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FOREWORD 
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1.0 STATEMENT OF THE PR3BLEM 

The purpose of an engineering analysis usually centers on the  development 
of a system which performs i n  some best o r  optimum fashion. 
what const i tutes  an optimum system i s  d i f f i c u l t  t o  define, even f o r  t he  
simplest systems, since factors  such a s  rea l iab i l i ty ,  system complexity, 
and time and cost of development cannot generally be incorporated i n  a 
mathematical model of the  system. Notwithstanding, a t  some point i n  the  
analysis,  it i s  often beneficial  t o  specify a single mathematical cr i ter ion,  
o r  se r ies  of c r i t e r i a ,  w i t h  respect t o  which the  system i s  t o  be optimized. 

However, jus t  

Frequently the  system which optimizes these performance c r i t e r i a  i s  
adjudged t o  be impractical o r  unsatisfactory f r o m  an engineering point of 
view since the  c r i t e r i a  themselves, by vir tue of t h e i r  mathematical repre- 
sentation, may not contain a l l  t he  engineering considerations and constraints 
which enter in to  the  problem. Even i n  these cases, however, the  device of 
specifying a system performance c r i te r ion  serves two useful purposes. F i r s t ,  
it provides a basis f o r  systematically selecting values f o r  the  parameters 
which govern the  system; and second, it gives one a yardstick f o r  measuring 
how w e l l  t h e  system could perform Ff all other engineering constraints  were 
absent. The cost  o r  penalty i n  system performance which these additional 
constraints  impose i s  simply the  difference i n  the  value of the c r i te r ion  
function between the  optimal and actual  systems. 

The simplest and most di rec t  approach t o  determine the  optimal system i s  
one of trial and error.  I n  this approach, several sets of values f o r  the 
parameters of t h e  problem a re  selected and each s e t  i s  evaluated as t o  system 
performance on a d i g i t a l  computer. However, such an approach has several 
drawbacks since any s e t  of parameters selected as optimal i s  only optimal with 
respect t o  all t h e  other sets tha t  have been tes ted  ( i . e . ,  a l l  the  trials 
t h a t  have been made). Thus, since, i n  most problems, the  parameters may assume 
an i n f i n i t e  number of different  values, the determination of a t rue  o r  absolute 
optimum would e n t a i l  an i n f i n i t e  number of runs on the  computer. 

A second approach involves the  use of standard mathematical techniques 
t o  determine the  optimum system. Foremost among these techniques i s  the  
maxima-minim theory of t he  Different ia l  Calculus by which a point o r  s e t  of 
points  can be determined a t  which a function takes on an extremum value. 
technique has been used, and t o  good advantage, i n  engineering studies since 
time inunemorial. 
par t icu lar ly  i n  t h e  areas of t ra jectory analysis and control theory, which 
could not be handled within the  ma*-minima f r ammrk .  One such problem 
involves t h e  maneuvering of a c h d c a l  rocket between two points i n  space. 
t h i s  problem there  may be an i n f i n i t e  number of paths o r  t r a j ec to r i e s  along 
which the  vehicle could f l y  to  accomplish i t s  mission, due t o  t h e  f a c t  that 
t h e  thrusting engine can be steered and throt t led.  Thus, the  problem is  t o  
determine s o m e  so r t  of best o r  optimum path, and t h e  corresponding optimum 
time his tory of t h e  thrus t  vector. The mathematical technique f o r  handling 

This 

Howewer, i n  the  early 1950's there  arose a series of problems, 

In 
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such problems is  the  Calculus of Variations. 

The Variational Calculus has interested and motivated mathematicians f o r  
w e l l  over two hundred years, with the  theory i t s e l f  reaching a near l eve l  of 
completion during the  1930's at  t h e  hands of G. A .  Bliss and others at  t h e  
University of Chicago. This material  was reviewed i n  one of the preceding 
monographs of this se r i e s  (The Calculus of Variations and Modern Applicstions - 
SID 65-lXO-4). After a re la t ive ly  dormant period of approximatelytwenty 
years, t he  t ra jec tory  and control problems encountered in the  performance of 
high speed a i r c r a f t  and missiles provided a resurgence of i n t e re s t  in this 
area - a resurgence which brought about several new developments and theories.  
One of these theories, t he  Maximum Principle, i s  the  subject of this monograph. 

The Maxhum Principle was developed by L. S. Pontryagin and his colleagues 
a t  the Steklov Mathematical In s t i t u t e  i n  Moscow. 
or generalization of t he  well known Weierstrass condition of the  Calculus of 
Variations. 
condition f o r  j u s t  about a l l  engineering problems. Its primary advantages 
are that  it simplifies t he  development of proofs, gives additional insight  
i n t o  t h e  computational process of constructing a solution, and allows f o r  t he  
easy inclusion of cer ta in  types of inequality constraints frequently encountered 
i n  engineering problems. 

It is  essent ia l ly  an extension 

In  t h i s  regard, it leads t o  t he  same resu l t  as the  Weierstrass 

The feature which distinguishes t h e  mdern from the  c lass ica l  var ia t ional  
problem i s  t h e  occurrence of inequality cms t ra in t s .  
was developed i n  order t o  handle a cer ta in  general type of inequality that 
occurs regularly in optimal t ra jec tory  and control problems. 
Pontryagin and h i s  associates were extensions of the  c lass ica l  theory which 
took place in t h i s  country and which allowed f o r  t he  inclusion of inequal i ty  
constraints using the  Calculus of Variations. 
as concise o r  general as t he  Madmum Principle in regard t o  t h e  treatment of 
t h e  most c o m n l y  encountered inequality, a control inequality, they were, 
however, d i rec t ly  applicable t o  other types of inequal i t ies  such as a s t a t e  
inequality. 
n-t he apyl:eA w*t'-o.*t a ma!-r nevision k e- t'-ese o+h-+. !npaual't 'es ar- n-ecer t .  

The MaxLmum Principle 

Unknown t o  

While these extensions were not 

One of t he  shortcomings of t h e  Maximum Principle i s  tha t  it can 

T h i s  monograph i s  intended t o  provide the  analytic framework i n  which the  
subt le  dis t inct ion between this material and the  mre c lass ic  approaohes can be 
appreciated. 
var ie ty  of problems encountered in optimal t ra jec tory  and control analysis. 
The treatment w i i i  include both l i nea r  and nonlinear systems, and problems with 
control inequal i t ies  and s t a t e  inequal i t ies .  Several comparisons and parallels 
will be drawn with both t h e  Calculus of Variations and t h e  maxlma-minima theory 
of  t he  Differential  Calculus. 

The Maximum Principle will then be used t o  formulate and solve a 
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2.0 STAm OF THE ART 

The discussions will begin w i t h  a review of the  per t inent  concepts from 
maxima-minima theory since t h e  methods used here have much i n  common with 
those used i n  optimal t r a j ec to ry  and control problems. 

2.1.1 Minimizing a Function of One Variable 

It is  well  known that i f  a function f (x) has a minimum value a t  x = xo, 
then t h e  two conditions 

(2.1.1) 

must hold. To develop these  conditions, assume t h a t  t h e  funct ion f has 
continuous der iva t ives  of a t  least the  second order and a bounded t h i r d  
der iva t ive  i n  t h e  v i c i n i t y  of t h e  minimum point xo, and expands f (x) about 
xo i n  t h e  truncated s e r i e s  

(2.1.2) 

3 where bx = x - xo and 8 ( 6 x ) denotes terms of order 8 2 .  If f has a 
l o c a l  m h h  a t  x , then, f o r  any x theartt xo, t h e  r igh t  hand s ide  of  (2.1.2) 
must be greater th& or equal to zero; that is, 

f ( x )  - f (xo)  2 0 

For d x small, t h e  s ign of t he  l e f t  hand side of Eq. (2.1.2) i s  determined by 
t h e  s ign of the  first t e r n  with t h e  r e s u l t  t h a t  1 

Since 6 x can t a k e  pos i t ive  o r  negative values, it follows t h a t  (2.1.4) w i l l  
hold only i f  

3 



With this condition, t h e  sign of t he  l e f t  hand s ide  of (2.1.2) is d e t e d e d  
f r o m  the second order terms, and f o r  (2.1.3) t o  be s a t i s f i e d  

f r o m  which t h e  second condition in EQ. (2.1.1) follows. 

Note tha t  it has been necessary t o  assume that f has continuous second 
and bounded t h i r d  der ivat ives  i n  some region containing Xo i n  order t o  develop 
t h e  series expression of (2.1.2). This condition can sometimes be relaxed. 
However, it i s  a r e l a t ive ly  weak assumption and i s  inevi tab ly  s a t i s f i e d  in 
engineering appl icat ions.  

2.1.2 Minimizing a Function of Several Variables 

The extension of t h e  previous r e s u l t s  t o  t h e  case in which X i s  a vector 
with n components i s  straightforward. L e t  X denote t h e  vector 

with t h e  function f ( x )  = f ( 3 3 , .  . .,%) having a l o c a l  minimum at xo where 

Again, assuming t h a t  f possesses continuous second and bounded t h i r d  der ivat ives  
i n  a l l  i t s  arguments, and expanding f ( x )  about xo provides 

o r  i n  t he  veator notat ion 

(2.1. Sa) 

where b x  i s  t h e  vector 

4 



, . 

and the  superscript  denotes the  transpose. 

Reasoning a s  i n  t h e  preceding section, it follows that 

L O  b x  f x  bx = fx* 
1 i 

and since t h e  8x1 a r e  a rb i t r a rg  and independent, t h e  above r e su l t  becomes 

(2.1.6) 

This  leaves, on t h e  l e f t  hand s ide of (2.1.5a), the  second order terms which 
must be pos i t ive  i f  xo is to be a mLrcbmu point. Hence, 

The expression 6 x T  f x x  Sx 
therefore  ca l led  a quadratic form. 
(2.1.7) w i l l  be s a t i s f i e d  only i f  the  matrix 

is quadratic in t h e  var iab les  dxi and i s  
Since the 6xi a r e  a rb i t r a rg ,  condition 

is pos i t ive  s d - d e f i n i t e ;  t h a t  is, if a l l  the eigenvalues of (f,) are 

5 



, 

J 

pos i t ive  or zero. 
it i s  necessary t o  e i t h e r  d i r e c t l y  compute t h e  eigenvalues of ( f  
draw upon any one of several  theorems used i n  t h e  study of q u a d a i c  forms 
which assure that (f  
( fo r  example, see Re?? (l), page 260) requi res  t h a t  f o r  (f=) t o  be pos i t ive  
semi-definite, t h e  n d e t e r m b m t  conditions 

Hence, t o  determine if condition (2.1.7) i s  sa t i s f i ed ,  
) o r  

) i s  pos i t i ve  semi-definite. One of these  theorems 

h , X ,  2 0 

f’x,x, fw, 
5, x 2 f. xzxz 

2 0  

( 2.1.8) 

must’ hold. 
s a t i s f i e d  a t  t h e  minimum point xo a r e  t h e  n dimensional analogue of conditions 
(2.1.1) i n  t h e  one dimensional problem. 

2.1.3 Minimizing a Function Subject t o  EQuality Constraints 

Note that t h e  conditions (2.1.8) and (2.1.6) above which must be 

Quite of ten,  problems arise in which a function, f ( x ) ,  is t o  be minimized, 
subject t o  a subsidiary condition g(x) = 0. To i l l u s t r a t e  t h e  treatment of 
such problems, it w i l l  be assumed t o  begin wi th  t h a t  x i s  a two dimensional 
vector 

and t h a t  t h e  minirmun point occurs at xo where 

One possible approach t o  t h e  pmblam would be t o  solve t h e  cons t ra in t  
equation 

f o r  one of t h e  var iables ,  say 3 i n  terms of 5, and then suba t i tu t e  this 
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. . 

expression i n t o  f .  
techniques of Section 2.1.1. 
t h e  major disadvantage that it i s  not always possible  t o  solve t h e  constraint  
equation f o r  one of t h e  var iab les  i n  terns of t h e  other .  
and t h e  one t o  be considered here, was developed by Lagrange in t h e  e a r l y  
part of t h e  16th century. 
can be handled i n  much t h e  same manner as the unconstrained problem. 

minimizing t h e  augmented function 

The minirmUn point could then be determined using t h e  
While this approach i s  straightforward, it has 

An a l t e r n a t e  approach, 

By this method, t h e  constrained minimization problem 

Since g (5%) i s  zero, mFnimi5ina t h e  function f (5%) i s  equivalent t o  

where 
s e r i e s  about xo provides 

i s  some con&ant t o  be determined. Expanding F i n  a truncated 

(2.1.10) 

Now, t h e  l e f t  hand s ide  of (2.1.10) must be g rea t e r  o r  equal t o  zero f o r  a l l  
x and xo, sa t i s fy ing  

as t h e  independent var iab le  and as t h e  
dependent var iab le  ( 5  through t h e  cons t ra in t  e q a t i o n  
Consider x2 (and hence 

g (3%) = 0). xl= 0 at x = x tha t  is, will be chosen 90 t h a t  F 
But s ince h in Equation (2.1.9) can be any constant, it 

0’ 

F = f  + / \ g  = O  , 
5x1 XI 

With this condition, Eq. (2.1.10) becomes 

Now s ince  
var iab le) ,  it can be taken small enough 90 that t h e  sign of  t h e  r igh t  hand 
aide of (2.1.U) is  determined by t h e  first term. 

6 5 i s  a r b i t r a r y  ( i . e . ,  it has been chosan as t h e  independent 

Hence, it follows that 
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f o r  a minimum t o  occur. 
be tha t  F = 0. But, 

Further, s ince t h e  sign 6 3 i s  a rb i t r a ry ,  it must 

xz 
F = f  + h g  = O  5 xz xz  

Thus, f o r  a minirmUn value t o  occur a t  xo, t h e  three  conditions 

must be s a t i s f i e d  by se lec t ing  t h e  values of and . Note 
t h a t  t h e  device of introducing t h e  constant ?%d%ming t h e  function 
F = f + 
an unconstrained problem as far as t h e  first necessary condition i s  concerned. 
However, t h e  condition (defining a maximum o r  minimum) on t h e  second order 
terms d i f f e r s  somewhat f r o m  t h a t  developed i n  t h e  unconstrained problem 
( i . e . ,  ms. (2.1.1) and (2 .1.8))  as will be shown below. 

g has allowed t h e  constrained minimum problem t o  be t r ea t ed  as 

Since t he  first order terms vanish, t h e  sign of t h e  r igh t  hand s ide  of 
(2.1.10) i s  determined by t h e  second order  terms which must be g rea t e r  than 
or equal t o  zero f o r  a minimum t o  occur. However, unl ike t h e  unconstrained 
problem, t h e  var iables  6 
t h e  constraint  equation 

are not both a rb i t r a ry ,  but must s a t i s f y  
rst order,  provides 

Hence, t h e  condition on t h e  second order terms takes  t h e  form 

(2.1.13) 

f o r  6 5 and 8x2, sa t i s fy ing  

a 



, 

4 

, The extension of t h e  ana lys i s  t o  t h e  case in which x i s  an n dimensional 
vector  and i n  which m cons t ra in ts  g.(x) = 0, j = 1, m are imposed, follows 
a procedure similar t o  t h a t  used in’the two dimensional case. 
matter t o  show t h a t  t h e  necessary conditions in  this case are 

It is  a simple 

; j =  I , m  (2.1.15) 

where F i s  given by 

(2.1.16) g.i F = f +  A i  

TO i l l u s t r a t e  t h e  appl icat ion of thesetechniques,  consider t he  example 
problem where 

This problem cons i s t s  of finding t h e  point on t h e  hyperbola g = 0 which is 
c loses t  t o  t h e  or ig in .  

Following t h e  previously out l ined procedure, t h e  funct ion F i s  formed 
where 

F = f +  X g  

= Xl 2 2  + 9 + A(,,,, - 1) 

The necessary conditions corresponding t o  Qs. (2.1.12) are 
2 x , t  Az2 = o  

ZZ, +h, =o 

z, z2 = J 
from which it follows t h a t  a minimum point occurs a t  

9 
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t h a t  is, t h e  function f has two minimums. 

The second order t e s t  requires  t h a t  

which is seen t o  be s a t i s f i e d  by both of t h e  solut ions.  

2.1.4 Minimizin~ a Function Subject t o  Inequal i ty  Constraints 

Often, t h e  cons t ra in ts  entering a minimization problem are inequa l i t i e s  of 
t h e  form 

( X I  L- 0 ; J‘ =. I ,  m ( 2.1.17) 

The standard technique f o r  handling such cons t ra in ts  i s  t o  reduce them t o  
equal i ty  conditions through t h e  introduct ion of addi t iona l  var iables .  

Consider t h e  m real v a r i a b l e s T j  and rewri te  conditions (2.1.17) i n  t h e  
equivalent form 

2 
4 j j  ( x )  f-7,. = o  ; j = J , m  ( 2.1.18) 

Note t h a t  Tj = 0 if an equal i ty  condition holds i n  (2.1.17), while 7. = 0 
ind ica tes  a d e f i n i t e  inequal i ty .  J 

With the  cons t ra in ts  wr i t ten  in equal i ty  form, t h e  methods of t h e  
preceding section can be used t o  determine t h e  minimum point  xo. 
a s  i n  Eqs. (2 .1 .U)  to (2.1.16), t h e  function F i s  formed where 

Proceeding 

Thus d i f f e ren t i a t ing  with respect  t o  X and T and equating the first 
der ivat ive t o  zero provides 

(2.1.19) 

while the condition on t h e  second order terns i s  

10 



(2.1.20) 

for 6 xi and 6 3  . , satisfying I 
6 q  t Z f l 6 g  = o  

t?kL 

&Xi  +2&6T2 = o  
8 Z X i  ( 2.1.21) 

'xi +2 yM 6 rm = O  %"zj 
Note from F,q. (2.1.19) that either ~j or A d  i s  5ero for J = 1, m. 

The case ?J = 0 corresponds to the minimum point lying on the boundary of 
the admissible region 2J (x0 )  = 0 , while the case A j  
x in the interior 2 ( X , ) C O .  

= 0 corresponds t o  
Also note that Eq. (2.1.20) can be used to 

SROW that 

x j  10 ; j = l , m  (2.1.22) 

as  follows. F i r s t ,  if X i  # 0, then A j = 0 and (2.1.22) holds. If 
= 0 and all 6x;are set  t o  zero, Eqs. (2.1.U) are satisf ied 

identically, while Eq. (2.1.20) provides T i  

2 A J  67.2 2 0  
J 

f o r  6 7 .  arbitrary. Thus, (2.1.22) follows immediately. 
CJ 
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2.2 CALCULUS OF VARIATIONS 

The review of per t inent  mater ia l  w i l l  continue in order  t o  provide t h e  
necessary background f o r  subsequent discussion. 
t h e  concepts used i n  t h e  Calculus of Variations w i l l  be reintmduced. 

In t h i s  sect ion same of 

The Calculus of Variations i s  very much l i k e  maxima-minima theory except 
t h a t  the domain o r  space over which t h e  minimization i s  t o  be performed is  
more complex. 
has a minimum value, it i s  desired t h a t  t h e  time h is tory  of a function 
x ( t )  be determined f o r  which a funct ional  J, given by 

Instead of determining a point  xo at which a function f ( x )  

i s  minimized be de t ep ined .  
var iab les  t, x, and x. 
value of J ( J  varies as t h i s  dependence va r i e s )  a r e  unspecified. 

The integrand f i s  a specif ied function of t h e  
However, t h e  p a r t i c u l a r  dependence of x on t, and t h e  

The procedure introduced in maxima-minima theory was t o  expand t h e  funct ion 
i n  a truncated Taylor s e r i e s  about t h e  rniniwrm point,  and t o  conclude t h a t  t h e  
first order terms i n  t h e  s e r i e s  must vanish while t h e  second order terms 
must be grea te r  than, o r  equal t o ,  zero. (See Eqs. (2.1.1) and (2.1.6) t o  
(2.1.8).) 
t o  zero and solving t h e  resultant algebraic  equation. The second order 
inequal i ty  was then t e s t e d  t o  determine if  t h e  point selected i s  a t r u e  
minimum and not a maximum o r  s ta t ionary  point .  

The extremum was then determined by se t t i ng  t h e  first order terms 

A s imi la r  procedure i s  used i n  t h e  Calculus of Variations.  It i s  assumed 
t h a t  t h e  funct ional  J has a minimum value a t  x ( t )  = x o ( t ) ,  and then J ( x ( t ) )  
i s  expanded about J(x (t)) i n  a truncated Taylor s e r i e s .  
pmaess analogous t o  that used i n  mexlma-minims theory, it i s  a r e l a t i v e l y  
simple matter t o  show t h a t  t h e  first order  tenna in t h e  s e r i e s  expansion must 
be zero f o r  xo ( t )  t o  be t h e  minimizing function, and t h a t  t h e  second order  
terms must be grea te r  than, o r  equal t o ,  zero. However, t h e  process of 
equating t h e  first order terms t o  zero provides a d i f f e r e E t i a l  equation 
( r a the r  than an algebraic  equation) which t h e  minimizing function x o ( t )  
must s a t i s fy .  
Again t h e  second order condition serves as a test that t h e  solut ion i s  
minimizing and may a l s o  resolve c e r t a i n  ambiguities which a r i s e  i n  solving 
t h e  Euler equation. 

By a reasoning 

This d i f f e r e n t i a l  equation i s  referred t o  as t h e  Euler equation. 

* Dots over var iab les  ind ica te  d i f f e r e n t i a t i o n  with respect t o  time. 
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In t h e  s e r i e s  expansion process by which t h e  conditions on t h e  first and 
second order terms a r e  developed, it is  necessa rg to  assume t h a t  t h e  solut ion 
x ( t )  i s  lWarll t o  t h e  solut ion x (t), just as it was necessary t o  assume t h a t  
t h e  point x was near t o  t h e  pin? x i n  the maxima-minima development. 
unlike t h e  msXima-minba case, t h e  goncept I1near1l in t he  Variat ional  Calculus 
can have severa l  meanings. The pa r t i cu la r  meaning needed in t h e  series 
expansion process i s  somewhat r e s t r i c i t v e  i n  t h a t  it l i m i t s  t h e  type of 
comparison solution, x ( t ) ,  t o  a r a the r  narrow class. 
in t e rp re t a t ion  of t h e  concept Ilnear1! led t h e  mathematician Weierstrass t o  
another necessary condition which now bears his name and i s  somewhat stronger 
than t h e  Euler condition. 
along with a t h i r d  - t h e  Legendre condition - w i l l  be developed, first f o r  
t h e  one-dimensional problem and then f o r  n-dimensional problem with cons t ra in ts  
imposed. A four th  condition, t h e  Jacobi condition, will be discussed only 
s l i g h t l y  s ince it i s  ra ther  d i f f i c u l t  t o  apply i n  mst engineering problems. 

However, 

A l e s s  r e s t r i c t i v e  

In t h e  following paragraphs, both of  these  conditions, 

2.2.1 One-Dimensional LaRranPe Problem 

The one-dimensional Lagrange problem consis ts  of  determining t h e  time 
h is tory  of  t h e  var iable  X ( t )  such t h a t  the  funct ional  

(2.2.2) 

i s  a "i")"". 
while ( t  , xf) denotes t h e  upper limit. 
these  poin ts  are fixed. The problem i s  
represented graphical ly  i n  t h e  sketch 

h i s to r i e s ,  % ( t ) ,  %(t) and S ( t )  a r e  
shown. 

