three types are present. However,
it should be noted that the number of surface and differential constraints
combined must be less than the dimensions of the vector x in the problem;
that is, if the problem is n dimensional, then at most n-1 subsidiary constraints
of -the surface and differential t{ype can be imposed. For example, in a one
dimensional problem, a surface constraint

Gz(x,t) =

could not be included, since the curve connecting the initial and terminal
p01nts would be completely specified by this constraint and there would
remain no degree of freedom for minimizing the functional J. On the other
hand, the integral type constraint is a weak constraint; and any number of
these can be included regardless of the problem's dimensions, provided
they are not contradictory.
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By a slight amount of algebraic manipulation, both integral and surface
constraints can be put in the form of differential constraints. Hence, in
the formulation, one need only consider the inclusion of differential con-
straints.

To convert the integral constraint to differential form, introduce a
new dimension into the problem and let

t
Xn+| :/G,O(,){)t)d{
(4]

The vector X now has ntl dimensions. Differentiating this expression provides
Xy = 600X, £) (2.2.38)

which, along with the boundary conditions

Xpy 30 ) t=t°

(2.2.39)
Xne = R ) t=tf

is equivalent to the integral condition of equation (2.2.35).

The process of converting the surface constraint to differential form
consists simply in differentiating it. Hence

- G, - G
dG, ) A6, X; + 36, _ o0 (2.2.40)
dt DXA' ot

Equation (2.2.40) is now in differential form, and it is only a matter of
imposing one of the two-boundary conditions

G, (X%t%) = O

or (2.2.41)
G, (xH,t9)=0

to insure that G,(X,t) is zero over the entire arc.
Since all equality constraints can be put in differential form, the

following n-dimensional problem will be formulated: Determine the arc X(t)
for which the functional

£
T =/FLX,X,t)d6 (2.2.42)
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is minimized subject to the boundary conditions

X (-] — (-]
¢ )f ¢ )f . (2.2.43)
‘?:/()()t)—o J J://mé‘n
and the differential constraints
Gglx,X,2) =0 ; k=1, ren (2.2.44)

Since both Y, and Gy are zero, minimizing the functional J is again
equivalent to minimizing J where

_ f
T:o/ {FﬂzG&}dt s =T

where . (3=1,m) and Py (k=1,r) are multipliers to be determined.
Letting

F:f+,c26r£
and setting the first variation of J to zero provides
p N
~ aF - AF ¥ 3%
SID[(—76X~4——-5X)dtf{thﬁu(—idk'f——U%)}
5 \oX. Y dx, Aax, T ae
Integrating the first term in the integral by parts, and noting that

EX; =X, =X dt

yields
f, £
— dF d /[ oF a Y
53:/ {—— < .)}a . u(,c—/:~.‘. —i)
o L3IX, dE\3X, X;d 554y 3 ) ot (2.2.45)

v \f

| #(Fy, 4 ﬁi}dx"
As in the preceding section, a weak variation in which dX; and dt are zero
(with the neighboring solution going through the same terminal point as the
optimal solution) can be considered to conclude that for a general weak
variation, both the integral expression in equation (2.2.45) and the boundary
conditions must be zero independently. Thus, the vanishing of the first
variation reduces to the two conditions

1, . ( )
Y . = 2.2.46
0/ ( P =5, ) 5, dt =0
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wWhere

F =1t }2615

and

ipon )l o]
F’f)(zxx"/’«‘s‘t_)d“ A/~ LA (2.2.47)

The 8 X; in equation (2.2.46) are not all independent since Xi(t)
must satisfy the r differential constraints of equation (2.2.44). 1If the
first r of the 8X;( 8X;, 8 X2--~8 Xr) are considered as dependent with
the multipliers P;j* selected so that the coefficients of 38X, 8_X2,...3 X
in the integrand in (2.2.46) are zero, then the remaining coefficients mus€

also vanish due to the independence of 6X..;, 5Xr+2’ ... 8X,. Thus, the
n Euler equations result where
AF df3F .
= - __(_____ ) =0 ) L=hn (2.2.48)
ax, delay

By a similar reasoning process, it can be shown that the multipliers 4/
can be selected so that the coefficients of dXi and dt in equation (2.2.45)
all vanish yielding the n+l boundary conditions

. QY
3 _ (2.2.49)
Fy, * My =0 5 L=/

QX;

Note that the Euler equations, equation (2.2.48), constitute a system of n
equations in n+r unknowns (the X;(i=1,n) and the Py (k=1,r). This system,
together with the r constraints of equation (2.2.44) is sufficient to de-
termine the Xi and the P, provided the coefficient determinant of the highest

derivatives (¥; and Py)
FX/,X| )FX/XZ)' v FX,Xn)G/X,) C .erl
xx ©x i Xn Xt "XnX2 XnXn 1 kn “Xn (2.2.50)
G\'( [#] ("/).(, )lez ) G/).(nG‘ O
C’r)i‘Gr)Zz L Grkn

*While the multipliers 4 j are constants, the multipliers P; are functions
of time and vary from point to point along the trajectory: that is, Pi=Pi(t)
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is not zero. If the coefficient determinant is zero at a point, then a unique
solution to the Euler and constraint equations does not exist at the point.

The reason for this is that at any point where t, x and x are known a unique value
for % and P can be computed only if the coefflclent determinant does not

vanish.

In addition to the Euler equations, a Welerstrass condition can also be
developed by a reasoning process similar to that used in the derivation of
equation (2.2.10). For this problem, the Weierstrass condition takes the form

S . . . . ?F .
E(XD)XO XJi) "FOC’YMO"F(XoJont) '(XL'_ Xol:)A_X(XO)XO)t.) Z0 (2.2.51)

where x, denotes the derivative along the minimizing solution and X denotes
any other value of the derivative that satisfies the constraint equations

5,5 (Xa)X)t) =0 G k=/r (2.2.52)

Finally, using the Welerstrass condition, the Legendre condition can be
developed for the weak variation case in which

X =x +5x

where & x is small. Since, from equation (2.2.51), the E function is
greater than or equal to zero, this function has a minimum value at X?io and
the second order terms in a series expansion about the x, point must not be
negative. Hence, it follows that

F . .
—— 8X; 8Xx, Z 0 (2.5.53)
IR IK; ¢
where the 5ii must satisfy the constraint equations to first order which
become
A6 .
A le. = 0 )i 3// r (2.2.5&)
3 X:

Collecting results, for the functional J

f
Tz [fOx R ol
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to be a minimum subject to the terminal conditions

f L f) - S e
v (xftf) =0 5 =

and the differential constraints
Gg(x, X, &) =0 s k= hor

the minimizing arc must satisfy

(1) The Euler and constraint equations

Gg (x,%X,t) = O DR,
(2.2.55)
- é">= DL Ln
;x dt
where
F:‘/‘f}z 6A

(2) The Weierstrass condition

(%0, X, Xor8)= F(X X0, )= £, Xoy8) (X, %o ) o7 (x,,x.,tJ 20

(2.2.56)
for ko and X satisfying the constraint equations
G,é(X,)X,_,t)=GACX°)X/t)=O ) 72= //" (2.5.57)

(3) The Legendre condition
2%F
8)( SX 20D (2.2.58)
3)( BX
for & Xi satisfying
QG& 5)( - D ,‘ _:_/) r (2.2.59)

3)(L
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(&) The Boundary or transversality conditions

2%,
F-Fe X . L= D
inx‘fﬂ/at

. 2y (2.2.60)
o A 5K

2.2.5 Inequality Constraints

As in the case of equality constraints, inequalities usually take one
of three forms:

(1) Integral Inequalities
.f
/G,(x)i,t)dh -k 20 (2.2.61)
o

(2) Surface Inequalities

<0
Gz () (2.2.62)
(3) Differential Inequalities
Gy (K, X,t) €0 (2.2.63)

The procedure for handling inequalities in the Calculus of Variations
is essentially the same as that used in maxima-minima theory (see section
2.1.4) and consists of converting the inequality to an equality through the
introduction of additional variables.

The integral inequality (2.2.61) is put in the differential form

Xny = G, (XX, L) (2.2.64)

with the boundary conditions

Xﬁﬂ =0 ) t=¢°
Xm-l*’?f' = R at t=tf. (2.2.65)

For 77, real, the inequality (2.2.61) will always be satisfied. Equations
(2.2.64) and (2.2.65) are then adjoined to the original problem through the
introduction of additional multipliers in exactly the same way that equality
constraints and boundary conditions are adjoined, and the standard necessary
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conditions are applied (i.e., Euler, Weierstrass, etc.)

The differential inequality is converted to the equality

v 2
G3(X,K,t) * 7, =0
and adjoined to the original problem. The solution consists of arcs along
which G3 < O ( " 3 # 0) plus arcs along which Gy =0 (73= 0)

For the surface constraint, let

Differentiating provides

36, ., 36, .
—= Xt + 2 7, =0 (2.2.66)
ax, “ 9t 12 %2

with this differential form of the constraint adjoined to the original problem

and with variable 77 = O when a definite equality holds in (2.2.62) and
arbitrary otherwise.

From this discussion, it is concluded that inequality constraints can
be treated in much the same manner as equality constraints. It should be
noted, however, that when the standard necessary conditions to the reformu-
lated problem (with inequalities represented as equalities) are supplied, the
form of these conditions (Euler, Weierstrass, Legendre, corner and trans-
versality) does reflect the inequality nature of the constraints.* Further,
the computational procedure of generating a solution becomes more involved
when inequalities are present. Precisely how the computational procedure and
necessary conditions are affected will be discussed in later sections.

2.2.6 Discussion

From the preceding sections, it is apparent that the methods used in the
Calculus of Variations are very similar to those used in maxima-minima theory.
It is further apparent that most of the information about the extremizing arc
is derived from the process of equating the first variation of the functional
J or the modified functional J=zero, where J consists of J plus
additional terms that are equal to zero. Of course, it must be remembered
that the first Yariation is zero only on the class of weak variations where

D xand & x are both small. For convenience, the conditions resulting
from the first variation are listed below for the problem of minimizing the

#In some cases, the form of the Legendre and corner conditions are modified
due to the inclusion of the inequality. Thus, care should be taken to see
that these conditions are correctly stated.
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functional
{ *®
T=/ F(X,XLt)dt
/

subject to the terminal conditions

tf’/(x‘,t‘)w 5

and the differential constraints

Gg(X, % ¢) =0 s b

(1) Euler Condition

F d dF

- T = = 0 J
X, o€ X,

where

F=1f+4 5 Gp

8]

I, r<n

(2) Boundary or Transversality Conditions

/i
Y
F+ . i -0 L=/
X /? X, /
. oY
F-Fg.X /gsfzo

(3) Corner Conditions (i.e., conditions which must hold across

a discontinuity in x)

dF ET ,
. = : L =4
dX; ak, ’
DF .. ¢ OFT o4
F- -2 X7 = - 22 X,
K ¢ 3%,

where the superscript
the superscript ~
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(2.2.67)

(2.2.68)

(2.2.69)

(2.2.70)

(2.2.71)

(2.2.72)

(2.2.73)

denotes one side of the corner and
denotes the other side.



The condition that the first variation be zero results from a truncated
Taylor series expansion of the functional J about the minimizing solution x,(t).
Hence, the truncated expansion must include at least the second-order terms
of the series. This requirement in turn dictates that the functions f, WJ
and G must possess at least continuous second derivatives in all their
arguments. This restriction is not severe since, in almost all problems of
interest, these functions possess many more continuous derivatives than the
second. Often these functions are, in fact, analytic.

For the strong variation in which 8x 1s small but d x is not, the
first variation is not necessarily zero, but greater than or equal to zero;
that is, if J(x.) is minimizing, then J(x) is greater than J(xb), and the
first order dif%erence between these two quantities Z;s developed for example
in equations (2.2.8) to (2.2.10) / must be non-negative. This fact leads to
the Weierstrass condition

. . . . F .
FOXo, X380~ F (Ko, Koy €)= ( X = Xo Ygg (Xer X, 63 Z0 (2.2.74)
A
where, again
F =f +,oﬁ6£

In many cases, the Weierstrass condition is used simply as a test that
the extremizing arc, as developed from equations (2.2.70) to (2.2.73), is
indeed minimizing. However, it should be noted that the satisfying of the
Weierstrass condition does not guarantee that the arc X, does minimize the
functional J.

Finally, the Weierstrass condition can be used to develop the legendre
condition which requires that

3%F

for & ki satisfying

§ K¢ ski 20 (2.2.75)

5*‘: =0 R=/r (2.2.76)

3 %

These conditions are necessary, but not sufficient, for Xo(t) to be
minimizing; that is, Xy (t) might satisfy these conditions.
and still not be minimizing. The sufficient conditions for a minimum have not
been developed, since, in most engineering problems, sufficiency is very
difficult to prove. Rather, physical reasoning is generally employed to deduce
that the problem as formulated does have a true minimum solution and that the
solution resulting from an application of the necessary conditions is, indeed,
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the desired solution. Such logic can, of course, lead to incorrect results.

The treatment of the preceding sections has centered on the Lagrange
problem where the functional to be minimized is an integral of the form

;.
J‘i((x,x,t)

There are, however, two other well known problems in the Calculus of Variations:
the Bolza problem and the problem of Mayer. The Mayer problem consists of
minimizing a function @ of the terminal state

J-= (P(X{,’(,{) = minimum

subject to boundary and differential constraints of the form in equations
(2.2.68) and (2.2.69). In the Bolza problem, the sum of an integral and a
function of the terminal state is to be minimized

;i
T 40, ) f[f(x, %,¢) dt

subject to the same type of boundary and differential constraints as in the
problem of Mayer. It is shown in Reference (2) (page 189) that all three
problems are equivalent; that is, by an appropriate transformation, the Bolza
and Mayer problems can be put in the form of a lagrange problem.

In modern trajectory and control analysis, most problems are cast in the
Mayer form. Hence, for convenience in what follows, the Lagrange problem of
equations (2.2.67) to (2.2.69) will be reformulated as a Mayer problem and the
corresponding necessary conditions listed.

Let
t . .
Xne = | FOGRLE)
o

with

Xng = TOGKE)
and

Xne) = O , et
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Then the functional to be minimized is

T= X,,,(th)

subject to the constraints of equations (2.2.68) and (2.2.69) and the addi-

tional constraint

Go= Xp, ~ FOXOGX L) =0

To accomplish the minimization, the revised functional J is formed

f'
23 = Xpy, (2F) ﬂ[(/‘%f’o ARG )dE P ay Y

and the first variation is set to zero to provide

(1) Euler Conditions

(2) Boundary Conditions

fj =0 ! 3 =V,

v >5 . 0
Y% j L

2 3¢
FeF. % 2
XeXa P My SE

/\-
.

A

(3) Corner Conditions

2+

3 F L.

= L= 1, N/
ax‘: J /
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(2.2.78)

(2.2.79)

(2.2.80)

(2.2.81)




The Welerstrass and Legendre conditions are the same as before, but with the
function ¥ replacing F in equations (2.2.74) and (2.2.75), respectively.
These conditions for the Mayer problem will be used extensively in the
sections that follow. In concluding this brief review, it is noted that all
of the necessary conditions used in the Calculus of Variations result from
comparing the minimizing arc X and the corresponding value of the functional
J(x ) with a neighboring arc infinitesimally removed from x_. Hence, in

in applying the Calculus of Variations to engineering problems, it is not
required to draw on the standard necessary condition listed in the literature.
Rather, it is possible to use the comparison technique to generate a set of
conditions corresponding to the particular problem. This latter approach is
usually safer since it avoids the misapplication of standard equations to
non-standard problems. In all cases, with the possible exception of the
Jacobi condition, the development is both conceptually and algebraically
straightforward.

