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1.0 STATEMENTOFTHEPROBLF2,_

This monographconsiders the n-body problem, its application to the prob-
lem of determining the motion of a spacecraft, and the technique available for
its solution.

The formulation begins with the classic problem of n-bodies. Equations
of motion are written for n point masses (with spherically symmetric force
fields) interacting only through their mutual gravitational attractions. In an
inertial reference frame, let mi be the point massesand _i designate their
position vectors. Then

.
g = - E , -4. (o.i)

where k2 = the universal gravitational constant.

It can be easily shown (Section 2._that ten constants (or integrals) exist for

these equations. Six of these constants show that the center of mass of the
system (barycenter) moves rectilinearlywith constant speed. Three more state

that the angular momentum of the system is constant; and the tenth states that

the sum of the kinetic and potential energy is constant. Considerable inves-

tigation has been directed toward the discovery of other constants of motion.

To date, however, no other constants have been found. In fact, one reference,

Baker, (Reference 1.1) states that Brun and Poinca_e have proved that no other

alKebraic integrals exist.

When considering the motion of a spacecraft in the light of the n-body

problem, therefore, simplifying assumptions are made:

I. The mass of the spacecraft is negligible compared to the mass of the

other bodies; and

2. the motions of the other n-i bodies are known to a degree greater than
that required of the motions for the nth.

Due to numerous perturbations (Reference 1.2), the motion of the bodies in the

solar system do not follow a path that can be represented precisely by an anal-
ytic formula. However, accurate predictions of future positions and velocities

can be estimated from observations of their motion and from a knowledge of the

nature of the perturbations. The reduction of observed data and the generation

of an accurate estimate of a space trajectory was discussed in the previous

monograph (Reference 1.3). (See also References I.A and 1.5).

Under these two assumptions, techniques for handling the equations and for

integrating the equations numerically are discussed. This step is required

since the complexity of the equations precludes an analytic solution and is

i I



acceptable since a tabular array of positions and velocities can be substituted
for a functional representation.

The monograph divides these discussions, referred to generally as special

perturbations, into two basic sections. The first section deals with the for-

mulation of the problem to effect the most accurate and/or the most efficient

solution. The second section treats the problem of generating the best tabu-

lar array representing the solution.

The three currently prevalent techniques for formulating the equations of

motion for numerical or approximate analytic solution are Cowell's method,

Encke's method, and the variation of parameters. Cowell's method is the

straightforward numerical integration of equation (0.1) to obtain position

and velocity data. This method will, therefore, not be discussed at this time.

Encke's method is based on the observation that for the case where the perturb-

ing forces are small, the solution closely approximates conic motion. This

observation allows the derivation from the conic reference to be integrated

independent of predominant motion in the interest of accuracy and efficiency.

The position and velocity in the conic can be found analytically and added to

the perturbed position and velocity to obtain the true position and velocity.

The third method, variation of parameters, is based on the assumption that

elliptic orbital elements can be found and updated at each integration step

so that the osculating (instantaneous) elements describe the position and vel-

ocity vectors of the true solution. These methods are well documented in the
open literature (Reference 1.&), and are thus discussed in a straightforward

expository manner. The strengths and weaknesses of the methods as well as the
types of trajectories for which each method is suited will be discussed.

Having presented the formulation of the problem, the monograph will then
cover specific numerical integration techniques that can be applied to the

equations. The section on numerical integration is divided into four topics:

i. Quadrature

2. The Runge-Kutta family

3. Predictor-corrector methods

_. Starting procedures for predictor-corrector methods.

The first section treats quadrature or the numerical integration of a definite

integral; an equivalent definition is that quadrature is the numerical inte-

gration of a first-order ordinary differential equation whose right-hand side

is a function of the independent variable alone. The well-known Newton-Cotes
and Gaussian formulas (Reference 1.7) are developed in this section. These

discussions are followed with the discussion of the Runge-Kutta family of inte-

gration logics. This family differs from the above in that the right-hand side

of the differential equation can be a function of both the dependent and inde-

pendent variable. The third section discusses predictor-corrector methods.