The point  ( t o ,  x o )  denotes the  lower l i m i t  of in tegra t ion ,  
It i s  assumed, t o  begin with, that 

X 
f -  t o  t h e  r i g h t  where t h r e e  possible  time 

Many well-hown problems in ana lys i s  
can be put i n  t h e  form of Eq. (2.2.2). 
For axample, cnnsider t h e  problem of 

and ( t f ,  s). 
t akes  t h e  form 

determining t h e  curve of shortest  a r c  I I 

l ength connecting t h e  poin ts  ( t o ,  xo) to kf t 
In  t h i s  case, EQ. (2.2.2) 

t;x= 

where t h e  integrand represents  t h e  d i f f e r e n t i a l  a r c  length along the  curve. 

Returning t o  t h e  general problem, assume t h a t  x (t) represents  t h e  
minimizing function, and l e t  x(t) represent a neighgoring solut ion in which 

13 



J 

x ( t )  = x o ( t )  + 8 x ( t )  

where 6 x ( t  ) is  t h e  difference i n  x and xo at t h e  time t . 
J ( x ( t ) )  i n  a Taylor series about J ( x o ( t ) )  provides 

w n d i n g  

where again 0 (  b x?) ind ica tes  terms of order 6 2. Since 6x  and 6; 
a r e  a rb i t ra ry ,  it wXU be required ( a s  i n  maxima-minimal theory) t h a t  6 x  
and 6 k be s u f f i c i e n t l y  sm11 so that t h e  sign of Eq. (2.2.3) i s  determined 
from the first order t e rns .  Hence, i f  xo ( t )  i s  minimizhg 

and 

But the s ign of (2.2.4) can be reversed by considering a new solut ion Y, C t l =  

t h a t  
x o  C t 1 t & x ,  <*> such t h a t  6%(t )=  - 6 x and h%=-Sx, from which it follows 

and, sitice t h e  first order terms v e i s h ,  t h e  second order  terns must s a t i s f y  
t h e  inequal i ty  

fo r  6 x and 6; su f f i c i en t ly  small. 

14 
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Eq. (2.2.5) can, however, be put i n  a more usable form by in tegra t ing  
t h e  second term by parts  t o  provide 

f 
i s  used t o  compute t h e  a r c  xo( t ) .  

The assumption that 6 x and 6 x  
are small (which i s  necessary t o  develop 
Eqs. (2.2.6) and (2.2.7) r e s t r i c t s  t h e  
c l a s s  of comparison solut ions.  This 
f a c t  i s  shown i n  t h e  sketch t o  t h e  
r i g h t .  In this aketch > ( t )  represents  

and 6 j l  a r e  small, and x z ( t )  represents  
a so lu t ion  f o r  which 6 x i s  small but 
6 k i s  la rge .  A var i a t ion  6 x = x - x 

a neighboring solut ion o r  which 8 x f -  

f Since 6 x i s  zero a t  both ends of t h e  in t e rva l  ( t o ,  t ) and a r b i t r a r y  i n  
t h e  i n t e r i o r ,  this expression reduces t o  the well-known Euler d i f f e r e n t i a l  
equation 

- - - - - - - 

- 
I 

to +‘ t 

- 0  2 f  d 2f 
A X  d t  a t  
- - - -  

T h i s  equation, along with t h e  boundary conditions 

x = x f  ; t = t  f x 
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. . 
Let x ( t )  represent t h e  optimal 

solution &id ? ( t )  a neighboring solution 
which i f f e r s  r o m  x on t h e  i n t e r v a l  
[ t O, t ] , which has 8 constant slope 

on t h e  interval [tl, t2]. (See 
sketch). Since xo( t )  i s  minimizing, 

9 

to t' tZ tf 
-L 

But this expression can be rewri t ten as 

Under the assumptions t h a t  t h e  i n t e r v a l  [tl, t21 i s  mall and equal t o  t h e  
d i f f e r e n t i a l  d t, and t h a t  6 x and 6 k are small on t h e  i n t e r v a l  [to, til, 
condition (2.2.8) beoomes. t o  first order 

Now, in tegra t ing  the  first tern by prts and noting t h a t  xo must s a t i s f y  t h e  
N e r  condition of Eq. (2.2.7), provides 

But 

t=t' 
= 0 - X d t  -i i(,dt] 
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Subs t i tu t ing  t h i s  result i n t o  (2.2.9) and noting that t h e  time t1 can be 
any time i n  t h e  i n t e r v a l  ( t o ,  t f )  provides the  f i n a l  r e s u l t  

which must hold along t h e  optimal solut ion x,(t). 
t o  as t h e  Weierstrass condition. 

This inequal i ty  i s  re fer red  

A short  swmary at this point seems appropriate. 
which m u s t  hold along t h e  optimal solution, provide a function x ( t )  which 
y i e lds  a smaller value f o r  t h e  funct ional  J than any o the r  functyon x ( t )  
f o r  which both S x = x ( t )  - xo( t )  and 6 k are  small. 
functions a r e  those f o r  which 6x i s  s m a l l  w h i l e  6 5c may be la rge ,  and t h e  
Weierstrass condition in (2.2.10) i s  a condition which must be s a t i s f i e d  
by t h e  funct ion which i s  minimizing on this l a r g e r  c lass .  

Eqs. (2.2.6) and (2.2.?), 

A l a r g e r  c l a s s  of 

It i s  apparent t h a t  i f  x,(t) i s  minimizim on a ce r t a in  c l a s s  of functions 
C (x), then it i s  also minirmzing 
i f  

on every sucset of this c la s s .  For example, 

( x ( t ) )  f o r  x ( t )  e c (x) 

where C1 is contained in C. 
c e r t a in  c lass ,  kt must a l s o  be minimizing on every subset of t h e  class. 

Likewise, f o r  xo( t )  t o  be minimising on a 

mizing arc must satisfy. 
conclude that t h e  conditions on t h e  f i r s t  and second order  terms of t h e  
series expansion, EQs. (2.2.6) and (2.2.?), which were developed f o r  
x o ( t )  t o  be optimal on t h e  c l a s s  of weak var ia t ions,  must also hold f o r  
x ( t )  t o  be optimal on t h e  c l a s s  of strong variat ions.  For convenience, 
t8ese necessary conditions are summarized below: 

From t h i s  property, it i s  a simple matter  t o  

(1) ~ e i e r s t r a s s  Condition 
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(2) N e r  Condition 

af  d hf ----=o 
a x  d t  b t  

(3) Second Order Condition 

(2.2.12) 

f o r  6x ~ 6 2 su f f i c i en t ly  d l .  

too complicated t o  apply t o  mst engineering problems of i n t e r e s t .  Fortunately, 
it can be reduced to two simpler conditions which are equivalent t o  Eq.(2.2.13). 
The first of these conditions i s  t h e  Legendre condition which can be developed 
ra ther  simply from m. (2 .2 .U) .  
condition. 

"he second order condition in t h e  form shown i n  Eq, (2.2.13) i s  general ly  

The second i s  the  Jacobi conjugate point 

From Q. (2 .2 .U) ,  it follows t h a t  

which met hold f o r  any $ i f  x o ( t )  i s  optimal. Specif ical ly ,  it must hold f o r  

w$ere 6 ;  i s  small. Thus, t he  E funation has a minimum value qf z e p  at 
X = ko and, hence, i t s  first derivative,aE/axmust vanish a t  x = xo and 

Since 6 x is arb i t ra ry ,  except for t h e  requirement that it be small, it follows 
immediately t h a t  along t h e  minimieing curve x,(t) 

a' f 
a k '  - (x, , i , , t )  2 0  
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This inequal i ty  i s  referred t o  as t h e  Legendre condition. 

The development of t h e  Jacobi condition i s  somewhat -re involved. Let 
K denote t h e  value of t h e  terms on the  l e f t  hand s ide  of (2.2.13); t h a t  is, 

(2.2.15) 

It follows t h a t  K can never be less than zero i f  x o ( t )  i s  t h e  minimizing arc, 
and s ince t h e  value of K va r i e s  with 6 x ( t )  (also s k ( t ) ) ,  t he re  i s  some  . The Jacobi 

, t h e  Jacobi 
value of 6 x f o r  which K takes  on a minimum 
condition i s  said t o  be s a t i s f i e d  if 
condition i s  v io la ted  and t h e  arc xo( t%s2g 

To show these  f ac t s ,  it w i l l  be necessary t o  minimize K. Note tha t  t h e  
c o e f f i c i e n t s  

are known funct ions of time, once t h e  a r c  xo ( t )  i s  given. 
funct ion only of  s x ( t ) ,  and that par t icu lar  
must satisfy t h e  Euler condition of EQ. (2.2.12). 
is %em over t h e  e n t i r e  a rc ,  then K = 0 and t h e  N s r  condition i s  s a t i s f i e d  
iden t i ca l ly .  To rule out  this degenerate case i n  minimizing K, it w i l l  
be required that 6 x ( t )  s a t i s f y  t h e  in t eg ra l  condition 

Hence, K i s  a 
6 x ( t )  whioh minimizes K 

Note also t h a t  i f  6 x ( t )  I 

(2.2.16) 

where E 2  is  some real mall quantity.  
t h e  quant i ty  K i s  equivalent t o  minimizing t h e  quant i ty  K where 

Also, since G( Sx) = 0, minimizing 

and where h i s  an a r b i t r a r y  constant t o  be chosen so that  q. (2.2.16) 
i s  satisfied. 

At this point,  w i l l  be written as: 
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and the Euler  condition w i l l  be applied [Eq. (2.2.12)] 
minimizing 6 x ( t ) .  The r e su l t an t  re la t ionship  i s  

t o  determine t h e  

(2.2.17) 

The S x ( t )  sa t i s fy ing  Eq. (2.2.17) provides the  minimum value for  t h e  
This solut ion can be determined by 

6 x and in tegra t ing  t h e  f i r s t  term by parts, t o  
quant i ty  K given in EQ. (2.2.15). 
multiplying (2.2.17) by 
y ie ld  

Since 
a comparison of t h i s  expression with Eqs. (2.2.15) and (2.2.16) provides 

8 x i s  zero a t  both t h e  i n i t i a l  and terminal po in ts  of t he  in t eg ra l ,  

Kmin= h E 2  (2.2.18) 

Thus, i f  A i s  negative, t h e  Jacobi condition i s  v io la ted  and the  a r c  i s  
not  minimizing. If h i s  pos i t ive ,  t h e  Jacobi condition i s  s a t i s f i e d .  To 
determine t h e  sign of h , EQ. (2.2.17) i s  rewri t ten a s  

Assuming t h e  s t rong Legendre condi t ions of Eq. (2.2.14) i s  s a t i s f i e d  with 
f.. 1 0  over t h e  e n t i r e  i n t e rva l ,  and noting t h a t  this equation i s  a form of 
t% Sturm-Liouville equation f o r  which a r a the r  general  theory has been 
developed, t h e  theory of t h e  so lu t ion  t o  t h e  Sturm-Liouville equation can 
be applied t o  determine t h e  s ign of t h e  quant i ty  X . 
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The Jacobi and Legendre conditions together a r e  su f f i c i en t  f o r  t h e  second 
order t e r n s  in Eq. (2.2.13) t o  be g rea t e r  than, o r  equal to ,  zero. 
while t h e  Legendre condition i s  r a the r  easy t o  apply, t he  Jacobi condition i s  
not.  
engineering problems. Hence, in t h e  treatment which follows, no f u r t h e r  
consideration w i l l  be given t o  t h e  Jacobi condition o r  i t s  implications.  

However, 

For t h i s  reason, t h e  Jacobi condition i s  seldom employed i n  analyzing 

To i l l u s t r a t e  t h e  appl icat ions of t h e  necessary conditions, consider t h e  
minimwn surface of revolution problem in which it  i s  desired t o  determine 
t h e  curve connecting t h e  two poin ts  [to, xo] and 
[tf, xf] such t h a t  t h e  surface formed by rotat ing 
t h e  curve about t h e  t axis i s  a minimum. In 
t h i s  case, t h e  quant i ty  t o  be minimized 
( the  surface a rea)  takes  t h e  form X I  

I 
/ ' I  ' 

, 'I I + .'; I L  I- 

,f 
I 

The Euler condition requires t h a t  t h e  minimizing curve s a t i s f y  t h e  d i f f e r e n t i a l  
equation 

By d i r e c t  subs t i tu t ion ,  it can be shown tha t  t h e  extrema1 i s  a catenary of the 
form 

x = a cosh (7) t - b  

where a and b are constants  selected so t h a t  t h e  boundary conditions 

x = x o ,  

x - x ,  t = t  

t = t o  

f f 

are s a t i s f i e d .  
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The Legendre condition requires  t h a t  

If x ( t )  > 0 along the  arc ,  then it follows t h a t  a 7 0, and t h a t  this condition 
is sa t i s f ied .  The Weierstrass condition y i e lds  

where k denotes the  der ivat ive along the  extremizing curve ( i . e . ,  t h e  
catenary) and Xdenotes  any o ther  der ivat ive.  
t o  show t h a t  the  inequal i ty  holds provided x > 0 along the  optimizing arc .  

Again, it is  a simple matter 

2.2.2 N-Dimensional Lagrange Problem 

The n-dimensional Lagrange problem i s  concerned with minimizing a 
functional of t h e  form 

o r  in t h e  vector notation 

f 
J = f ( t ,  x, i) d t  

0 

where x i s  t h e  n dimensional vector 

The necessary conditions which the  extremizing a r c  must s a t i s f y  a r e  e s sen t i a l ly  
t h e  vector equivalent of t he  sca l a r  conditions developed i n  t h e  preceding 
section f o r  the  one dinensional problem. 
exactly the  same. 

The method of development i s  
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The condition t h a t  t h e  first var ia t ion  ( i . e . ,  t h e  first order terms in a 
s e r i e s  expansion of t h e  function J about its minimum value) vanish f o r  t h e  
minimizing a r c  t o  be minimizing on t he  class of weak var ia t ions  leads  t o  the  
n Euler equations 

(2.2.19) 

Note t h a t  t h e  form of t h e  Euler equations above i s  t h e  same as that given in 
FQ. (2.2.12) f o r  t h e  one dimensional problem. The Legendre condition, which 
must be s a t i s f i e d  f o r  t h e  second var ia t ion  t o  be grea te r  than o r  equal t o  
zero, i s  expressed as 

3 0  
Y f  (2.2.20) 

t h a t  is, t h e  matrix (g) must be pos i t ive  semi-definite along t h e  extremizing 
arc .  Final ly ,  t h e  Weierstrass condition becomes 

where x denotes t h e  der iva t ive  along t h e  extrema1 and X denotes any o ther  
value 09 t h e  der ivat ive.  

A four th  condition, t h e  Jacobi condition, can also be developed. However, 
as pointed out  i n  t h e  previous section, t h i s  condition i s  usual ly  too 
d i f f i c u l t  to apply t o  be of any use, 

In  t h e  treatment of both t h e  one-dimensional and n-dimensional Lagrange 
problem it has been assumed t h a t  t h e  initial and terminal po in ts  are f ix  

have been specif ied.  F'requently this is not t h e  case, and t h e  limits of 
in tegra t ion  are allowed t o  vary over specified surfaces  i n  t h e  (x , t )  space. 
T h i s  case will be t r ea t ed  next.  

t h a t  is, t h a t  t h e  value of x at t = to a s  well as t h e  value of x at t = t 9; 
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. 
2.2.3 Boundary and Corner Conditions 

Consider t h e  n-dimensional Lagrange problem i n  which t h e  i n t e g r a l  

J = If f (x, &, t ) d t  

0 

i s  t o  be minimized subject t o  t h e  boundary conditions 

x = xo 
f 
X0 n 

at t = to 

and 

Y i ( X , t  f f  ) = 0 

I n  this case, t he  upper l i m i t  of in tegra t ion  
Rather, t he  terminal s t a t e  i s  required t o  be 
m constraint  equations p. ( zC, if) = o;, = I,m. 
I f  the  problem i s  one dhens iona l ,  then 
t h e  surface, pulgf,tf) = 0 
t h e  upper l i m i t  must l i e  becomes a 
curve i n  t h e  ( x , t )  space ( see  sketch), 
and the  problem cons i s t s  of determining 
both t h e  a r c  x ( t )  and t h e  terminal 
point (x f , t f )  !!or which t h e  funct ional  

x , on which 

,,0 

J has a minimum value. 

Since t h e  W,. of Eq. (2.2.23) a r e  
zero, minimizing t h e  func t iona l  J i s  
equivalent t o  minimizing t h e  funct ional  3 

(2.2.22) 

J" / /n  L a  (2.2.23) 

f f  (x ,t ) i s  not specif ied.  
on the  surface defined by t h e  

I to 

where 

+ p . Y.* 
i d  

t 

* Repeated subscr ipts  i nd ica t e  summation. 
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, 

and where the  ,&j a r e  constants t o  be determined. 
of 3 t o  zero, a condition which must hold for  J t o  be minimizing, provides 

Se t t ing  the f i r s t  var ia t ion  

where t h e  f d t  term i s  due t o  the  f a c t  t h a t  t he  upper l i m i t  of in tegra t ion  cm 
vary. Integrat ing t h e  first term in t h e  integrand by p a r t s  now yie lds  

Note t h a t  t h e  var ia t ion  
a r c  and the  optimal a rc  a t  t h e  time tf; that  i s  

6 x ( t  f ) i s  t h e  difference between a neighboring 

f f xi 
dx( t f )  = x ( t  ) - xo( t  ) 

while t h e  d i f f e ren t i a l ,  dx i n  ?3q. (2.2.24) 
i s  the  difference between g e  two arcs,  but, at 
d i f f e ren t  times, since the  terminal times 
along t h e  two solut ions a r e  not t he  same. 
From t h e  sketch t o  the  r igh t  it is  a s-le 
matter t o  show that t o  first order, bx 
and dx a r e  re la ted  by 

6x = dx - d t  

or in the  sca l a r  notation 

&xi = dx. - ki d t  
1 

1 t to tf 

(2.2.25) 

where xi denotes the  slope along the  optimal solution at t h e  terminal point.  
Subst i tut ing (2.2.25) i n to  (2.2.24) provide8 

(2.2.26) 
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Consider a spec ia l  subclass of neighboring solutions,  a l l  of which pass  
a1 point  as t h e  optimal solution. In t h i s  case, t h e  through t h e  same t e  

quant i t ies  dtf  and 7 i n  (2.2.26) a r e  zero with t h e  first var ia t ion  
reducing t o  

(2.2.27) 

Since the b x i a r e  a rb i t r a ry ,  it follows immediately t h a t  t he  Euler equations 

f - -  (fa = 0; i = 1, n (2.2.28) x, d t  x, 
I I 

must hold along t h e  optimal solution. 

The expression f o r  t h e  f i r s t  var ia t ion  in Eq. (2.2.26) reduces t o  
Eq. (2.2.27) on ly  f o r  a special  subclass of weak var ia t ions ;  namely, t h a t  
c l a s s  which passes through t h e  same terminal point as t h e  optimal solut ion.  
Hence, t h e  Euler conditions of (2.2.28) a r e  necessary on ly  f o r  t h i s  spec ia l  
subclass. However, as pointed out i n  t h e  previous sect ion (Eq. 2.2.11), any 
necessary condition which the  extremizing a rc  x o ( t )  must s a t i s f y  t o  be 
minimizing on a subset of t h e  c l a s s  of possible  var ia t ions  i s  also necessary 
f o r  x,(t) t o  be minimizing on t h e  e n t i r e  c l a s s .  Hence, t he  Euler equations 
of (2.2.28) must hold f o r  all weak var ia t ions  of t he  minimizing a rc  x o ( t )  
whether these var ia t ions  pass through t h e  same terminal point as xo o r  not .  

Returning t o  t h e  general case i n  which t h e  neighboring and optimal 
solutions do not go through t h e  same terminal point,  it follows from t h e  
above arguments and Eq. (2.2.28) t h a t  t h e  first var ia t ion  of (2.2.26) takes 
t h e  form 

i = l,n are Ret. all independent because The n + 1 d i f f e r e n t i a l s  d t  and 

d i f f e r e n t i a l s  q, dx ... % as dependent through t h e  cons t ra in t  equations 
Crj = 0; j = 1,m 2nd t h e  remaining %+ , s2, . . .% as independent. 

Now, since t h e  are a rb i t r a ry ,  seleck t h e  di j = 1 ,  ,+,, so t h a t  t h e  
coef f ic ien ts  of q, % ,..., % in Q. (2.2.29) vanish; t h a t  is, so t h a t  

of the m terminal cons t ra in ts  . (2.2.23). Consider t h e  first m 

ui 
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Then ( 2.2.29 ) becomes 

where t h e  subscr ipt  on dxi ranges f r o m  m+l  t o  n. 
are independent f o r  these  var iables ,  it follows t h a t  
i f  

But since d t  and dxi 
8 will vanish only 

Collecting t h e  r e su l t s ,  t h e  a r c  x ( t )  which minimizes t h e  func t iona l  
in Eq. (2.2.22) subject t o  t h e  terming1 cons t ra in ts  of Eq. (2.2.23) must 
s a t i s f y  t h e  n d i f f e r e n t i a l  equations 

( 2.2.31) 
A .L 

and t h e  boundary o r  t ransversa l i ty  conditjons a t  the  terminal point 

Note t h a t  Eqs. (2.2.32) are consis tent  * 

n+l+m equations in t h e  n+l+m unknowns <, t f ,  and P L " ~ '  . 

be made. F i r s t ,  t h e  d i f f e r e n t i a l  constraints ,  Eqs. (2.2.31-), and t h e  
boundary conditions,  Eqs. (2.2.32), a r e  uncoupled in the  sense t h a t  t h e  same 
s e t  of d i f f e r e n t i a l  equations must be sa t i s f ied  by t h e  minimizing a r c  
i r r ega rd le s s  of  how t h e  terminal cons t ra in ts  may vary ( t h a t  is, t h e  same s e t  
of equations holds whether t h e  terminal point i s  f ixed o r  moves along a 
surface i n  t h e  space). 
cons t r a in t s  necessary f o r  t h e  f ixed end point problem are a l s o  necessary f o r  
t h e  va r i ab le  end point  problem. 
minimizing arc must also s a t i s f y  t h e  Legendre and Weierstrass conditions of 
Eqs. (2.2.20) and (2.2.21). 

t h  t they cons t i t u t e  a s e t  of 

Two observations regarding t h e  development of this s e t  of equations can 

From t h i s  f ac t ,  it follows d i r e c t l y  t h a t  all d i f f e r e n t i a l  

Thus, i n  addition t o  t h e  Euler equations, t h e  
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A second observation concerns the  ro l e  of t h e  mul t ip l ie rs  &;. These 
mul t ip l ie rs  a r e  used i n  much the  same way as t h e  constants A i  i n  t he  constrained 
maxima-minima problem of Section 2.1.4. By introducing these  mult ipl iers ,  
t h e  constrained var ia t ion  in the  termFnal conditions (constrained by means 
of the  equat iom V i  = 0 )  can be t r ea t ed  as an unconstrained var ia t ion.  
technique w i l l  be used again and again throwhout  t h e  report .  

a point (xo, t o )  t o  a curve Y (2, tf)  = 0. I n  t h i s  case t h e  in t eg ra l  i s  

This 

As an example, consider t h e  p blem of finding the  shor tes t  distance from 

f 
J = j / 7 7 F d t  

0 

with the minimizing a rc  consisting of a s t r a igh t  l i n e  along which x i s  a 
constant. The boundary conditions of  (2.2.32) become 

and 

/ acy = o  / F F f 4 X  
reduce t o  

through the  elimination af t he  mul t ip l ie r  ,u . 
Since t h e  slope along the  curve v' = 0 i s  given by-bV/aa/(aY/ax),  t h i s  

expression proves t h a t  t h e  minimizing curve and t h e  constraint  y' = 0 a r e  
orthogonal a t  t h e  p i n t  of intersect ion.  