43



2.3 THE PONTRYAGIN MAXIMUM PRINCIPLE

The Maximum Principle was developed by L. S. Pontryagin and his
colleagues at the Steklov Mathematical Institute in Moscow. The principle
came to the attention of scientists and engineers in the country through the
translation of a series of Russian articles in the late 1950's, the most im-
portant of which were three articles by L. I. Rozonoer in Automation and
Remote Control. /See Reference (327. Since then, the principle has been
extensively documented in both the open literature and in many mathematical
and engineering texts, with the most complete treatment given by the origina-
tors of the principle in Reference (4).

The Maximum Principle is very much like the Calculus of Variations.
In fact, it is essentially a generalization of the classical Weierstrass
condition. Both the Maximum Principle and the Calculus of Variations lead
to the same set of governing equations which the extremizing solution must
satisfy. Hence, there is no mathematical preference for using one method
as opposed to the other for solving an engineering problem. However, since
the Maximum Principle is a clearer and more concise statement of how the
optimization is to be conducted (particularly when certain types of inequality
constraints are present), its use often facilitates the construction of proofs,
and leads to new theorems and numerical methods.

2.3.1 Problem Statement

In the classical Calculus of Variations, the problem of minimizing a
functional involves the selection of an appropriate time history for the
n-dimensional vector X. During this selection process, no special attention
is focussed on the individual components of X as to, say, their physical
significance. Rather, the emphasis is on the mathematical structure with the
components of X serving merely as dependent variables.

In modern control and trajectory problems this procedure is not followed;
the vector X is separated into two sets of components. The first set of
components represents the state variables of the problem and the second set
the control variables., The reason for this separation is that the state
components play a different role in the problem than do the control com-
ponents; thus, it serves to clarify physical interpretation of the results
to distinguish between the two. Mathematically, the distinction is not at all
necessary.

The state of a system is usually described as the least amount of in-
formation required at the present time to predict the system's behavior at
some future instant. For example, the state of a point mass moving in a
specified force field is its position and velocity vectors. These two vectors
in conjunction with Newton's second law determine the position and velocity
at any future time. The control variables are those variables that directly
affect the forces acting on the system. For example, the control variables
in a chemical rocket could be the steering angle (angle which the thrust
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vector makes with some reference line) and the throttle setting. A variation
in these variables causes a variation in the direction and magnitude of the
thrust force acting on the rocket. Thus, the control and state components
are counterparts in a cause-effect relationship with the optimization problem
consisting in determining the control (cause or input) so that the state
(effect or output) evolves in some optimum fashion. The separation of the
variables so as to establish this cause-effect relationship usually proves
convenient in both problem formulation and in interpretation of results.

In modern control terminology, the optimization problem is usually cast

in the following form: Determine the control action u where u is a r-dimen-

sional vector
ul
u‘L

Ur
from the set U~ , where \J is a compact set in the r-dimensional control
space’, so that a function of the terminal state is minimized

3= 608t = Min (2.3.1)
subject to the terminal conditions

o F 2 fY - .ot =

Yy F,ED) =0 g1,y m=n (2.3.2)

and the differential constraints

X; = $,0x,u) y AL WA (2.3.3)

#*The r-dimensional control space is a Euclidean space and consists of all
possible values which the r-dimensional vector (‘Q, can take with each us
ranging from - e« to + o ., For example, if r i§'2 and u is a two dimen-
sional vector, the control space is the set of all possible points in the
uj, up plane (see sketch). The set U Uy
denotes a compact region in the control

space. For example, in the two-dimen-

. R 24U gl
sional case, the control vector might U, + U, <
be required to lie on or in the 1T

interior of the unit circle. In this u,
case U 1is the set of vectors u :(\ﬁ‘)
for which u? + ul < | ®
The term compact is equivalent to the requirement that U be closed and
bounded.
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The n-dimensional vector X is the state of the system with the initial state
specified by

PE o Bl PRI (2.3.4)

Note that this problem is very similar to the Mayer problem treated in
Section 2.2.6 but with the state vector (X) replaced by the combined state and
control vectors (Y) and the dimensions of the problem increased from n to
ntr,

The set of admissible controls, U, is some specified compact set in the
r-dimensional control space from which the optimal control must be selected.
In general, most physical problems are such that the set U can be repre-
sented as an inequality constraint or as a series of ineguality constraints
of the type

Ue U&= g(w=0 (2.3.5)

or
e U ?(u)so oz
4 (2.3.6)

In such cases, however, it has been shown that the inequalities can be con-
verted to equalities through the introduction of additional variables, 77
to allow the optimization problem to be treated as a Mayer problem in the
Calculus of Variations. _The mathematical process would consist of forming
the modified functional J

"
J = ¢+/{/ Z fl {,?,(;il.-fz(x,a)) +7\‘(;‘,(a)+7:)}df

and then applying the standard necessary conditions developed in the preceding
section. Such a procedure will be carried out in a subsequent section. For
the present, however, the problem will be formulated using the Maximum
Principle.

2.3.2 Maximum Principle Formulation

The problem under consideration is the determination of the control u
from the set U such that J is minimized

J=8(x5¢F) = mn (2.3.7)
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subject to the differential constraints

Z;=F (2, u)

3 £=1NMN

and the boundary conditions

z=x° at t=t¢t°

¥ (xf,¢f) =0

Before attempting to solve or formulate this problem, however, it is
necessary to place certain mathematical restrictions on the functions
appearing in the problem statement. Assume that

(1)

(i1)

(iii)

(iv)

The functions § and Y ) have continuous
first derivatives and bounded second deriva-
tives with respect to all their arguments.

The functions f; and 3f;/3y;are continuous

with respect to all their arguments, while

the second derivatives _224i_ are bounded.
QXABXk

244 exist.

3ué

The derivatives 3{€ satisfy a Lipschitz

condition with resﬁect to the variables uy;

that is,

The derivatives

of 2%
—4(13&\)‘ - (Z,L{)
az& ag,

-
£C..)

Y ket

-
U - u,

where Cij are finite positive constants.

(2.3.8)

(2.3.9)

These. conditions are not severe and will be satisfied in most engineering
problems. Also, it will be required that the individual components of the
control vector u, in addition to lying in the set U , be plecewise con-
tinuous; that is, the class of possible controls on which the search for an
optimal is to be conducted must

(i) 1lie in the set U

(i1)

be piecewise continuous

Again, these restrictions are rather weak.
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To state the Maximum Principle, two additional quantities must be intro-
duced. The first of these quantities is a function called the Hamiltonian
and given by

H=PRFf (e u)= Hip, x, «) (2.3.10)

where the P; are variables satisfying the differential equations

P - -p 2% (2.3.11)
axL' al,;
and the boundary conditions
P, 2% + ¢ o) CLo=in
o —_— = =
¢ /u,/ 91[ ax" ) )
at t=tfF (2.3.12)
g ey, 04, 29
[/ =/[{/' 7¢ It

and where the 4| are constants determined so that both equation (2.3.12) and
the boundary conditions of equation (2.3.9) are satisfied. For any given X
and P, the Hamiltonian in equation (2.3.10) is a function of the control u
only.

Let M(P,X) denote the maximum value of H for u in the set \J and for
fixed X and P; that is,

MCp,x) = MAx HG,xw)

With these definitions, the Maximum Principle can npw be stated.

Theorem: Let ug(t) be an admissible control and xo(t) the corresponding state
of the system with initial value x0 and terminal value in the set Wj(x:,tf)=0;
j=1,M. If u minimizes the functional J=0(xf,tf), then it is necessary that

there exist %bno?-zero continuous vector function p
Rt
1]

R (t
)z ‘f ‘

P (t)

# The final time tI may or may not be specified. However, if tf is set at
some value, a , then a terminal constraint of the form

v xF,tf) = tf-a -0

must be included.
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satisfying the differential equations

'
N\
N o
W

- 5
,9— — —-PJ. Z Yy AT N (2.3.13)

and the terminal conditions

ay, a¢ (2.3.14a)
o — = e Je
A +/uJ 31‘ 31‘ 0
ae 3y
H= — + . - 2.3.14b
A (2.3.14D)

such that for all t, 1°< t <

Hip, X,y 4) =M(p, x,) (2.3.15)

that is, the optimal control is that value of u with maximizes the Hamiltonian
at each instant along the trajectory. Furthermore, the Hamiltonian is a
constant with

H(z.’P’ uo) =C.

(2.3.16)
This constant is observed to be given by equation (2.3.14b) with
xS 7¢
C = — . - ede
gt 4 (2.3.17)

This theorem may appear formidable at first sight, though in fact, it is
rather simple to apply. The application requires that the n state constraints
of equation (2.3.8)and the n-differential equations governing the P vector,
equations (2.3.11),be formed. Then, the boundary conditions of equations
(2.3.9) and (2.3.12) are just sufficient to determine a solution to these 2 n
equations while the control is selected so that at each point the Hamiltonian
is maximized with

Hixypy ) ZH(x,P, &)

where u is the optimal control and U is any other control (both u, and T are
contained in the set VU ).
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Before proving the Maximum Principle, an example will be considered.
Suppose a vehicle is to make a vertical descent, soft-landing on the surface
of the moon. Let Ty,y denote the maximum value of the thrust and let u
denote the throttle setting which can vary between zeroc and unity. Then, the

thrust at any instant is given by

T=T u = -Cm
max

where i is the time rate of change of
mass of the vehicle and C is the ex-
haust velocity (assumed to be constant).
Under the assumption that the vehicle
is close enough to the lunar surface
for the flat moon, (uniform gravita-
tional field is assumed) the governing
equations become

Z,=2,
_ Tmax U
2 7
Xy
e
1 c
where

Xl = distance above the lunar surface

b
N
i

vertical velocity
X3 = mass of the vehicle
g = gravitational acceleration

u = throttle setting (0 = u < 1)

4

T=T u
max
y
c T
Lunar Surface

/

.

(2.3.18)

Now, the problem is to determine the control action u from the set J where

Ue U 04 s

(2.3.19)

so that the fuel expended during the maneuver is a minimum, or alternately, so
that the final mass X§ is maximized (—X§ is minimized)

J=@(x, ¢7) = -2 = rw
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The boundary conditions for this problem are

X, = X7
X2 = X; at t=t° (2.3.21)
X3 X3

that is, the initial X vector is completely specified. At the terminal time
(which is not specified), the conditions are

X, =0
X, =0 at t=¢f (2.3.22)
Xa= MAXIMUM

The conditions that Xl and X2 are zero at the final time are the softlanding
conditions.

Following the Maximum Principle, the variables P;, i=1, 3 are introduced
which satisfy the equations

. oH
=T —— =0

g X,

boo o~ (2.3.23)
R=~—= -P 2.3.23

rA sz
e . - OH _ P Thal
£ AxX; X3

where
Trax U - aTnAx“

H = ‘)|KZ +P}_( XX3 - ) P C (2.3.214»)

But, the boundary constraints are

¥ty = xf
vz(xf)i‘) = X;

therefore, the boundary conditions on the P vector [f}om equation (2.3.12)7
are

O

o

P *m, =0 (2.3.25a)
Pt M, =0 At tetf (2.3.25b)
R-I =0 (2.3.25¢)
H= 0 (2.3.254)
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Note that equations (2.3.25a and b) provide no additional information since
the multipliers 44y and 44, are unspecified; that is P, and P, equal
certain multipliers which are themselves unspecifleé Slnce the
Hamiltonian H is a constant, it follows from equation (2.3.251) that

H(px,u) = p.f, =0 (2.3.26)

over the entire trajectory.

Rewriting the Hamiltonian as

M= mAxa{%--%} +P/X2——Pi-j )

it follows that the control u which maximizes the Hamiltonian at each instant
is given by

o, e «o
U= l & >0 (2.3.27)
a!‘b:*mrj)azo
where

Y, o

The variable © 1is termed the switching function since its sign determines
whether the throttle setting is on the "off" or "full-on" position (i.e.,
uzzero or unity). If © 1is zero over a finite time interval, then the
throttle can take some intermediate setting between zero and unity. In this
case, the Maximum Principle itself does not provide any information as to
the nature of the setting. Such arcs (arcs on which © is zero) occur
infrequently iN trajectory and control problems and are termed singular
arcs. If no such arc exists, the control is said to be 'bang-bang™ since it
jumps discontinuously from one extreme setting (u=0) to another (u=l).

Collecting results, the minimum fuel soft landing problem requires the
solution of the six differential equations

X, = X,

_ Jdmayu
T Tx, 79
'X . _ Tm”: [ (2-3'29)
3 7 <
P =0
PL = P
. - PZTP’\EYM
P:a, . XZ

3
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and the boundary conditioens

X, =%

X-,_ = X: a{. t= t°

¥a =3 (2.3.30)

X, =0

X2 =0 at tst

Py = |
with the Hamiltonian zero over the trajectory

Tm4xa )‘ TMAxa —

P X TPy (_Ys )" —F¢F— =9 (2.3.31)
The control action is selected at each point so that

u, = 0, 6 <o

u, = I) & >0

u, arb,'#arj , ©=0 (2.3.32)

O = ._Pi -~ _Pi.

Ka C

Note that a solution can be rather easily generated provided no singular arcs
ocecur along which € = 0. The fact that no such arcs are possible for this
problem is the subject of the following paragraphs.

If ® =0 over a finite time interval then 6 must also be zero over
this interval. But

o = - N (2.3.33)

and so P; (which is a constant from equation (2.3.29) must be identically zero.
However, if Py is zero, then P, must be a constant from equation (2.3.23) and
that constant must be zero for the Hamiltonian in equation (2.3.31) to vanish;
thus, it follows from equation (2.3.29) that P is identically zero over the
entire trajectory. But substitution of this result into the sixth of equation
(2.3.29) along with the boundary condition of equation (2.3.30) provides the
result P; = 1. Therefore, for © to be zero over a segment of finite length
P1=P2=O, P3=l.

But then

- /
T e

6:=Le 8 -0
X3 C ¢

which is no longer zero and a contradiction results. Thus no singular arcs exist.
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Since the solution contains no singular arcs, the next question of
interest concerns the number of zero thrust and full thrust arcs. It can be
shown that the optimal solution contains at most cne switch; that is, if the
control switches from the zero to unity position, or from the_unity to the
zero position, it does so no more than once. If Py is zero /note from equation
(2.3.29) that Py is a constan§7 then from (2.3.33) & is zero and © is a
constant over the trajectory. Thus, the solution consists of one arc on which
u is either unity or zero. The zero case can be ruled out on physical grounds
since a soft landing can not be made without expenditure of fuel. If Py is
not zero, then é is never zero and the switching function is monotonic in
the interval [f°,tf7. Therefore there can be at most one point where € =0.
Hence, the solution contains only one switch. Again, it is obvious on physical
grounds that if there is a switch, the engine must go from the "full-off" to
the "full-on" position. The optimal solution, then, consists of a free fall
arc with u = 0 followed by a maximum thrust arc along which u = 1.

The full solution to the soft landing problem can be obtained graphically
by a simultaneous solution of equations (2.3.29) subject to the boundary con-
dition of equations (2.3.30) and (2.3.31) and the control law of equation
(2.3.32). However, since the purpose of this example has been to illustrate
the application of the Maximum Principle, there is no need to produce the
solution here, The interested reader should consult Reference (5) for the

detailed solution.
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2.3.3 Proof of the Maximum Principle

To minimize the functional J where
J=¢ f, t5)
subject to the differential constraints
1
x,= £ (x,u)
and the boundary conditions

X = X° at f = t°

I

¥ (xf, tf) = 0; j=1,m%n (2.3.34)

the multipliers P; are introduced which satisfy the equations

L] _ _ ,__A‘ . .
R =533 Loy (2.3.35)
L
and
Y 2¢ o
P ~r/x~——ii t— O ;L= /LNn
< - 33X, _ T
£ f 2%, 22
<A 3T ot
Next, it is noted that the Hamiltonian H given by
H=P; i
is a constant and obeys the equation
3y 8¢
£
H(?p W = C = R . (2'3-37)
(P X U . At at

Finally, the control u is selected from the set U so that H(x,p,u) is max-
imized for each value of x and p along the optimal solution.