Predictor-corrector methods are generally multi-step methods of the form



• where the formula is "open" if b ._ = 0 and "closed', otherwise. In the pre-
dictor-corrector technique one f_Lla is used to predict y_+] and another
used to correct it. The corrector formula yields a signifi_aEtly higher accur-
acythan the predictor formula alone. (It is noted that open formulas are used
as predictors and closed formulas are used as correctors.) The methods dis-
cussed range from Adam's first predictor-corrector methods (Reference 1.8) to
later and more sophisticated methods such as Nordsieck (Reference 1.9) and
Lanczos (Reference 1.10). The discussions of numerical integration concludes
with a presentation of starting procedures. This presentation is essential to
the discussions of this monographsince predictor-corrector methods are gener-
ally not self-starting. Important integration formulas from each family are
discussed in detail; the equations are derived; the methods of implementing
the equations, and the accuracy that can be expected are covered.

Finally, the numerical integration techniques are evaluated and compared,
and specific methods are recommended.



2.0 STATE OF THE ART

2.1 THE N-BODY PROBL_[

The n-body problem considers the motion of n bodies in inertial space

interacting through their mutual gravitational attractions. Historically, in

Astronomy, one of the bodies, (e.g., a comet) has been of negligible mass, and

the motion of the other n-1 bodies has been known to a good degree. Thus, the

motion of the only one of the n-bodies need be determined. Modern applications

involving the motion of spacecraft are simple extensions of this material dif-

fering primarily in the nature of the forces (need not be conservative). Thus,

in current usage, the n-body problem has come to mean the problem of determin-

ing the motion of a spacecraft under the influence of gravitational forces

(including oblateness), atmospheric forces, thrust, and solar radiation pres-

sure.

2.1.1 FORCES CONSIDEP_ED

The forces considered in the n-body problem can be many and varied and

are not necessarily restricted to gravitational attractions. The following

paragraphs will present discussions of some of the more important accelerations.

The resultant acceleration is then defined as:

where each A is the acceleration per unit mass acting on the spacecraft. The

form of some _f the more common of these accelerations will be discussed in

the following paragraphs.

2.1.1.1 Gravitational Accelerations

Generally, the origin of the reference system will be fixed at the center

of the primary attracting body. The acceleration of the spacecraft due to the

primary body is

i

where _ = gravitational constant of primary body

= position of the spacecraft

If the attractions due to other bodies are to be considered, let_ and /6_

represent the position vector and the gravitational constant of the perturbing

body. Then, its effect on the spacecraft can be written



Other perturbing bodies are treated similarly.

Often, it is desirable to include the effect of a non-spherical Earth (or
other body); the gravitational potential is generally written as an expansion
in Legendre polynomials (see Reference 2.8). Vinti's potential function for
the Earth is:

.z : - ----; _- s-s-

+<s+( -s ,,-,'z,,<:---- 6s

+_(j)"" ' (-<_,, r +6,0,--'::-,o.,-)+..}.;; ,,,

"11"° , °

where the Ji's are harmonic coefficients.

2.1.i.2 Atmospheric Lift and Drag Forces

The expressions for lift and drag are taken from References 2.0 and 2.2.



C
-_'_C_) _-(/-/) _Ca) v2 c'--L- .,_ x _

_2 c%

where the vehicle velocity relative to a rotating atmosphere with cross winds
is given by

where A = constant fitted to the _,_ch number variation of the drag coeffi-

cient with a mean sonic speed = 1

A0 = initial projected frontal area of the vehicle

B = constant fitted to Mach number variation of the drag coefficient

with a mean sonic speed

CDo = reference (hypersonic continuum) value of the drag coefficient
(0.92 for a sphere, 1.5 for a typical entry capsule)

CL = lift coefficient

Cs = local sonic speed in terms of surface circular satellite speed

o_: Coo_ o Vco2/%%
2 o- g (_-)f(r) = flO DO

go = acceleration of gravity at unit distance (surface of Earth)