In addi t ion t o  t h e  boundary conditions which the  optbnal solut ion must 
sa t i s fy ,  there  aye also intermediate conditions along the  a r c  which must 
hold i f  the  arc is t o  be minimizing. 
Specifically,  cer ta in  conditions must 
hold a t  a corner point where t h e  
der ivat ive % i s  discontinuous. These 
conditions will be developed below. 

X 

0 /T I f 
I 
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I n  developing t h e  E u l e r  conditions of Eqs. (2.2.31) and (2.2.12), it 
has been t a c i t l y  assumed t h a t  t h e  der ivat ive k i s  continuous along t h e  
extrema1 arc, a condition t h a t  w i l l  not hold i f  t h e  a r c  has corners (see 
preceding sketch) 
point, say t = til, t h e  der iva t ive  x i s  not defined. 
J which is t o  be minimSzed is rewri t ten as 

r e su l t i ng  from fudden control changes, e tc .  A t  a corner 
Hence, t h e  funct ional  

f 
J = ti f(x,k , t )d t  + f f (x, ;,t)dt . 

'0 'tt 

Now forming t he  first var ia t ion  and equating it t o  zero yie lds  

I' f but i n  each i n t e r v a l  [to,<] and [t", t 1 t h e  second term in t h e  integrand 
can be integrated by parts as 

Thus, t h e  va r i a t ion  8 J reduces t o  

But t h e  integrands a r e  c l e a r l y  zero along an e x t r d e i n g  arc s ince they are, 
in f a c t ,  t h e  Euler equations. Thus, 
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6 ~ .  1 = dxi - xi d t  

t h i s  expression becomes 

(2.2.33) 

If the  corner i s  unconstrained ( i .  e. ,  t h e  corner i s  not required t o  be on 
some specif ied surface) then d t  and dxi a r e  independent ( the  corner can 
occur any place),  and Eq. (2.2.33) reduces t o  t h e  two conditions 

af-. * +  = +----, f i - .  x; a xi a x i  
(2.2.30) 

These conditions a re  usual ly  re fer red  t o  as t h e  Weierstrass-Erdman corner 
conditions. 

As an example of t h e  appl icat ion of these  conditions, consider a one 
dimensional problem of the  form 

where G(x,t) i s  any function of x and t. If t h e  minimizing solut ion has a 
corner, then a t  t h e  corner Eqs . (2.2.34a) an4 (2.2.34b ) become 

f r o m  which it follows t h a t  
'+ x - x  
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and t h a t  t h e  optimal solut ion can not have any corners. 

2.2.4. General Treatment of Equality Constraints 

Often problems a r i s e  in which a functional J i s  t o  be minimized subject 
t o  subsidary cons t ra in t  conditions. 
of t h ree  forms. 

These cons t ra in ts  general ly  take one 

(1) In t eg ra l  Constraints 

The functional J i s  t o  be minimized on the  c l a s s  of 
functions x ( t )  sat isfying t h e  i n t e g r a l  condition 

f i , ( Y , A , t ) d C  - k = o  
where k i s  a specif ied constant. 

(2) Surface Constraints 

(2.2.35 ) 

The functional J i s  t o  be minimized on the  c l a s s  of functions 
x ( t )  lying on t h e  surface 

G2 ( x , t )  = 0 (2.2.36) 

(3) Di f fe ren t ia l  Constraints 

The funct ional  J i s  t o  be minimized on t h e  c l a s s  of 
funct ions x ( t )  sat isfying t h e  d i f f e r e n t i a l  equation 

G,(x,;,t) = 0 (2.2.37) 

I n  many cases  more than one constraint  of a ce r t a in  type w i l l  be imposed, 
However, and frequent ly  problems a r i s e  in which a l l  three types a r e  present.  

it should be noted t h a t  t h e  number of  surface and d i f f e r e n t i a l  cons t ra in ts  
combined must be l e s s  than t h e  dimensions of t h e  vector x in t h e  problem; 
t h a t  is, if t h e  probl- i s  n dimensional, then a t  most n-1 subsidiary cons t ra in ts  
o f - t h e  surface and d i f f e r e n t i a l  type can be imposed. 
dimensional problem, a surface constraint  

For example, i n  a one 

G2(x,t) = 0 

could @ be included, since t h e  curve wnnecting t h e  i n i t i a l  and terminal 
po in t s  would be completely specif ied by t h i s  cons t ra in t  and the re  would 
remain no degree of freedom f o r  minimizing the funct ional  J. On t h e  o ther  
hand, t h e  i n t e g r a l  type cons t ra in t  i s  a weak cons t ra in t ;  and any number of 
t hese  can be included regardless  of t h e  problem's dimensions, provided 
they a r e  not contradictory. 
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By a s l i g h t  amount of  a lgebraic  manipulation, both i n t e g r a l  and surface 
constraints  can be put i n  the  form of d i f f e r e n t i a l  constraints.  Hence, i n  
t h e  formulation, one need only consider t h e  inclusion of d i f f e r e n t i a l  con- 
straints.  

To convert t he  i n t e g r a l  constraint  t o  d i f f e r e n t i a l  form, introduce a 
new dimension i n t o  the  problem and l e t  

The vector X now has n+l dimensions. Different ia t ing t h i s  expression provides 

which, along with t h e  boundary conditions 

(2.2.39) 

i s  equivalent t o  t h e  i n t e g r a l  condition of equation (2.2.35). 

The process of converting the surface constraint  t o  d i f f e r e n t i a l  form 
consis ts  simply i n  d i f f e r e n t i a t i n g  it. Hence 

(2.2.40) 

Equation (2.2.40) i s  now i n  d i f f e r e n t i a l  form, and it i s  only a matter of 
imposing one of  t he  two-boundary conditions 

(2.2.41) 

t o  insure t h a t  G2(X,t) is zero over t h e  e n t i r e  arc .  

Since a l l  equal i ty  constraints  can be put i n  d i f f e r e n t i a l  form, t h e  
following n-dimensional problem w i l l  be formulated : 
f o r  which t h e  functional 

Determine t h e  a r c  X( t ) 

(2.2.42) 
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i s  minimized subject t o  t h e  boundary conditions 

>((to) = x ”  
Y/d.wf,tO= 0 ; J = . / , # L _ ) 7  

and t h e  d i f f e r e n t i a l  constraints  

(2.2.43 

Since both Y j  and Gk a r e  zero, minimizing t h e  funct ional  J is again 
equivalent t o  minimizing ? where 

where A ; 
Letting 

( j = l , m )  and Pk (k1,r) are mult ipl iers  t o  be determined. 

and s e t t i n g  the  first va r i a t ion  of t o  zero provides 

Integrat ing the  first term i n  the  i n t e g r a l  by pa r t s ,  and noting t h a t  

y i e l d s  

SYidt  +(. 
d a t  

+ V g ;  +A$’=; )‘dx; 

As i n  t h e  preceding section, a weak variation i n  which dX; and d t  are zero 
(with t h e  neighboring solut ion going through t h e  same t e r h n a l  point as t h e  
optimal solut ion)  can be considered t o  conclude t h a t  f o r  a general  weak 
variation, both t h e  i n t e g r a l  expression i n  equation (2.2.45) and t h e  boundary 
conditions must be zero independently. 
va r i a t ion  reduces t o  t h e  two conditions 

Thus, t h e  vanishing of t h e  f i rs t  

(2.2.46) 
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where 

and 

The S X i  i n  equation (2.2.46) are not a l l  independent since Xi ( t )  
must s a t i s f y  the  r d i f f e r e n t i a l  constraints  of equation (2.2.44). 
first r of t h e  &Xi( 6 X l ,  6X2. . .  6 Xr) a r e  considered as dependent with 
the  mult ipl iers  Pi" selected so t h a t  t he  coe f f i c i en t s  of ax1, sX2,. . .6 X 
i n  the integrand i n  (2.2.46) a r e  zero, then the  renaining coe f f i c i en t s  m u d  
a l s o  vanish due t o  the  independence of bXHl, . . .  8%. Thus, t h e  
n Euler equations r e s u l t  where 

If t h e  

(2.2.48) 

By a similar reasoning process, it can be shown t h a t  t h e  mul t ip l i e r s  
can be selected so t h a t  the  coeff ic ients  of dXi and d t  i n  equation (2.2.45) 
a l l  vanish yielding the  n+l boundary conditions 

flj 

Note t h a t  t h e  Euler equations, equation (2.2.48), cons t i t u t e  a system of n 
equations i n  n+r unknowns ( t h e  Xi(i=l,n) and t h e  Pk(k=l,r)). This system, 
together with the r constraints  of equation (2.2.44) i s  su f f i c i en t  t o  de- 
termine t h e  X -  coeff ic ient  determinant of the highest 
derivatives (ki 

b,i* Pf x ,  1 . . . G r x ,  

*While the  mult ipl iers  b4 j are constants, t h e  mul t ip l i e r s  P i  are functions 
of time and vary from point t o  point along t h e  t r a j ec to ry :  t h a t  is, Pi=Pi(t) 
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i s  not zero. 
solut ion t o  t h e  Euler and constraint  equations does not exist a t  t he  point. 
The reason fo r  t h i s  i s  t h a t  a t  any point where t, x and x are known a unique value 
f o r  x and P can be computed only i f  the coefficient determinant does not 
vanish . 

If t h e  coeff ic ient  determinant i s  zero a t  a point, then a unique 

I n  addi t ion t o  t h e  Euler equations, a Weierstrass condition can also be 
developed by a reasoning process similar t o  t h a t  used i n  t h e  der ivat ion of 
equation (2.2.10). For t h i s  problem, the Weierstrass condition takes the  form 

where xo denotes t h e  der ivat ive along the  minimizing solut ion and X denotes 
any other value of t h e  der ivat ive t h a t  s a t i s f i e s  t h e  constraint  equations 

(2.2.52) 

Finally, using the Weierstrass condition, t h e  Legendre condition can be 
developed f o r  t h e  weak var ia t ion case i n  which 

where 8 X i s  small. 
grea te r  than o r  equal t o  zero, t h i s  function has a minimum value a t  XGo and 
t h e  second order terms i n  a series expansion about t he  ~0 point must not be 
negative. Hence, it follows t h a t  

Since, from equation (2.2.51), t he  E function i s  

where t h e  
become 

6Xi must s a t i s f y  the  constraint equations t o  first order which 

Collecting r e su l t s ,  f o r  t h e  functional J 
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. .  

t o  be a minimum subject t o  t h e  terminal conditions 

and the d i f f e r e n t i a l  constraints  

t he  minimizing a r c  must s a t i s f y  

(1) The Euler and constraint  equations 

G k C x , i , t )  = 0 ; k * l , r  
(2.2.55) 

at= ( 2 )  The Weierstrass condition 

E(&,,X, Yo,+) = F(X, X ,  , t.) - F(g0,X,,t) - ( x. c -20, ' ) - ( i o  23 x i  J YO,?) 
(2.2.56) 

f o r  xo and X sa t i s fy ing  the  constraint  equations 

( 3 )  The Legendre condition 

sic; S i j  ZD a L f  
-.- 
a A; a"i 
f o r  6 Xi s a t i s fy ing  
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(2.2.59) 



(4) The Boundary o r  t ransversa l i ty  conditions 

(2.2.60) 

2.2.5 Inequality Constraints 

A s  i n  t he  case of equal i ty  constraints, i nequa l i t i e s  usually take one 
of th ree  forms: 

(1) In t eg ra l  Inequal i t ies  

$&,i,t)dt - 6 f 0 

(2) Surface Inequal i t ies  

(2.2.61) 

(2.2.62) 

(3) Di f fe ren t ia l  Inequal i t ies  

The procedure f o r  handling inequal i t ies  i n  the  Calculus of Variations 
i s  e s sen t i a l ly  t h e  same as t h a t  used i n  maxima-minima theory (see sect ion 
2.1.4) and consis ts  of converting t h e  inequality t o  an equal i ty  through the  
introduct ion of addi t iona l  variables.  

The i n t e g r a l  inequal i ty  (2.2.61) i s  put i n  the  d i f f e r e n t i a l  form 

with t h e  boundary conditions 

(2.2.65) 

For YZ, real, t he  inequal i ty  (2.2.61) w i l l  always be satisfied. Equations 
(2.2.64) and (2.2.65) a re  then adjoined t o  t h e  o r ig ina l  problem through t h e  
introduct ion of addi t iona l  mul t ip l ie rs  i n  exactly the  same way t h a t  equal i ty  
cons t ra in ts  and boundary conditions are adjoined, and the  standard neceesary 
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conditions are applied (i .e. ,  Euler, Weierstrass, e t c . )  

The d i f f e r e n t i a l  inequal i ty  i s  converted t o  t h e  equal i ty  

and adjoined t o  the  o r i g i n a l  problem. 
which G3 < 0 ( q 3  # 0) plus a r c s  along which G3 = 0 ( r 3  = 0 )  

The solut ion consis ts  of a r c s  along 

For the surface constraint ,  l e t  

Differentiating provides 

(2.2.66) 

with t h i s  d i f f e r e n t i a l  form of the  constraint  adjoined t o  the  o r i g i n a l  problem 
and with var iable  
a r b i t r a r y  otherwise. 

y1 = 0 when a d e f i n i t e  equal i ty  holds i n  (2.2.62) and 

From t h i s  discussion, it i s  concluded t h a t  inequal i ty  constraints  can 
be t reated i n  much t h e  same manner as equal i ty  constraints .  
noted, however, t h a t  when the standard necessary conditions t o  the  reformu- 
l a t e d  problem (with inequa l i t i e s  represented as equa l i t i e s )  are supplied, t h e  
form of these conditions (Euler, Weierstrass, Legendre, corner and t rans-  
ve r sa l i t y )  does r e f l e c t  t h e  inequal i ty  nature of t h e  constraints.* 
t h e  computational procedure o f  generating a solut ion becomes more involved 
when inequa l i t i e s  a r e  present. 
necessary conditions are affected w i l l  be discussed i n  l a t e r  sect ions.  

It should be 

Further, 

Precisely how t h e  computational procedure and 

2.2.6 Discussion 

From the preceding sections,  it i s  apparent t h a t  t h e  methods used i n  t h e  
Calculus of Variations a r e  very similar t o  those used i n  maxima-minima theory. 
It i s  fu r the r  apparent t h a t  most of t h e  Infomistion about t h e  extremjzing a r c  
i s  derived from t h e  process of equating the  first va r i a t ion  of t he  functional 
J o r  t h e  modified functional J=zero, where 
additional terms t h a t  a r e  equal t o  zero. 
t h a t  the f i r s t  var ia t ion i s  zero only on the  c l a s s  of weak va r i a t ions  where 

% x and 6 x are both small. For convenience, t h e  conditions r e su l t i ng  
from the  f i r s t  var ia t ion are l i s t e d  below f o r  t h e  problem of minimizing t h e  

*In some cases, t h e  form of the  Legendre and corner conditions are modified 
due t o  t he  inclusion of t he  inequal i ty .  
t h a t  these conditions are correct ly  s t a t ed .  

5 cons i s t s  of J plus  
O f  course, it must be remembered 

Thus, care should be taken t o  see 
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.. 

functional 

subject to the terminal conditions 

and the differential constraints 

Euler Condition 

where 

f = f r p , +  

; j = I ,  m4yl  

* A, = /,yt I 

Boundary o r  Transversality Conditions 

(2.2.67) 

(2.2.68) 

(2.2.69) 

(2.2.70) 

(2.2.71) 

Corner Conditions (i. e., conditions which must hold across 
a discontinuity in x) - 

(2.2.72) 

c; a/=-.- f a p t  f - - -  xi = F  - -  
a x; a ti 

(2.2.73 

where the superscript i- 
the superscript - denotes the other side. 

denotes one side of the corner and 
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The condition t h a t  t h e  first va r i a t ion  be zero r e s u l t s  from a truncated 
Taylor s e r i e s  expansion of t he  functional J about t h e  minimizing solut ion xo ( t ) .  
Hence, t he  truncated expansion must include a t  least t h e  second-order terms 
of  t h e  ser ies .  This requirement i n  t u r n  d i c t a t e s  t h a t  t h e  functions f ,  YJ 
and $ must possess a t  least continuous second der ivat ives  i n  a l l  t h e i r  
arguments. This r e s t r i c t i o n  i s  not severe since, i n  almost a l l  problems of 
i n t e r e s t ,  these functions possess many more continuous der ivat ives  than t h e  
second. Often these functions are, i n  f ac t ,  analyt ic .  

For the  strong var ia t ion i n  which 6 x i s  small but 6 x i s  not, t he  
first var ia t ion i s * n o t  necessarily zero, but g rea t e r  than or equal t o  zero; 
t h a t  is, i f  J(x ) i s  minimizing, then J(x)  i s  g rea t e r  than J(xo), and t h e  
first o r d e r  difyerence between these two quan t i t i e s  fis developed f o r  example 
i n  equations (2.2.8) t o  (2.2.10)l must be non-negative. 
t h e  Weierstrass condition 

This fact leads t o  

where, again 

In  many cases, t h e  Weierstrass condition i s  used simply as a tes t  t h a t  
t h e  extremizing arc, as developed from equations (2.2.70) t o  (2.2.73), i s  
indeed minimizing. However, it should be noted t h a t  t he  sa t i s fy ing  of t h e  
Weierstrass condition does not guarantee t h a t  t he  a r c  Xo does minimize t h e  
functional J. 

Finally, t h e  Weierstrass condition can be used t o  develop t h e  Legendre 
condition which requires  t h a t  

f o r  si, .. sa t i s fy ing  

(2.2.75) 

(2.2.76) 

These conditions a r e  necessary, but not su f f i c i en t ,  f o r  Xo(t) t o  be 
minimizing; t h a t  is, Xo ( t )  
and s t i l l  not be minimizing. 
been developed, since, i n  most engineering problems, sufficiency i s  very 
d i f f i c u l t  t o  prove. 
t h a t  t h e  problem as formulated does have a t r u e  m i n i m u m  solut ion and t h a t  t h e  
solution r e su l t i ng  from an appl icat ion of t h e  necessary conditions is, indeed, 

might satisfy these conditions. 
The s u f f i c i e n t  conditions fo r  a minbum have not 

Rather, physical  reasoning i s  generally employed t o  deduce 
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t h e  desired solution. Such log ic  can, of course, lead t o  incor rec t  r e su l t s .  

The treatment of t h e  preceding sections has centered on t h e  Iagrange 
problem where t h e  funct ional  t o  be minimized i s  an in t eg ra l  of t h e  form 

There are, however, two other  w e l l  known problems i n  the  Calculus of Variations': 
t he  Bolza problem and t h e  problem of Mayer. 
minimizing a function $ of the  terminal s t a t e  

The Mayer problem consis ts  of 

subject  t o  boundary and d i f f e r e n t i a l  constraints of t he  form i n  equations 
(2.2.68) and (2.2.69). 
function of t he  terminal s t a t e  i s  t o  be minimized 

I n  the  Bolza problem, the  sum of an i n t e g r a l  and a 

subject t o  t h e  same type of boundary and d i f f e r e n t i a l  constraints  as i n  the  
problem of Mayer. 
problems are equivalent; t h a t  is, by an appropriate transformation, t he  Bolza 
and Mayer problems can be put i n  t h e  form of a Lagrange problem. 

It i s  shown i n  Reference (2) (page 189) t h a t  a l l  th ree  

I n  modern t r a j ec to ry  and control  analysis, most problems are cas t  i n  t he  
Mayer form. Hence, for convenience i n  what follows, the  Lagrange problem of 
equations (2.2.67) t o  (2.2.69) will be reformulated as a Mayer problem and the  
corresponding necessarg conditions l i s t e d .  

with 

and 
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Then the functional to be minimized is 

subject to the constraints of equations (2.2.68) and (2.2.69) and the addi- 
tional constraint 

To accomplish the minimization, the revised functional 5 is formed 

..f 

and the first variation is set to zero to provide 

(1) Euler Conditions 

where 

(2) Boundary Conditions 

Yj z O 

(3) Corner Conditions 
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(2.2.79) 
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The Weierstrass and Legendre conditions a r e  t h e  same as before, but  with the  
function F̂ replacing F i n  equations (2.2.74) and (2.2.75), respectively.  
These conditions f o r  t h e  Maser problem w i l l  be used extensively i n  t h e  
sect ions t h a t  follow. I n  concluding t h i s  b r i e f  review, i t  i s  noted t h a t  a l l  
of t h e  necessary conditions used i n  the  Calculus of Variations r e s u l t  from 
comparing t h e  minimizing a r c  Xo and the corresponding value of  t h e  functional 
J(xo) with a neighboring a r c  inf ini tes imal ly removed from xo. 
i n  applying t h e  Calculus of Variations t o  engineering problems, it i s  not 
required t o  draw on t h e  standard necessary condition l i s t e d  i n  the  l i terature.  
Rather, it i s  possible t o  use t h e  comparison technique t o  generate a set of 
conditions corresponding t o  t h e  pa r t i cu la r  problem. 
usually safer s ince it avoids t h e  misapplication of standard equations t o  
non-standard problems. I n  a l l  cases, with the possible exception of t h e  
Jacobi condition, t h e  deve lopent  is  both conceptually and a lgeb ra i ca l ly  
s t r a i g h t  forward. 

Hence, i n  

This l a t t e r  approach i s  

i 

43 



. ,  

2.3 THE PONTRYAGIN MAXIMUM PRINCIPLE 

The Maximum Principle w a s  developed by L. S. Pontryagin and h i s  
colleagues a t  t h e  Steklov Mathematical I n s t i t u t e  i n  Moscow. 
came t o  t h e  a t t en t ion  of s c i e n t i s t s  and engineers i n  t h e  country through t h e  
t r ans l a t ion  of a series of Russian a r t i c l e s  i n  t h e  l a t e  1950's, t h e  most im- 
portant of which wgre th ree  a r t i c l e s  by L. I. Rozonoer i n  Automation and 
Remote Control. LSee Reference ( 3 2 7 .  
extensively documented i n  both t h e  open l i t e r a t u r e  and i n  many mathematical 
and engineering t e x t s ,  with t h e  most complete treatment given by t h e  origina- 
t o r s  of the  pr inciple  i n  Reference (4). 

The pr inciple  

Since then, t h e  p r inc ip l e  has been 

The Maximum Principle i s  very much l i k e  the  Calculus of Variations. 
In  fact ,  it i s  e s s e n t i a l l y  a generalization of t h e  c l a s s i c a l  Weierstrass 
condition. Both the  Maximum Principle  and t h e  Calculus of Variations lead 
t o  t h e  same s e t  of governing equations which t h e  extremizing solut ion must 
s a t i s fy .  
as opposed t o  t h e  other f o r  solving an engineering problem. However, s ince 4 

t h e  Maxhum Principle  i s  a c l ea re r  and more concise statement of  how t h e  
optimization i s  t o  be conducted ( p a r t i c u l a r l y  when ce r t a in  types of i nequa l i ty  
constraints are present),  i t s  use of ten f a c i l i t a t e s  t he  construction of proofs, 
and leads t o  new theorems and numerical methods. 

Hence, t he re  i s  no mathematical preference f o r  using one method 

2.3.1 Problem Statement 

In t h e  c l a s s i c a l  Calculus of Variations, t h e  problem of minimizing a 
functional involves t h e  select ion of an appropriate time h i s to ry  f o r  t h e  
n-dimensional vector X. 
i s  focussed on the individual components of X as t o ,  say, t h e i r  physical  
significance. 
components of X serving merely as dependent variables.  