The proof the Maximum Principle proceeds as follows. Let u, and x
denote the optimal control and state vectors and let u and x denote any other
control and state where it is assumed that u_ and u are contained in the set
U and that x and X, satisfies the specified boundary cond}tions of equations
(2.3.34). Now, require that u and u, be identical on [_t°,t_7 except for a
small subinterval [ 7-& ,7 ] (shown on the sketch to the right) where ¢
is a small quantity. Next, the modified functional J is formed
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u,/m .
|
S
t'f ) l
T=pru ¥+ &'{x&.-ﬁ-w,uJ}dtu |
to
e ¥ t

where u are constants and where the p vector satisfies equations

(2.3.35) and (2.3.36).
If u, is minimizing, then
J(u)-J (uy)) = 0

and this inequality can be written

T(w - F(u,) = ¢(xﬂt{)-¢(xf,tf)+,u/'{VJ’-(X”, £)-v e}

¢7, &
+/ﬁ-(x,_-~f,; (x, w)dt, —/ P (X, = (X, Up)) /& Z0(2.3.38)
° 2° “

where the subscript zero indicates the optimal solution. Thus, since both

integrals in (2.3.38) are zero and since the Hamiltonian obeys the equation
H = p;f;, it follows that

Ty - Tuo) = 8¢ F) - pxE,8d) # v;-cx’,tf)-‘g-(x!,tf)}
. et
,;[,3. (-7 )t / {HCpx,w)~H(p,xo,u0)} It 2 0 (2.3.39)

-
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Now, under the condition that u and u, differ only in the small interval
CT-€,7], it follows that the solution X(t) can be written as¥

x(t) = xo(t) + € b x(t) + O (&) (2.3.40)

where o (€ ) indicates higher order terms in & (i.e., _'%'7o (ot&))/€ o).
Note that u and u, may differ drastically on ﬁ— E, T _7, but since & is
small, the effect of this difference on the solution x will be small. If this

representation is substituted into equation (2.3.39), the boundary conditions
become

AR ISR AP RLACAS R A

(2.3.41)

3¢ Yy .Y Y . Y 3¢
6(3&-*/«0 ax;> 8X, ré{atf/“J 3t L, BX}.*’“JB)(‘.)}(M + O(€)

where the condition

§¥; = C/JCJ_' ‘72_‘_- /e
is employed.

The first integral in (2.3.39), in view of the continuity on the p vector
and the fact that the initial state is specified, can now be written as
f ., ¢f et
fo A ~ K, )dt=Ep; (Sljl °~8/05 L p dE # O(E)
¢ (3
S LA S Ce) (2.3.42)
i Pl. I‘:] i o ZA,;' X, @
At this point, if the representation of x =x (t, £) in equation (2.3.40) is
substituted into the second integral in equation (2.3.39), the result is

et ¢f
/ {H(x, P, u) —H(x,,u,,p)} dt :/[}-l(x‘,,;q,a)—H()(,,J p,uo} e
t° ¢° (2.3.43)
¢ an
+£/ 2 (X)) B, 9t #0CE)
z° “

* that is, x(t) approaches x,(t) uniformly as ¢ ——> 0.
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Now substituting equations (2.3.41) to (2.3.43) into the inequality (2.3.39)
provides

'B¢ Y,
(-] - 6{ —é e "} 6
T(w) - T (o) = sx Ay 3% £ X;
t’f
3¢ 3Y, . ,9¢ Yy °
- J , o
+ . L+ X —
t{ YIEY: °¢<3x;‘f/ax‘-)}dt]

f

to
—{{ (Xo)a/p) ﬁ(XaJl(a)P)}c‘/é

[ {H(x.,, uU,p)-H(x,, Uy, ,o)} §x; dt + O(€) Z()

Finally, in view of the boundary conditions of (2.3.36) and (2.3.37), this

expression reduces to
P

_ _ Z,
T(u)- T )f{f/(xa,ua,p) H(Xo,u,p)}c/t+5/ {//(Xo,uo)p) H(X,,)U,P)}gx ™
éo
rO(€) 20 (2.3.44)

_ At this point, recall that u and u, differ only on a small interval
/[*-¢, v /. Hence (2.3.44) becomes

T(u)~ I(a,)/ {Hlxa,uo,/’) #(X,a,p)} d&fg/” {H(xomo,p) H(r,,a,,o)} 8X; JE

F0CEY Z 0 (2.3.45)
Now, from the definition of the Hamiltonian

3
3X [//CXo)Uo)P) /‘/(Xg)U/P)J P( J(XO) O)P) —(XQJN P)) (2.3.["6)

Thus, since (3f/>x;) satisfies a Lipschitz condition in u, the quantity in
(2.3.46) is bounded. Also 3 x; is bounded from which it follows that the
integrand in the second integral in (2.3.45) is bounded; that is

s(— {H(Xo}uo)})) “//(Xo)u,P)} SX‘L' <
A

where K is a finite number. Hence.

T
ef——
3X

' H(x.,u,,p)-f/(xo,a,p)] §x dt = Ke*®
e
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and to o( £€) equation (2.3.45) becomes

_ <»
e -3y =f {/f(x,, o )P)~H(Xe,u,p)} dt 4 0(E) 2 0 (2.3.47)
£

Further, the integral in (2.3.47) is first order in € , so as £ —— 0
with x— x_ and u——u_, the dominant term in (2.3.47) is the integral.
Thus, it follows that

v
/ {f/(xa/a,),o)-f/(x.,,a,p)} dé =0 (2.3.48)
T-¢

To prove the Maximum Principle, it must be shown that

H(Xo,to, P) 2 H( Xo,u,p) (2.3.49)

at each point in the interval (t°, tf). The proof is developed by contradic-
tion. Let T in (2.3.48) be a regular point where both u, and u are con-
tinuous and assume that

HXo (7), 4o (T), PO =HXCT), uc?P), p¢v)) = ~a <o (2.3.50)

Since x and p are continuous and u and u, are piecewise continuous, there will
be some region surrounding the point * for which the integrand in (2.3.48)
will be negative. Let & ©be sufficiently small so that the integrand is
negative in the entire subinterval /- &, 7’_7 from which it follows that

"
/ {#(Xo,ue,PY-H(X,,u, P} dE <0
e

a contradiction. Thus,

H(Xo CTY, U (), PCT)) ~H (¥ (), &(7),P(7)) 20 (2.3.51)

at every regular point “ in the interval [ft°, t£7, that is every point in
the interval except a finite number of points. At a discontinuocus point 7,
the piecewise continuity condition of u requires that u(t)——u( *~) con-
tinuously as t ——— T from the right. Hence, if

H (Xo (770,60 CT), PCT7)) ~H (Ko (¥, 6, (77D, P(YT) )2 a2 < O
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then it can be shown that the inequality in (2.3.48) is again reversed and a
contradiction results. A similar situation holds at + = ~r¥*, Thus,
(2.3.49) must be valid gn both sides of a discontinuity as well as at every
regular point in [;O, t%7.

One final condition must be demonstrated to complete the proof of the
Maximum Principle - the constancy of the Hamiltonian. This proof is accom-
plished by showing that the total derivative dH/dt is gero.

Since H = p;f5, it follows that

dH 3N, 3 . OH .

= T p. oy
ct X, < 9,0‘/?" ak‘

But the x and p vectors satisfy the differential equations

. aﬁ
Xb [
28,
. ~OM
<7
Hence,
aH 3N
—— - ___L( (2'3-52)
dt du; *

Now, if the optimal control lies in the interior of U , then for H to be
maximized

—_— =0 ;A=/Jr-
D

from which it follows that dH/dt is zero. In contrast, if u lies on a section
of the boundary of U , let this boundary be represented by the constraint
equation g(u)=0, and the two equations

2 (H+Ag) =0
Suy J (2.3.53)

j (u)=0

determine the optimal control. But if A 1is zero, then so are ai/su, and dH/dt
and the proof is complete. 5o assume A % O, then from continuity consid-
erations A # O over some finite time interval with g(u) = O on this
interval and with the derivative
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dq 3g .
< = =« =0 (2.3.54
o't Su, £ )
Z
Combining equations (2.3.54) and (2.3.53) provides -gﬁ- = 0, it follows from
(2.3.52) that, k
._C/_H = j_// é :O
at Uy

Hence, the Hamiltonian H is a constant over the entire trajectory. This
completes the proof of the Maximum Principle.

2.3.4 The Orbital Transfer Problem

As an example of the application of the Maximum Principle, consider the
problem of transferring a vehicle between two coplanar circular orbits in
space. Let T =T . u; denote the thrust (nondimensional) magnitude where
uyis again the thrg§tle setting with O = u; = 1 and let uy denote the steer-
ing angle. The equations of motion can now be written in terms of these para-
meters., However, to simplify the formulation, the constants of the problem
will be selected so as to simplify the equations of motion. Taking as the
unit of length, the radius of the initial orbit; as the unit of velocity, the
"velocity of the initial orbit; as the unit of time, the period of the initial
orbit over 2w ; and as the unit of mass, the initial mass of the vehicle,
the equations of motion become

dr
ae -V
I - —T;ﬂAXul
r u

= fAax 7/ Cos 42 w
g¢ ” 2
AV Tray Uy Sin U, . 52y .
Jt ”, r3  p2 A vehiele,
dt C (2.3.55) v N\
/8 % e
o'¢ re Reference Axis
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where
r = distance from the center of attraction
h = angular momentum (per unit mass)
v = radial velocity
€ = central range angle

Tpax = nondimensional maximum thrust magnitude
(thrust per g of the initial orbit)

uy = throttle setting
u, = steering angle
¢ = nondimensional exhaust velocity

With this choice of units, the boundary conditions for the circular orbit
transfer are

r=1
h=1
v=0 t =t° (2.3.56)
m=1
0=0

and

F\ = hf = V—I? (2.3-57)
v=VvVv = 0

Note that the values of rf, hf and vl determine the final circular orbit and
myst ?e spec}fied as indicated in equation (2.3.57), while the values of

m, 9 and t~ may or may not be specified depending on the particular problem
to be solved and the optimizing criterion.

The optimum orbital transfer problem has been extensively analyzed in the
literature with the most complete treatments given in References (6) and (7).
In the particular formulation used here, it is assumed that the vehicle is
thrust limited with the thrusting engine allowed to take any magnitude between
zero and T ax* An alternate formulation removes the thrust magnitude con-
straint and Te uires instead that the jet power of the vehicle have some
finite upper bound. This power limited case is treated in References (8) and
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(9) with an analytical approximation given in Reference (10).

To complete the statement of the problem, the optimizing criterian /the
function @ in equation (2.3.127 must be specified. Two different criteria
and, hence, two different types of transfers will be considered here:
the minimum time transfer and the minimum fuel transfer.

A. Minimum Time Transfer

To minimize the time to transfer, the performance function is set equal
to the final time; that is,

T=p(x5E) = ¢f, (2.3.58)

Since the problem has five state variables, r, h, v , m and O, the five
multipliers P, , Pros Py P, and P, are introduced which obey the
equations

2
. oH T C 3
Pr:________P‘{/MAxul osuz}_PV(Z - h )fpaaﬁ

ar ™ 3 et ri
- -2 p i g L
& dh Y r3 ® ra
. dH
P, = -——=-p
4 dv r (2-3-59)
s _3H _ r%Axu,casuz) (7;,“(4, squ)
s =5 5 mz )P e
A= -4
" 26"
where
Y Tapay U COS s T4, Sivtdy  HE 7
H=hv+ £ P, L Tt — T —
rvr s m "{ ~” r3 72 (2.3.60)
3
- Pm 774X ! fPe___ .
I 2

From equation (2.3.57)there are at least three terminal constraints

YI: r-r{‘ '=-'O
¥,z t-ff =0 L=t (2.3.61)
YJ: V‘\/F:O
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where rf, nf and vT are specified members as i

?dicated in (2.3.57). In
addition, there may be a fourth constraint if 6

is specified; that is, if the
angle in which the transfer is to be completed is specified, then a fourth
constraint

(2 3.62)

must be included. From equation (2.3.12), the terminal conditions on the p
vector take the form

ﬁ. + my, =0

f, + M =0

Fp + M3 =0 (2.3.63)
el = o

f
where 4  6is zero (Pg = 0) if the final angle is not specified. Since the
constants 4 ; are uncoupled and do not appear els?wher§ in thefproblem,
equation (2.3.63) reduces to the statement that

2 Ph a?d P, are un-
specified at the final time, while P, = 0. Also, since t~ is unconstrained,
equation (2.3.16) and (2.3.17) become

H = const. =0

(2.3.64)

The controls uq and u, are to be selected to maximize the Hamiltonian at
each point along the trajectory with the set of admissible controls given by

1} _ 0 =« uy <1
u, arbitrary but finite

To define these controls, rewrite equation (2.3.60) in the form

7 U By ™M
H=Hu+H; = ":;' {rP;\COSL(l*r R, sINUp - -2 }

C
Hhe A
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where Hy does not depend on u, or u,. Now, letting
r/y _

Varirg  F
v %

Py
Vzerilg T
v A

the quantity Hj(u) reduces to

Trgax U —
#(u) = __Z’i_{_.llpj ,trz&z {co:(z - uy) - ._M__}
cfrE+ Rir?

from which it follows that u, must equal Z to maximize the Hamiltonian; i.e.,

Cos U, = r‘/%
P —
|/’?/ + rehE (2.3.65)
ols
SIN U, :V?f e —
Hence 5

Trrax Y Bam
Hy(u)y = 227 '{V*;va*"”’i - = }
m c
with the control uy which maximizes H, given by

1.0, © >0

u = 4 0.0, ©<0 (2.3.66)

arbitrary, © =0

where

6 :VPVZ-,(/*Z}%‘ - P’E’” (2.3.67)

Equation (2.3.66) indicates that the optimal transfer trajectory consists
of arcs of null thrust (u; = 0), arcs of maximum thrust (u; - 1), and possibly
intermediate thrusting arcs if the switching function © vanishes over a
finite time interval. In this last case, the arc is called a "singular arc"

and the Maximum Principle fails to provide any informatio: on the optimal
control action.

It is a rather simple matter to show that no singular arcs or zero thrust
arc can occur in a minimum time transfer maneuver. Substituting equation
(2.3.65) into the fourth of equation (2.3.59) provides
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2 Z b ad
5 VA * r2h Tmax Y (2.3.68)

m =
mZ

Combining this equation with the condition that Pf is zero, equation (2.3.63),
it follows that P is never positive. Hence, the switching function, € in
equation (2.3.66), can never be negative or zero and the engine is on full
during the entire maneuver (i.e., u; = 1.0, T = Ty, ).

Summarizing results, the minimum time transfer is accomplished by setting
uj equal to unity and selecting up to satisfy equation (2.3.65). The state
and P vectors of equations (2.3.55) and (2.3.59) constitute a tenth-order
system (ten first-order differential equations) and since the final time is
not specified, eleven boundary conditions are needed to construct a solution.
Five of these come from the initial conditions of equation (2.3.56). Three
more come from the terminal orbit conditions of (2.3.57) while equations
(2.3.63) and (2.3.64) provide the ninth and tenth conditions

pf =0
m
g =nf=o0

The last condition is either
0 =0, (specifiedL’t = £

or

Pf=0
(=]

depending on whether the angle in which the transfer is to be completed is
specified.

B. Minimum Fuel Transfer

The fuel used during the transfer maneuver is the difference between the
initial mass (which is unity due to the choice of units) and the terminal mass.
Hence, for a minimum fuel transfer the performance index is given by

J=¢ (xf, tf) = 1-mf

where in this case, the final time tf is specified to be some value greater
than the minimum time needed to complete the transfer.