H = altitude above an oblate Earth = r - 1

Zt(- _
(units of Earth radii)where the flattening f = 2_#._



m = mass of space vehicle

Q = unit vector in the orbit plane perpendicular to the line of

apsides

q = speed of the cross wind measured in a system rotating with

Earth's angular rate (units of surface circular satellite

speed VCO)

r = radius from the geocenter to the vehicle

= speed of the vehicle with respect to an inertial frame,

directed along Q

surface speed for circular orbit

equatorial coordinates in units of equatorial Earth radii

= right ascension of the vehicle (radians)

P = azimuth of the direction from which the wind is coming

_(_)= CD (_/Cs)/CD0 , the drag coefficient variation with _ach
number

CD (_)/CDo _ the drag coefficient variation in the transi-
tional regime

_i¢ = constant relating to the rotational rate of the Earth,

o.O58834A7o

_= mJm

= bank angle

P = atmospheric density, kg/m3

Po = "sea level" atmospheric density, 1.225 kg/m3

p

_r = geocentric latitude, radians



2.1.1.3 Solar Radiation Pressure

The solar radiation pressure may become significant on large area to mass

vehicles or on missions with long flight times.

The magnitude of acceleration due to solar pressure acting on some sur-

fact of the satellite is given (Reference 1.2) as

where _ = angle of incidence with respect to surface normal

C = speed of light

R = reflection coefficient (=l for specular reflection and = 0 for

complete absorption)

P = power of the incident light

A = area of surface

m = mass of spacecraft

2.1.1.A Thrust

The thrusting acceleration is handled very simply

I

where Tx, Ty_ Tz are the x, y_ and z components of the thrust

m = mass of the spacecraft.



2.1.1.5 Electromagnetic Forces

As a satellite moves through a partly ionized medium, the incident flux

of electrons on the satellite surface is larger than the ion flux, so that the

satellite acquires a negative potential. On the day-side of the Earth, this

effect is opposed by the photoejection of electrons. Jastrow (Reference 2.3)

estimates that the satellite potential may approach -60 volts on the day-side

and will not be greater than -lO volts on the night-side.

In addition to the potential acquired by ionic collision, the motion of a
conducting satellite through the magnetic field of the Earth causes the satel-

lite to acquire a potential gradient which is proportional to the strength of
the magnetic field and the velocity of the satellite. The interaction of the

electric currents thus induced in the satellite skin with the magnetic field

causes a magnetic drag to act upon the satellite; this drag is proportional to
the cube of the satellite dimensions.

If these forces are found not to be negligible, they can be included direct-

ly by the use of Maxwell's equations or indirectly by use of an atmospheric
model which takes the effects into account.

2.1.1.6 Relativistic Effects

Perturbations caused by relativity are of the order =c___ _-Z_,
where c is the speed of light. Since c_ is a very small quan_i_y ana any

measurable deviations occur only after a long period of time, relativistic
effects can usually be ignored in the case of Earth satellites. A modifica-

tion of Newton's law,as a consequence of the theory of relativity, can be found
in Danby (Reference 2._).

2.1.2 BREAKDOWN OF ANALYTIC APPROACH

Consider a system of n point masses, mi, at _ , where g= l,2,°. ,n
and the _ are measured in an inertial reference frame. Define _ to be

Then the equation of motion of mi is

Z (l.1)

where k2 =universal gravitational constant. This is the classic n-body prob-

lem; only gravitational forces are considered and, therefore, the force field

is conservative. There exists ten constants or integrals of the above system

of equations as will be shown below. Suppose that all of the equations (I.I)
above are added. Then the right-hand sides vanish, and the result is a sum



over i

-0

which can be immediately integrated to give

g:!
.

where A and N are constant vectors.

This result shows that the center of mass of the system moves with respect to

the inertial system of reference in a straight line with constant speed. The

orig_n can, therefore, be set at the center of mass. The constant vectors

and B provide six constraints of motion.