During t h i s  select ion process, no special  a t t e n t i o n  

Rather, t he  emphasis i s  on t h e  mathematical s t ruc tu re  with t h e  

I n  modern control  and t r a j e c t o r y  problems t h i s  procedure i s  not followed; 
t h e  vector X i s  separated i n t o  two sets of components. The first set of 
components represents t h e  state var iables  o f  t h e  problem and the  second set 
t h e  control variables.  The reason f o r  t h i s  separation i s  t h a t  t h e  state 
components play a d i f f e ren t  r o l e  i n  t h e  problem than do the control  com- 
ponerlts; th.cis, it serves t c  c l a r i f y  physical int .erpretation of  t h e  results 
t o  distinguish between t h e  two. 
necessary . Mathematically, t h e  d i s t inc t ion  i s  not a t  a l l  

The state of  a system i s  usually described as t h e  least amount of  in-  
formation required a t  t h e  present time t o  predict  t h e  system's behavior a t  
some f'uture in s t an t .  
specified force f i e l d  i s  i t s  posi t ion and ve loc i ty  vectors. 
i n  conjunction with Newton's second l a w  determine t h e  posi t ion and ve loc i ty  
a t  any future  time. 
a f f e c t  t h e  forces act ing on t h e  system. For example, the control  var iables  
i n  a chemical rocket could be the  s t ee r ing  angle (angle which t h e  t h r u s t  

For example, t h e  state of a point mass moving i n  a 
These two vectors 

The control  var iables  are those var iables  t h a t  d i r e c t l y  
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vector makes with some reference l i n e )  and the  t h r o t t l e  s e t t i ng .  
i n  these var iables  causes a va r i a t ion  i n  t h e  d i r ec t ion  and magnitude of  t he  
t h r u s t  force ac t ing  on t h e  rocket. 
are counterparts i n  a cause-effect relationship with t h e  optimization problem 
consisting i n  determining t h e  control  (cause o r  input)  so t h a t  t h e  state 
( e f f ec t  o r  output) evolves i n  some optimum fashion. The separation of t h e  
var iables  s o  as t o  e s t ab l i sh  t h i s  cause-effect r e l a t ionsh ip  usual ly  proves 
convenient i n  both problem formulation and i n  i n t e r p r e t a t i o n  of results. 

A var i a t ion  

Thus, the control and state components 

u1, u2 plane ( see  sketch). The s e t  V % 
denotes a compact region i n  t h e  control  
space. For example, i n  t he  two-dimen- 

In  modern control  terminology, t h e  optimization problem i s  usual ly  cas t  

7 2  

i n  t h e  following 
s iona l  vector 

u =  

from t h e  set  V 

form: Determine t h e  control act ion u where u i s  a r-dimen- 

, where i s  a compact set i n  the  r-dimensional control  
space+$, so t h a t  a function of  t h e  terminal state i s  minimized 

subject t o  t h e  terminal cooditions 

and t h e  d i f f e r e n t i a l  constraints  

4 5  



The n-dimensional vector  X i s  t h e  state o f  t he  system with t h e  i n i t i a l  s tate 

(2.3.4) 
\ :o/ 

x, 
Note t h a t  t h i s  problem i s  very similar t o  t h e  Mayer problem treated i n  

and t h e  dimensions of  t h e  problem increased from n t o  
Section 2.2.6 but with t h e  state vector  (X)  replaced by t h e  combined state and 
control vectors ( x )  
n+r . 

The set of  admissible controls,  U,  i s  some spec i f ied  compact set i n  t h e  
r-dimensional control  space from which t h e  optimal cont ro l  must be selected.  
I n  general, most physical  problems are such t h a t  t h e  se t  U can be repre- 
sented as an inequal i ty  constraint  o r  as a series of inequal i ty  cons t ra in ts  
of  the  type 

j k 3 /,J 

(2 .3.6)  

In such cases, however, it has been shown t h a t  t h e  inequa l i t i e s  can be con- 
verted t o  equalities through t h e  introduct ion of  addi t iona l  var iab les ,  y~ 
t o  allow t h e  optimization problem t o  be t r e a t e d  as a Mayer problem i n  t h e  
Calculus of  Variations. -The mathematical process would cons is t  of forming 
t h e  modified functional J 

and then applying t h e  standard necessary conditions developed i n  t h e  preceding 
section. Such a procedure w i l l  be carried out  i n  a subsequent sect ion.  
t h e  present, however, t h e  problem w i l l  be formulated using t h e  Maximum 
Principle.  

For 

2.3.2 Maximum Principle  Formulation 

The problem under consideration i s  t h e  determination of  t h e  cont ro l  u 
from t h e  set v such t h a t  J i s  minimized 
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subject t o  t h e  d i f f e r e n t i a l  constraints  

and t h e  boundary conditions 

, % = x e  at t = t o  
( 2 . 3 . 9 )  

Before attempting t o  solve o r  formulate t h i s  problem, however, i t  i s  
necessary t o  place ce r t a in  mathematical r e s t r i c t i o n s  on t h e  functions 
appearing i n  t h e  problem statement. Assume t h a t  

( i )  The functions Q, and Y have continuous 
first der ivat ives  and bounded second deriva- 
t i v e s  with respect t o  a l l  t h e i r  arguments. 

The functions f i  and W;/)y'are continuous 
with respect t o  a l l  t h e i r  arguments, while 
t he  second der ivat ives  are bounded. 

( i i )  4 

3.x b a x 6  
( i i i )  The der ivat ives  af;. exist. 

3 U .  J 
( i v )  The der ivat ives  s a t i s f y  a Lipschitz 

condition with res$ect t o  t h e  var iables  Uk; 
t h a t  is, 

where Cij are f i n i t e  posi t ive constants. 

These.conditions are not severe and will be s a t i s f i e d  i n  most engineering 
problems. 
control  vector  u, i n  addition t o  ly ing  i n  the set V , be piecewise con- 
tinuous; t h a t  i s ,  t h e  c l a s s  of possible controls on which t h e  search f o r  an 
optimal i s  t o  be conducted must 

Also, it w i l l  be required t h a t  t h e  individual  components of  t h e  

( i )  l i e  i n  t h e  set  v 
( i i )  be piecewise continuous 

Again, t hese  r e s t r i c t i o n s  are r a the r  weak. 
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To state the U u m  Principle ,  two add i t iona l  quan t i t i e s  must be intro-  
duced. 
and given by 

The first of  these quan t i t i e s  i s  a function cal led the Hamiltonian 

where the P i  a r e  var iables  s a t i s fy ing  t h e  d i f f e r e n t i a l  equations 

and 

and 
t h e  
and 

the boundary conditions 

( 2.3.10) 

( 2.3.11) 

where the  ~j 
boundary conditions of equation (2.3.9) are s a t i s f i e d .  
P, t h e  Hamiltonian i n  equation (2.3.10) i s  a function of t h e  control  u 

are constants determined so t h a t  both equation (2.3.12) and 
For any given X 

only. 

Let M(P,X) denote the  maximum value of H f o r  u i n  the  set and f o r  
fixed X and P; t h a t  i s ,  

With these de f in i t i ons ,  t h e  Maximum Principle  can now be s ta ted.  

Theorem: Let k(t) be an admissible control  and % ( t )  t h e  correspondin 
of  t he  system with i n i t i a l  value x0 and terminal value i n  the set Y j  (x , t f ) = O ;  
j=l,M. 
t he re  e x i s t  a non-zero continuous vector function p 

state f\  
If u minimizes t h e  functional J=O(xf,tf), then it i s  necessary t h a t  

f The final time tf may o r  may not be specified.  
some value, a , then a terminal constraint  of  t h e  form 

However, i f  tf i s  set a t  

y ( x f , t ( _ )  = t f - a  = 0 

must be included. 
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sa t i s fy ing  t h e  d i f f e r e n t i a l  equations 

and t h e  terminal conditions 

t h a t  i s ,  t h e  optimal control i s  t h a t  value of u with maximizes the  Hamiltonian 
a t  each i n s t a n t  along t h e  t r a j ec to ry .  
constant with 

Furthermore, t h e  Hamiltonian i s  a 

This constant i s  observed t o  be given by equation (2.3.14b) w i t h  

( 2.3.16) 

(2.3 17) 

This theorem may appear formidable a t  first s igh t ,  though i n  f a c t ,  it i s  
ra the r  simple t o  apply. 
o f  equation (2.3.8) and t h e  n-different ia l  equations governing t h e  P vector, 
equations (2.3.11), be formed. 
(2.3.9) and (2.3.12) are j u s t  su f f i c i en t  t o  determine a solut ion t o  these 2 n 
equations while t he  control  i s  selected so that  a t  each point t h e  Hamiltonian 
i s  maximized with 

The appl icat ion requires t h a t  t h e  n state constraints  

Then, t he  boundary conditions of  equations 

where uo i s  t h e  optimal control  and G is any other  control  (both uo and 2 are 
contained i n  t h e  set V ). 
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Before proving t h e  Maximum Principle,  an example w i l l  be considered. 
Suppose a vehicle i s  t o  make a v e r t i c a l  descent, soft-landing on t h e  surface 
of t he  moon. 
denote the  t h r o t t l e  s e t t i n g  which can vary between zero and unity.  
t h r u s t  a t  any in s t an t  i s  given by 

Let Tbm denote t h e  maximum value of  t he  t h r u s t  and l e t  u 
Then, t h e  

4 
T = T  u=-Cm max 

where m i s  t h e  time rate of  change of 
mass o f  t he  vehicle and C i s  t h e  ex- 
haust veloci ty  (assumed t o  be constant). 
Under the assumption t h a t  t h e  vehicle 
i s  close enough t o  t h e  lunar  surface 
f o r  t h e  f l a t  moon, (uniform g rav i t a -  
t i o n a l  f i e l d  i s  assumed) t h e  governing 
q u a t  i ons become 

2, = z, 

r- 4- C 

T=T= u 

I 
mg 
Lunar Surface 

I r '  

(2.3.18) 

where 

XI = distance above the  lunar  surface 

X2 = v e r t i c a l  ve loc i ty  

X = mass of  the vehicle 3 
g = grav i t a t iona l  accelerat ion 

u = t h r o t t l e  s e t t i n g  (0 5 u 5 1) 

Now, the problem i s  t o  determine t h e  control  act ion u from t h e  set v where 

so that  t h e  f'uel expended during t h e  maneuver is  a minimum, o r  a l t e r n a t e l y ,  so 
t h a t  the f i n a l  mass X$ i s  maximized (-Xf i s  minimized) 3 

f r  J = # ( z , t  ) =  -.,f = &/N (2.3.20) 
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The boundary conditions for  t h i s  problem are 

x, = xp 

x3= x; 
x i?= x; st t=t" ( 2.3.21) 

t h a t  is, t h e  i n i t i a l  X vector i s  completely specified.  
(which i s  not specif ied) ,  t h e  conditions are 

A t  t he  terminal time 

x, = o  
(2.3.22) 

The conditions t h a t  X1 and X2 are zero a t  the f i n a l  time are t h e  so.ftlanding 
conditions. 

Following t h e  Maximum Principle,  t h e  variables Pi ,  i=l, 3 are introduced 
which s a t i s f y  t h e  equations 

- aH = o  - -  
a x, 

where 

But, t h e  boundary constraints  are 

Y,CA f f  ,t ) = x,f = o  

YJXf ,P)  = x; = 0 

therefore ,  t he  boundary conditions on t h e  P vector ,&om equation (2 .3 .12u  
are 

p, + A ,  = o  

at  t 5 tf 

(2.3.25a) 

( 2.3.25b) 

p 3 - I  = o  
(2 .3 .25~)  

ti= 0 
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Note t h a t  equations (2.3.25a and b) provide no addi t ional  information since 
t h e  mult ipl iers  AJl and M2 are unspecified; t h a t  i s  P and P2 equal 
ce r t a in  mul t ip l i e r s  which are themselves unspecifiei .  Since the  
Hamiltonian H i s  a constant, it follows from equation (2.3.253) t h a t  

over the e n t i r e  t r a j ec to ry .  

Rewriting t h e  Hamiltonian as 

it follows t h a t  t h e  control  u which maximizes t h e  Hamiltonian a t  each i n s t a n t  
i s  given by 

The variable 
whether t h e  t h r o t t l e  s e t t i n g  i s  on t h e  "off" o r  "full-on" posit ion ( i .e . ,  
u=zero o r  uni ty) .  If 8 is  zero over a f in i te  time in t e rva l ,  then t h e  
t h r o t t l e  can take some intermediate s e t t i n g  between zero and unity. 
case, t he  Maximum Principle  i tself  does not provide any information as t o  
t h e  nature of  t h e  se t t i ng .  Such a r c s  ( a rc s  on which 8 i s  zero) occur 
infrequently in t r a j e c t o r y  and control problems and are termed s i n p l a r  
a r c s .  
jumps discontinuously from one extreme s e t t i n g  (u=O) t o  another (~~1). 

e i s  termed t h e  switching function s ince i t s  sign determines 

In t h i s  

If no such a r c  exists, t h e  control  i s  sa id  t o  be "bang-bang s ince it 

Cnllecting r e s u l t s 2  t h e  minimum f u e l  s o f t  landing problem requires t h e  
solution of t h e  six d i f f e r e n t i a l  equations 

x, = x ,  

P, = 0 

PI - P, 
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and t h e  boundary conditions 
x ,  = X I 0  

\XI = L,b ai tz to 
x3 = x: 
x, 0 

xz = 0 qt t=tc 
P3 = 1 

with t h e  Hamiltonian zero over the t r a j ec to ry  

( 2.3.30) 

The control  act ion i s  selected a t  each point so t h a t  
4 , =  0 ,  s c o  
u, = 1 )  8 > 0  

LI, a r 6 : h q  e ‘-0 (2.3 32) 

x 3  = 
Note t h a t  a solut ion can be r a the r  e a s i l y  generated provided no singular a r c s  
occur along which 0 = 0. 
problem i s  t h e  subject  of  t h e  following paragraphs. 

The f a c t  t h a t  no such a r c s  are possible f o r  t h i s  

If 8 = 0 over a f i n i t e  time i n t e r v a l  then 6 must a l s o  be zero over 
t h i s  i n t e rva l .  But 

and so  P1 (which i s  a constant from equation (2.3.29) must be i d e n t i c a l l y  zero. 
However, i f  P1 i s  zero, then P2 must be a constant from equation (2.3.23) and 
t h a t  constant must be zero f o r  t h e  Hamiltonian i n  equation (2.3.31) t o  vanish; 
thus, i t  follows from equation (2.3.29) t h a t  P2 i s  i d e n t i c a l l y  zero over t he  
e n t i r e  t r a j ec to ry .  But subs t i t u t ion  o f t h i s  result i n t o  t h e  s i x t h  of equation 
(2.3.29) along with t h e  boundary condition of equation (2.3.30) provides t h e  
result P3 = 1. 

But then 

Therefore, f o r  8 t o  be zero over a segment of f i n i t e  length 
P l  = P2 = 0, P3 = 1. 

which i s  no longer zero and a contradiction resul ts .  Thus no s ingular  a r c s  exist. 
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Since t h e  solut ion contains no s ingular  a rcs ,  t h e  next question of  
i n t e r e s t  concerns t h e  number of zero t h r u s t  and f u l l  t h r u s t  a rcs .  It can be 
shown tha t  t h e  optimal solut ion contains a t  most one switch; t h a t  i s ,  i f  t h e  
control switches from t h e  zero t o  u n i t y  posit ion,  o r  from t h e  unity t o  t h e  
zero posit ion,  it does so  no more than once. If PI i s  zero LKote from equation 
(2.3.29) t h a t  PI i s  a c o n s t a n g  then from (2.3.33) 
constant over t he  t ra jec tory .  
u i s  e i the r  un i ty  o r  zero. 
s ince  a sof t  landing can not be made without expenditure of fue l .  If P1 i s  
not  zero, then e i s  never zero and t h e  switching function i s  monotonic i n  
t h e  in te rva l  @,ty. Therefore there  can be a t  most one point  where 8 4. 
Hence, t h e  solut ion contains only one switch. 
grounds t h a t  i f  there  i s  a switch, t h e  engine must go from t h e  "ful l -off"  t o  
t h e  "full-on" posit ion.  The optimal solut ion,  then, cons is t s  of  a free f a l l  
a rc  with u = 0 followed by a maximum t h r u s t  arc along which u =1. 

0 i s  zero and 0 i s  a 
Thus, t h e  so lu t ion  cons is t s  of one a r c  on which 

The zero case can be ruled out on physical grounds 

Again, it i s  obvious on physical  

The full solut ion t o  t h e  sof t  landing problem can be obtained graphical ly  
by a simultaneous solut ion of equations (2.3.29) subject  t o  t h e  boundary con- 
d i t i o n  of equations (2.3.30) and (2.3.31) and t h e  control  l a w  of  equation 
(2.3.32). 
t h e  application of t h e  Y i u m  Pr inciple ,  t he re  i s  no need t o  produce the  
so.lution here, 
detai led solution. 

However, s ince  t h e  purpose of  t h i s  example has been t o  i l l u s t r a t e  

The in t e re s t ed  reader should consult  Reference (5) f o r  t h e  
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2.3.3 Proof of t h e  Maximum Pr inciple  

To minimize t h e  functional J where 

J = @ (xf, t f )  

subject t o  t h e  d i f f e r e n t i a l  constraints  

I i.= f (x,u> 
l 1 

and the  boundary conditions 

x = x0 a t  t = to 

Y j  (xf,  t f )  = 0; j = l , m f n  , 

t he  mul t ip l i e r s  Pi are introduced which satisfy t h e  equations 

l and 

Next, it i s  noted t h a t  t h e  Hamiltonian H given by I H = Pi f i  

i s  a constant and obeys the  equation 

f a t t = t  (2.3 - 3 6 )  

Finally,  t he  control  u i s  selected from t h e  se t  v so t h a t  H(x,p,u) i s  max- 
imized f o r  each value of x and p along the  optimal solution. 

The proof t h e  Maximum Principle  proceeds as follows. Let uo and xo 
denote t h e  optimal control  and s t a t e  vectors and l e t  u and x denote any other 
control  and state where it i s  assumed t h a t  uo and u are contained i n  t h e  set v 
s m a l l  subinterval  C T- E 7 3 
i s  a small quantity.  

and t h a t  x and x, satisfies the  specified boundary cond'tions of equations 
(2.3.34). Now, require  t h a t  u and uo be iden t i ca l  on [to,t] h except f o r  a 

(shown on t h e  sketch t o  the  r i g h t )  where E. 
Next, t h e  modified functional J i s  formed 
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I tf 
J-=@f/uiY/ '  + J P ~ { x - - f i o w l l  A. Jt u I4Lt to 

where 
(2.3.35) and (2.3.36). 

a r e  constants and where t h e  p vector s a t i s f i e s  equations 

If I+, i s  minimizing, then 

5 (u) - i (u,) 2 0 

and t h i s  inequal i ty  can be wr i t t en  

where the  subscript  zero indicates  t h e  optimal solution. 
i n t eg ra l s  i n  (2.3.38) a r e  zero and s ince the  Hamiltonian obeys the  equation 
H = pifi, it follows t h a t  

Thus, s ince both 
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Now, under t h e  condition t h a t  u and u 
[ T -  € , T I  , it follows t h a t  t h e  solutzon X ( t )  can be wr i t t en  as* 

d i f f e r  only i n  the  small i n t e r v a l  

L;m where o ( E ) i nd ica t e s  higher order terms i n  
Note t h a t  u and u, may d i f f e r  d r a s t i c a l l y  on fi- E ,  Y 1, but since E 
small, t he  e f f ec t  of t h i s  difference on t h e  solut ion x w i l l  be small. 
representation i s  subst i tuted i n t o  equation (2.3.39), t h e  boundary conditions 
become 

(i.e., E + o  (oca))/€ -0 ). 
i s  

If t h i s  

where the condition 

i s  employed. 

The first i n t e g r a l  i n  (2.3.39), i n  view of the  continuity on t h e  p vector 
and t h e  fact t h a t  t h e  i n i t i a l  state i s  specified, can now be wr i t t en  as 

L. 

A t  t h i s  point, i f  t h e  representation of x = x ( t ,  E) i n  equation (2.3.40) i s  
subst i tuted i n t o  t h e  second i n t e g r a l  i n  equation (2.3.391, t he  r e s u l t  i s  

it t h a t  is, x ( t )  approaches %(t) uniformly as E + 0. 
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Now substituting equations (2.3.41) t o  (2.3.43) in to  the  inequality (2.3.39) 
provides 

Finally, i n  view of t h e  boundary conditions of (2.3.36) and (2.3.37), t h i s  

L 

t Q C € . )  L 0 (2.3.44) 
A t  t h i s  point, r eca l l  t ha t  u and uo d i f f e r  only on a small i n t e rva l  

LF- f , Y]. Hence (2.3.44) becomes 
Y 

T(L.4) -Rfio) y p x ,  uo, P)-d& Q J p ) }  Jf f E/.' a w; {tf(w., UO, PI -KCu.,U,Pj sx; JC 

p- € 7- € 
f O ( E )  2 0  (2.3.45) 

Now, from the  definit ion of t he  Hamiltonian 

Thus, since (a.t; / /axi)  satisfies a Upschi tz  condition i n  u, the  quantity i n  
(2.3.46) is  bounded. 
integrand i n  the second in t eg ra l  i n  (2.3.451 i s  bounded; t ha t  i s  

Also 8 xi i s  bounded from which it follows tha t  the 

where K i s  a f i n i t e  number. Hence. 
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and t o  o( € )  equation (2.3.45) becomes 

9 
TcLI) - J(Q0) {H (X . ,  Q O J P ~  - / f ( x o  J&,p)}  dt 4 o(E) z 0 

Further, t h e  i n t e g r a l  i n  (2.3.47) i s  f irst  order i n  E , so as E + 0 
with x-x and u-+ uo, t h e  dominant term i n  (2.3.47) i s  the  in t eg ra l .  
Thus, it folfows t h a t  

(2.3.47) 

7- & 

To prove the  Maximum Principle,  i t  must be shown t h a t  

a t  each point i n  the  i n t e r v a l  ( to,  tf).  
t ion .  
tinuous and assume t h a t  

The proof i s  developed by contradic- 
Let 7 i n  (2.3.48) be a regular point where both uo and u are con- 

Since x and p are continuous and u and u o  are piecewise continuous, t h e r e  w i l l  
be some region surrounding t h e  point Y fo r  which t h e  integrand i n  (2.3.48) 
w i l l  be negative. Let E be su f f i c i en t ly  small so t h a t  t h e  integrand is 
negative i n  t h e  e n t i r e  subinterval  [Y -  E ,  71 from which it follows t h a t  

a t  every regular  point Y i n  t he  i n t e r v a l  [to, tf7, t h a t  i s  every point i n  
t h e  i n t e r v a l  except a f inite number of  points. 
t h e  piecewise continuity condition of u requires t h a t  u ( t )+u(  7 - )  con- 
t inuously as t - 'r from t h e  r igh t .  Hence, if 

A t  a discontinuous point 'Y , 
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I .  

then it can be shown t h a t  t h e  inequal i ty  i n  (2.3.48) is  again reversed and a 
contradiction r e su l t s .  A similar s i t u a t i o n  holds at 7 = V + .  Thus, 
(2.3.49) must be va l id  n both s ides  of a discont inui ty  as w e l l  as a t  every 
regular point i n  p, t3. 
Maximum Principle - t h e  constancy of t h e  Hamiltonian. 
plished by showing t h a t  t h e  t o t a l  der ivat ive d H / d t  i s  zero. 
Since H = p i f i ,  it follows t h a t  

One f i n a l  condition must be demonstrated t o  complete t h e  proof of t h e  
This proof i s  accom- 

But t h e  x and p vectors s a t i s f y  t h e  d i f f e r e n t i a l  equations 

Hence, 

Now, i f  t h e  optimal control  l ies  i n  t h e  i n t e r i o r  o f u  , then for H t o  be 
maximized 

from which it follows t h a t  db/dt  i s  zero. 
of t h e  boundary of V , l e t  t h i s  boundary be represented by t h e  constraint  
equation g(u)=o, and t h e  two equations 

I n  contrast ,  i f  u l ies on a sect ion 

determine the  optimal control.  But , i f  h i s  zero, then so are aH/av$ and dH/dt 
and the proof i s  complete. So assume A 3 0, then from continuity consid- 
erat ions 
i n t e r v a l  and with t h e  der ivat ive 

A # 0 over some f ini te  time i n t e r v a l  with g(u) = 0 on t h i s  
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Combining equations (2.3.54) and (2.3.53) provides M- 2uk- 0, it follows from 
( '2.3.52) t h a t ,  

d H  3 H  
%4 =*  d t  au4 

- - - -  

Hence, t h e  Hamiltonian H i s  a constant over t h e  e n t i r e  t ra jectory.  
completes t h e  proof of  t h e  Maximum b i n c i p l e .  