The state equations and boundary conditions are again given by equations

(2.3.55) to (2.3.57) with the P vector and Hamiltonian satisfying (2.3.59) and
(2.3.60). The boundary conditions on the P vector are
P£ = 1.0
pf _ [0s if O unspecified (2.3.69)
© ~ | arbitrary, if Or specified
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As before, the optimal control action takes the form

r% . 5 /\/ u - Pl/
cos u, = VP—:——T_——;E—. ) / z - I/P\f - ,zérz' (2.3.70)
1.0, >0
Uy = 0.0, 0<0 (2.3.71)

arbitrary, © =0

where

B
e =VpitBEr* - —ZT (2.3.72)

In this case, however, neither null thrust arc (u;= 0) nor singular arc
(0 < uj¢l) can be ruled out.

That null thrust arcs do occur is rather well established by the numer-
ical results contained in the literature / see References (7) and (11) for
examplg7. Whether singular arcs occur is not known at this writing. As yet
no optimal solution has been found which contains a singular arc.

For a singular arc to occur, the switching function € must be zero over
a finite time interval. In this case, the Maximum Principle becomes degenerate
(the Hamiltonian does not contain uj explicitly and hence u; can not be chosen
to maximize H) and provides no information to aid in the determination of ujp.
However, the condition that O is to be zero over the interval can be used to
compute uj; that is, uy is chosen so that 6 is identically zero over the arc.

Some recent work in regards to both the existence and minimality of sing-
ular arcs in the orbital transfer problem (References 10, 12, and 13) indicates
that the occurrence of such arcs is highly unlikely. For € to be zero over a
finite interval, ©, ©, 6 ... etc, must also vanish, The mechanism for keeping
© zero is the control variable u,. Hence, u; must be selected so that the
first derivative of ©, which contains uj explicitly, is zero. It can be shown
that the fourth derivative, dhO/dth, is the first such derivative, Therefore,
from the continuity condition on the P vector, it follows that to initiate a
singular arc at some time tp the four conditions

0=0
6=0
6=0
6=0
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must be simultaneously satisfied. At any point where © 1is zero, it would
be unusual for © to vanish let alone 6 and 8 . For this reason, the
existence of such arcs is seldom considered in the orbital transfer problem,
a procedure which will be followed here.

From this discussion, it is assumed that the switching function will
vanish only at a finite number of points and equation (2.3.71) is replaced by

1.0,6> O
uy = (2.3.73)

0,9« O

Under this assumption, the optimal transfer trajectory is seen to consist of
coasting arcs along which the thrust is zero and powered arcs along which the
thrust is set at its maximum value.

Summarizing, the minimum fuel transfer is determined from the solution of
the tenth-order system, equations (2.3.55) and (2.3.59), which satisfies the
five initial conditions of equations (2.3.56) and the five terminal conditions
of equations (2.3.57) and (2.3.69) with the final time specified. The optimal
control action is computed from equations (2.3.70) and (2.3.73).

2.3.5 Maximum Principle and the Calculus of Variations

It has been mentioned previously that the Maximum Principle is very
similar to the Calculus of Variations. To show the relationship between the
two methods, the optimization problem used in the statement of the Maximum
Principle will be reformulated within the variational framework. For con-
venience, this problem is restated as follows: Determine the control u from
the set [/ such that a function of the terminal state is minimized

T=0xH¢ )= rmn. (2.3.74)
subject to the differential constraints
X, =£(x,u) 5 £=1,n (2.3.75)

and the boundary conditions

X=x%; t=¢°
) ’{ (2.3.76)
s:',-(x,t ) =0 5 j=4m

To use the variational methods, it is necessary to assume that the
functions ¢, ¢, and f; have continuous first derivatives and bounded
second derivatives with respect to all their arguments. This condition is
slightly stronger than that used in the Maximum Principle LBelow equation
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(2.3.9)7. Also, it is required that the admissible control set U be repre-
sented by an inequality constraint of the form

MEU@?CH)é (o)

where g(u) has continuous first derivatives and bounded second derivatives

along its boundary. Such a representation is almost always possible in

engineering problems. For example, in the orbital transfer problem the set
U is given by

osw, <]

an tor U, arb/:‘rnrj

with the equivalent inequality constraint taking the form

ueU & qw) = u,(4-1) 20

In the variational treatment no distinction is made between control and
state vectors. Both are simply considered to be dependent variables. However,
an assumption in the variational formulation is that all variables, X. and
Yy are continuous - a situation that may not hold in regards to the control
variables (as for example in the orbital transfer problem where u; goes dis-
continuously from zero to unity). To remove this difficulty the transforma-
tion¥*

w=z (2.3.77)

is used and z is substituted for u in the differential constraints

. . 2.3.78
X: = fi0x, 2) (2.3.78)
and in the control region constraint

g(z) <0 (2.3.79)

By this device the dependent variables X and Z are made continuous with dis-
continuities occuring only in the first and higher derivatives.

#Also, application of the Weierstrass condition runs into trouble without this
transformation
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To minimige J, the modified functional J is formed
.é'f
T =6 xhE )ty 4 (X e ) f/F o/t
t -]

where

W“t
1

o = ;;»{5(‘. - £, (x,z')} + A(qz) +7%)

(2.3.80a)

(2.3.80b)

and where 7 is a real variable introduced to convert the inequality in
(2.3.79) to an equality. Setting the first variation of J to zero provides

/starting with equation (2.2.78

(1) Euler Equation
d<3F> SF_ . n
— (== )- = = L=
dt\¥x,/ 3x ) g
oF oF

Gesr, Tzt C Rl
£ y

d  9F AF

gt axn A%
(2) Boundary Conditions

Fo 4 dY, . 29 o _
A TIx TT T
A
o ¥ > @
Fooru 2% 2% _ 4 ]
DY 3¢
F: r ,_J_/_ - =0
2 T4 > 3
_ . oY o P
- Z - . .
R A A P = A s
(3) Corner Conditions
QFD  3FW
BXL ax,
VRS LA VAR Vi
32.& ) )Z..k )3? 3?.
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(2.3.81)

(2.3.82a)

(2.3.82p)

(2.3.83)

(2.3.84)

(2.3.85)

(2.3.86)

(2.3.87)




C) LI CI_ I p ) o R LB () R b e4)(2.3.88)
d £¥, X 54: g % 4 -/C’-Q X _’L;,; BN =577

Application of the Welerstrass condition provides

(4) Weierstrass Condition
FOGE Y -Fe,2,7)- (X~ x)Fy ~ (2, -2 Fs - (77- %) Fy = 0(2.3.89)
L 4
where (%X, %, # ) denote the optimal values and (x 2{5) denote any other values

satisfying the constraints of equations (2.3.79) and (2.3.80).

Since the functions f,, g, ¢ and ¥/ do not contain the variables 2, it
follows from (2.3.84) and j(2.3.82) that

3F

ETT =0 (2.3.90)
2y

Now, from the definition of F and the Hamiltonian H, and by substituting u
for z this expression reduces to

3 p:} 2.3.91
ol *-A'—l =0, (2.3.91)
3y Y

Also, equation (2.3.82b) reduces to
LA (2.3.92)
97

Thus, either \ is zero and g(u) < O with the control lying in the interior of

U or % =0 and the control lies on the boundary of U with g(u) = O.
Using these results plus the fact that F is identically zero, the remaining
Euler and boundary become

. 2.3.
éz\a_f_/:_),,a_g (2.3.93)
ax; 7 3

4
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29 29 .o
1.*/”/’ aX aX =0 )L‘O’l
Y- 'gu&- . > (2.3.94)
Gyt 5t

while the corner conditions of equations (2.3.86) and (2.3.88) take the form

) - S
P = P
) : (2.3.95)
//(P"))a"’J X) - H(P(” ucﬂ )()
Finally, the Weierstrass condition reduces to
X B~ X p 20
or
2.3.96
Hx,p,u0) 2 H(X,p, &) (2.3.96)

where u, is the optimal control and 1 is any other control in the set V.

An examination of the necessary conditions of equations (2.3.93), (2.3.94),
and (2.3.96) shows that they are the same as the necessary conditions arising
from the Maximum Principle /see equations (2.3.13) to (2.3. 17)/. Also, the

sgzngn_ggnd;%ggg§7€%rgg%?t1on (2.3.95) are consistent with the requirement of
the Maximum Principle that the p vector and the HamiItonian H be continuous.
The two additional equations (2.3.91) and (2.3.92) require some explanation

For the optimal control to satisfy the Weierstrass condition of equation
(2.3.96) it must be selected from the set U so that the Hamiltonian is max-
imized at each point along the trajectory. The procedure for maximizing H
subject to a constraint

«e U{:? j(a) = 0
or the equivalent equality condition
g(u)+7i2 =0

has been treated in Section 2.1.4 and consists of setting the first derivative
of the modified function H = H +—x,(7+.ﬁ‘) to zero. Hence

ay dH pY
—_— = O = 4 __7
ou Ju A’éu
oH .

— = 2XM,7n =0
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Setting A, equal to -\ in these two equations provides the two additional
conditions of equations (2.3.91) and (2.3.92). Thus, these conditions are
merely a consequence of the fact that the optimal control maximizes the
Hamiltonian.

From this discussion, it is apparent that the variational treatment of an
optimization problem leads to essentially the same results as the Maximum
Principle. However, the development of the necessary conditions via the
Calculus of Variations employs assumptions which are somewhat more restrictive.
For example, it is necessary to assume that the set U has an analytical
representation g(u)% O where g has a continuous first derivative and bounded
second derivative along its boundary. Though such restrictions are rather
weak and are usually satisfied in most problems, the Maximum Principle avoids
the problem. The primary advantage of the Maximum Principle, however, is
that it represents a more concise statement of how the optimization is to be
performed. The device of introducing the additional variables # and A ,
and solving equations (2.3.91) and (2.3.92), a procedure inevitably followed
in the variational formulation prior to the development of the Maximum
Principle, is no longer necessary. Rather, the Weierstrass condition is used
directly to compute the optimal control.

2.3.6 Methods of Solution

Formulation of an optimization problem, can be accomplished by either the
Maximum Principle or the Calculus of Variations with the development of the
governing equations rather straightforward in both cases. Unfortunately, the
formulation is only a minor part of the analysis. The major portion of the
problem involves the generation of numerical solutions.

As indicated in the previous sections, the determination of a solution
to an optimization problem involves the selection of a function or set of
functions which satisfy five conditions:

1. differential state equations

X . 3-&()(} «) (2.3.97)

A

2. differential adjoint equations

. IH o1
o= - = - P 2.3.98
PL S5x, v, £Y7, ( )
3. control optimization condition
Hix,Bu) = H(X P &) (2.3.99)

73




where u, denotes the optimal control and 1 denotes any
other control both of which are contained in the set U

L. state boundary conditions
X=X’ b t = Zf'o
«g(xf’) ¢f) = o (2.3.100)
5. tranversality conditions (adjoint boundary conditions)
2 ¥ d
g S =
; f
“ at t=t (2.3.101)
b o ¥
YR dPY:

Taken together, these five conditions constitute a boundary value problem of
the two point type; that is, some of the boundary conditions are specified at
the initial point and some at the terminal point. At present, only linear
boundary value problems can be solved directly. Hence, a solution to the
nonlinear system above must be effected iteratively.

The iterative techniques employed in nonlinear boundary value problems
are linear in the sense that one starts with a solution which satisfies some
of the five conditions and then uses the linear theory to correct this solution
in a direction which tends to satisfy the other conditions. However, while
all iterative techniques are linear, not all are of the same order; that is,
some take into consideration only the first order terms in a series repre-
sentation about a nominal condition while others account for both first and
second order terms.

In this section, three numerical techniques will be outlined: the
gradient or steepest descent method, which is a first order theory; the
neighboring extremal method; and quasilinearization, Both of these latter
methods are second order. Since all numerical methods used in optimization
problems are essentially extrapolations into a function space of techniques
used in maxima-minima theory, the analysis is begun by considering the
numerical procedures available for finding a vector X which minimizes a
function f(x).

A. Minimizing a Function

Consider the problem of determining the value of the n-dimensional vector
X which minimizes the function f(x). For f sufficiently differentiable, the
minimum point satisfies the equations

af ..
o0 5 =4

IX; (2.3.102)

3 f ) - s . .
-z positive semi-definite
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If equations (2.3.102) have an explicit solution, the problem is solved. If
not, the solution must be effected iteratively. Two iterative techniques in
common usage are presented below.

(1) Gradient Method

Let X(l) denote the first guess of the minimum point and let f(x) be
approximated by the truncated Taylor series.

of

1)
£0X) ~ F( XCI)) # —a_x(x*‘:—x‘( ) (2.3.103)

Require that a second guess satisfy the magnitude constraint
2 n
) _ YA 2
)x-x‘ ] -Z(X‘- -x°) =k (2.3.104)
=/

and select X so that the first order approximation to £(x; given in equation
equation (2.3.103) is minimized. By this selecti?n the function f evalu-
ated at the new value of X will be less than f(x l5) and hence, nearer its min-

imum value. Following the procedure developed in section 2.1.4, the modified
function F(x) is formed with

> : ° )
Fzf(x®) + a—;(xl- -x°) 4 A{Z(xi-&"ff n* -E‘} (2.3.105)

where A is a constant multiplier and the variable 71 is used to convert
the inequality in (2.3.104) to the equality condition

n
Y (X-x) = A
L=

Now, differentiating F with respect to X5 and;7 and setting the first
derivative to zero provides
>F(x) .
2 A(X; —xf')) F——"72 = O ; £= /N (2.3.106)
oX;
and
2An = O (2.3.107)
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while the second derivative condition requires (in part) that
2%F

= A\ =
PR s

Since the equality condition in the second partial is a degenerate case, it
follows that, in general, A > O and, thus, that % = 0. Equation (2.3.104)
then becomes

Z( X, - x$")% = 42 (2.3.108)

Combining (2.3.106) and (2.3.108) yields

n , <NYAN .
g w0t g (FE) < ovat 5 3o ke JEGRT

and =/ <=/ A
Ly Lef ap ac &
X, -x = 55w, T K / ( Z ) (2.3.109)

Note from (2.3.109) that the change in the value of X is proportional to the
negative gradient of f with respect to X. For this reason, the iterative
technique is called the gradient method. The new value of X, denoted by
X(2) and satisfying

¢ 2 ( QF)‘

Z (&
is used to compute the new value for the function f. The process is repeated
until the minimum value is found.

From this discussion, it follows that the second guess of the minimum
point is determined so as to minlmize a first order approximation to the
function /equation (2. 3.*052, subject to the magnitude constraint equatiou
(2.3.104)/ which requires that the second guess be sufficiently close to the
first guess. Since only the zeroth and first terms in the series expansion
are used, the process is referred to as first order.

(2) Second Order Approach (Newton-Raphson Method)

Let X(1) denote the first guess of the minimum point and approximate f£(x)
by the second order truncated series expansion
2
3 Wy, 1 3
~ q)) . . —
= +— (X - X )’L
flx) £(x ) ax‘,( n 4 2 BX"be

p O)
(X -X° ))(Yj - X ) (2.3.110)
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1f X(1) is reasonably close to the minimum point, then selecting X(2) to
minimize this approximation of f(x) should provide a smaller value for the
function f. Thus, setting

2 {;(x‘“) 2 e xO) (x‘.-x}”)(xj-g“’)} 20 k=hn

X aX, " TAT 23X
yields
W, (2 >“3‘_ .
X ~X7 = WK ) O yL£=14n (2.3.11)

from which the second guess is computed. The process is repeated until the
minimum value is found. Since the second terms in the series approximation
are used, the approach is second order and, as indicated in Reference (14), is
accompanied by a rate of convergence which is at least quadratic with

2
x(n) _ x(“")‘ A I x("")_ X(n‘z)

The effectiveness of this technique and the gradient method, as far as
rate and radius of convergence is concerned, is primarily a function of the
particular problem under consideration and the point at which the iteration
is begun. If the first guess of X is "close" to the minimum point, then the
second-order approach will provide the most rapid convergence since it gives
both a magnitude and direction of correction. If the starting point is not
"close", the second order technique will diverge. On the other hand, the
gradient technique can be made to converge from points "far removed" from the
minimum point due to the fact that the magnitude of correction is controlled
with the technique itself providing only a direction of correction. In the
vicinity of the solution, however, the derivatives ?é approach zero and the
correction mechanism in the gradient method breaks down. Thus, as a general
rule, the first order method should be used at the start of the iteration
until the starting point has been moved sufficiently "close" to the optimal
point, at which time a switch to the second-order method should be made.