Next, cross each of the vectors ?, into (1.1) and add the n resulting

equations. Again, the terms on the right-hand side cancel, i.e.,

x.r z =o

Thus, upon integration

where _ is a constant vector; _ provides three more constants of motion. The

tenth constant comes from the total energy of the system.

Then

Define U, the force function, by

_U

Therefore, equation (1.1)

where

d'_/ Q_,, ,,/

can be written

10

(1.2)



where', J, k are unit vectors in the directions of the x, y, and z coordinate

axes. -U is the total potential energy of the system where the zero level of

potential energy is attained when all of the particles are infinitely separated.

Now, if each _ is dotted into equation (1.2) and all of the n equations
are added

n . .. n _ ._A d_

• dg

Integration gives

I n

Z -

¢'=1

L=/

The left-hand term is the kinetic energy T. The equation can be written

T = U + C, where C is the tenth constant of the problem. Bruns and Poincare

proved that there exist no other algebraic integrals of the n-body problem. A

general solution, thus exists only for the two-body proboem. Investigations

continue, however, to determine if new functions can be found which will yield
additional constants of the motion; no such constants or functions have as yet
been found.

! 11



2.2 SPECIAL PERTURBATION METHODS

2.2. i COWELL' S METHOD

2.2.1.1 Discussion

Perhaps the simplest technique for the solution of n-body motion is the

direct-numerical integration of the equations of motion; this method is
referred to as Cowell's method.

Given the initial position and velocity vectors at a specified time, the

system of three second-order equations can be integrated to give the position

and velocity vectors at any subsequent time. In this form, the equations are

very simple; and the integration time per step is nominal.

The Gauss-Jackson, or_ 2, method of numerical integration has been fre-

quently referred to in the literature as "Cowell's Method"; however, in this

monograph, the ambiguity will be avoided, and Cowell's method will always

refer to a means of formulating the equations of motion.

2.2.1.2 Derivation of Equations

There is no derivation. The equations are simply an expression of Newton's
second law.

n
I

2.2. i.3 Method

The extreme simplicity of the equations is one of the strengths of Cowell's

method. All that is required is the computation of the accelerations of the

problem in some appropriate coordinate system and the recourse to numerical

integration for stepping the function. The accelerations are integrated once
to obtain velocities. Then the position vector can be obtained either by inte-

grating the velocities or by integrating the accelerations using a second-

order integration technique.

2.2.1.4 Advantages and Disadvantages

Because the total accelerations are being integrated, the attractions

change rapidly with time so that small-integration steps are required to main-

tain accuracy. In addition, care must be exercised in choice of the number of

significant figures maintained, or the effect of smaller accelerations will be
lost with the resultant loss in accuracy in the solution.

Because of loss of numerical significance problems during integration and

12



because of the fact that Encke's method and the variation of parameters method

are so much superior for those problems in which the perturbing forces are

small, Cowell's method has been largely relagated to applications where the

non-two-body accelerations change rapidly with time (e.g., during boost, or

reentry).

2.2.2 ENCKE'S _._THOD

2.2.2.1 Discussion

Encke's method is based on the observation that many n-body motions differ

only slightly from two-body motion (which can be solved in closed-form). Thus,

Encke, a German astronomer, proposed that the difference in the total acceler-

ation and that of an approximately selected reference be integrated. The

position and velocity in the reference conic are then obtained analytically

and added to the integrated position and velocity vectors to get the total

position and velocity vectors.

It should be carefully noted that absolutelynothing in the formulation

requires the reference motion to be conic. Historically, a conic reference

motion has usually been selected; however, any other convenient motion could

be choses. (That is, secular and periodic motions resulting from the Earth's

oblateness can be included in the reference to magnify the significance of a

special set of perturbing forces.)

In the derivation presented in the following section, the perturbing
force is expanded in an infinite series about the reference motion. If the

force is expressed in this way (it need not be) then rectification of the ref-

erence motion (i.e., a new reference motion is calculated which is much closer

to the actual motion and generally coincides with the true position and veloc-

ity at the instant of rectification) is performed whenever the actual motion

deviates significantly from the reference motion so that accuracy in the eval-

uation of the force is retained. Such rectification would not be necessary

if the force were expressed in a closed form. The series expansion, however,
allows calculation of the force to a larger number of places when working with

a fixed-word length computational procedure.