This 

2.3.4 The Orbi ta l  Transfer Problem 

As an example of t h e  appl icat ion of the Maximum Principle,  consider t h e  
problem of t r ans fe r r ing  a vehicle between two coplanar c i r cu la r  o r b i t s  i n  
space. Let T = Tm 
u l i s  again t h e  t h r z t l e  s e t t i n g  with 0 C u1 c- 
i ng  angle. 
meters. However, t o  simplify the formulation, t he  constants of t h e  problem 
w i l l  be selected so as t o  simplify t h e  equations of motion. 
u n i t  of length, t he  radius  of t he  ini t ia l  orbi t ;  as t h e  unit of velocity,  t h e  
veloci ty  of t h e  i n i t i a l  o r b i t ;  as the  u n i t  of t h e ,  t h e  period of t h e  init ial  
o r b i t  over 2rt ; and as the  unit  of mass, the ini t ia l  mass of t h e  vehicle, 
t he  equations of motion become 

u1 denote the  t h r u s t  (nondimensional) magnitude where 
1 and l e t  u2 denote t h e  steer- 

The equations of motion can now be wr i t t en  i n  terms of these para- 

Taking as t h e  

dr 
d t  
- -  - I /  
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where 

r = distance from t h e  center of a t t r a c t i o n  

h = angular momentum (per  unit mass) 

v = r a d i a l  velocity 

8 = c e n t r a l  range angle 

Tmax = nondimensionalmaximum t h r u s t  magnitude 
( t h r u s t  per g of t he  i n i t i a l  o r b i t )  

u1 = t h r o t t l e  s e t t i n g  

u2 = steer ing angle 

c = nondimensional exhaust veloci ty  

With t h i s  choice of units, t h e  boundary conditions f o r  t h e  c i r cu la r  o r b i t  
t r ans fe r  are 

r = l  

h = l  

v = o  

m = l  

Q = O  

and 

r = rf (specified) 

t = to (2.3.56) 

(2.3.57) 

Note t h a t  the values of rf, hf and vf determine t h e  f i n a l  c i r c u l a r  o r b i t  and 
m r s i  F” spec’fied as indicated i n  equation (2.3.57), while the  values of 
m , 8 
t o  be solved and t h e  optimizing c r i t e r ion .  

3 and t may or may not be specif ied depending on t h e  pa r t i cu la r  problem 

The optimum o r b i t a l  t r ans fe r  problem has been extensively ana 
l i t e r a t u r e  with t h e  most complete treatments given i n  References 
I n  t h e  pa r t i cu la r  formulation used here, it i s  assumed t h a t  t h e  vehicle  i s  
thrust  l imited with t h e  thrust ing engine allowed t o  take any magnitude between 
zero and T An a l t e r n a t e  formulation removes t h e  t h r u s t  magnitude con- 
s t r a i n t  an82equires  instead t h a t  t h e  j e t  power of t h e  vehicle have some 
f i n i t e  upper bound. 

. 
This power l lmited case i s  t r ea t ed  i n  References ( 8 )  and 
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( 9 )  with an analytical approximation given in Reference (10). 

To complete the statement of the problem, the optimizing cri-erian LThe 
function # in equation (2.3.1u must be specified. 
and, hence, two different types of transfers w i l l  be considered here: 
the minimum time transfer and the minimum fuel transfer. 

Two different criteria 

A .  Minimum Time Transfer 

To minimize the time to transfer, the performance function is set equal 
to the final time; that is, 

Since the problem has five state variables, r, h, V , m and 8, the five 
multipliers P r  , Ph , pv , P, and p, are introduced which obey the 
equations 

where 

From equation (2.3.57)there are at least three terminal constraints 

(2.3.61) 
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a where rf, hf and V f are specif ied members as i dicated i n  (2.3.57). I n  
addition, there  may be a fourth constraint  if 8 is  specified; t h a t  is, i f  t h e  
angle i n  which the  t r ans fe r  i s  t o  be completed i s  specified,  then a fourth 
constraint  

(2 3.62) 

must be included. 
vector take the  form 

From equation (2.3.12), t he  terminal conditions on t h e  p 

f 

f 

Pr t p, = o  

Pf) + / C ( z = O  

f 

f 

f 

P" + /A3 = 0 

P, = 0 

P* +Ar = 0 

(2.3.63) 

f i s  zero (Pe = 0) i f  t h e  f i n a l  angle i s  not specified.  where h 
constants M i  are uncoupled and do not appear e l s y h e r f  i n  the  
equation (2.3.63) reduces t o  t h e  s t a  ement t h a t  Pr , Ph a d Pf33 are un- 

equation (2.3.16) and (2.3.17) become 

H = const. = 0 

Since the  4 roblem, 

specified a t  the  f i n a l  time, w h i l e  Pm z = 0. Also, since t a i s  unconstrained, 

(2.3.64) 

The controls u land  u2 are t o  be selected t o  maximize the  Hamiltonian a t  
each point along the  t r a j ec to ry  with the  set of admissible controls  given by 

\ u2 a rb i t r a ry  but f i n i t e  

To define these controls,  rewrite equation (2.3.60) i n  the  form 
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where H2 does not depend on u ,  or ut. Now, l e t t i n g  

= cos if rPx 
4- 

t h e  quant i ty  Hl(u) reduces t o  

from which it follows t h a t  u2 must equal 2 t o  BlilZdmize t h e  Hamiltonian; i.e., 
& =/- r %  

(2.3.65) 
fd 

.SIN 4 2  - - 1- 
Hence 

- 
4,C4) = 'MAX y p w  - T }  pm m 

m 
with t h e  control  u1 which maximizes H, given by 

( a r b i t r a r y ,  8 = 0 

where 

(2.3.66) 

Equation (2.3.66) ind ica t e s  t h a t  t h e  optimal t r a n s f e r  t r a j e c t o r y  consis ts  
of a r c s  of nu l l  t h r u s t  (u1 = 0), arcs of  maximum t h r u s t  (ui - l), and possibly 
intermediate th rus t ing  a r c s  i f  t h e  switching function 0 vanishes over a 
f i n i t e  time in t e rva l .  
and t h e  Maximum Principle  fails  t o  provide any informatioi on t h e  optimal 
con t ro l  action. 

I n  t h i s  last case, t h e  a r c  i s  cal3.ad a "singular arc1' 

It i s  a r a t h e r  simple matter t o  show t h a t  no s ingular  a r c s  01 zero t h r u s t  
a r c  can occur i n  a minimum time transfer maneuver. 
(2.3.65) i n t o  t h e  fourth of equation (2 .3.59)  provides 

Subst i tut ing equation 
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(2.3.68) 

Combining t h i s  equation with the  condition t h a t  I’i 
it follows t h a t  Pm i s  never posit ive.  Hence, t he  switching function, Q i n  
equation (2.3.66), can never be negative o r  zero and t h e  engine i s  on f u l l  
during the e n t i r e  maneuver ( i .e . ,  u1 = 1.0, T = T-). 

u 1  equal t o  uni ty  and select ing u2 t o  s a t i s f y  equation (2.3.65). %e s ta te  
and P vectors of equations (2.3.55) and (2.3.59) cons t i t u t e  a tenth-order 
system ( t en  f i rs t -order  d i f f e r e n t i a l  equations) and s ince t h e  f i n a l  time i s  
not specified, eleven boundary conditions are needed t o  construct a solution. 
Five of these come from the  i n i t i a l  conditions of equation (2.3.56). Three 
more come from the  terminal o r b i t  conditions of (2.3.57) while equations 
(2.3.63) and (2.3.64) provide t h e  ninth and tenth conditions 

i s  zero, equation (2.3.63), 

Summarizing r e s u l t s ,  t he  minimum time t r a n s f e r  i s  accomplished by s e t t i n g  

Pf = o  m 
f H = H  = O  

The last  condition i s  e i t h e r  

8 = 8 (specified); t = tf f 

o r  
P i  = 0 

depending on whether the angle i n  which the  t r a n s f e r  i s  t o  be completed i s  
specified. 

B. Minimum Fuel Transfer 

The f u e l  used during the t r a n s f e r  maneuver i s  t h e  difference between t h e  
i n i t i a l  mass (which i s  unity due t o  the  choice of u n i t s )  and t h e  terminal mass. 
Hence, f o r  a minimum f u e l  transfer t h e  performance index i s  given by 

J = @ (xf, tf) = 1-mf 

where i n  t h i s  case, t h e  f i n a l  time tf i s  specif ied t o  be some value g rea t e r  
than t h e  minimum time needed t o  complete the  t r ans fe r .  

The s t a t e  equations and boundary conditions are again given by equations 
(2.3.55) t o  (2.3.57) with the  P vector and Hamiltonian sa t i s fy ing  (2.3.59) and 
(2.3.60). The boundary conditions on t h e  P vector are 

Pf = 1.0 m 
0, if 8f unspecified 
a rb i t r a ry ,  if Qf specified 

(2.3.69) 
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A s  before, t he  optimal control  ac t ion  takes the  form 

1.0, e r 0 

a rb i t r a ry ,  8 = 0 

where 

(2.3.70) 

(2.3 71) 

(2.3.72) 

I n  t h i s  case, however, nei ther  n u l l  t h r u s t  a r c  (ul= 0) nor s ingular  a r c  
(0 c u l t l )  can be ruled out. 

That n u l l  t h r u s t  a r c s  do occur is rather  w e l l  established by t h e  numer- 

A s  ye t  
i c a l  r e s u l t s  contained i n  the  l i t e r a t u r e  [see References (7) and (11) f o r  
examplg7. 
no optimal solut ion has been found which contains a s ingular  arc .  

Whether s ingular  a r c s  occur i s  not known a t  t h i s  writ ing.  

For a singular a r c  t o  occur, the switching function 8 
I n  t h i s  case, t h e  Maximum Principle  becomes degenerate 

must be zero over 
a f i n i t e  time in t e rva l .  
( t h e  Hamiltonian does not contain u1 exp l i c i t l y  and hence u 1  can not be chosen 
t o  maximize H) and provides no information t o  a i d  i n  t h e  determination of u1. 
However, t h e  condition t h a t  8 i s  t o  be zero over t h e  i n t e r v a l  can be used t o  
compute ul; t h a t  is, u1 i s  chosen so t h a t  0 i s  iden t i ca l ly  zero over t he  arc .  

Some recent work i n  regards t o  both the existence and minimality of sing- 
ular a r c s  i n  the  o r b i t a l  t r a n s f e r  problem (References 10, 12, and 13) indicates  
t h a t  t h e  occurrence 2f ?>ch a r c s  i s  highly unlikely. 
f i n i t e  i n t e rva l ,  0, 0, 8 ... etc.  must a l so  vanish. 
0 zero i s  t h e  control  var iable  u . 
first derivat ive of 0, which contains u1 exp l i c i t l y ,  i s  zero. 
t h a t  t he  fourth der ivat ive,  dkQ/dtb, i s  the  first such derivative.  
from the  cont inui ty  condition on the  P vector, it follows t h a t  t o  i n i t i a t e  a 
s ingular  a r c  a t  some time tk the  four  conditions 

For 0 t o  be zero over a 
The mechanism f o r  keeping 

It can be shown 
Therefore, 

Hence, ul must be selected so t h a t  t h e  

e= 0 
e =  0 
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, .  

must be simultaneously s a t i s f i e d .  A t  any point where 0 i s  zero, it would 
be unusual f o r  Q t o  vanish l e t  alone 0 and 0 . For t h i s  reason, t h e  
existence of such a r c s  i s  seldom considered i n  the o r b i t a l  t r a n s f e r  problem, 
a procedure which w i l l  be followed here. 

From t h i s  discussion, it i s  assumed t h a t  t h e  switching function w i l l  
vanish only a t  a f i n i t e  number of  points  and equation (2.3.71) i s  replaced by 

1.0,e7 o 
(2.3.73) 

u l =  { o , Q <  0 

Under t h i s  assumption, t h e  optimal t r a n s f e r  t r a j e c t o r y  i s  seen t o  consis t  of 
coasting a rc s  along which the  t h r u s t  i s  zero and powered a r c s  along which the  
t h r u s t  i s  set a t  i ts  maximum value. 

Summarizing, t h e  minimum f u e l  t r a n s f e r  i s  determined from the  solut ion of 
t h e  tenth-order system, equations (2.3.55) and (2.3.59), which satisfies t h e  
f i v e  ini t ia l  conditions of equations (2.3.56) and the  f i v e  terminal conditions 
of  equations (2.3.57) and (2.3.69) with t h e  f i n a l  time specified.  The optimal 
control ac t ion  i s  computed from equations (2.3.70) and (2.3.73). 

2.3.5 Maximum Principle and t h e  Calculus of Variations 

It has been mentioned previously t h a t  t h e  MaximumPrinciple i s  very 
s imilar  t o  the CaJculus of Variations. 
two methods, t h e  optimization problem used i n  the  statement of t h e  Maximum 
Principle w i l l  be reformulated within the  v a r i a t i o n a l  framework. For con- 
venience, t h i s  problem i s  restated as follows: 
t h e  s e t  U such t h a t  a function of t h e  terminal s ta te  i s  minimized 

To show the  relat ionship between t h e  

Determine the  control  u from 

subject t o  the d i f f e r e n t i a l  constraints  

and the boundary conditions 

(2.3.76) 

To use the variationalmethods,  it i s  necessary t o  assume t h a t  t h e  
functions 9 ,  v, and fi have continuous first der ivat ives  and bounded 
second der ivat ives  with respect t o  a l l  t h e i r  arguments. 
s l i g h t l y  stronger than t h a t  used i n  t h e  Maximum Principle  fielow equation 

This condition i s  
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( 2 . 3 . 9 9 .  
sented by an inequality conrtraint of the form 

Also, it is required that the admissible control set U be repre- 

where g( u) has continuous first derivatives and bounded second derivatives 
along its boundary. 
engineering problems. 
U is given by 

Such a representation is almost always possible in 
For example, in the orbital transfer problem the set 

with the equivalent inequality constraint taking the form 

In the variational treatment no distinction is made between control and 
state vectors. 
an assumption in the variational formulation is that all variables, Xi and 
Uk are continuous - a situation that may not hold in regards to the control 
variables (as for example in the orbital transfer problem where u1 goes dis- 
continuously from zero to unity). 
tion* 

Both are simply considered to be dependent variables. However, 

To remove this difficulty the transforma- 

(2.3 77) u = i  

is used and i is substituted for u in the differential constraints 

and in the control region constraint 

e this device the dependent variables X and Z are made continuous with dis- 
continuities occuring only in the first and higher derivatives. 

*Also, application of the Weierstrass condition runs into trouble without this 
transformation 
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To minimize J, t he  modified funct ional  7 i s  formed 

(2.3.80a) 

where 

(2.3. 80b) 

and where 7 
(2.3.79) t o  an equality.  
b t a r t i n g  with equation (2.2.78fi 

i s  a r e a l  var iable  introduced t o  convert t h e  inequal i ty  i n  
S e t t i n  the  first var ia t ion of J t o  zero provides 

(1) Euler Equation 

d a f  h f  

d t  a +  a z  
= o  - - - -  

(2) Boundary Conditions 

(3) Corner Conditions 

- -  
a i , ,  2 F k  
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Application of t he  Weierstrass condition provides 

(4) Weiers tras s Condition 

where (i, i, +? ) denote the  optimal values and ( X  it) denote any other values 
sa t i s fy ing  t h e  constraints  of equations (2.3.79) and (2.3.80). 

follows from (2.3.84) and 12.3.82) t h a t  
Since the  functions f , g, 0 and Y j  do not contain t h e  var iables  Zi, it 

- 0  

Now, from ,he def in i t i on  of F and the  Hamiltonian H, and by E 
f o r  z t h i s  expression reduces t o  

Also , equation (2.3.82b) reduces to 

(2.3.90) 

ib s t i t u t ing  u 

Thus, e i t h e r  X i s  zero and g(u) < 0 with the control  lying i n  t h e  i n t e r i o r  of 
u or  = 0 and t h e  control  Ues on t h e  boundary of U with g(u) = 0. 

Using these r e s u l t s  plus  t h e  f a c t  t h a t  F i s  iden t i ca l ly  zero, t h e  remaining 
Euler and boundary become 
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(2.3.94) 

while the corner conditions of equations (2.3.86) and (2.3.88) take the form 

H (PC” ) ccc-; x 1 = H w+; uc+; x )  

i i / y & f i  2 0  

. 
Finally, the Weierstrass condition reduces to 

or 

(2.3.951 

(2.3.96) 

where uo is the optimal control and u^ is any other control in the set v . 
An examination of the necessary conditions of equations (2.3.93), (2.3.941, 

and (2.3.96) shows that they-are the same as the necessary conditions arising 
from the Maximum Principle [see equations (2.3.13) to (2.3.1727. Also, the 

conditions of eauation (2.3.95) are consistent with the re-ment of 
-innun Principle that the p vector and the Hamiltonian H bCcontinuous. 
The two additional equations (2.3.91) and (2.3.92) require some explanation 

For the optimal control to satisfy the Weierstrass condition of equation 
(2.3.96) it must be selected from the set V so that the Hamiltonian is max- 
imized at each point along the trajectory. 
subject to a constraint 

The procedure for maximizing H 

or the equivalent equality condition 

g(u)+Z2 = 0 

has been treated in Section 2.1.4 and consists of setting the first derivative 
of the modified function = H + X , C P +  s’) to zero. Hence 

2 Y  a 2  a 4  - = o  = - + A , -  
24 a u  4u 

- =  
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I Se t t ing  X, equal t o  -1 i n  these two equations provides t h e  two add i t iona l  
conditions o f  equations (2.3.91) and (2.3.92). 
merely a consequence of t h e  f a c t  t h a t  t h e  optimal con t ro l  maximizes t h e  
Hamiltonian. 

Thus, these conditions are 

From t h i s  discussion, it i s  apparent t ha t  t h e  v a r i a t i o n a l  treatment of an 
optimization problem leads t o  e s sen t i a l ly  the same r e s u l t s  as the Maximum 
Principle.  However, t h e  development of t h e  necessary conditions via t h e  
Calculus of Variations employs assumptions which are somewhat more r e s t r i c t i v e .  
For example, it i s  necessary t o  assume t h a t  t h e  set 7J has an a n a l y t i c a l  
representation g(u) L 0 where g has a continuous first der ivat ive and bounded 
second der ivat ive along i t s  boundary. 
weak and are usual ly  s a t i s f i e d  i n  most problems, t h e  Maximum Principle avoids 
the  problem. The primary advantage of t he  Maximum Principle,  however, i s  
t h a t  it represents a more concise statement of how t h e  optimization i s  t o  be 
performed. The device of introducing t h e  addi t ional  var iables  @ and X , 
and solving equations (2.3.91) and (2.3.92), a procedure inevi tably followed 
i n  t h e  va r i a t iona l  formulation p r i o r  t o  t h e  development of t h e  Maximum 
Principle,  i s  no longer necessary. 
d i r e c t l y  t o  compute the optimal control. 

Though such r e s t r i c t i o n s  are r a t h e r  

Rather, t he  Weierstrass condition i s  used 

2.3.6 Methods of Solution 

Formulation of an optimization problem, can be accomplished by e i t h e r  t h e  
Maximum Principle  or t h e  Calculus of Variations with the  development of t h e  
governing equations r a the r  straightforward i n  both cases. Unfortunately, t h e  
formulation i s  only a minor p a r t  of t h e  analysis. The major portion of t he  
problem involves t h e  generation of numerical solutions.  

As indicated i n  t h e  previous sections,  the determination of a solut ion 
t o  an optimization problem involves t h e  select ion of  a function or set of 
functions which s a t i s f g  f i v e  conditions: 

I 1. d i f f e r e n t i a l  state equations 

2. d i f f e r e n t i a l  adjoint  equations 

(2.3.97) 

3. control  optimization condition 
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. .  

where uo denotes t h e  optimal control  and 
other control, both of which are contained i n  t h e  s e t  u 

denotes any . 
4. state boundary conditions 

x = x o  j f = t o  
7 ( X f j  t f )  = 0 

5 .  t r anve r sa l i t y  conditions (ad j o i n t  boundary conditions) 

(2.3.100) 

Taken together, these f i v e  conditions cons t i t u t e  a boundary value problem of 
t h e  t w o  point type; t h a t  is, some of t he  boundary conditions are specif ied a t  
t h e  i n i t i a l  point and some at  t h e  terminal point. 
boundary value problems can be solved d i r ec t ly .  
nonlinear system above must be effected i teratively.  

A t  present, only l i n e a r  
Hence, a solut ion t o  the  

The i t e r a t i v e  techniques employed i n  nonlinear boundary value problems 
are l inear  i n  t he  sense t h a t  one starts with a solut ion which satisfies some 
of the f i v e  conditions and then uses the  l i n e a r  theory t o  correct t h i s  solut ion 
i n  a direct ion which tends t o  s a t i s f y  the other conditions. 
a l l  i t e r a t i v e  techniques a r e  l i nea r ,  not a l l  are of t he  same order; t h a t  is, 
some t a k e  i n t o  consideration only t h e  first order terms i n  a series repre- 
sentat ion about a nominal condition while others  account f o r  both first and 
second order terms. 

However, while 

In t h i s  section, t h ree  numerical techniques w i l l  be outlined: t h e  
gradient o r  s teepest  descent method, which i s  a f i r s t  order theory; t h e  
neighboring extrema1 method; and quasi l inear izat ion.  Both of these l a t te r  
methods are second order. Since a l l  numerical methods used i n  optimization 
problems are e s sen t i a l ly  extrapolations i n t o  a function space of techniques 
used i n  maxima-minima theory, t he  analysis  i s  begun by considering t h e  
numerical procedures avai lable  f o r  finding a vector X which minimizes a 
function f(x). 

A. M_inimizing a Function -- ._ 

Consider t he  problem of determining the  value of t he  n-dimensional vector 
X which minimizes the  function f (x ) .  
minimum point s a t i s f i e s  t h e  equations 

For f s u f f i c i e n t l y  d i f f e ren t i ab le ,  t he  

= O  
a f  

a x i  
- 

(2.3.102) 

= pos i t i ve  semi-definite 
L , ; : x j )  
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. .  

If equations (2.3.102) have an e x p l i c i t  solution, t he  problem i s  solved. 
not, t he  solut ion must be effected i t e r a t ive ly .  
common usage are presented below. 

(1) Gradient Method 

If 
Two i t e r a t i v e  techniques i n  

L e t  X ( l )  denote the  first guess of t h e  minimum point and l e t  f ( x )  be 
approximated by the truncated Taylor s e r i e s .  