B. Minimizing a Functional

The method used to effect solutions to variational problems are very
similar to those used in maxima-minima theory. In the following paragraphs,
three techniques will be presented, two of which are second order and one
first order. For convenience, the conditions to be satisfied by the mini-
mizing solution are restated:

(1) differential state equations

X, -, (6u) ; L =1/n (2.3.112)
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(2) differential adjoint equations

. 3f; .oy
Pt Sxi' y £= LN (2.3.113)
A

(3) control optimization condition
A\
H(X, P, U,) = H (X, p,U) (2.3.114)

(4) state boundary conditions

= t°

- ;= 2.3.11
o )(/—-//,/‘7 ( 3 5)

X= x°

W

(5) transversality conditions

L2 ey o
P QTA /u'l_aT/: = 0 ;LN (2.3.116)
ok t=tf
ag 2¢,
e 274 .2 (2.3.117)
3¢ Ay 3t

Also, to simplify the development, two assumptions regarding the form of the
optimization problem will be made:

(i) the admissible control set U is the entire control space
with the control that maximizes H satisfying

3H

- =0 ] é =/, r
-aqi ) J (2.3.118)

(i1) the terminal time tf is specified and therefore the trans-
versality condition in equation {2.3.117) provides no additional
information (it contains an arbitrary unknown constant) and
can be eliminated.

These assumptions are somewhat restrictive. However, they are made only to

facilitate the presentation of the methods. The treatment of more general
cases is straightforward and is given in Reference (15).
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(1) Gradient Method

In the gradient method, which is a first order technique, each
successive iteration satisfies conditions (1), (2), (4) and (5)
but does not satisfy condition (3). As in the gradient technique
used in maxima-minima theory, the iteration process consists of
minimizing the first order approximation to the functional

= ¢(xf,tf) subject to a magnitude constraint.

Take as a starting solution a control u = u(l) which drives the system

)2' = ‘F,; (x) ‘()

L

from the initial point

X=X 5 t=¢°

to the target set
yy(xﬂt{):o 5 t:if(spec/ﬂhd)
but which does not necessarily minimize the performance index
= ¢ (x%, ¢7)
Admittedly, such a control policy may be difficult to find, but not as

difficult as one which satisfies all the boundary condltlons and minimizes
o (x tf) (i.e., the optimal control ), Now, form the modified functional J

¢t .,
T= 9 e Sf; f/&()g--f-(x,a)a’é = J
o

and note that minimizing J is equivalent to minimizing J. Approximating J by
its first order Taylor series expansion about the nominal value J(ull))
provides

T(w) = T(u™) + §T

where
T u) = gx< )
and
f; of;
¥ 67 (b, u )ax] fa{sx 5, BY; - aqi&(fz}dt (2.3.119)

Flote: Terms such as ¥ 2);4 ]t and/*[P X;-f(u)d+ are omitted in (2.3.119)
because they vanish on acfount of thé trial solution satisfying conditions (1),
(2) and (4) on pages 77 and T8.
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Integrating the first term in the integrand by parts and requiring that the
adjoint equations

>,
> = - B2 2.3.120
7 /jaxi (2.3.120)
be satisfied provides
it
- a¢ Y ) ]/ 37
= J ,o. . -] Pr—2 du,dt
to

If the amount by which the control action can change is limited, mini-
mizing the first order approximation to J should provide a smaller value for
the performance index . Hence, require that

;Su dt < B2 (2.3.122)
to
where k2 is some_small quantity and choose the change in the control Su(t)
to minimize & J under the constraint (2.3.122).

Proceeding formally, the multiplier VvV~ is introduced and the modified
functional &§J formed

$3 = 53 # Suy dE # 7= %°
{/Z J

O~

20 DY,
= — __J. - 2.
(ax ’ngxL SX] [(P‘a 4 VSué)SaAdéwbz ),

Now, requiring the first variation of 83 to vanish provides

)
Sug = — Iy Su (2.3.123a)

vy = O (2.3.123b)

and the boundary conditions

B¢ J VJ" *}?‘. = 0 (2-3-1%)
BX X
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Since Vv =0 in(2.3.2.3b) is a degenerate case, it follows that 2 = O and
that an equality holds in (2.3.122).

A review at this point seems appropriate. The first iteration u(l)(t)
is selected so that the state

K =1 4)

is driven from the initial point X° to the target set W.(xf,tf) =0. Once
the state is computed, the adjoint equations .

21
X,

#'——“’:/' ;’(:://,L

8/

are integrated backwards with the boundary conditions

S ¢7L > ¥y
F — —
X, /({/ oX;

P

The second iteration on the control is computed from

W=y 1 5w

where equation (2.3.123a) is used to evaluate & u. The constant V in this
equation is determined from the magnitude constraint

zf ol
Suldt = £ ok | i VSt (2.3.123
J Z oo 2B 3E [ > v § Faggdesmo
to

Note that the integration of the adjoint equations requires a knowledge of the
M multipliers 4, used in the boundary co?dstions. These constants are to be
s?lscted so that the new terminal state X 2 (tf) resulting from the control
ul?)(t) satisfies the terminal constraints

$ (x5 ¢f) =0

or, to the first order

3¢ Iy
TJ- 8X; =0 ; t = tf(specified)
L
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where 8Xf = X(2)(tf) (l)(tf) and the derivativesd¥j/>x. are evaluated

at the point X “)(¢%). The process by which the correct my are selected is

treated next.

Integrate the system

. I o
A
oz,
from t¥ to t° m+l times with the m+l different\sets of boundary conditions
’Pj.'] - _E_\.y_l ') o= /)n
X,
[Z] - 3\'?';_ . \:
o 2T 5y 2 ethn gt f (2.3.125)
A
' dY
ptrle -2 s e
L _dX,
plrml, - 22 L= 4n
and let X, J
™
po= RIS Rty LN (2.3.126)

Since the disturbed state equations are given by
. Bf“ '8(
§X- = — 88X +—— du
' d ab(ﬁ 5 >

it is a simple matter to show that

0 Y
PL{SXE = P‘:SX‘?*f e BZ;A

[4

With & X§=O (the initial point is fixed) this expression becomes

i1 't:t{ tf[‘] SF.
[ P; 4 Sx‘.] :‘/Pj J < sukdt )J: ,J M+, (2.3.127)
Z’

Bu‘E
Thus, substitution of the terminal values from equation (2.3.125) provides

if
Y% J i ;[;] M o (2.3.128)
2X; 7 sy Suwgdt=o j esun

t° k
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Using the expression for the P vector given in (2.3.126) and the control
change in (2.3.123), equation (2.3.128) reduces to

zr N
/& 1375 {(P}MH] *Z“zPJ 1)3@}& =0 3§ 521, (2.3.129)
tD (:/

These M equations are used to compute the values of the vy for which the
conditions

Y, .
s S0 i (2.5.130
3 Xj 4

are satisfied. Using equations (2.3.129), (2.3.127) and the last of equation
(2.3.125) it follows that

. tf‘ 2
do =- pfaxf- -L/ S (p2f Y ae (2.3.131)
I3 auz

where the quantity V is determined from equation (2.3.123¢c) and_can be shown
to be positive from the second variation test on the quantity & J.

The step by step calculation procedure used in the gradient method is as
follows:

(1) select ull)(t) so that x=x° and ¥ (xf,t¥)=0
(ii) 1Integrate the state system
| ]

xi=fi(x,u)

from t° to tf (recall that it has been assumed that tf is

fixed).
(iii) Integrate the adjoint system
. D-F‘
P(. - - PJ 4
SX;
from tf to t° m+l times with the m+l terminal conditions
1N N CE
7 1= 3,
Y
F’:IZ] = - T)(i-
. A {
. SRR
SIm] M
X - a)('(
fmid o _ 29
LA 3%
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(iv) Compute the Hi from the m conditions

¢ ¢
At
j/ &[ﬂ { [Mﬂ] if “, [1] dE=0 5 s=4mM
o bua J BUﬁ

z
(v) Compute P and Vv from

M .
Pz P‘:Enu] . z AEY_J]

’-f/vZ /o (& D“E) dt = £°

(vi) Set u(?) = u(l)+ 8 u where

/ P-4
—_-‘6' 3

<h

S, = 5 £z /, r

L 17

N

(vii) Go to step (ii)

The iteration continues until changes in the control peolicy . produce no
changes in the performance index . At this point, the iteration is stopped.
The first order approximation to the change in @ given in (2.3.131) (which is
negative since Vv 1is positive) indicates that each successive iteration
should reduce $ until the condition

P’aﬁ - . ﬁs/

=/ r
Ba'é

= 0 ) J

is reached. From assumption (1) or equation (2.3.118) this condition is the
optimizing condition, and the solution corresponding to this iteration will be

the optimal solution.

(2) Neighboring Extremal and Quasilinearization

Since both of these techniques are second order, (i.e., second order
terms in a series expansion are used) they will be presented to-
gether. The presentation, however, will be abbreviated since both
techniques are rather complex algebraically. For a full development,
the reader should consult the literature /References (15) to (18)/ .

Proceeding as in the gradient method, the functional J is formed

Y
1l

fP (% =~ (x, «)) o
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and expande? ﬁn ? gruncated series about some first guess at the optimal
solution (x 1

TET(XDuP) s 6T + 625 (2.3.132)
where + Yﬁ S)LJ
~_ (3¢, 3¢ et - ef » ;—f g 3y
e L D IR O e Y
z° Z2° A
and where (2.3.133)
— S* D%y, : (2.3.134)
SZ :(a ¢BX 7‘,(5{- éJ ) 5)(4 SX‘ » 4 zxA\
XXy X, X4 2
ol of . 2 3%
7‘/ {SX "—5 ; JL(A }dt XJgX 7"—‘5)(’
o / aaé ;)Jax/é A 2,34 J
?.{'_
2 i 561‘6 36([} dt
auéau(

In both neighboring extremal and quasilinearization, the corrections 8 X4,
§ u; , and & uk are selected so as to minimize the second order approxi-
matlon to J; that is, to minimize the right hand side of equation (2.3.132).
The dlfference in the two techniques lies in the selection of the starting
solution (x(1),u(1)).

In the neighboring extr 1 meth?d a starting solution consisting of a
control and state history, X and u is assumed which satisfies equations
(2.3.112), (2.3.113) and (2.3. llh) but which does not satisfy equations
(2.3.115), (2.3.116) or (2.3.117).

These last two conditions #

¢ (xf¢f) =0 M (2.3.135)
dy.  a¢ )
J -~ o =/

7 Since the final time tI is specified, the last equation in condition (5)
provides no information since it contains an arbitrary constant.
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constitute a set of ntm boundary constraints and can be reduced to n boundary
constraints through elimination of the multipliers 47, . The process of
generating the starting solution consists of guessing an initial value for the
P vector /P°=P(t°)/ and integrating the 2nd system

X; = F (e, u)
. af,
P = - . dJ
~ /3 X

from t° to tf where the control u is selected to satisfy the optimizing con-
dition

/'/(XU‘)/PC/)J ML ) > /{(X"j Pc/)JZ(\)

If the correct P° vector has been guessed, the terminal constraints of

equation (2.3.135) will be satisfied. When these conditions are not met, the
neighboring_extremal technique of minimizing the second approximation of the
functional J provides a correction to the P° vector, § P°; and if the first
solution is "close'" to the optimal solution, then the second solution resulting
from the updated value of the P° vector will provide a better matching of the
terminal conditions.

Since the conditions

X, =4 (x,e0)
PR
o ¢ X,
x(2=2%) = x°
2

U

are satisfied by the starting solution, minimizing the second order approxi-
mation to J reduces to minimizing the quantity

f
¢

S0 3% 3 3¢ 2%\ 8x 8x
2 ._z’_fﬂ) x;+8p (¥ +28 +( ' ‘) « 4
\ ;x“*’uv‘ oy, ¢ 3%, ﬂJ(J Xy X/i) AX-dX YT 2
A 1 d

tf 2 2 2

ol 2% 2 %, %4, }

L) A X 8K, r ———= 83X 84, # Su, du ot

2 {ax'{axé I 7Tk Tk dug T TR 3y, I

tb

¢
. éf;' é{.
4 af:’-{zx.~ sx, - 2f }d
L‘o/ ¢ 3 X, suﬁ&% t
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Setting the variation of the above expression to zero with respect to the
variables SP,i, 5uk, 5Xif , and Bum: provides the differential equations

J

. Of 3f; L
X,z —= 8x; # Sug (=/n
5P OH s M 24 5 =/ n

= Tspar ° T3k Ty sz %% st

“ IF 3K, XX, £ avaup A
%4 >H 2y .

8/2+ Xz %—Saf =0 ;A4

aLQQQ 3&5.6/\"4 QU AUy,

and the boundary conditions

A
¢ > ¥, 2% Ot ¥ ,
2 b 2 86u) 2d r RS Xpr S sy =0 i
SN (”J "5/“/) Sr. o fa);-axfﬂf'/a{.w;xé ) T

This system of equations and boundary conditions, along with the requirement
that 8§ X =0 at t = t°, is a two point boundary value problem. However,
since the equations and boundary conditions are linear, the problem can be
solved directly (without iteration) to give the correction in the initial

P vec(:tor)', & P°. The details of the solution are contained in References (15)
and (16).

In quasilinearization, a starting solution is selected which satisfies
(2.3.114), (2.3.115) and (2.3.116) but not equations (2.3.112) and (2.3.113);
that is, the starting solution satisfies the boundary conditions of the problem
but not the governing differential equations. The control u is again deter-
mined from the optimizing condition

28 -po
auk

The iteration process then_consists of determining corrections [—5P(t), 5.X(t)7
to the starting solution /X “”(t),P“” (t)/ so that the second iteration

XOe) = xPey v x5 PP PRSP
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more nearly satisfies the governing equations.

Since the starting solution satisfies the equations

LN L= n
QUL

f) = _
¢ (xhet) =0 j=hm
by, 3 ¥
2ty = 0 =/
dX; Asre " e »

minimizing the second order approximation to J reduces to minimizing the

expression
¢ 37'9:}' )5)(5)(‘ a‘ﬁ
_— . & Ve .
<ax~ax‘5 ’ v'sx‘-ax& 2 o4 X, &
2’ AT 2% s e
/(,D ,O)SX Jt + [ Sp. (X, f)a’ff é’p{é)(‘ BXJ&Y/ 52, ké}c
(4 fo

27

/D,c {; 29 {; . o ﬁ } dt
_/ {3_)( 5)('6 SX; 5/6 a‘__“‘u SXJSUé f‘g_—a’éaq((sakéu[

Thus, setting the first variation to zero provides

2

X
2%

BV"/'
3%, 3%y i ’u/ax axk, Xé*s"‘/ 3xj*‘sp4"o
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szl:;;,BxJ'*aa 5(441‘/‘5()( L u )—X‘.
4 %

: >fj d*H .M a 2F9 L
57, = 5’3’3@ ax‘-axJ-st axxauﬂ&% T
H StH 2
o, % Tsien, SN Pauan 0 O
24 3 2U:9% <y

The solution to this system provides the corrections & P(t) and & X(t).
The details of the solution are presented in References (15), (17) and (18).