2.2.2.2 Derivation of Equations

In this section, the equations will be discussed for the case where the
reference motion is conic.

The validity of the Encke approach follows from the linearity property

of the integral. If u, v, ans w are continuous function of t on the interval

a_ t _b; and if _(_) + v(_)= _(_) for a_ _ _ b , then

13



Thus, the accelerations experienced by the vehicle can be integrated in two
separate parts and added to give the total position and velocity.

The subscript E will be used to denote the reference, or Encke, motion;
thus, (x, y, z) denote the actual position of the vehicle; and (_a, _, _s )
denote the position on the reference orbit. Let all of the non-two-body accel-
erations be lumped in the expression _ _ . Then, the equations of motion
in an inertial system can be written

£3 #

where
r= VX _ ÷Y_ t_

//= gravitational constant of central body

Now, using the linearity property of the integral and noting that the first

term in the acceleration is the equation of motion in the conic reference
orbit

XE - -tzXE

then, the deviations from the reference orbit are

_= X-XE

_= Y-YE

The accelerations actually integrates are thus

,_" .= _'-kZ E {_-'-_ Y/_-_jC

- Yx "7]
'Z"

The oracKetea acceleration is generally called the Encke acceleration,

and the quantities within the bracket are very nearly equal; therefore, some

rearranging is desirable to avoid loss of significance.

o - ,.., ,.

Attention is now concentrated on the term

14



2

The term (_E) can be expanded as

=±f'
E

x j.,._ (x, _ )_ +(Y,_. )zZ,-Cz_*-2 ) _

If the second term is now defined to be Z_ , i.e.,

d
= -- .4r +

r z 2
E

then
2

= z*2_

Therefore,

Further, define

-- / - (/t2 f) - ¾

and expand fq in a binomial series

_ _ (./3_-, (2_ t-/.)/

and the Encke equation can be written

/ !

_/_ 3J 3.5- 5-. 7 3 _-' 7._ _ 7.'_./I 7. _//'/3
'_. zl . /3.z_"

. f'P_ ...3 Z _"

When the deviations from the reference orbit are small, the series expression

provides greater accuracy. In addition, a criterion for rectification can be

developed from the series expression. Normally, a certain number of terms,

say six, will be carried in the Encke series. The next term, the seventh,

15



could be monitored to determine when it becomes large enough to affect the

final digit of the word, that is, when it becomes significant, l_en this

occurs, the reference orbit should be rectified.

2.2.2.3 Method

The procedure followed in the computation of position and velocity his-
tories via Encke's method is illustrated in the accompanying flow chart.

2.2.2.& Advantages and Disadvantages

Since the deviations from the reference orbit are small, it is evident

that integrating steps which are larger than those suitable for Cowell's

method can be taken. In addition, greater accuracy should be possible when

working with a fixed-word length because round-off and truncation errors pro-
duce small errors in the deviations; these errors are then "lost" when the

deviations are added to the reference motion. Although the round-off error

is less, Encke's method, as generally employed, involves expressions that are

much more complicated and ofter less symmetric than Cowell's simple formulas.

In addition, both the necessity of solving the two-body formulas at every

step and the possible need for rectification introduces additional sources of

error.

2.2.3 VARIATION OF PARA_TERS

2.2.3.1 Discussion

In a two-body problem, six orbital elements are sufficient to determine

the subsequent motion. If non-two-body forces are acting, then an analytic

expression for the motion cannot be found and the concept of "orbital elements"

may have little meaning. It is possible, however, to use the analytic two-body

equations to describe the motion if the existance of time-varying orbital
elements is admitted. In this case, the orbital elements at a particular time
describe a motion which would take place if the perturbing forces were removed

at that particular instant. This instantaneous two-body orbit is tangent to
the actual motion at all times and is often called the osculating orbit. The

variation of parameters method expresses the time rate of change of the orbital

elements as functions of the perturbing force. These derivatives are then

integrated numerically to solve for the actual motion. Note the similarity to
Encke's method in that only the perturbing forces are integrated. In the Encke

method, however, there is only one reference orbit with particular orbital
elements while in the variation of parameters there is a continuous set of

elements for the reference motion.