Require t h a t  a second guess s a t i s f y  the  magnitude constraint  

and s e l e c t  X so t h a t  t he  first order approximation t o  f(x> given i n  equation 
equation (2.3.103) i s  minimized. 
a ted a t  t h e  new value of X will be l e s s  than f(xy1!) and hence, nearer i t s  min- 
imum value. 
function F(x) i s  formed with 

E3y t h i s  s e l e c t i  n t he  function f evalu- 

Following the  procedure developed i n  sect ion 2.1.4, t h e  modified 

where X i s  a constant mu l t ip l i e r  and t h e  variable 3 i s  used t o  convert 
t he  inequal i ty  i n  (2.3.104) t o  t h e  equal i ty  condition 

Now, d i f f e ren t i a t ing  F with respect t o  Xi and? 
der ivat ive t o  zero provides 

and s e t t i n g  t h e  first 

and 

2 A y  = 0 
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while the second derivative condition requires (in part) that 

Since the equality condition in the second partial is a degenerate case, it 
follows that, in general, h > 0 and, thus, that = 0. Equation (2.3.104) 
then becomes 

n Z( X ; - @ ) Z  .= $ 2  

i =I 

Combining (2.3.106) and (2.3.108) yields 

(2.3.108) 

Note from (2.3.109) that the change in the value of X is proportional to the 
negative gradient of f with respect to X. 
technique is called the gradient method. 
Xt21 and satisfying 

For this reason, the iterative 
The new value of X, denoted by 

is used to compute the new value for the function f. 
until the minimum value is found. 

The process is repeated 

From this discussion, it follows that the second guess of the minimum 
point is determined so as to minimize a first order approximation to the 
functior? 
(2.3.104 I f  which requires that the second guess be sufficiently close to the 
first guess. 
are used, the process is referred to a s  first order. 

(2) 

equation (2.3.105h7 subject to the magnitude constraint LGqustioii 

Since only the zeroth and first terms in the series expansion 

Second Order Approach (Newton-Raphson Method) 

Let X(l) denote the first guess of the minimum point and approximate f(x) 
by the second order truncated series expansion 
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If X(l) i s  reasonably close t o  the minhum point, then select ing X(2) t o  
minimize t h i s  approximation of f ( x )  should provide a smaller value f o r  t h e  
function f .  Thus, s e t t i n g  

y i e lds  

(2.3.11) 

from which t h e  second guess i s  computed. 
minimum value i s  found. 
are used, t h e  approach i s  second order and, as indicated i n  Reference (a), i s  
accompanied by a rate of convergence which i s  a t  least  quadratic with 

The process i s  repeated u n t i l  t he  
Since the  second terms i n  the  series approximation 

The effect iveness  of t h i s  technique and the gradient method, as far as 
rate and radius of convergence i s  concerned, is primarily a function of t h e  
pa r t i cu la r  problem under consideration and t h e  point a t  which the i t e r a t i o n  
i s  begun. I f  t h e  first guess of X i s  tlclose'l to t h e  minimum point, then t h e  
second-order approach will provide t h e  most rapid convergence s ince it gives 
both a magnitude and d i r ec t ion  of correction. 
"close", t h e  second order technique w i l l  diverge. 
gradient technique can be made t o  converge from points "far removed" from t h e  
minimum point due t o  t h e  f a c t  t h a t  t h e  magnitude of correction i s  controlled 
with t h e  technique itself providing only a direct ion of correction. 
v i c i n i t y  of t h e  solution, however, t h e  derivatives & approach zero and t h e  
correction mechanism i n  t h e  gradient method breaks down. Thus, as a general  
rule ,  t h e  first order method should be used a t  the start of t h e  i t e r a t i o n  
u n t i l  t h e  s t a r t i n g  point has been moved su f f i c i en t ly  'Iclose" t o  t h e  optimal 
point, a t  which time a switch t o  t h e  second-order method should be made. 

If the  s t a r t i n g  point i s  not 
On the  other hand, t h e  

I n  t h e  

B. Minimizing a Functional 

The method used t o  e f f ec t  solutions t o  va r i a t iona l  problems are very 
similar t o  those used i n  maxima-minima theory. 
t h ree  techniques w i l l  be presented, two of  which are second order and one 
first order. 
mizing solut ion are restated:  

I n  the  following paragraphs, 

For convenience, t h e  conditions t o  be s a t i s f i e d  by t h e  mini- 

(1) d i f f e r e n t i a l  state equations 

ii - f p , U l  ; A: = // ( 2.3.112) 
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(2) d i f f e r e n t i a l  adjoint  equations 

(3) control  optimization condition 

( 4 )  s t a t e  boundary conditions 

( 5 )  t r ansve r sa l i t y  conditions 

(2.3.115) 

(2.3.116) 

(2.3.117) 

Also, t o  simplify t h e  developent ,  two assumptions regarding t h e  form of  t h e  
optimization problem will be made: 

the admissible control set U i s  the  e n t i r e  control  space 
with the  control  t h a t  maximizes H s a t i s fy ing  

(2.3.118) = O  ; & = / / I -  

the  terminal time tf i s  specif ied and therefore  t h e  t rans-  
ve r sa l i t y  condition i n  equation c2.3. ii'i) provides no add i t iona l  
information ( i t  contains an a r b i t r a r y  unknown constant) and 
can be eliminated. 

These assumptions are somewhat r e s t r i c t i v e .  
f a c i l i t a t e  the presentation of t h e  methods. 
cases i s  straightforward and i s  given i n  Reference (15) .  

However, they are made only t o  
The treatment of  more general  
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(1) Gradient Method 

I n  t h e  gradient method, which i s  a first order technique, each 
successive i t e r a t i o n  satisfies conditions (1) , (2), (4) and ( 5 )  
but does not s a t i s f y  condition (3). 
used i n  maxima-minima theory, the i t e r a t i o n  process cons i s t s  of 
minimizing t h e  first order approximation t o  t h e  funct ional  
J = @(xf , t f )  subject t o  a magnitude constraint .  

A s  i n  t h e  gradient technique 

Take as a s t a r t i n g  solut ion a control  u = u ( l )  which dr ives  the  system 

;i = f; (X ,  4) 

from t h e  i n i t i a l  point 

X = X "  j t = t "  

v / , . (x , t  f f  )=o j t = t f ( s p e c ; f ; c d )  

t o  t h e  t a r g e t  set 

but which does not necessarily minimize the performance index 

J = 91x5 If) 
Admittedly, such a control  policy may be d i f f i c u l t  t o  find, but not as 
d i f f i c u l t  as one which satisfies a l l  t h e  boundary conditions and minimizes 
6 (xf,tf) (i.e., t h e  optimal control ), Now, form t h e  modified funct ional  J 

and note t h a t  minbLzing 3 i s  equivalent t o  minimizing J. 
i t s  first order Taylor series expansion about t h e  nominal value J ( u ( l ) )  
provides 

Appro&xnaating 5 by 

where 

f 

because they vanish on account o f  t h e  trilal solut ion sa t i s fy ing  condTtions (l), 
(2)  and (4) on paces 77 and 78. 

P t e  : Terms such as $ &A& It' and (ti -4 (%,a) dt a r e  oix.tted i n  (2.3.119) 
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Integrating t h e  first term i n  t h e  integrand by p a r t s  and requiring t h a t  t he  
adjoint equations 

be sa t i s f i ed  provides 

(2.3.120) 

(2.3.121) 

If the  amount by which the  control  a c t i o n  can change i s  limited, mini- 
mizing t h e  f irst  order approximation t o  J should provide a smaller value f o r  
t he  performance index 0. Hence, require  t h a t  

(2.3.122) 

where k2 i s  some small quant i ty  and choose t h e  change i n  t he  control  
t o  minimize 

6 u ( t )  
6 5 under the  constraint  (2.3.122). 

Proceeding=formally, t h e  mul t ip l i e r  V i s  introduced and t h e  modified 
functional SJ formed 

- 
Now, requiring t h e  first va r i a t ion  of fi t o  vanish provides 

and t h e  boundary conditions 

(2.3.123a) 

(2.3.123b) 

( 2 3 124) 
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Since 
t h a t  an equal i ty  holds i n  (2.3.122). 

V = 0 in(2.3.2.3b) is  a degenerate case, it follows t h a t  ? = 0 and 

A review at  t h i s  point seems appropriate. The f i r s t  i t e r a t i o n  u ( l ) ( t )  
i s  selected so t h a t  t he  state 

i s  driven from t h e  ini t ia l  
t h e  state i s  computed, t h e  

point Xo t o  t h e  t a rge t  set V I ; ( X f , t f )  = 0. 
ad j o i n t  equations 

Once 

; i = / , a  

are integrated backwards with the  boundary conditions 

The second i t e r a t i o n  on t h e  control  i s  computed from 

&Z- )  = & ('1 f 8 & 

where equation (2.3.123a) i s  used t o  evaluate 6 u. The constant 7/ i n  t h i s  
equation i s  determined from t h e  magnitude constraint  

L 

Note t h a t  t h e  in t eg ra t ion  of t h e  adjoint  equations requires  a knowledge of t h e  
M mult ipl iersJ j  
s 1 cted so t h a t  t h e  new terminal state XP2j(tf) r e su l t i ng  from t h e  control  
uT2e(t) satisfies the terminal constraints  

used i n  the  boundary co d ' t ions.  These constants are t o  be 

q ( x , t  f f  )=o 

or, t o  t h e  first order 

t = tf (specif ied)  
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where 
a t  the poi& 
treated next. 

8 X f  = X!2)(tf) - X i l ) ( t f )  and the  derivativesA%/ay; are evaluated > “’(tf).The process by which the  correct 1~ . c are selected is 

Integrate  the system 

from tf t o  to m+l times with the  m+l d i f f e ren t  sets of boundary conditions 

1 

I 

M 

j= I 

Since t h e  disturbed state equations a r e  given by 

it is  a simple matter t o  show t h a t  

Wi th  6 Xp=O ( the i n i t i a l  point i s  fixed) 

Thus, subst i tut ion of t h e  terminal values 

J t  . 
t h i s  expression becomes 

(2.3.126) 

6 4 p  i j = J, h+l,  (2.3.127) 

from equation (2.3.125) provides 
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Using t h e  expression f o r  t he  P vector given i n  (2.3.126) and the control  
change i n  (2.3.123), equation (2.3.128) reduces t o  

These M equations are used t o  compute the  values of t h e  pi 
conditions 

f o r  which t h e  

i J 

are s a t i s f i e d .  
(2.3.125) it follows t h a t  

Using equatinns (2.3.129), (2.3.127) and the  l a s t  of equation 
I 

I where t h e  quantity V i s  determined from equation (2.3.123~) and-can be shown 
t o  be pos i t i ve  from t h e  second var ia t ion t e s t  on t h e  quantity rJ. 

The s t e p  by s t e p  calculat ion procedure used i n  the gradient method i s  as 
follows : 

( i )  Select  u(')(t) so t h a t  X=Xo and T ( X f , t f ) = O  

(ii) In teg ra t e  the  s t a t e  system 

from to t o  tf ( r e c a l l  t h a t  it has been assumed t h a t  tf i s  
fixed).  

( i i i )  Integrate  t h e  adjoint  system 
a* j 

p; = - ?j 

from tf t o  to mtl times w i t h  t h e  m + l  terminal conditions 

, C m l  I - 1;  
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( i v )  Compute the  p from t h e  m conditions d 

(v) Compute P and t/ from 
Cn+i l  Lj3 r7 

J - - I  
P; = pi 

t f 

( v i i )  GO t o  s t e p  ( i i )  

The i t e r a t i o n  continues un t i l  changes i n  t h e  control pol-icy produce no 
changes i n  t h e  performance index 0. 
The first ordsr approximation t o  t h e  change i n  
negative s ince V i s  posi t ive)  i nd ica t e s  t h a t  each successive i t e r a t i o n  
should reduce j?~ u n t i l  t h e  condition 

A t  t h i s  point, t h e  i t e r a t i o n  is  stopped. 
given i n  (2.3.131) (which i s  

i s  reached. 
optimizing condition, and the  solution corresponding t o  t h i s  i t e r a t i o n  will be 
t h e  optimal solution. 

From assumption (1) o r  equation (2.3.118) t h i s  condition i s  the  

(2) Neighboring Extrema1 and Quasi l inear izat ion 

Since both of these techniques are second order,  ( i .  e. , second order 
terms i n  a series expansion are used) they will be presented to- 
gether,  The presentation, however, will be abbreviated s ince both 
techniques are r a the r  complex algebraically.  
t he  reader should consult t h e  l i t e r a t u r e  Deferences  (15) t o  ( l S g .  

For a fu l l  development, 

Proceeding as i n  t h e  gradient method, t h e  functional i s  formed 
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and expande 
solut ion (xflj:u?lj) 

runcated series about some first guess a t  t h e  optimal 

( 2.3 134) 

In both neighboring extrema1 and quasil inearization, t h e  corrections 6 X i ,  
6 ~ 4  6 uk are selected so as t o  minimize t h e  second order approxi- 

mation t o  J; t h a t  i s ,  t o  minimize the r i g h t  hand s ide  of equation (2.3.132). 
The difference i n  t h e  two techniques l i e s  i n  the  select ion of t h e  s t a r t i n g  
solut ion ( x ( l ) , u ( l > ) .  

, and 

In t h e  neighboring extr l m e t h  d 
control  and state his tory,  X?8 and ,411 i s  assumed which satisfies equations 
(2.3.112), (2.3.113) and (2.3.1uC) but which does not s a t i s f y  equations 
(2.3.115), (2.3.116) o r  (2.3.117). 

a s t a r t i ng  solut ion consisting of  a 

These last  two conditions f 

# Since t h e  final time tf i s  specified,  t h e  last  equation i n  condition (5) 
provides no information since it contains an a r b i t r a r y  constant. 



const i tute  a set of nim boundary constraints  and can be reduced t o  n boundary 
constraints through e l x n a t i o n  of t h e  mul t ip l i e r s  md' . 
generating-the s t a r t i n g  solut ion consis ts  of guessing an i n i t i a l  value f o r  t he  
P vector h P o = P ( t O u  and integrat ing t h e  2nd system 

The process of  

a fJ* = -p .  
d ax; 

from to  t o  tf where t h e  control u i s  selected t o  s a t i s f y  the  optimizing con- 
d i t i on  

If the  correct  Po vector has been guessed, t he  telminal constraints  of 
equation (2.3.135) w i l l  be sa t i s f i ed .  When these conditions are not met, t h e  
neighboring-extrema1 technique of  minimizing t h e  second approximation of t h e  
functional J provides a correction t o  t h e  Po vector,  6 Po;  and i f  t h e  first 
solution i s  "close" t o  the  optimal solution, then the  second solution r e su l t i ng  
from the updated value of the Po vector will provide a b e t t e r  matching of t h e  
terminal conditions. 

Since t h e  conditions 
ki z c  C X , U )  

a f j  
d ax; 

- p -  __ 

)((t=??) = x o  

- 0  
b t l  - 
auk 

are s a t i s f i e d  by the  s t a r t i n g  solution, minimizing t h e  second order approxi- 
mation t o  J reduces t o  minimizing t h e  quant i ty  
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Se t t ing  t h e  va r i a t ion  o f  t h e  above expression t o  zero with respect t o  t h e  
va r i ab le s  6 P.i, suk, 6 x i f ,  and provides t h e  d i f f e r e n t i a l  equations d 

and the  boundary conditions 

This system o f  equations and boundary conditions, along with t h e  requirement 
t h a t  However, 
s ince the  equations and boundary conditions are  l i n e a r ,  t he  problem can be 
solved d i r e c t l y  (without i t e r a t i o n )  t o  give the correction i n  the  i n i t i a l  
P vector, 
and (16). 

6 X = 0 a t  t = to, i s  a two point boundary value problem. 

6 Po. The d e t a i l s  of t h e  solution are contained i n  References (15) 

I n  quasi l inear izat ion,  a s t a r t i n g  solution i s  selected which satisfies 
(2.3;114), (2.3.115) and (2.3.116) but not equations (2.3.112) and (2.3.113); 
t h a t  i s ,  t h e  s t a r t i n g  solut ion satisfies t h e  boundary conditions o f  t h e  problem 
but not t h e  governing d i f f e r e n t i a l  equations. The control  u i s  again de t e r -  
mined from t h e  optimizing condition 

The i t e r a t i o n  process then consists of determining corrections L- d P( t )  , 6 X( tu 
t o  t h e  s t a r t i n g  solut ion Lz "'(t) ,P") (tv so  t h a t  t h e  second i t e r a t i o n  

87 



I .  

more nearly satisfies t h e  governing equations. 

Since t h e  s t a r t i n g  so lu t ion  satisfies t h e  equations 

a 'r; 
f f  5' ( A , ,  t ) = 0 

minimizing t h e  second order approximation t o  5 reduces t o  minimizing t h e  
expr es sion 

Thus, s e t t i ng  t h e  first var ia t ion  t o  zero provides 
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. 

The solution t o  t h i s  system provides the  corrections 
The d e t a i l s  of  t h e  solut ion are presented i n  References '(15), (17) and (18). 

8 P ( t )  and 6 X(t).  

Both quasi l inear izat ion and neighboring extrema1 are t h e  va r i a t iona l  
analog of t h e  second order approach used in &-minima theory. Both 
provide a magnitude and direct ion of correction ( t h e  gradient technique 
provides only direct ion) .  
accompanied by a rate of convergence which i s  a t  least quadratic. 
t he  s t a r t i n g  solut ion must be "close" t o  t h e  optimal solut ion f o r  t h e  i t e r a t i o n  
process t o  converge. 
s iderat ion.  

Further, as i n  maxima-mink theory, both are 
However; 

How close depends on the p a r t i c u l a r  problem under con- 

2.3.7 Some Generalizations 

The problem o f  s e l ec t ing  t h e  control  u from t h e  set v t o  minimize t h e  
functional 

J =  @ ( x f , t f )  = / v / N  ( 2.3.136) 

subject t o  t h e  d i f f e r e n t i a l  constraints  

and the boundary conditions 
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. .  

i s  ra ther  general  i n  form. 
statement differs s l i g h t l y  from t h a t  j u s t  given. 
a t ions o f  t h i s  problem are considered and the  modified necessary conditions 
are developed. 

( A )  

Occasionally, however, problems arise whose formal  
In t h i s  sect ion,  four  var i -  

The Functional t o  be Kinimized i s  an In t eg ra l  o f  t h e  Form 

I n  t h i s  case, it i s  a simplified matter t o  reduce t h e  i n t e g r a l  
performance index t o  a terminal index o f  t he  form o f  equation 
(2.3.136). Let 

then 

*n+,  
L - (2.3.139) 

and t h e  problem of minimizing t h e  i n t e g r a l  reduces t o  minimizing 

J =  f = Xnt ,  

subject  t o  equations (2.3.137) t o  (2.3.139) and t h e  addi t ional  
boundary condition. 

(2.3 140) 

( B )  The Di f f e ren t i a l  Constraints Contain Time Exp l i c i t l y  with 

si = Si ( x , ~ c , t  1 

The e x p l i c i t  t ime dependence i n  t h e  d i f f e r e n t i a l  cons t ra in ts  can 
be removed by a transformation. L e t  

Xn,, = 

with 
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c 

and 

x,,, = t O t =to  
X n + , = t f  j d = f  f 

The d i f f e r e n t i a l  constraints  

( 2.3.142) 

are now no longer e x p l i c i t l y  dependent on time. The optimization 
proceeds by applying t h e  Phximum Principle t o  t h e  n+l dimensional 
system sa t i s fy ing  t h e  combined boundary conditions of  equations 
(2.3.138) and (2.3.142). 

The lni t ia l  Conditions are Not Completely Specified (C) 

Suppose t h a t  t h e  i n i t i a l  conditions are not completely specif ied 
but r a t h e r  are t o  satisfy t h e  s constraints 

In  t h i s  case t h e  optimizing cenditions are developed by working 
with t h e  modified functional 5 where 

- zf  
J = @t/U&*yd. ti$&* + / p ; ( & * - f . ) d t  L 

d o  
The funct ional  5 i s  t o  be minimized with respect-to var ia t ions i n  t h e  

control  and i n  t h e  i n i t i a l  and terminal points. 
respect t o  va r i a t ions  t h a t  go through t h e  optimal i n i t i a l  point i n  t h e  set 
B i ( x o , t o ) = O ,  it i s  necessary t h a t  a l l  t h e  conditions stemming from t h e  
~I~-LUII Principle  be s a t i s f i e d ;  t h a t  is, 

For 3 t o  be optimal with 
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- 
For the f i r s t  va r i a t ion  of  5 t o  vanish with respect t o  va r i a t ions  i n  t h e  
i n i t i a l  point,  it follows t h a t  t h e  addi t ional  boundary conditions 

must hold at t h e  start of 
case i n  which t h e  i n i t i a l  
must s a t i s f y ,  i n  addition 
equation ( 2.3.145). 

t-t” ( 2.3.145 
0 

t h e  solution. Thus, t h e  optimal solution, f o r  t h e  
point l i e s  i n  the  set  given by equation (2.3.1431, 
t o  equation (2.3.144), t h e  boundary conditions of 

(D) The Admissible Control Set  u Depends on t h e  state x. 

Up t o  t h i s  point,  t h e  set v has been a compact set i n  t h e  r 
dimensional control space. In t h e  va r i a t iona l  development of 
Section 2.3.5, it was  assumed that t h i s  set could be represented 
by an inequal i ty  of t h e  form 

Occasionally problems arise i n  which t h e  set  v d e p e n d s  on t h e  
state X, with t h e  inequa l i ty  i n  (2.3.146) replaced by 

However, t he  development of  t h e  appropriate necessary conditions i n  
this case i s  straightforward if the  va r i a t iona l  approach of  
2.3.5 i s  employed 

Section 

As i n  Section 2.3.5, t h e  functional 
is formed, but with t h e  integrand F given by 

corresponding t o  equation (2.3.80a) 

Requiring 
boundary conditions leads t o  t h e  same necessary conditions as before; t h a t  is, 
equations (2.3.81) t o  (2.3.89). Subst i tut ing t h e  F function of  (2.3.147) i n t o  
these equations provides 

t o  be optimal with respect  t o  va r i a t ions  i n  t h e  control  and 
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(1) Boundary Conditions 

a @  a YJ' 
/ f = -  f +'-=O 

a t  a t  
(2) Corner Conditions 

P ( - I  p'f) = 

/./ C f )  '= H c- > 

(3)  Adjoint o r  Euler Conditions 

( 2.3 148) 

( 2.3 149 

Note t h a t  t h e  ad jo in t  conditions are the same as before except f o r  t h e  addi- 
t i o n a l  term, hkglax;, i n  equation (2.3.150). 
Euler condition of  equation (2.3.82) combine t o  y i e l d  

The Weierstrass condition and t h e  

where uo denotes t h e  optimal control  and 6 denotes any other control  both of  
which must l i e  i n  t h e  set V given by 

The mul t ip l i e r  
pression. If an equa l i ty  holds, then A (and' t h e  optimal control)  i s  
determined from 

h i s  zero i f  a d e f i n i t e  inequal i ty  holds i n  t h e  above ex- 

which must be  satisfied f o r  H t o  be xnaximized. 
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2.4 BOUNDED STATE SPACE PROBIDI 

A problem of  current i n t e r e s t  i n  optimization theory i s  t h e  bounded state 
space problem. 
t h e  s t a t e  variables of t h e  form 

This problem i s  characterized by an inequa l i ty  constraint  on 

LP c t 5 ty (2.4.1) 

t h a t  i s ,  t h e  functional J 

J = $ (x f , t f )  = MIN 

i s  t o  be minimized subject t o  t h e  requirements t h a t  t h e  control  u l i e  i n  some 
specified set v , t h a t  t he  equations 

hold and t h a t  t he  optimal state h i s to ry  satisfies t h e  inequa l i ty  i n  (2.4.1). 
The feature which dis t inguishes  t h i s  problem from those t r e a t e d  i n  Section 2.3 
i s  the  e x p l i c i t  independence of t he  function gl i n  (2.4.1) on t h e  control  
action u. 