Both quasilinearization and neighboring extremal are the variational
analog of the second order approach used in maxima-minima theory. Both
provide a magnitude and direction of correction (the gradient technique
provides only direction). Further, as in maxima-minima theory, both are
accompanied by a rate of convergence which is at least quadratic. However,
the starting solution must be 'close" to the optimal solution for the iteration

process to converge. How close depends on the particular problem under con-
sideration.

2.3.7 Some Generalizations

The problem of selecting the control u from the set \J to minimize the
functional

T ¢ (xF,2f) = rosw (2.3.136)

subject to the differential constraints

<

X =f.(x u) (2.3.137)

and the boundary conditions

X-x° 5 &=£°

. (2.3.138)
rp(xDtf) =0 g =l
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is rather general in form. Occasionally, however, problems arise whose formal
statement differs slightly from that just given. In this section, four vari-
ations of this problem are considered and the modified necessary conditions
are developed.

(4)

(B)

The Functional to be Minimized is an Integral of the Form

ef

4‘7“,4«) dt

In this case, it is a simplified matter to reduce the integral
performance index to a terminal index of the form of equation
(2.3.136). Let

z
X i =/j(x,a)a’é
Z_l,a
then
Xpeo = 9Cx, 4) (2.3.139)

and the problem of minimizing the integral reduces to minimizing

T = o(xf,2t) = X5,

subject to equations (2.3.137) to (2.3.139) and the additional
boundary condition.

Xppyy =O ; 2=¢° (2.3.140)

The Differential Constraints Contain Time Explicitly with

o

X, = §0x,w,t)
The explicit time dependence in the differential constraints can
be removed by a transformation. Let

Xpnes = 2
with
Xh+/ =/

(2.3.141)
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and

Xngr = 2° 5 7:=¢° (2.3.142)
Xn+/=tf 5 ¢ =ff

The differential constraints

X/_‘ :-7:, (X,)f\/z). . .Xh,,,)u):'f;‘(x)u)

are now no longer explicitly dependent on time. The optimization
proceeds by applying the Maximum Principle to the n+l dimensional
system satisfying the combined boundary conditions of equations
(2.3.138) and (2.3.142).

(C) The Initial Conditions are Not Completely Specified

Suppose that the initial conditions are not completely specified
but rather are to satisfy the s constraints

G, (X% t°) =0 ; L=2/,35=nk (2.3.143)

In this case the optimizing conditions are developed by working

with the modified functional J where
Zf
T bty ryegr) Ot at
io

The functional J is to be minimized with respect_to variations in the
control and in the initial and terminal points. For J to be optimal with
respect to variations that go through the optimal initial point in the set
Oi(x°,t°)=0, it is necessary that all the conditions stemming from the
Maxdmum Principle be satisfied; that is,

: of;
= - p 21
27wy
H(p,X,up) 2 H(px,Q) (2.3.144)
20 S
z ax£'+’49 2%, . —tf
S , -
H = __jﬁ_ 7 AQ&' ?.fl
> )
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For the first variation of J to vanish with respect to variations in the
initial point, it follows that the additional boundary conditions

Lo5y _ ‘o

\{J-Ax'—g.-o <= Hn
‘e t=t° (2.3.145)
.28 .

WS 7 °

must hold at the start of the solution. Thus, the optimal solution, for the
case in which the initial point lies in the set given by equation (2.3.143),
must satisfy, in addition to equation (2.3.144), the boundary conditions of
equation (2.3.145).

(D) The Admissible Control Set \J Depends on the state x.
Up to this point, the set \J has been a compact set in the r
dimensional control space. In the variational development of

Section 2.3.5, it was assumed that this set could be represented
by an inequality of the form

e U@j(u) <0 (2.3.146)

Occasionally problems arise in which the set '1f_depends on the
state X, with the inequality in (2.3.146) replaced by

ye U &=9(x,u) 0

However, the development of the appropriate necessary conditions in
this case is straightforward if the variational approach of Section
2.3.5 is employed

As in Section 2.3.5, the functional J corresponding to equation (2.3.80a)
is formed, but with the integrand F given by

F20=R2(X~f(x,2))+A(qx,2) * R*) (2.3.147)

Requiring J to be optimal with respect to variations in the control and
boundary conditions leads to the same necessary conditions as before; that is,
equations (2.3.81) to (2.3.89). Substituting the F function of (2.3.147) into
these equations provides
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(1) Boundary Conditions

@ MY
e F I =
7 X, X, ©
(2.3.148)
_ 20 > Y
==+ ) — =0
ot 3¢

(2) Corner Conditions

Pt = p@
(2.3.149)
H ) = HC—)
(3) Adjoint or Euler Conditions

. )F-
AR R R

< K (2.3.150)
An = 0O

Note that the adjoint conditions are the same as before except for the addi-
tional term, A¥9/3x;, in equation (2.3.150). The Weierstrass condition and the
Euler condition of equation (2.3.82) combine to yield

Hix,p,u,) 2 HiX, P &) (2.3.151)

where u, denotes the optimal control and 1 denotes any other control both of
which must lie in the set U given by

ue Uessg(x,u) =0 (2.3.151)

The multiplier A is zero if a definite inequality holds in the above ex-
pression. If an equality holds, then A (and the optimal control) is
determined from

D
s (A1) =0 s E=0,r

A (2.3.152)
g (x,u) =0

which must be satisfied for H to be maximized.
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2.4 BOUNDED STATE SPACE PROBLEM

A problem of current interest in optimization theory is the bounded state
space problem. This problem is characterized by an inequality constraint on
the state variables of the form

gl(x) < 0 [E" < t=< tj (2.4.1)
that is, the functional J
J =@ (xf,tF) = um

is to be minimized subject to the requirements that the control u lie in some
specified set \J , that the equations

hold and that the optimal state history satisfies the inequality in (2.4.1).
The feature which distinguishes this problem from those treated in Section 2.3
is the explicit independence of the function g; in (2.4.1) on the control
action u.

Problems of this type arise frequently in flight and space mechanics. For
example, in the minimum time to climb problem, the vehicle may be required to
stay within a specified region on an altitude-velocity plot to prevent the
onset of flutter, or stall, or excessive heating rates. This region of oper-
ation, called the flight envelope, can be defined by a state inequality of the
form of (2.4.1).

The formulation and the development of the appropriate necessary condition
for bounded state problems is straightforward and can be accomplished using the
variational methods of Section 2.2. In fact, several different formulations
are possible, depending on just how the inequality in (2.4.1) is adjoined to
the proglem. All of these methods lead to slightly different but equivalent
necessary conditions /see References (19) to (23) and chapter 6 of Reference
(4)7l The difficult problem is the interpretation of the necessary conditions
in regard to their use in a computational procedure.
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There are, in general, four different types of inequality constraints
that can occur in optimal control problems:
(1) State inequality

g,x) €0 (2.4.2)

(2) Control inequality

G lu) =0 (2.4.3)
(3) Coupled state and control inequality
95 (X, £0 (2.4.4)
(4) Integral inequality
tf
j g, (Ha)dt £0 (2.4.5)
to

The second and third type were considered in Section 2.3 and are frequently
used as analytical representations for the admissible control set °J . The
fourth type was treated briefly in Section 2.2.5.

Numerical computation of the optimal control when any or all of the last
three types of inequalities are present, always leads to a two-point boundary
value problem (that is, a set of differential equations with some of the
boundary data given at the initial point and some at the terminal point).
However, this is not the case if the optimization problem contains a state
inequality of the form (2.4.2). When the state is bounded by the inequality
(2.4.2), the numerical generation of the optimal control law requires the
solution of at least a three-point boundary value problem; that is, a set of
differential equations in which boundary data is given not only at the initial
and terminal points, but also at one or more intermediate points. For example,
in certain cases (to be discussed later), the junction of an interior segment

0 £ 0) with a boundary segment g(x) =0 must be accomplished so that
the optimal trajectory is tangent to the surface g(x) = 0. Thus, the optimal
solution, in addition to meeting certain initial and terminal constraints, must
also satisfy a tangency condition at the junction point. The occurence of
these intermediate boundary conditions makes the development of mumerical
solutions more difficult than otherwise.

The intermediate boundary conditions arise from the application of the

standard necessary conditions of the calculus of variations. However, the
necessary conditions themselves require interpretation before the computation

95



can be performed and there has been some difference of opinion in the liter-
ature as to just what constitutes the correct interpretation.

To circumvent difficulties of this type, the approach used here to de-
velop the necessary conditions will be more intuitive and less mathematical
than the preceding sections. It is felt that the loss in mathematical rigor
by this approach is more than compensated for by a clearer understanding of
what the necessary conditions are, and how they are to be used in constructing
the solution.

2.4.1 Problem Statement and Composition of the Extremal Arc

The problem under consideration is the determination of the control u
from the set \J so that a function of the terminal state is minimized

7= ¢ xFtf) = M (2.4.6)
subject to the differential constraints
X; = . Gu )y <=4 (2.4.7)

and boundary conditions

X =x° 3 ¢=¢°

£ € . (2.4.8)
ASVLIPEL IR
In addition, the state x(t) is required to satisfy the inequality
L[ ge f
g, (x) <0 ;|tTee=tt] (2.4.9)

The optimal trajectory is composed of two types_of segments, interior
segments /g1(x) < O/ and boundary segments /gj(x) = 0/. In some problems, it
may happen that there are no boundary segments /Figure (la) and (1b)/ or no
interior segments /Figure (1c)/ but in the general case, both types will be
present /Figure (1d)/.
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For convenience in developing the appropriate necessary conditions, it
will be assumed that

(1) The control set U can be expressed analytically by the inequality

ue b & 9,(w) <0 (2.1,.10)

where the boundary curve gz(u) = 0 is plecewise smooth.

(2) The state boundary curve gl(x) = 0 has continuous second derivatives
with respect to all its arguments. In certain cases, higher deri-
vatives than the second will be needed; thus, when these cases arise,
the existence of such derivatives will be tacitly assumed.

(3) The initial point X° and the target set ¥, (xf,tf) lie in the
interior gl(x)<-0.

These assumptions are made only to facilitate the development of the governing
equations. The extension of the analysis to cases in which one or more of the
above assumptions is relaxed, is again straightforward.

2.4.2 Necessary Conditions

A. Interior Segment

An interior segment /gy(x) < O/ must satisfy the same necessary conditions
as an optimal trajectory for an unconstrained problem; that is, an optimization
problem in which inequality (2.4.9) is absent. The reason for this is obvious.
If the interior segment connecting the points (2)and(f)in Figure (1d) did not
satisfy these conditions, the performance index § could be decreased by vary-
ing this segment. Hence, it follows that along an interior segment

foo -8 (2.4.11)
3%, 1y
24,209 o tf
F + /UJ éx +9X = 0 ) &= /Jn— Jt.:t
s
20 2% f
IL/ = = 2.4.12
SE ASE €t (2422
HOGPUe) 2 HOX,P,R) 5 u,, ke U (2.4.13)
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B. Boundary Segment

Along a boundary segment, the equation

g, (x)=0 (2.4.14)

must hold and, as a result, the additional equations

dg, .
PR
dzo‘“ - O
dt*
: (2.4.15)
c)na.\t - 0

are also satisfied; that is, all derivatives of the boundary curve are zero

by virtue of the fact that the trajectory lies in the boundary surface. Hence,
either the constraint (2.4.14) can be directly adjoined to the problem or any
one of the derivatives in equation (2.4.15). It turns out to be convenient
computationally to work with the first derivative that explicitly contains

the control action u. For example, the first derivative takes the form

1, N
df = = ;_fz’ﬂ(x,u) (2.4.16)

If the right hand side of (2.4.16) contains u explicitly, the first derivative
is adjoined to the problem. If not, the second derivative is computed with

Z
iy TR (33_';‘ Ly,u)}ﬁ' (x,u)=0 (2.4.17)
de? OXy\ IX;
since the partial ( ;) is, by assumption, zero.
ax,,

Let K be the flrst tlme derivative of g which contains u explicitly
after the Xl are replaced by fj(x,u) as in equations (2.4.16) and (2.4.17);
that is,

(2.4.18)
d“q,

ot X = Glu) = o
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To find the optimal boundary segment, the modified functional J

_ ¢
J = € .f v < 2.4.1
J ¢(x,t)+ﬁdﬁ(xﬁt)1fpd¢ (2.4.19)
io
is formed where
F = ,o‘,{)'(‘:- f‘;(x) q)} +*AG(G W /\2{32(0() +)éL§ (2.4.20)
and where
AN = O ; Along Interior Segment
(2.4.21)
A # O ; Along Boundary Segment

By applying the standard necessary conditions to the functional 3, it follows
that equations (2.4.11) to (2.4.13) hold along an interior segment ( Al= 0)
awhile along a boundary segment ( Al # 0)

.- T 2

. = J + /\ —{G L.
fos oy B T X, (’““)} (2.4.22)
A = O (2.4.23)
oH 4y 3 \ 29, _ L, (2.4.24)
% /\,a—u,‘{G(X)H)} )\Z BL(A = O ) % = /)/‘
H(x, prus) = Hix, p,) (2.4.25)

In this last inequality u, is the optimal control and 1 is any other control,
both of which must satisfy

G+ A"z 0 {ie, ugand 2V} (2.4.26)
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%ﬁ‘l = G(x,u) =0 (2.4.27)

The first three necessary conditions result from the Euler equatlons while the
last is the Weierstrass condition. Note that equation (2.4.24) is redundant
since it must hold if equations (2.4.25) to (2.4.27) are satisfied. However,
this equation does indicate how the multipliers Ay and A 2are to be com-
puted. Also, the corner conditions /see equation ~(2.3. 95)7

required that the Hamiltonian and the P vector be continuous across an uncon-
strained corner (i.e., a discontinuity in the derivative X resulting from a
discontinuity in the control u).

C. Junction Conditions

Since the equations governing the P vector and the control u along, both
interior and boundary segments have been developed; it remains to determine
how these two segments should be joined together to form the optimal solution.
The optimal junction conditions are computed by requiring the first variation
of the functional J to vanish with respect to variations in the place and time
at which the junctions occur.

et t; ({ = 1,s) denote the junction times. Since the derivative and
control may be dlscontlnuous at ty , rewrite the functional J in equation
(2.4.19) as

t() Z‘,f
T ¢(xft{)*,u4 v (xf,¢f) »fﬁdé f-/Fdé o f/Fo/é

C+) f-f'*)

Now, requiring the first variation of J to be zero provides

tc) tf
. QY t
63 :(_3_¢_+/¢( .a_‘/i_>d& <3¢ _.J_ dﬁ] /Fc/ﬁ 7//" gt £ ... th
ax, 4 ax, 3¢t t Zew
where
>F QF . >F 9F .
= b O+ —8 U, F ——8
y BX'(&X".’L 5 5X,_ +3628 % 3% d
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But, the quantity 3Fsx;/a ¥, can be integrated by parts and the identity

SX; = dx - X ot

can be used to reduce 3 to

t{

— 3¢ 2%, A¢ Y
—N‘ J
§J 5% 43 >c/x /-(.__f/(.( 57" /'/)c/é]

tf'

1)
/czdé /-/det Lot Fdt
(*‘) t(v‘)
> ) ) ) N
1S4 o ) t=2
+Z{( F7 2F )dx-~ BF iy dF ) e e
Y “ d%. T+ ¢ <
L A

ey X,

where

QF o éF) >F F . .
F, ol— =~ — — )3X, + — 38U — N
¢ <axA- at 3%, X dup k gy

In view of the optimizing conditions of equations (2.4.11), (2.4.12), and
(2.4.22) to (2.4.25), this expression becomes

K

5720 = {50 )~ (05, ) e oG ) )ae | =0

£=/

Furthermore, since the junction variations, dx; and dt,_are unrelated at the
different junction times t; , it follows that for 8 J to vanish

t= tp

()Z-(_)'/Z'U-)) dX,«.' —(HCX) p(‘))u(‘)) _HCX)PC'I)) u(‘/')) JE =0 (2.h.28)

at t = tf H {=1,8
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Equation (2.4.28) determines how an interior segment is to be joined to
a boundary segment so that the total solution is optimal. Note that if the

dxi and dt were unrelated, the usual corner conditions (unconstrained corner)
would result with

P,(—) = /p,(v‘)
£ A
HE STRSL

that is, continuity on the P vector and the Hamiltonian across the corner. In
this case, however, the dXj and dt are related at a junction corner with the
exact relationship depending on the form of the boundary surface gq(x)=0.