In Section 2.2.3.3.1 the equations for the variations of the six parameters

a, e, i,_, w and _ are developed. These six elements are not the only ones

which may be used for the variation of parameters technique. Indeed, the com-

ponents of the initial position and velocity vectors can be employed in a
manner similar to that presented in a previous monograph (Reference 2.8). In

fact, any six independent constants of motion can be used. Furthermore, the
motion need not be referenced to conic motion. An inspection of the final

equations in Section 2.2.3.3.1 will reveal that for the parameters above the
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equations becomes singular for parabolic orbits. This fact illustrates a
basic difficulty in the variation of parameters technique. This difficulty

can be overcome by switching to a more suitable set of variables whenever one
set starts to fail but only at the expense of more complex programming. The

different sets of parameters used by various people have been chosen to avoid

singularities of a particular type. Variables that are free of nearly all

singularities have been proposed by Garafalo (Reference 2.5) and Newton (Ref-
erence 2.6). These methods break down only when the angular momentum vanishes.

Wong (Reference 2.7) proposes a method which is singular only when the magni-

tude of the position vector goes to zero.

2.2.3.2 Derivation of Equations

The following derivation is taken from Reference 2.1.

For the variation-of-parameters method any six independent parameters

could be chosen. In this derivation the parameters, a, e, i,_l , w, and 14o

will be used.

a = semi-major axis

e = orbital eccentricity

i = orbital inclination

i_ = right ascension of the ascending mode

w = argument of periapse

Mo = mean anomaly of epoch

If no force other than a central force were acting on a satellite, its orbit
would be a conic section and would be completely described by this act of six

quantities; further, these quantities would be constants. If a non-central
force acts on the satellite, then the six orbital elements _dll not be con-

stant but will vary with time. The set of differential equations which govern

the time history of the elements is equivalent to the Newton or Lagrange set.

In order to derive the equations, a coordinate system in which the non-

two-body forces are expressed and must be chosen. The coordinate system which
will be used will have unit vectors _g _s _ and _ wdth the center of the

system at the active f_cus of the instantaneous two-body orbit. The vector

is directe_ away from the focus along the instantaneous radius vector, _ is

normal to R in the orbit plane in the direction of increasing true anomaly

(i.,• _ o), and W is normal to the orbit plane (along the angular-momentum

vector) completing the right-handed set. The perturbing force vector can now

be expressed in this system as:

If _ is now used to denote the instantaneous velocity vector

18



d,-_ r&)-- _ _r + re _ V = eCE_ _r +

If an expression for @ is obtained as a function of the radius from the con-
servation of the angular momentum

(2.1)

•. e = na2_ (2.2)
where pz

= _ (2.3)

and if an expression for dr/d@ is obtained by differentiating the equation of

a conic in polar form
p

F=
/,g_e

dr pj._. e r ,_e

d_ (i,,_(._e)*" / ÷ a c._e
the expression for velocity becomes _rom (2.2) and (2._

£ z k I I-_t.,h_._

(2._)

The time rate of change of energy per unit mass (E)_is found from the
dot product of the perturbing force per unit mass vector F and V.

d_ m (2.5)

But, a second expression for energy per unit mass is obtained by the addition

of the kinetic energy and potential energy as

-.,z_ (2.6)
g : 2_

Thus, differentiation of (2.5) and substituting (2.6) gives an expression for

the time rate of change of the semi-major axis. This equation is the first in
the set describing the variation of the "constants" of integration (osculating

elements) :