Problems of t h i s  type arise frequently i n  f l i g h t  and space mechanics. 
example, i n  t h e  minimum time t o  climb problem, t h e  vehicle may be required t o  
s t a y  within a specified region on an al t i tude-veloci ty  p lo t  t o  prevent t he  
onset of f l u t t e r ,  o r  s ta l l ,  or excessive heating rates. This region of oper- 
a t ion ,  cal led the  f l i g h t  envelope, can be defined by a state inequa l i ty  of t h e  
form o f  (2.4.1). 

For 

The formulation and the  development o f  t h e  appropriate necessary condition 
f o r  bounded s ta te  problems i s  straightforward and can be accomplished using t h e  
var ia t ional  methods of Section 2.2. I n  f a c t ,  several  d i f f e r e n t  formulations 
are possible, depending on j u s t  how t h e  inequal i ty  i n  (2.4.1) i s  adjoined t o  
t h e  proglem. All of these methods l e a d  t o  s l i g h t l y  d i f f e r e n t  but equivalent 
necessary conditions Lsee References ( 1 9 )  t o  (23) and chapter 6 of Reference 
( 4 u .  
i n  regard t o  t h e i r  use i n  a computational procedure. 

The d i f f i c u l t  problem i s  t h e  i n t e r p r e t a t i o n  of  t h e  necessary conditions 
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t h a t  
There are, i n  general, four d i f f e ren t  types of inequal i ty  cons t r a in t s  
can occur i n  optimal control  problems: 

S t a t e  inequal i ty  

$ , C X )  6 0 

Control i nequa l i ty  

3 , C L c )  L-0 

Coupled state and control inequality 

(4)  In t eg ra l  i nequa l i ty  

(2.4.2) 

(2.4.3) 

Cx, &c_)dt L 0 (2.4.5) 
t 

The second and t h i r d  type were considered i n  Section 2.3 and are frequently 
used as a n a l y t i c a l  representations f o r  t h e  admissible control set 
fourth type was  t r e a t e d  b r i e f l y  i n  Section 2.2.5. 

V .  The 

Numerical computation of  t h e  optimal control when any o r  a l l  of t h e  last  
th ree  tjrpes of  i nequa l i t i e s  are present, always leads t o  a two-point boundary 
value problem ( t h a t  is ,  a set of d i f f e r e n t i a l  equations with some of t h e  
boundary da ta  given a t  the  i n i t i a l  point and some a t  t he  terminal point). 
However, t h i s  i s  not t h e  case i f  t h e  optimization problem contains a state 
inequa l i ty  of  t h e  form (2.4.2). When t h e  state i s  bounded by the  inequa l i ty  
(2.4.2), t h e  numerical generation of  t h e  optimal control  l a w  requires t h e  
solut ion of  a t  least  a three-point boundary value problem; t h a t  i s ,  a set of 
d i f f e r e n t i a l  equations i n  which boundary data i s  given not only at t h e  i n i t i a l  
and terminal points,  but a l s o  a t  one o r  more intermediate points. 
i n  ce r t a in  cases ( t o  be discussed later), t h e  junction of an i n t e r i o r  segment 

For example, 

(XI 0 )  with a boundary segment &) = 0 must be accomplished so t h a t  
t 1 e optimal t r a j e c t o r y  i s  tangent t o  €he surface &) = 0. Thus, t h e  optimal 
solution, i n  addi t ion t o  meeting ce r t a in  in i t ia l  and terminal constraints ,  must 
a l s o  satisfy a tangency condition a t  t h e  junction point. 
t hese  intermediate boundary conditions makes t h e  development of numerical 
solut ions more d i f f i c u l t  than otherwise. 

The occurence of 

The intermediate boundary conditions a r i s e  from t h e  appl icat ion of t h e  
standard necessary conditions of t h e  calculus o f  var ia t ions.  However, t h e  
necessary conditions themselves require in t e rp re t a t ion  before the  computation 
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can be performed and the re  has been some difference of  opinion i n  t h e  l i t e r -  
ature as t o  j u s t  what cons t i t u t e s  t h e  correct  i n t e rp re t a t ion .  

To circumvent d i f f i c u l t i e s  of this type, t h e  approach used here t o  de- 
velop t h e  necessary conditions will be more i n t u i t i v e  and less mathematical 
than the preceding sections.  
by t h i s  approach i s  more than compensated f o r  by a c l ea re r  understanding of 
what t h e  necessary conditions are, and how they are t o  be used i n  constructing 
t h e  solution. 

It i s  f e l t  t h a t  t h e  l o s s  in mathematical r i go r  

2.4.1 Problem Statement and Composition of  t h e  Extrema1 Arc 

The problem under consideration i s  the  determination of t h e  control  u 
from the s e t  V s o  t h a t  a function of  t h e  terminal state i s  minimized 

subject t o  t h e  d i f f e r e n t i a l  constraints  

and boundary conditions 

x = x o  j t = t o  

u;.Cxf,tC) = o  j & ' =  / / M  

In  addition, t h e  state x( t )  i s  required t o  s a t i s f y  t h e  inequa l i ty  

(2.4.8) 

The oEtimal t r a ' e c t o r y  i s  composed of two types of segments, i n t e r i o r  
segments b l ( x )  < d a n d  boundary segments b l ( x l  = g.  In  some problems, i t  
may happen t h a t  t he re  are no boundary segments LFigure ( l a )  and ( l b v  o r  no 
int.erior segments LFigure (1.17 but i n  t h e  general case, both types W i l l  be 
present p igure  ( l d y .  
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Figure I 

Composition of the Extrema1 Arc in The Two Dimensional Problem 
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For convenience i n  developing t h e  appropriate necessary conditions, i t  
will be assumed t h a t  

(1) The control set u can be expressed ana ly t i ca l ly  by t h e  inequa l i ty  

(2.1:. lo) u c v -  g,ch) 5 0  

where the  boundary curve g2(u) = 0 i s  piecewise smooth. 

The state boundary curve gl(x) = 0 has continuous second der ivat ives  
with respect t o  a l l  i t s  arguments. 
vatives than the  second will be needed; thus, when these cases arise, 
the  existence of such der ivat ives  w i l l  be t a c i t l y  assumed. 

The i n i t i a l  point X" and t h e  t a r g e t  s e t  
i n t e r i o r  gl(x) 0. 

(2) 
In ce r t a in  cases, higher der i -  

(3) Y; ( x f , t f )  l i e  i n  t h e  

These assumptions are made only t o  f a c i l i t a t e  t h e  development of t h e  governing 
equations. The extension of  t h e  analysis  t o  cases i n  which one o r  more of t he  
above assumptions i s  relaxed, i s  again straightforward. 

2.4.2 Necessary Conditions 

A.  I n t e r i o r  Sement 

An i n t e r i o r  segment L ~ ( X )  c must s a t i s f y  the  same necessary conditions 
as an optimal t r a j ec to ry  fo r  an unconstrained problem; t h a t  is, an optimization 
problem i n  which inequal i ty  (2.4.9) i s  absent. The eason f o r  t h i s  i s  obvious. 
If the i n t e r i o r  segment connecting the  p o i n t s @ a n d b i n  Figure (Id) did not 
s a t i s f y  these conditions, t he  performance index $ could be decreased by vary- 
ing t h i s  segment. Hence, i t  follows t h a t  along an i n t e r i o r  segment 

f t = t  

(2.4.11) 

(2.4.12) 

(2.4.13) 
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B. Boundary Segment 

Along a boundary segment, t h e  equation 

must hold and, as a r e s u l t ,  t he  addi t ional  equations 

(2.4.15) 
I: J n4 0 
d t" 

are a l so  s a t i s f i e d ;  t h a t  is, a l l  der ivat ives  of t he  boundary curve are zero 
by v i r t u e  of t he  f a c t  t h a t  t he  t r a j e c t o r y  l i e s  i n  t he  boundary surface. 
e i t h e r  t he  constraint  (2.4.4) can be d i r ec t ly  adjoined t o  t h e  problem o r  any 
one of t h e  der ivat ives  i n  equation (2.4.15). 
computationally t o  work with the  first derivative t h a t  e x p l i c i t l y  contains 
t h e  control  ac t ion  u. 

Hence, 

It turns  out t o  be convenient 

For example, t h e  f i rs t  der ivat ive takes the  form 

(2.4.16) 

If t h e  r i g h t  hand s ide  of (2.4.16) contains u exp l i c i t l y ,  the first der ivat ive 
i s  adjoined t o  t h e  problem. I f  not, t he  second der ivat ive i s  computed with 

(2.4.17) 

Let KIbe the  first xime derivat ive of  gl which contains u e x p l i c i t l y  
after t h e  X i  are replaced by f i ( x , u )  as i n  equations (2.4.16) and (2.4.17); 
t h a t  is, 

( 2.4.18) 
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To find the  optimal boundary segment, t h e  modified funct ional  5 

A,  = 0 ; Along I n t e r i o r  Segment 

A, i t  0 ; Along Boundary Segment 
(24 .21 )  

By applying the standard necessary conditions t o  the  funct ional  y, it follows 
t h a t  equations (2.4.11) t o  (2.4.13) hold along an i n t e r i o r  segment ( A1= 0 )  
awhile along a boundary segment ( hl # 0 )  

a 
(2.4.22) 

+ < = o  (2.4.23) 

= o  ; = i ) r  
a 

fl(>c,p,u,) >- H ( K , P , G )  (2.4.25) 

I n  t h i s  l a s t  inequal i ty  uo i s  the optimal control  and 2 i s  any other control,  
both of which must s a t i s f y  

ye(&)+ v i Z = o  { L C . )  u , a n ~ ~ e u j  (2.4.26) 

100 

~ 

4 O  

i s  formed where 

and where 

(2.4.24) 



The first three necessary conditions r e su l t  from the  Euler equations w h i l e  t h e  
last i s  the  Weierstrass condition. 
s ince it must hold i f  equations (2.4.25) t o  (2.4.27) are satisfied. 
t h i s  equation does ind ica t e  how t h e  mult ipl iers  
puted. Also, t he  corner conditions b e e  equation (2.3.9517 
required t h a t  t h e  Hamiltonian and t h e  P vector be continuous across an uncon- 
s t r a ined  corner ( i .e . ,  a discontinuity i n  the de r iva t ive  X r e su l t i ng  from a 
discont inui ty  i n  t h e  control  u ) .  

Note t h a t  equation (2.4.24) i s  redundant 
However, 

A1 and h 2are  t o  be com- 

C. Junction Conditions 

Since the  equations governing t h e  P vector and t h e  control  u along, both 
i n t e r i o r  and boundary segments have been developed; it remains t o  determine 
how these two segments should be joined together t o  form the  optimal solution. 
The optimal junction conditions are computed by requiring t h e  f i r s t  va r i a t ion  
of t h e  funct ional  J t o  vanish with respect t o  var ia t ions i n  t h e  place and time 
a t  which t h e  junctions occur. 

Let t L  ( 1 = 1,s) denote t h e  junction times. Since t h e  der ivat ive and 
control  may be discontinuous at t j  
(2.4.19) as 

, rewrite t h e  funct ional  J i n  equation 

Now, requiring t h e  first va r i a t ion  of J t o  be zero provides 

where 



But, the quantity&FsX;/&?i can be integrated by parts and the identity 

- 
can be used to reduce J to 

where 

In view of the optimizing conditions of equations (2.4.11), (2.4.12), and 
(2.4.22) to (2.4.25), this expression becomes 

Furthermore, since the junction variations, dx; and dt,-are unrelated at the 
different junction times tp , it follows that for 6 J to vanish 

at t = tq ; p =  1,s 
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Equation (2.4.28) determines how an i n t e r i o r  segment i s  t o  be joined t o  
a boundary segment s o  t h a t  the t o t a l  solution i s  optimal. 
d x i  and d t  were unrelated, the usual corner conditions (unconstrained corner) 
would r e s u l t  with 

Note t h a t  i f  the 

= H c + )  

t h a t  is, continuity on t h e  P vector and t h e  Hamiltonian across the  corner. 
t h i s  case, however, t he  dXi and d t  are related a t  a junction corner with t h e  
exact r e l a t ionsh ip  depending on the form of  t h e  boundary surface gl(x)=O. 

To begin with, t he  junction must occur on t h e  surface gl (x)=O. 

In  

Hence, 
t he  dXi and d t  s a t i s f y  the  constraint  

If t h e  first time derivativedg,/dt  =aq,S;/bx; contains u e x p l i c i t l y  i n  
equation (2.4.18) i s  u n i t d  then equation (2.4.29) i s  the  only addi t ional  
r e l a t ionsh ip  t h a t  must be s a t i s f i e d  a t  a junction point and t h e  two equations, 
(2.4.28) and (2.4.29) combine t o  y i e ld  t h e  optimal junction conditions 

(2.4.30) 

where 
first de r iva t ive  t o  contain the control  u exp l i c i t l y ,  t he  junction must s a t i s f y  
the  two conditions 

v1 is  a constant t o  be determined. If t h e  second der ivat ive f o r  K-2 I s  t h e  

C j p )  = 0 

I n  t h i s  case, i f  t he  der ivat ive 81 were not zero, an incoming t r a j ec to ry  on 
s t r i k i n g  the  boundary surface gl(x)=O would go through t h e  surface and v i o l a t e  
t h e  condition. does not contain u exp l i c i t l y ,  
t h e  only way t h a t  t h e  t r a j e c t o r y  w i l l  s tay on the  boundary surface a t  a 
junction i s  i f  t h e  first der ivat ive is zero. 
and d t  must s a t i s f y  the  equations 

Since t h e  first derivative @ 

Hence, from (2.4.32) t h e  dXi 
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Combining these equations with equation (2.4.2 8) provides the optimal junction 
conditions 

The quantities V I  and v2 are constants to be determined. The general case 
in which K is some arbitrary integer leads to the conditlons 

2.4.3 Interpretation of the Necessary Conditions for the Case K = 1 

The development of the appropriate necessary conditions for the bounded 
state space problem is rather straightforward and involves essentially the 
same mathematical techniques used on other variational problems. 
to be considered next, and one that is not trivial, is the interpretation and 
use of these conditions in the computing of a solution. 

The question 

A comparison of equations (2.4.11) and (2.4.12) with (2.4.22) to (2.4.27) 
indicates that the P vector must satisfy the differential equation 

and the boundary conditions 

(2.4.37) t =  tf 

a b  

where A ,  
segment. 

is zero along an interior segment and non-zero along a boundary 
The optimal control is computed from 

P(X,P,UA z H( Y) P , Z  1 
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where u i s  constrained t o  l i e  i n  t h e  set U- given by 

f o r  an i n t e r i o r  segment, and where u must s a t i s f y  t h e  two conditions 

on a boundary segment. In  addition, t he  mult ipl iers  A ,  and A L  are 
determined from 

t h a t  i s ,  A ,  and A ,  are both zero when gl and g2 are both less than zero. 

When t h e  optimizing solution enters  o r  leaves the  boundary curve gl(x)=O, 
t h e  junction conditions of equation (2.4.35) must be s a t i s f i e d .  These same 
junction conditions result regardless of how t h e  bounded stake space problem 
i s  formulated. 
(2.4.19) and (2.4.2017 by adjoining t h e  constraint  g l ( x ) l O  d i r e c t l y  t o  t h e  
problem r a t h e r  than, t he  kth der ivat ive d kg, /dt k, t h e  same set of junction con- 
d i t i ons  r e s u l t .  
junction conditions Lin pa r t i cu la r ,  t he  value of t he  mul t ip l i e r s  
equation (2.4.3517 va r i e s  with the formulation being used. 

For example, i f  t h e  functional J i s  formed Lsee equations 

However, while t he  form i s  the same, t he  meaning of t h e  
V i  i n  

Lgee Reference 
( 19u. 

Another point of  d i f f i c u l t y  i n  regards t o  t he  junction conditions i s  t h a t  
t h e i r  i n t e rp re t a t ion  depends on whether t h e  junction i s  an entry corner 
(solut ion i s  entering t h e  boundary surface) o r  an e s t  corner (solut ion i s  
leaving t h e  boundary surface). This point has been t h e  cause of some dis-  
agreements i n  t h e  l i t e r a t u r e .  

To avoid any ambiguity i n  regards t o  t h e  in t e rp re t a t ion  of t he  junction 
conditions, a t t e n t i o n  will be focused on one spec ia l  case; t he  case i n  which 
K=l and the  first der ivat ive of  t h e  boundary surface contains the  control  u 
e x p l i c i t l y  with 
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Much of the analysis for this case carxies over when K 22. 
reader should consult the literature LReferences (19) to (2227. 

The interested 

A .  Strong Weierstrass Condition 

From equation (2.4.35), the junction conditions for K=l reduce to 
g , W  = 0 

.- 
with the first of these equations stating that the junction must occur at the 
boundary surface. 
when the strong version of the Weierstrass condition holds. 

These conditions have a simple geometrical interpretation 

Recall that the Weierstrass condition requires that 

(2.4.41) 

where uo denotes the optimal control and 
control. 

denotes any other admissible 
The strong Weierstrass condition is said to be satisfied if 

that is, the optimal control provides a larger value for the Hamiltonian than 
any other control, with an equality condition holding in (2.4.41) only if 
G = uo. 

By employing the definition of the Hamiltonian 

H = pifi 

Equations (2.4.40) can now be combined to yield 
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But s ince 
of  t h e  corner) it follows t h a t  

Skk must be zero (assuming t h e  + sign denotes the  boundary s ide  d t  I 

o r  

If t h e  gstem i s  such t h a t  t he  strong version of t h e  Weierstrass condition 
holds Linequality ( 2.4.42y,  equation (2.4.4.4) reduces t o  the condition 

T h i s  condition requires  t h a t  t h e  solut ion be tangent t o  t h e  boundary surface 
a t  each junction with t h e  control continuous across t h e  junction. 
t he  strong Weierstrass condition does not  hold, t he  tangency condition and 
cont inui ty  i n  t h e  control  vector are not necessary. 

However, i f  

B. Computation of t h e  llultiplier VI 

If a olut ion i n  a bounded state space i s  t o  be computed, t he  values of 

t h e  governing equations from the  i n i t i a l  point. The jun t ' o n  conditions of  
equations (2.4.40) would then appear t o  determine t h e  Pi t+) ( t h a t  is ,  t h e  P 
vector on t h e  boundary s ide  of t he  junction) so t h a t  t h e  l a s t  two of equation 
(2.4.40) could be considered as a system of n + 1 equations i n  n + 1 unknown, 
t h e  Pi(+) and 
minant of t h i s  system vanishes and t h a t  t h e  corner conditions are i n s u f f i c i e n t  
t o  determine the Pi(+) and V, . The reason f o r  t h i s  i s  qu i t e  simple. 

t h e  P i  (- 5: could be determined a t  the  first entry corner simply by in t eg ra t ing  

I/, . However, it can be shown t h a t  t h e  coeff ic ient  deter-  

Consider t h e  case i n  which the  strong Weierstrass condition holds and the  
optimal solut ion i s  required t o  be tangent t o  t h e  boundary. If t h e  tangency 
condition i s  not m e t  then t h e  junction i s  not optimal and the re  i s  no choice 
of  t h e  mul t ip l i e r  V, 
t o  be s a t i s f i e d .  On t h e  other hand, i f  t he  solution i s  tangent, any choice 
of  
regardiess of  t h e  value of 
cannot be made merely by se l ec t ing  a cer ta in  value f o r  

, which w i l l  allow the junction conditions of (2.4.40) 

1/ , will suff ice;  t h a t  is, t h e  junction conditions of (2.4.40) will hold 
U; . The point is ,  t h a t  an optimal junction 

U, . 
If t h e  junction i s  co r rec t ly  made, the value of % i s  a rb i t r a ry .  A 

r a t h e r  i n t e r e s t i n g  point i s  t h a t  t h i s  a rb i t r a r ines s  i s  va l id  o n l y  at  one end 
of  a boundary segment and not a t  both ends; that  i s ,  i f  V; i s  selected t o  
hzve some value a t  t h e  en t ry  corner, i t s  value a t  that e x i t  corner i s  fixed 
Lsee Reference (2I.y. This can be shown as follows. 
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On the  j n t e r i o r  s ide of the corner (denoted by t h e  superscript(-)  ) t h e  
Hamiltonian must be maximized subject t o  the  constraint  

Hence 

. 
(2.4.46) 

From equation (2.4.43) 

and t h e r  f o  e e uation (2.4.46) must have a t  l e a s t  two solutions,  ,&(-I u ' - g  
and /-A$ 'fu('3, both o f  which maximize the  Hamiltonian. On t h e  boundary 
side: t h e  addi t ional  constraint  

i s  imposed and the optimal control must s a t i s f y  

Now, one o f  t h e  solutions sa t i s fy ing  equation (2.4.46),  namely L- Ae', u (+g 
must a l so  s a t i s f y  equation (2.4.47). Subst i tut ing 

i n t o  (2.4.47) i t  follows t h a t  

A ,  = 1.: 

a t  a junction corner. 
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. 
In ge t t i ng  onto t h e  boundary gl(x)=O, any value of  fl w i l l  do provided 

equations (2.4.40) are s a t i s f i e d  t o  begin with. 
s e l ec t ing  
vj i s  removed by the appropriate choice o f  A ,  a t  t h e  en t ry  corner. 

Once the  value of  A, i s  specified a t  t h e  entry corner, i t s  time h i s to ry  
along t h e  boundary i s  determined from equations (2.4.38). Thus, < i s  
not a r b i t r a r y  a t  t he  exit corner, but must be selected t o  s a t i s f y  (2.4.49). 

It i s  then a matter of  
A, t o  s a t i s f y  equation (2.4.49); t h a t  i s ,  t h e  a r b i t r a r i n e s s  i n  

To summarize, t h e  value f o r  t he  mult ipl ier  v; i s  a r b i t r a r y  a t  one end 
of t h e  boundary and fixed a t  the other end. 
t h a t  t h i s  mu l t ip l i e r  should take. However, the relat ionship between A ,  
and U, given i n  (2.4.49) must be sa t i s f i ed .  For t h e  junction t o  be optimal 
t he re  must exist two values, u(-) and u(+) , which maximize t h e  Hamiltonian 
a t  t h e  entry corner and with u(*) sa t i s fy ing  t h e  addi t ional  constraint  

There i s  no one correct  value 

If t h e  strong Weierstrass condition holds, then u(-)==u(+) and the  solut ion i s  
tangent t o  t h e  boundary surface. 

C. Getting O f f  t h e  Boundarx 

I n  t h e  process of computing a solution, it i s  possible t h a t  t h e  i n t e r i o r  
segment will not s a t i s f y  t h e  optimal junction conditions of equation (2.4.40); 
t h a t  i s ,  t h e  incorrect  i n i t i a l  P vector may have been selected s o  t h a t  upon 
in t eg ra t ing  t o  t h e  boundary surface,  t h e  junction conditions are not m e t .  
t h i s  case, i t  would be concluded t h a t  t he  i n i t i a l  P vector w a s  wrong, and t h a t  
t h e  r e su l t i ng  i n t e r i o r  segment was not a par t  of  t h e  optimal solut ion.  
contrast ,  it i s  always possible t o  go f r o m  a boundary segment t o  an i n t e r i o r  
segment i n  an optimal fashion. This s i t ua t ion  i s  analogous t o  t h e  f ly ing  of 
an airplane i n  which the  p i l o t  f inds the  take-off ( t he  t r a n s i t i o n  from t h e  
two t o  t h e  three-dimensional space) r e l a t ive ly  easy t o  execute with t h e  land- 
ing ( t h e  t r a n s i t i o n  from t h e  three t o  t h e  two-dimensional space) much more 
d i f f i c u l t .  