To begin with, the junction must occur on the surface g; (x)=0. Hence,
the dX; and dt satisfy the constraint

3 . =
OJ‘#B)?I. dx,; =0 at t=%, 5 £L=14S (2.4.29)
A

If the first time derivativedq,/dt =3q%; /3x, contains u explicitly [ﬁ in
equation (2.4.18) is unity/ then equation (2.4.29) is the only additional
relationship that must be satisfied at a junction point and the two equations,
(2.4.28) and (2.4.29) combine to yield the optimal junction conditions

(2.4.30)
34,
D= oy v “ iz Ln
?A. P" ! DX,"‘ ) g
HL‘) - HL‘D
(2.4.31)

where V7 is a constant to be determined. If the second derivative for K=2 is the
first derivative to contain the control u explicitly, the junction must satisfy
the two conditions

3|Lx) = O
d“j. - 2ﬁl 'ﬁ =0 t =ty ') 43/,5 (2.14-.32)
dt X4

In this case, if the derivative %%1 were not zero, an incoming trajectory on
striking the boundary surface g-{x)=0 would go through the surface and violate
the condition. Since the first derivative 4 does not contain u explicitly,
the only way that the trajectory will stay on the boundary surface at a
junction is if the first derivative is zero. Hence, from (2.4.32) the dXy
and dt must satisfy the equations
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-
4 dx; =0

X,

AR (2.4.33)
( 9 ﬂ-(X,u))dX[ =0

X\ AX,

Combining these equations with equation (2.4.29 provides the optimal junction
conditions

P B 2Ly 2 (—a?’ 4')
< “ X, X \3X] for K=2

Kz=2
H ) = o

(2.4.34)

The quantities 7V, and V: are constants to be determined. The general case
in which K is some arbitrary integer leads to the conditions

K-/

° 2 [d P d
S .(43 v 9. Yy ( g/) Y < 3/)
Pe Po V5 23 \dt Kax,\ dat (2.4.35)

PICRRRLS

2.4.3 Interpretation of the Necessary Conditions for the Case K = 1

The development of the appropriate necessary conditions for the bounded
state space problem is rather straightforward and involves essentially the
same mathematical techniques used on other variational problems. The question
to be considered next, and one that is not trivial, is the interpretation and
use of these conditions in the computing of a solution.

A comparison of equations (2.4.11) and (2.4.12) with (2.4.22) to (2.4.27)
indicates that the P vector must satisfy the differential equation

26
ax;

y ,\,33;(_@ Cx, ) (2.4.36)

“

£ C R

and the boundary conditions

o0 %
Bt st A s =0
7 5x; X, eeyf (2.4.37)
>¢ Iy
= # : 4
¥ oL “ ot

where A; 1is zero along an interior segment and non-zero along a boundary
segment. The optimal control is computed from

HCxp us) Z Hix, p)d)
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where u is constrained to lie in the set UV given by
ueV &= g,cw» 20

for an interior segment, and where u must satisfy the two conditions
?z < O
a“gq,(x)

de X

on a boundary segment. In addition, the multipliers A, and A, are
determined from

= GXu) =0

oH 26 p
oA xw) -AZIE 0 k=4
du duy ¢3u /
(% £ £ (2.4.38)
A9 =0
Asz(U) = O
that is, A, and A, are both zero when g and g, are both less than zero.

When the optimizing solution enters or leaves the boundary curve gl(x)=0,
the junction conditions of equation (2.4.35) must be satisfied. These same
Junction conditions result regardless of how the bounded state space problem
is formulated. For example, if the functional J is formed /see equations
(2.4.19) and (2.4.20)/ by adjoining the constraint g1(x) <0 directly to the
problem rather than the kth derivative d"y,/dtX, the same set of junction con-
ditions result. However, while the form is the same, the meaning of the
Junction conditions /in particular, the value of the multipliers in
?quation (2.4.35)/ varies with the formulation being used. /see Reference

19)/.

Another point of difficulty in regards to the junction conditions is that
their interpretation depends on whether the junction is an entry corner
(solution is entering the boundary surface) or an exit corner (solution is
leaving the boundary surface). This point has been the cause of some dis-
agreements in the literature.

To avoid any ambiguity in regards to the interpretation of the junction
conditions, attention will be focused on one special case; the case in which
K=l and the first derivative of the boundary surface contains the control u
explicitly with

(2.4.39)
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Much of the analysis for this case carries over when K 2 2, The interested
reader should consult the literature /References (19) to (22)/.

A. Strong Weierstrass Condition

From equation (2.4.35), the junction conditions for K=1 reduce to

9,00 =0
- =)y (4
HOQP‘iu‘v-H(Xyp*)uU{) (2.4.40)
P
-) ’ . A,
/D,.'( = 5'”) r Vv, 3)?(' y A =/n

A
with the first of these equations stating that the junction must occur at the
boundary surface. These conditions have a simple geometrical interpretation
when the strong version of the Welerstrass condition holds.

Recall that the Welerstrass condition requires that

Hix,p,us) = H(X, &) (2.4.41)

where u, denotes the optimal control and U denotes any other admissible
control. The strong Weierstrass condition is said to be satisfied if

/'/(X)P,Uo) >H()(jp,a> ) a;‘;aa (2.4.42)

that is, the optimal control provides a larger value for the Hamiltonian than
any other control, with an equality condition holding in (2.4.41) only if
i = u°.

By employing the definition of the Hamiltonian

. £

H=psfy

Equations (2.4.40) can now be combined to yield

e, 57 )= K P )

= p () -) 29 (9 yp g7
B ()
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But since dgt must be zero (assuming the + sign denotes the boundary side
of the corner) it follows that

- > - 3
T s pEaY | (2.4.43)

or

WO, ) = H(x, P u?) (2.4 44)

If the system is such that_the strong version of the Weierstrass condition
holds /inequality (2.&.&227, equation (2.4.44) reduces to the condition

L(('-) = u(“) (2-14"#5)

This condition requires that the solution be tangent to the boundary surface
at each junction with the control continuous across the junction. However, if
the strong Weierstrass condition does not hold, the tangency condition and
continuity in the control vector are not necessary.

B. Computation of the Multiplier V4

If a golution in a bounded state space is to be computed, the values of
the Py (~)could be determined at the first entry corner simply by integrating
the governing equations from the initial point. The jun?t'on conditions of
equations (2.4.40) would then appear to determine the P, *) (that is, the P
vector on the boundary side of the junction) so that the last two of equation
(2.4.40) could be considered as a system of n + 1 equations in n + 1 unknown,
the P; T) and Vv, . However, it can be shown that the coefficient deter-
minant of this system vanishes and that the corner conditions are insufficient
to determine the Pi(+) and 7V, . The reason for this is quite simple.

Consider the case in which the strong Weierstrass condition holds and the
optimal solution is required to be tangent to the boundary. If the tangency
condition is not met then the junction is not optimal and there is no choice
of the multiplier V, , which will allow the junction conditions of (2.4.40)
to be satisfied. On the other hand, if the solution is tangent, any choice
of 7V, , will suffice; that is, the junction conditions of (2.4.40) will hold
regardiess of the value of V7 . The point is, that an optimal junction
cannot be made merely by selecting a certain value for 717 .

If the junction is correctly made, the value of 7V, is arbitrary. A
rather interesting point is that this arbitrariness is valid only at one end
of a boundary segment and not at both ends; that is, if 7 1is selected to
have some value at the entry corner, its value at that exit corner is fixed
/see Reference (21)/. This can be shown as follows.
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On the interior side of the corner (denoted by the superscript(‘) ) the
Hamiltonian must be maximized subject to the constraint

ueUe= g, (w 20

Hence

S;—(/ —/\ij(u)) SO R =/, (2.4.46)
£
From equation (2.4.43)

) p (=) _ 2y (0
E, /; = a( [“

and ther?foge eg uation (2.4.46) must have at least two solutions, [7 (-) (‘)
and /—A _7 both of which maximize the Hamiltonian. On the boundary
side the additional constraint

>
6Cr, u ) = 3—3’ £, u) =0

i

is imposed and the optimal control must satisfy

3 () - (# _ 29, ‘_“]) = C g
a_a; (P,_ A - 4, 5.2(“) A [ ”3)(“ £ o , k=P (2.4.47)

Now, one of the solutions satisfying equation (2.4.46), namely / AgT), u oﬁz7
must also satisfy equation (2.4.47). Substituting

,of’ = ,DA.W,« v, 33_ (2.4.48)

/{/ = W (2.&.4—9)

at a Jjunction corner.
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In getting onto the boundary g;(x)=0, any value of <V, will do provided
equations (2.4.40) are satisfied to begin with. It is then a matter of
selecting A, to satisfy equation (2.4.49); that is, the arbitrariness in
Vv is removed by the appropriate choice of A, at the entry corner.
Once the value of A, 1is specified at the entry corner, its time history
along the boundary is determined from equations (2.4.38). Thus, *V, is
not arbitrary at the exit corner, but must be selected to satisfy (2.4.49).

To summarize, the value for the multiplier v, is arbitrary at one end
of the boundary and fixed at the other end. There is no one correct value
that this multiplier should take. However, the relationship between A,
and Vv, given in (2.4.49) must be satisfied. For the junction to be optimal
there must exist two values, u\~/ and ul+ , which maximize the Hamiltonian

at the entry corner and with ul+ satisfying the additional constraint
d d
Gonu)= 2902 23 g (xu') =0
at ax;

If the strong Weierstrass condition holds, then u(“)=u(') and the solution is
tangent to the boundary surface.

C. Getting Off the Boundary

In the process of computing a solution, it is possible that the interior
segment will not satisfy the optimal junction conditions of equation (2.4.40);
that is, the incorrect initial P vector may have been selected so that upon
integrating to the boundary surface, the junction conditions are not met. In
this case, it would be concluded that the initial P vector was wrong, and that
the resulting interior segment was not a part of the optimal solution. In
contrast, it 1is always possible to go from a boundary segment to an interior
segment in an optimal fashion. This situation is analogous to the flying of
an airplane in which the pilot finds the take-off (the transition from the
two to the three-dimensional space) relatively easy to execute with the land-
ing (the transition from the three to the two-dimensional space) much more
difficult.

Since an optimal return to the interior can be made at any point along
the boundary segment, the question arises as to when the return should be made.
The answer to this question is relatively simple. The point at which the
boundary segment should return to the interior is that point for which the
remaining segments of the solution will be optimal and also satisfy the re-
quired boundary conditions of the problem (i.e., the state and transversality
conditions of equations (2.4.8) and (2.4.12)). In other words, the point at
which the boundary segment should be left is guessed; the governing state and
adjoint equations are integrated to the terminal point, and the terminal con-
ditions are tested to see if they have been satisfied. If they have not, the
solution is not optimal.

In the case under consideration in which K=1 and in which the first de-

rivative of g,(x) contains the control explicitly, the necessity of guessing
the time to leave the boundary is easy to demonstrate. The state and adjoint
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system of differential equations is of order 2n; therefore, 2n+2 boundary con-
ditions are required to generate a solution. The initial state constitutes
ntl conditions and the terminal state and transversability conditions

GNP RN -EE Y
¥

N Xz
*——f 7 . ¢ = 0 L= LAr

2x; T 3 ’ (2.4.50)
Y ay
T Y

constitutes another n+l conditions. To compute a solution, ntl quantities
must be guessed at the initial point, say the initial P vector and the final
time tf, an integration performed, and the solution tested to see if the ntl
terminal conditions of equation (2.4.50) are satisfied. However, while an
exit junction can always be made in an optimal manner, an entry junction can
not. Therefore, one component of the initial P vector must be taken so that
the entry junction conditions of (2.4.40) are satisfied. This leaves only n
quantities to be guessed at the initial point, to satisfy n+l terminal con-
ditions -- for all practical purposes, an impossible situation. Hence,
another degree-of-freedom (another quantity to be guessed) must be introduced,
and this new quantity is the time at which the boundary surface is to be left
and the return to the interior made. Thus, the degree-of-freedom lost in
entering the boundary surface is restored at the exit due to the choice of
the time at which the exit is to be made.

2.4.4 Discussion

The bounded state space problem differs from other optimization problems
in that a multiple point (rather than a two point) boundary value problem
must be solved. This makes the generation of numerical solutions extremely
difficult. However, the numerical methods developed in Section 2.3.6 can
be extended to handle these problems. Such an extension of the gradient
method is developed in References (20) and (22).
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2.5 LINEAR OPTIMIZATION PROBLEMS WITH CONTROL SEPARABIE

In recent years, a great deal of effort has been expended on the treatment
of linear optimization problems, and many significant theoretical and compu-
tational advanced have been made. The linear problem differs from other
optimization problems in that in many cases solutions can be effected either
directly or through iterative techniques which are guaranteed to converge.
Hence, it is not uncommon in engineering practice to attempt to replace the
nonlinear optimization problem by some linearized approximation to which
numerical solutions can be readily developed.

The linear problem with control separable is described by dynamical
equations of the form

X’ a, A, - --Q, % %l(u)
Xz |z [ G @z . .- Gy Xz | 1 [ 9w (2.5.1)
K On @nz - Con Xn ‘in(u)

or in the vector notation

X=AX+g (u)

where A is an n x n matrix and g is an n dimensional vector function of the
r dimensional control vector u. The boundary conditions take the form

X=X°; t=t° (2.5.2)

dij xj_ +ei=0<——:>DX+e= 0; t = tf (2.5.3)

where D is an n x m constant matrix and e is a constant m vector. For con-
venience, it will also be assumed that the final time tf is specified to
facilitate the presentation; although this assumption is not necessary. The
performance index /the quantity ¢ (Xf,tf) which is to be minimized/ and the
admissible control set VU vary from problem to problem along with the ex-
plicit dependence of the vector function g(u), appearing in equation (2.5.1),
on the control u; thus, the ease with which the optimization problem can be
solved depends on the particular form which these quantities take. In the
following paragraphs two different linear problems are treated, one of which
can be solved directly while for the second, a computational algorithm exists
which insures convergence of the iterative process.
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2.5.1 Linear Problems with Quadratic Integral Performance Index

In this problem, the control action u is to be determined so as to minimize
the integral performance index

é{. T T
*5:] {XQX v 2 R“}dt
<

(2.5.4a)
z° 2
or in the scalar notation
ef
X'f;ﬁ'x' Wy Iy g Ul
= * Jd d A4 g T4
! / { > ' > } dt (2.5.4b)

where Q is an n x n symmetric positive semidefinite matrix gnd Risanr xr
symmetric positive definite matrix (that is, the quantity u’Ru/z is always
greater than zero for u # 0). The state equations for this system are

X = Alt)x +B(t) u (2.5.5)

where A is an n x n matrix and B is an n x r matrix. The initial state is
specified by

while the terminal state is required to satisfy the m constraints

bx + € 20 &= 8, X 1€, =0 jt=t" =,/ (2.5.6)

where D is an m x n matrix. The final time, tf, is assumed to be specified.

In addition, the admissible control set U is the entire r-dimensional
control space; that is the control u is unconstrained.