2% t-_u_r
o"a _ 2. ,a.,_@,/{, .z .5 (2.7)
d_ _rTz__ _ r

To derive the changes in the other orbital elements, it is necessary to

know the rate at which the angular momentum vector H changes. The rate of

change of _ is known to be equal to the summation of the external moments act-

ing on the body in orbit, i.e.,
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dH

d_
- '(_xP)

= r3 _w - r W_ i

(2.s)

But the time derivative of a vector may be expressed as

dH dn hdo_ _

d'b C/L r_ p de ns (2.9)

where d ok is the angle through which the angular momentum vector is rotated

in time dt. Comparing (2.8) and (2.9) at is seen that

d_dh - r_ _
-- = r5 ond
dt h d_

Now, the eccentricity of the orbit may be expressed in terms a

through equations (2.1) and (2.3) as

(2. lO)

and h

_Z

e:C_ ) 'J* : C_- ga )'/_

Thus, differentiation yields the following

de -h (gala /7 d_ )d_ - ,7,_ _ " _ _ d_ ,

_--_ (e d_,_ n_ i-fT_" }_L_) (2.n)
2_azd d_

Upon substituting equations (2.7) and (2.10) for da/dt and dh/dt, equation

(2.11) takes the final form

,.
The motion of the node as the same as the motion of the projection of h

on the equatorial plane (See Figure 2.3.)
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Let the subscript p denote the projection of any vector on the equatorial

plane. Then it can be seen that

h = protection of h on the equatorial plane
_p

(_--)p= projection of dh/dt on the equatorial plane

× j_-) component of _ is normal= _)p which to _p

By referring to Figure (2.3), it can be seen that

/'_P ,II'( d_

d-_.

d_" h,o

or using equations (2.9)

dfl

d_

and (2.11)

' f Bdo_

(2.13)

But

where _ and _ are unit vectors along the X and Y axes, respectively, and

Thus, on performing the cross product, equation (2.13) becomes

dfl

WE

The change in orbital inclination is related to the change in the node.
This fact can be seen by referring to Figure (2.4) in which
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Z-o.xIS

Variation of Node

two positions of the node, Xlo ands, , are shown with

a Xl : _O_j -_C'L o

and

But these angles are related by spherical trigonometry as

g'_ L_'"
_.k _o(_- ,__,_._), _ _o__]

Differentiation of this equation and investigation of the limit as &/u-*o
yields the following equation

d_' /_-'_ d-.c_-

Therefore,
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The change in the argument of perigee,_, arises from two sources. One

is the motion of perigee caused by the forces in the orbital plane tending to

rotate the ellipse in its plane. The other change occurs because _ is
measured from the moving node (Figure 2.&). To evaluate the latter changes,

assume that the in-plane perturbing forces are zero. Then the change in

equals the change in _. According to the relations in a spherical triangle,

Differentiating this expression and taking the limit as _u-, o now yields

d "d(, ' I - r .d
- = -_'_x; - IAI

where the subscript w means that this is the change in the argument of periapse

contributed by the nodal motion which is caused by the component of the per-

turbing acceleration normal to the orbit plane.

The change in the argument of periapse caused by the in-plane components,

R and S, is denoted by (d_/a£) R, _ . The effect of these in-plane forces

is to change the instantaneous velocity vector which must, at every instant,
remain tangent to the instantaneous osculating ellipse. This ellipse will,

therefore, have a changing perigee position. The resulting rate of change of

the argument of perigee will be

= -
5 dg

Here d@/dt, the rate of change of the true anomaly caused by the perturbing
force, must not be confused with _ which is the rate of change of @ in an

upper-turbed Kepler orbit. To evaluate d@/dt, refer to Figure 2.3. After the

force m (R_ _s _s) has been applied for the time dt; the velocity vector

is changed from V to _ + dV, th _ true anomaly from @ to @ + d@, and the angle,

¥, between _s abd vs is changed from _ to _+ d . The expression from the
angular momentum

h = rv'c_ _"
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Figure 2.5. Variation of True Anomaly (7_-)