In 

In 

Since an optimal re turn t o  t h e  i n t e r i o r  can be made a t  any point along 
t h e  boundary segment, t he  question arises as t o  when the  return should be made. 
The answer t o  t h i s  question i s  r e l a t i v e l y  simple. 
boundary segment should return t o  t h e  i n t e r i o r  i s  t h a t  point fo r  which the  
remaining segments of  t h e  solution will be optimal and a l so  s a t i s f y  the  re- 
quired boundary conditions of t he  problem ( i . e . ,  t he  s ta te  and t r ansve r sa l i t y  
conditions of equations (2.4.8) and (2.4.12)). In other words, t he  point a t  
which t h e  boundary segment should be l e f t  i s  guessed; the governing state and 
adjoint  equations are integrated t o  the terminal point, and the  terminal con- 
d i t i o n s  are t e s t e d  t o  see i f  they have been sa t i s f i ed .  If they have not, t h e  
solut ion i s  not optimal. 

The point a t  which the  

In t h e  case under consideration i n  which K=l and i n  which t h e  first de- 
r i v a t i v e  of g,(x) contains t h e  control exp l i c i t l y ,  t h e  necessi ty  of guessing 
t h e  time t o  leave the boundary i s  easy t o  demonstrate. The state and adjoint  



, 

system of d i f f e r e n t i a l  equations i s  of  order 2n; therefore, 2n+2 boundary con- 
d i t ions  a r e  required t o  generate a solution. 
n+l conditions and the  terminal s ta te  and t r ansve r sab i l i t y  conditions 

The i n i t i a l  s ta te  const i tutes  

(2.4.50) 

const i tutes  another n+l conditions. 
must be guessed a t  t he  i n i t i a l  point, say t h e  i n i t i a l  P vector and t h e  f i n a l  
time tf,  an integrat ion performed, and the  solut ion t e s t e d  t o  see i f  t he  n+l 
terminal conditions of equation (2.4.. 50) are s a t i s f i e d .  
exit junction can always be made i n  an optimal manner, an e n t r y  junction can 
not. Therefore, one component of t he  i n i t i a l  P vector must be taken so t h a t  
t h e  en t ry  junction conditions of (2.4.40) are s a t i s f i e d .  This leaves only n 
quant i t ies  t o  be guessed a t  t h e  i n i t i a l  point,  t o  s a t i s f y  n+l terminal con- 
di t ions -- f o r  a l l  p r a c t i c a l  purposes, an impossible s i t ua t ion .  
another degree-of-freedom (another quant i ty  t o  be guessed) must be introduced, 
and t h i s  new quantity i s  t h e  time a t  which the  boundary surface i s  t o  be l e f t  
and t h e  r e tu rn  t o  t he  i n t e r i o r  made. 
entering t h e  boundary surface i s  restored a t  t h e  exit due t o  t h e  choice of 
the time a t  which the exit i s  t o  be made. 

To compute a solution, n+l quan t i t i e s  

However, while an 

Hence, 

Thus, t h e  degree-of-freedom l o s t  i n  

2.4.4 Discussion 

The bounded state space problem differs from other optimization problems 
i n  t h a t  a multiple point ( r a t h e r  than a two point)  boundary value problem 
must be solved. 
d i f f i c u l t .  However, t he  numerical methods developed i n  Section 2.3.6 can 
be extended t o  handle  these problems. 
method i s  developed i n  References (20) and (22). 

This makes the generation of  numerical solut ions extremely 

Such an extension of t h e  gradient 
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2.5 LINEAR OPTR4IZATION PROBLEMS WITH CONTROL SEPARABLE 

I n  recent years, a great  deal  of effort h a s  been expended on t h e  treatment 
of  l i nea r  optimization problems, and many s ignif icant  t h e o r e t i c a l  and compu- 
t a t i o n a l  advanced have been made. 
optimization problems i n  t h a t  i n  many cases solutions can be effected e i t h e r  
d i r e c t l y  o r  through i t e r a t i v e  techniques which are guaranteed t o  converge. 
Hence, it i s  not uncommon i n  engineering practice t o  attempt t o  replace the 
nonlinear optimization problem by some l inear ized approximation t o  which 
numerical solut ions can be readi ly  developed. 

The l i n e a r  problem differs from other  

The l inear problem with control separable i s  described by dynanical 
eauations of t h e  form 

o r  i n  t h e  vector notation 

X = A X + g (u) 

where A i s  an  n x n matrix and g is an n dimensional vector function of t h e  
r dimensional control  vector u. The boundary conditions take t h e  form 

where D i s  an n x m constant matrix and e i s  a constant m vector. For con- 
venience, it w i l l  a l s o  be assumed t h a t  t h e  f i n a l  time tf i s  specif ied t o  
f a c i l i t a t e  t h e  presentation; although t h i s  assumption i s  not  necessary. 
performance index Lthe quant i ty  $ ( X f , t f )  which i s  t o  be  minimizeg and t h e  
admissible control  set U vary from problem t o  problem along with t h e  ex- 
p l i c i t  dependence of t he  vector function g(u), appearing i n  equation (2.5.1), 
on t h e  control  u; thus, t h e  ease with which the  optimization problem can be 
solved depends on t h e  pa r t i cu la r  form which these quan t i t i e s  take. 
following paragraphs two d i f f e ren t  l inear  problems are t r ea t ed ,  one of which 
can be solved d i r e c t l y  while f o r  t he  second, a computational algorithm exists 
which in su res  convergence of t h e  i t e r a t i v e  process. 

The 

In t h e  
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2.5.1 Linear Problems with Quadratic InteRral Performance Index 

In t h i s  problem, t h e  control  ac t ion  u i s  t o  be  determined so  as t o  minimize 
the  in t eg ra l  performance index 

o r  i n  t h e  sca l a r  notation 

( 2.5.4a) 

where Q i s  an n x n symmetric pos i t ive  semidefinite matrix and R i s  an r x r 
symmetric pos i t ive  d e f i n i t e  matrix ( t h a t  i s ,  t h e  quant i ty  u 7 R u / Z  i s  always 
greater  than zero for u # 0) .  The state equations f o r  t h i s  system are 

where A i s  an n x n matrix and B i s  an n x r matrix. The i n i t i a l  s ta te  i s  
s peci f i e d  by 

while t h e  terminal s ta te  i s  required t o  satisfy t h e  m cons t ra in ts  

where D i s  an m x n matrix. 
In  addition, t h e  admissible control  set V i s  t h e  e n t i r e  r-dimensional 
control space; t h a t  i s  t h e  control  u i s  unconstrained. 

The f i n a l  time, t f ,  i s  assumed t o  be specif ied.  

To reduce t h i s  problem t o  t h e  standard form t r e a t e d  i n  Section 2.3, tne  
var iable  Xn+l  i s  introduced with 

I= xn+, C t f )  = M / N  

Muperscr ipt  T denotes transpose 
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The corresponding adjoint  var iable  Pn+l satisfies 

a u  
a xn tl 

= o  - -  e?+/ - 

Pi+/ c t " )  = - / 

with t h e  remaining n components o f t h e  P vector governed by 

wherep  i s  an m dimensional mu l t ip l i e r  vector 

( D l  \ 

(2.5.8) 

(2.5.9) 

(2.5.10) 

(2.5.11) 

I 

~ 

Note t h a t  t h e  n t r a n s v e r s a l i t y  conditions of (2.5.10) i n  t h e  m t n var iables ,  
and Pi, can be rewri t ten as a system of n - r, equations i n  t h e  n 

var iables  Pi ( i = l ,  n )  provided the  matrix D has maximum rank (i.e., t h e  
terminal constraints  are not redundant). 
be comes 

.cCj 

If t h i s  i s  done, equation (2.5.10) 

3 p = O<=> 

A 
where D i s  an (n  - n) x n matrix and i s  obtained from (2.5.10) by eliminating 
b .  

From equations (2.5.8) t o  (2.5.10), t h e  Hamiltonian i s  given by 

and s ince no constraint  i s  placed on t h e  control ( i .e. ,  t h e  set IJ i s  t h e  
e n t i r e  r-dimensional control  space) it follows t h a t  f o r  H t o  be maximized 

; 6 = 1,r (2.5.14) 3H -=o 
3% 
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so that t h e  optimal control  i s  given by 

Combining equations (2.5.5), (2.5.9), and (2.5.15), t h e  t r a j e c t o r y  which 
optimizes t h e  performance index given i n  (2.5.l+a), satisfies t h e  2.n s y s t m  

and t h e  boundary conditions 

(2.5.16) 

} t=t f  
p x t e  = o  
& = o  

(2.5.17) 

(2.5.18) 

Note t h a t  t h i s  system const i tutes  a l i n e a r  two-point boundary value problem 
and can, therefore,  be solved d i r ec t ly .  L e t  A denote t h e  2n by 2n matrix 
sa t i s fy ing  t h e  equations 

where I is t h e  2n x 2n u n i t  matrix. 
has the  solut ion 

Then it i s  easy t o  v e r i f y  t h a t  (2.5.16) 

The i n i t i a l  P vector,  P o ,  i s  e a s i l y  determined by subs t i t u t ing  equation 
(2.5.19) i n t o  t h e  n terminal conditions of equation (2.5.18). 

From equation (2.5.19), it follows t h a t  t h e  X and P vectors are l i n e a r l y  
Hence, t h e  optimal control of equation (2.5.15) i s  a l i n e a r  related.  

function of t h e  s t a t e  of t h e  system. 
optimal guidance theory where knowledge of t he  control  as a function of  state 
a l l o w s  f o r  a r a the r  simple feedback mechanization. 
i n  References (24) and (25) where it i s  a l s o  shown t h a t  optimal guidance 
problems a r e  usual ly  of t he  l i n e a r  dynamics-quadratic performance type. 

T h i s  re la t ionship proves useful  i n  

This point i s  discussed 
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2.5.2 Linear Problems with Linear Cost 

Again, t h e  dynamical equations t ake  t h e  form 

( 2.5.20) 

but i n  t h i s  case, t he  control  u is t o  be selected from t h e  set u so t h a t  
t h e  l i n e a r  function of t h e  state 

i s  minimized subject t o  t h e  boundary conditions 

t =to 

(2.5.21) 

(2.5.22) 

(2.5.23) 

with t h e  f i n a l  t i m e  tf specified.  
can be any compact region i n  t h e  r-dimensional control  space. 

Unlike t h e  previous problem, the set  

Problem of t h i s  type have been extensively analyzed i n  t h e  literature. 
Because of t h e  form of  the performance index and t h e  control  set 
combined state and adjoint  equations a r e  seldon linear and tkerefore so- 
l u t ions  cannot be effected d i r ec t ly .  However, L. Neustadt LReferences (26) 
and (2727 has developed an i t e r a t i v e  process f o r  solving such problems which 
w i l l  converge regardless of  the s t a r t i n g  condition. 
i t e r a t i v e  rocess has been shown t o  be  highly e f f ec t ive  on several d i f f i c u l t  
problems b e f e r e n c e s  (28) and ( 727. The following paragraphs contain an 
o u t l i n e  o f  Neustadt's method f o r  t h e  l i n e a r  problem given i n  equations 
(2.5.20) t o  (2.5.23). 

V , t h e  

What's more, t h i s  

To s implify t h e  presentation, it i s  convenient t o  put t he  boundary con- 
d i t i ons  o f  equation (2.5.23) i n  a s l i g h t l y  d i f f e ren t  form. 
n x n matrix 

Let D be t h e  

1 6  1 
D=[*, IJ  (2.5.24) 

n 
where D i s  t h e  m x n matrix i n  equation (2.5.23) and I i s  an n-m u n i t  matrix, 
and consider t h e  transformation 
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r\ 
which i s  nonsingular provided D has xnaxjmum rank. 
t h e  optimization problem in equations (2.5.20) t o  (2.5.23) reduces t o  mini- 
mizing 

With t h i s  transformation, 

(p = c, x i  f (2.5.26) 

subject t o  t h e  equations 

and boundary conditions 

( 2.5.28) 

A A A A  
The hat ted vectors and matrices A ,  X, C,  g, are r e l a t ed  t o  t h e  unhatted 
quant i t ies  A ,  X, C, g, e through t h e  l i n e a r  transfonnation i n  equation 
(2.5.25). A t  t h e  terminal point,  t h e  first m components o f  t h e  new state 
vector X, { Xf , xf . . . x ,,, ] Also, t h e  quant i ty  0 i n  
equation (2.5.26) can be writ ten as 

.F , are specified.  

i = l  

f where &is  specif ied s ince the  X 
mizing @ i n  equation ( 2 . 5 . 2 6 )  is  equivalent t o  minimizing t h e  reduced 
quantity 

(i = 1, m) are specified.  Hence, mini- 
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Neustadt's method w i l l  now be used t o  determine the  control u from t h e  set 
V which minimizes i n  equation (2.5.30) subject t o  the  constraints  of 
equations (2.5.27) t o  t2.5.29). 

Using t h e  
shown t o  have 

X C t f )  = 

var i a t ion  of parameters technique, equations (2.5.27) can be 
the  quadrature 

I where IC i s  t h e  n x n fundamental matrix solution sa t i s fy ing  t h e  equation 

I 

L e t  Xf 

t h e  solut ion of  (2.5.31) using some pa r t i cu la r  control  u ( t )  (not  necessar i ly  
optimal) i n  t h e  set Define t h e  vector iy by 

, i = 1, m denote t h e  specif ied terminal components of  equation 
I (2.5.$9) and l e t  % ( t f ) ,  i = 1, n denote t h e  terminal state r e s u l t i n g  from 

V . 

(2.5.32) 
Y =  

and t h e  vector 2 by 

Now, note t h a t  Y i s  a fixed quant i ty  (independent of  t h e  control  u) whose 
value i s  determined from the  boundary conditions of equations (2.5.20) and 
(2.5.29), while Z varies with and i s  dependent on t h e  control  act ion u. 
Further, it follows from t h e  de f in i t i on  of Z and equation (2.5.31) t h a t  

+ f  

Turning t o  t h e  Maximum Principle,  t h e  function H i s  formed where 
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.- 

with 

p =  - A7P 

and 

. I  p; c kf) = - c j  , L = F ? f / ,  H. 

s o  t ha t  minimization of  6, requires t h a t  t h e  c 
t h e  admissible control se t  such t h a t  

H, = p 7 p )  = M 4 Y  

i s  maximized. 

(2.5.36) 

(2.5.37) 

n t r o l  ac t ion  be selected from 

(2.5.38) 

To determine a solut ion,  t h e  i n i t i a l  value of t h e  P vector  must be known. 
Denote t h i s  value Po where Po must be chosen t o  s a t i s f y  t h e  terminal con- 
d i t i ons  of equation (2.5.37). 
selected independently. Le t  Y be an m dimensional vector 

Therefore, only m components of  Po can be 

T '  [::) 
T m  

with Po = P' ( y ); t h a t  is ,  t h e  n-dimensional vector  Po i s  determined by t h e  
in-dinensional vector  K! 
Furthemore, it follows t h a t  an  optimal control ,  t h a t  i s ,  one sa t i s fy ing  t h e  
minimurn condition of  equation (2.5.38) depends only on '*z . Such a cont ro l  
w i l l  be denoted by u=u(t,rZ). Further, t o  emphasize the  dependence on y~ , 
t h e  P vector  is  denoted by 

and t h e  n-m boundary conditions o f  equation (2.5.37). 

P = P (  ? )  

and the Z vector  by 

(2.5.39) 

L 

Consider t h e  dot product Po ( vil) Z( y ) . From equation (2.5.36) , it follows 
t h a t  
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Hence 

(2.5.40) 

Thus 

s ince if PT ( 7 ).Z( 72 ) were not less than, o r  equal t o  P T (?).Z(? S t ) ,  t h e  

f o r  some ?between to and t F which contradicts  
integrand { -pTC7,rr)  .g (uCT,s , ) ]  would have t o  be l a r  er than { - p T ( T a ) -  

t h e  maximum condition of equation (2.5.38). 
which i s  t h e  bas i s  of Newstadt's computational scheme. 

g ( k c r , z . * j  1 
It i s  t h i s  inequal i ty ,  (2.5.41), 

4 
L e t  32 be t h e  value of which solves t h e  problem. Then from (2.5.41) 

But from t h e  de f in i t i on  of  Y &quation (2.5.3217, it follows t h a t  

where i s  t h e  desired minimum value of $2. Hence 

A t  t h i s  point,  i f  t h e  function F( )7_ ) i s  defined by 

7- 1 

then 

(2.5.42) 

119 



and 

Thus yL 
determining t h e  correct i n i t i a l  Po vector has been reduced t o  t h a t  o f  de- 
termining t h e  minimum value of t h e  function F. 

i s  t o  be chosen so t h a t  F ( T )  i s  a minimum; t h a t  i s ,  t h e  problwi of 

To determine y f o r  which F i s  a minimum, Neustadt suggests t h e  iter- 
a t ion  scheme 

- - Mj+, = (2.5.44) 

where 
equal t o  t h e  magnitude of t h e  correction vector. Usually, t h e  select ion of 
t h e  quantity K proves d i f f i c u l t  and frequently an a l t e r n a t e  scheme i s  used. 
One such scheme, developed by M. Powell, i s  discussed i n  Reference ( 2 9 )  with 
t h e  combined Neustadt-Powell procedure f o r  solving l i n e a r  optimization 
problems t r ea t ed  i n  Reference (28). 

E )z 3, +, i s  t h e  j+l i t e r a t i o n  f o r  rt and K i s  a small constant 

Like t h e  gradient approach of equation (2.5.44),  Powell's method a l s o  
requires the computation of t h e  gradient,  V F . One of t h e  advantages of 
Newstadt's approach i s  t h a t  t h i s  quant i ty  can be determined ana ly t i ca l ly ,  
with the value of t h e  gradient e a s i l y  computed a t  any point where t h e  value 
o f  the f'unction F i s  known. 

Tie quantity V (P" .Y) caii be c a i c i i e d  m e e  t he  dependmce a f  Po on q 
i s  specified. It i s  given i n  component form by t h e  expression 

The second quant i ty  on t h e  r i g h t  hand s ide  of (2.5.45) i s  given by 
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where the symbol 
Po vector i n  t h e  product Po*Z.  
t o  vanish. 

Vp" ind ica t e s  t h e  gradient operator operating on ly  on t h e  
p z ( P o - Z )  can be shown The second tern 

Le t  

and 

then fo r  Vz(Po.Z) t o  vanish, it must be shown t h a t  

goes t o  zero. Now 

and from (2.5.41) 

Hence, 

Adding and subtract ing t h e  quant i ty  Po(* + A?') *z( 2 
s ide  of (2.5.47) provides 

from t h e  r i g h t  hand 

and s ince  
- 
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it follows t h a t  

Taking t h e  limit, provides the  desired result; i .e . ,  

Combining t h i s  result with equations (2.5.45) and (2.5.46) gives t h e  gradient 
i n  component form 

N 

To summarize, t h e  determination of t h e  optimal control  act ion requires  
t h e  determination of t h e  correct value of  t h e  vector Po. This vector,  Po, i n  
turn,  i s  an n dimensional vector whose components are determined from t h e  m 
dimensional vector y 
Thus, it i s  the  correct value of Y which i s  sought. 
par t icular  
given by equation (2.5.42). Therefore, s t a r t i n g  with a first guess of q , 
corrections i n  '2 are made i n  t h e  d i r ec t ion  i n  which F( ) i s  decreasing. 
Such a correction process requires a knowledge of  t h e  gradient,  
i s  given ana ly t i ca l ly  by equation (2.5.48). 

and the  n-m boundary conditions of  equation (2.5.37). 
It follows t h a t  t h e  

which solves the  problem a l so  minimizes the  function F ( T )  

V F ,  which 

122 



3.0 RECOMMENDED PROCEDURES 

Both t h e  Maximum Principle  and t h e  Calculus of Variations represent 
simple but r a the r  general techniques f o r  formulating optimization problems. 
Thus, l i t t l e  remains t o  be accomplished as f a r  as broadening o r  extending 
these formulations. There are, however, many spec ia l  problems and appli-  
cations t h a t  warrant addition investigation. 

Among these  spec ia l  problems is t h e  singular a r c  problem discussed i n  
connection with t h e  lunar  s o f t  landing (Section 2.3.2) and with t h e  o r b i t a l  
t r a n s f e r  maneuver (Section 2.3.4). In  t h i s  case, t h e  Maximum Principle  
becomes degenerate and higher order terms i n  t h e  series expansion about 
t h e  optimal solut ion must be examined t o  determine i f  these a r c s  axe mini- 
mizing. 
(12) and (1317 and addi t ional  necessary conditions developed which the  
s ingular  a r c  must satisfy. 
when such a r c s  w i l l  occur. 

Such a procedure has been carr ied out i n  t h e  l i t e r a t u r e  LReferences 

However, l i t t l e  i s  known a t  t h i s  wri t ing as t o  

Another problem area i s  the optimization o f  s tochast ic  systems. 
system under consideration contains parameters o r  elements which have a 
s t a t i s t i c a l  r a t h e r  than a deterministic description, then t h e  usual opt i -  
mization methods are not d i r e c t l y  applicable. Though some stochast ic  problems 
have been analyzed using t h e  Ikximum Principle  and the  Calculus of Variations 
i n  modified form, t h e  techniques have not  been standardized t o  t h e  extent t h a t  
they have i n  t h e  determinis t ic  case. Such a standardization will evolve only 
through t h e  extensive analysis  of  a va r i e ty  of s tochast ic  optimization 
problems. 

If the  

In regards t o  applications,  t he re  are m y  problems i n  both t h e  tra- 
j ec to ry  and control  areas t h a t  require  addi t ional  work. 
optimal control  s tudies  have been conducted on an open-loop bas i s  desp i t e  
t h e  f a c t  t h a t  almost a l l  control lers  operate closed-loop. 
synthesis of  an optimal con t ro l l e r  may require faster computers and b e t t e r  
computational techniques, some s tudies  should be i n i t i a t e d  a t  t h i s  time which 
are concerned with closed-loop operation. 

For example, most 

While a complete 

Applications i n  t r a j e c t o r y  analysis have been limited f o r  t h e  most par t  
t o  vehicles  which move i n  an a i r l e s s  inverse square g rav i t a t iona l  f i e l d .  
However, t h e r e  are many in t e re s t ing  optimization problems which arise i n  
connection with t h e  atmospheric sect ion o f t h e  f l i g h t  and where the  inverse 
square f i e l d  assumption i s  a poor approximation of  t h e  t o t a l  force applied. 
Among these  problems are horizontal  take-off systems, planetary en t ry  
maneuvers f o r  high L/D vehicles and lunar flyby and r e tu rn  missions. 
t hese  problems can be analyzed and solved using ex i s t ing  techniques. 

A l l  of 

One of  t h e  major d i f f i c u l t i e s  i n  optimization theory i s  the  generation 
of  numerical solutions.  
leads t o  a nonlinear two-point boundary value problem, t h e  solubion of which 

With few exceptions, t h e  va r i a t iona l  formulation 
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must be developed i t e r a t i v e l y .  
during t h e  past f e w  years i n  t h i s  area, and many new computational methods 
have been developed, t he re  s t i l l  exists no one nethod which w i l l  consis tent ly  
work f o r  a r e l a t i v e l y  l a r g e  class  of  problems. Thus, while t h e  t r a j e c t o r y  
analyst  nay f ind t h e  numerical problems severe, Piith patience he carl develop 
optimal t r a j e c t o r i e s  using exis t ing numerical techniques. 
on the  other  hand, t he  numerical d i f f i c u l t i e s  rule out t h e  use of optimal 
control lers  as part of a feedback mechanization. 
methods and the avai lable  computing equipment are not s u f f i c i e n t l y  fast of 
su f f i c i en t l j j  r e l i a b l e  f o r  a closed-loop operation and some technical  break- 
through i s  needed before optimal con t ro l l e r s  will become feasible .  A more 
wide spread use o f t h e  techniques of optimization theory, therefore  impatiently 
awaits t h e  developent  of b e t t e r  computational methods. 

While considerable progress has been nade 

In control theory, 

In  t h i s  case, t h e  numerical 
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