To reduce this problem to the standard form treated in Section 2.3, the
variable Xp4] is introduced with

r @X . u”Ru

) X > > (2.5.7)
Xpy) =O ; L=1¢°
3= Xnygy C'é{) = MIN

*Superseript T denotes transpose
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The corresponding adjoint variable P 4 satisfies

. _ SH
Poar) = —— =0
S Xnp g
(2.5.8)
Prsy (2F) = =/
with the remaining n components of the P vector governed by
_ (2.5.9)
P =~ Ap
P F D=0, r=¢f (2.5.10)
where 4 is an m dimensional multiplier vector
A4
“uo= Az (2.5.11)
Am

Note that the n transversality conditions of (2.5.10) in the m + n variables,
ALj and P{, can be rewritten as a system of n - m equations in the n
variables Pj (i=1, n) provided the matrix D has maximum rank (i.e., the
terminal constraints are not redundant). If this is done, equation (2.5.10)
becomes A A

~ (i\” d:z . d/n P,
- A ~ ) f
Dp = 06 21 dz, - dap 158 =0 ) t=¢ (2.5.12)
A AN .
dp\-vnﬂ dn—m,z dnwﬂ)n :
Pa

~
where D is an (n - m) x n matrix and is obtained from (2.5.10) by eliminating
Y

From equations (2.5.8) to (2.5.10), the Hamiltonian is given by
ni

n
H:E:&&=Zig&‘%M=GmU ~Xny,
ey

N Devens(onal

(2.5.13)
X7Qx N UT/?L(
2 2

and since no constraint is placed on the control (i.e., the set V is the
entire r-dimensional control space) it follows that for H to be maximized

OH o k= Lr (2.5.14)

Buﬁ

= PT(Ax+Bu -
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so that the optimal control is given by
-1 T
u= R 3 P (2.5.15)

Combining equations (2.5.5), (2.5.9), and (2.5.15), the trajectory which
optimizes the performance index given in (2.5.4a), satisfies the 2n system

X=Ax +BRB8p

. (2.5.16)
p=-ApP*ex
and the boundary conditions
X=x° 5 ¢t=t° (2.5.17)
e =0
e\)” } t-tf
Op =0 (2.5.18)

Note that this system constitutes a linear two-point boundary value problem
and can, therefore, be solved directly. Let —/\ denote the 2n by 2n matrix
satisfying the equations

(A BR"BT) ey
A*(Q AT A, A=2%) =T

where I is the 2n x 2n unit matrix. Then it is easy to verify that (2.5.16)
has the solution

( x‘) - A X° (2.5.19)
of pe

The initial P vector, P°, is easily determined by substituting equation
(2.5.19) into the n terminal conditions of equation (2.5.18).

From equation (2.5.19), it follows that the X and P vectors are linearly
related. Hence, the optimal control of equation (2.5.15) is a linear
function of the state of the system. This relationship proves useful in
optimal guidance theory where knowledge of the control as a function of state
allows for a rather simple feedback mechanization. This point is discussed
in References (24) and (25) where it is also shown that optimal guidance
problems are usually of the linear dynamics-quadratic performance type.
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2.5.2 Linear Problems with Linear Cost

Again, the dynamical equations take the form
/.\ A A A
X = A(t)X *9 () (2.5.20)

but in this case, the control u is to be selected from the set .L} so that
the linear function of the state

=C.-X. =878 =
¢ = CX = X = mn. (2.5.21)

is minimized subject to the boundary conditions

R =Ke | ¢=¢° (2.5.22)
QNN A A A
DX +e =0 <:)c/ﬂx/-feo, =0

4= 4Lm (2.5.23)

with the final time tf specified. Unlike the previous problem, the set
can be any compact region in the r-dimensional control space.

Problems of this type have been extensively analyzed in the literature.
Because of the form of the performance index and the control set 7/, the
combined state and adjoint equations are seldom linear and therefore so-
lutions cannot be effected directly. However, L. Neustadt /References (26)
and (27)7 has developed an iterative process for solving such problems which
will converge regardless of the starting condition. What's more, this
iterative process has been shown to be highly effective on several difficult
problems [geferences (28) and ( 7)/. The following paragraphs contain an
outline of Neustadt's method for the linear problem given in equations
(2.5.20) to (2.5.23).

To simplify the presentation, it is convenient to put the boundary con-
ditions of equation (2.5.23) in a slightly different form. Let D be the
n x n matrix

B
0,1} (2.5.24)

where D is the m x n matrix in equation (2.5.23) and I is an n-m unit matrix,
and consider the transformation
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x= DX (2.5.25)

which is nonsingular provided D has maximum rank. With this transformation,
the optimization problem in equations (2.5.20) to (2.5.23) reduces to mini-
mizing

¢ = X (2.5.26)
subject to the equations

X = Ax +9Cu (2.5.27)
and boundary conditions

X=x° ° t=z° (2.5.28)

/

x
1

. f. ec'f/ , 4 = ) =z
| xde(sp cified) ) j= Lhm ;T =2 (2.5.29)

<

The hatted vectors and matrices ﬁ s /X\, 6, g, @ are related to the unhatted
quantities A, X, C, g, e through the linear transformation in equation
(2.5.25). At the terminal point, the first m components of the new state
vector X,{ ¥ ,¢& . .. x§& } , are specified. Also, the quantity ¢ in
equation (2.5.26) can be written as

b=¢ +0, = ) XU F ) X h

L= Mt

where ) is specified since the Xf; (1 =1, m) are specified. Hence, mini-
mizing @ in equation (2.5.26) is equivalent to minimizing the reduced
quantity

n

¢, = Z c. X cth) (2.5.30)

Lzmt
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Neustadt's method will now be used to determine the control u from the set
V  which minimizes @, in equation (2.5.30) subject to the constraints of
equations (2.5.27) to %2.5.29).

Using the variation of parameters technique, equations (2.5.27) can be
shown to have the quadrature

_ o
x(th) = X(t‘){x%/ X(ﬂj(um—))d’v} (2.5.31)
ZO

where X is the n x n fundamental matrix solution satisfying the equation

X:AX ) X(t: t°) = I) The Unit Matrix

Let Xf , 1 = 1, m denote the specified terminal components of equation
(2.5.59) and let Xi(tf), i =1, n denote the terminal state resulting from
the solution of (2.5.31) using some particular control u(t) (not necessarily
optimal) in the set V . Define the vector X by

Yi X7 :}

- Yo | _ | X\I(t{) ‘e (2.5.32)
Y X2 :

and the vector Z by

Z, X x, (t%)
Z X5 - X, (tF)

Z = :Z = - -x ey (2.5.33)
Zn) \ % Xn (£9)

Now, note that Y is a fixed quantity (independent of the control u) whose
value is determined from the boundary conditions of equations (2.5.20) and
(2.5.29), while Z varies with and is dependent on the control action u.
Further, it follows from the definition of Z and equation (2.5.31) that

tf
Z = —/X (M) glum)dr (2.5.34)
éo
Turning to the Maximum Principle, the function H is formed where

H=p'X = PTAX +PT§U‘) (2.5.35)
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with
(2.5.36)

and

piCED) =~ Ci = min (2.5.57)

so that minimization of 02 requires that the control action be selected from
the admissible contrecl set such that

4, =p7 glu) = r7Ax (2.5.38)

is maximized.

To determine a solution, the initial value of the P vector must be known.
Denote this value P° where P° must be chosen to satisfy the terminal con-
ditions of equation (2.5.37). Therefore, only m components of P° can be
selected independently. Let 77 be an m dimensional vector

71’

()

7= :

Tm
with P° = P¢ (% ); that is, the n-dimensional vector P° is determined by the
m-dimensional vector 7 and the n-m boundary conditions of equation (2.5.37).
Furthermore, it follows that an optimal control, that is, one satisfying the
minimm condition of equation (2.5.38) depends only on 2 . Such a control
will be denoted by u=u(t,n). Further, to emphasize the dependence on » ,
the P vector is denoted by

P=P( m)

and the Z vector by

zf -
Z=2x) = -/ X /(?)g(uc”f, 7)) dF (2.5.39)
éo

Consider the dot product P°(»)+Z( 7). From equation (2.5.36), it follows
that

ey - XTI = pTCE )
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Hence

, 4
/Do(—,z>.g(’)1):/—p(’)‘,‘"()j(éf(’)jﬂ)>c/7" (2.5.40)
éo
Thus
/75(72)'2‘02) < PUP-2(%T) ¥z (2.5.41)

since if P¥ (7% ).Z( M) were not less than, or equal to p? (72).2(n*), the
integrand {-p"(7,n) -§(u ¢T3} would have to be lar§er than {-p" (7 n)-
glulr,n*)y ) % for some 7 between t° and t* which contradicts
the maximum condition of equation (2.5.38). It is this inequality, (2.5.41),
which is the basls of Newstadt's computational scheme.

Let ;% be the value of 77 which solves the problem. Then from (2.5.41)
P2 C7) -{z %)-zov} =0
But from the definition of Y /equation (2.5.32)/, it follows that

P 7 (R) = PR Y = by

where Q2. is the desired minimum value of $2. Hence
P(32) C4-2(70)Z Bryn .
At this point, if the function F(» ) is defined by
7 ]
Aln) = ,D”O?)-{rj—zc:‘z)j- (2.5.42)
then

F) 2 Py pyn, (2.5.43)
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F(n) = ¢&»wm.

Thus 7 is to be chosen so that F(71) is a minimum; that is, the probleri of
determining the correct initial P° vector has been reduced to that of de-
termining the minimum value of the function F.

To determine » for which F is a minimum, Neustadt suggests the iter-
ation scheme

7, n,
12 %,

W]J'H: ; = j - KVFOD (2.5.44)
}2'" 0('1‘-/ ?m”{

where [ 7 1;,, is the j*+l iteration for 7 and K is a small constant
equal to the magnitude of the correction vector. Usually, the selection of
the quantity K proves difficult and frequently an alternate scheme is used.
One such scheme, developed by M. Powell, is discussed in Reference (29) with
the combined Neustadt-Powell procedure for solving linear optimization
problems treated in Reference (28).

Like the gradient approach of equation (2.5.44), Powell's method also
requires the computation of the gradient, V F . One of the advantages of
Newstadt's approach is that this quantity can be determined analytically,
with the value of the gradient easily computed at any point where the value
of the function F is known.

From equation (2.5.41)
VF= V{P°(’2) (y-2( ’?))} =V{P°<’z) 'Y} - V{ P°(7)- 2 C’Z>} (2.5.45)

The quantity WV (P°.Y) can be calculated once the dependence of P° on =
is specified. It is given in component form by the expression
n

° bPo' - -
V{P')} =Z T;z% Loy eELm

o=/
The second quantity on the right hand side of (2.5.45) is given by
V{Po.z}:vp.{?o.z} ; vz{Fv.z} (2.5.46)
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where the symbol Vp°® indicates the gradient operator operating only on the
P° vector in the product P°-Z. The second term VZ(P"-Z) can be shown
to vanish.

Let

6(%)= pAy)-2 (7)
and

OC% + a%,) = PA%7) (7 +an;)

then for VZ(P°'Z) to vanish, it must be shown that

Jom |©Crrar,) 6?2
AZ—’O
NP

goes to zero. Now
O(z+an;)~0(n): pAn)-B(R*s,) ~p(7) 2(%)
and from (2.5.41)
leoumz‘.)—eopi=,D°(>z>~z(>zf4>z;)‘/>°(>z>‘Z(>Z>

Hence,

ocn+ax,) - 9(>z)|_ /
A% -

Adding and subtracting the quantity P°(%+ 4%)°Z(%) from the right hand
side of (2.5.47) provides

¢C7ZfA7Z-")_¢C7Z) - / {Poc-,z)z(‘)z }-A?Zi)-P°(72/'A7Z‘-).Z (%)
A%, \NZA\

and since ‘(P%’Z)‘P"("Z*A’Zj))'i (% )}

f’(zusa‘.)-zpz) z pe(ranran;)-z(n+az,)
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it follows that

b(ran;)- ¢ _

A lez,|

{ [/9"(72)-,0"02 #A@)] '[202 +a%:) -z(>z)”

/
< ]A—’Z—’ ‘P"Oz) - P m>z‘,)‘ ,203 r‘A>Z‘.) - Z(>z)|

Taking the limit, provides the desired result; i.e.,

Combining this result with equations (2.5.45) and (2.5.46) gives the gradient
in component form

N
3 p- .
VF() = Z ’3* (y--zo/') ) < =1/, (2.5.48)
J:/ 3’2“ J

To summarize, the determination of the optimal control action requires
the determination of the correct value of the vector P°. This vector, P°, in
turn, is an n dimensional vector whose components are determined from the m
dimensional vector » and the n-m boundary conditions of equation (2.5.37).
Thus, it is the correct value of > which is sought. It follows that the
particular 77 which solves the problem also minimizes the function F(m )
given by equation (2.5.42). Therefore, starting with a first guess of » ,
corrections in »; are made in the direction in which F(” ) is decreasing.
Such a correction process requires a knowledge of the gradient, WV F, which
is given analytically by equation (2.5.48).
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3.0 RECOMMENDED PROCEDURES

Both the Maximum Principle and the Calculus of Variations represent
simple but rather general techniques for formulating optimization problems.
Thus, little remains to be accomplished as far as broadening or extending
these formulations. There are, however, many special problems and appli-
cations that warrant addition investigation.

Among these special problems is the singular arc problem discussed in
connection with the lunar soft landing (Section 2.3.2) and with the orbital
transfer maneuver (Section 2.3.4). In this case, the Maximum Principle
becomes degenerate and higher order terms in the series expansion about
the optimal solution must be examined to determine if these arcs are mini-
mizing. Such a procedure has been carried out in the literature /References
(12) and (13)/ and additional necessary conditions developed which the
singular arc must satisfy. However, little is known at this writing as to
when such arcs will occur.

Another problem area is the optimization of stochastic systems. If the
system under consideration contains parameters or elements which have a
statistical rather than a deterministic description, then the usual opti-
mization methods are not directly applicable. Though some stochastic problems
have been analyzed using the Maximum Principle and the Calculus of Variations
in modified form, the techniques have not been standardized to the extent that
they have in the deterministic case. Such a standardization will evolve only
through the extensive analysis of a variety of stochastic optimization
problems.

In regards to applications, there are many problems in both the tra-
jectory and control areas that require additional work. For example, most
optimal control studies have been conducted on an open-loop basis despite
the fact that almost all controllers operate closed-loop. While a complete
synthesis of an optimal controller may require faster computers and better
computational techniques, some studies should be initiated at this time which
are concerned with closed-loop operation.

Applications in trajectory analysis have been limited for the most part
to vehicles which move in an airless inverse square gravitational field.
However, there are many interesting optimization problems which arise in
connection with the atmospheric section of the flight and where the inverse
square field assumption is a poor approximation of the total force applied.
Among these problems are horizontal take-off systems, planetary entry
maneuvers for high L/D vehicles and lunar flyby and return missions. All of
these problems can be analyzed and solved using existing techniques.

One of the major difficulties in optimization theory is the generation

of numerical solutions. With few exceptions, the variational formulation
leads to a nonlinear two-point boundary value problem, the solution of which
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must be developed iteratively. While considerable progress has been made
during the past few years in this area, and many new computational methods
have been developed, there still exists no one method which will consistently
work for a relatively large class of problems. Thus, while the trajectory
analyst may find the numerical problems severe, with patience he can develop
optimal trajectories using existing numerical techniques. In control theory,
on the other hand, the numerical difficulties rule out the use of optimal
controllers as part of a feedback mechanization. In this case, the numerical
methods and the available computing equipment are not sufficiently fast of
sufficiently reliable for a closed-loop operation and some technical break-
through is needed before optimal controllers will become feasible. A more
wide spread use of the techniques of optimization theory, therefore impatiently
awaits the development of better computational methods.
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