Since h = r2@ and v = Vr z , c zel

/ d,"' 7-

_,. _-(,,;,(_J )-_',
Computing dr/d@ from equation (2.£)

and

, it follows that

yields

(2.15)
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Differentiating equation (2.15) with respect to time and using equation (2.1_),
it is found that

Now, if N is defined to be the component of the force normal to _, then

But

and

V-
F /# g De-_@

Therefore,

old" J" #" (/# g {.,_;l _) IR_,/# _ _#.,l._) _ (, e _z,it,_j 51 }

Equation (2.16) along with equation (2.12) for de/dt, yields

(, ' )1e,s- _-_i -_<,<,-.,s.),'i>,'_s "-_,,.e_e .s
The total rate of change of the argument of perigee is

(2.16)

db _ t df R,S

The final element, mean anomaly at epoch, defines the position of the
satellite in the osculating orbit at any time also has a time rate. This
relationship is obtained directly from Kepler's equation

and can be found by using the equations already obtained for deldt and d@Idt,

with the relationship between E and @ given by

I - _ 6_.."JE

I- _-'_-E

The result is
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The comolete set of equations is summarized below.

de _ f"/- £_ nr

d_
w

(_.17)

dr. _a'_'- e z

na e at,'/-_ '_) d+.
2.2.3.3 Method

The sequence of operations to be performed to use the variation of parame-
ters method is listed below. A block diagram depicting this sequence is also
included:

i.

.

From the initial conditions, i.e., a position and velocity vector at

t = to, compute the orbital elements a, e, i,z_, w, Mo.

Compute the force in the RSW coordinate system. This computation

will generally involve computing a transformation to the RSW system

from an inertial system in which the forces are expressed.

. Using the force components from (2) and the current values of the orbi-

tal elements, compute the time rate of change of the orbital elements
as given by equation (2.17) in Section 2.1.3.3.2.

@

Obtain a solution for the r changes in the orbital elements by numer-

ical integration time (to + _ t).

Obtain new orbital elements by addition of changes in the orbital
elements to the previous values.

6. From the orbital emements at (to +at) compute the position and veloc-
ity vector at to +_t.
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7. Repeat steps (2 thru 6) until the desired end conditions are reached.

ComputeInitial
a_ e_ i_

At Time = t

ComputeForce
in X, Y, Z System

At Time = t

Compute
Transformation from

X, Y, Z to RSW
Coordinates

Transform
Force to

RSWSystem

ComputeDerivatives
of Orbital
Elements

Numerically Integrate
Derivatives to get

Changesin Orbital Elements
at Time = t + &t

Obtain NewOrbital
Elements by Addition of

Changesto Previous Values

ComputePosition
and Velocity at

t + At in X,Y,Z System

l
Increment Time

t_t + mt

Output Orbital Elements
At Time = t + t

Output Position and Velocity
At Time _ t + At

Figure 2.6. Computational Logic for Variation of Parameters Method
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2.2.3.& Advantages and Disadvantage_

The essential characteristic of this method is that the integration is

carried out on parameters which are changing much more slowly than either the

rectangular coordinates or the perturbations relative to a fixed reference

trajectory. _urther, since they vary slowly, the error accumulation from the

calculation of the derivative is, for a long time, far beyond the last signif-

icant digit of the initial calculation. Thus, it is expected that truncation

error would appear only for very large integration steps. Simultaneously, the

round-off problem is reduced since the number of steps is reduced with the next

result being that much larger integration steps can be taken for a given

accuracy. A disadvantage is that the programming and numerical analysis-

involved in this method are the most complicated of the three methods discussed.

Because of this, the computation time per integration step is at least twice
as long as for a Cowell method. As was mentioned in another section, any par-

ticular choice of variables will exhibit singularities for certain conditions

and, therefore, each case requires special consideration thus detracting from

the usefulness of parameter methods as a general integration technique. The

variation of parameters method is primarily applicable to missions in which

small perturbations act throughout the orbit, e.g., microthrust transfer.

2.2.3 •5 Comparison

The three most common mathematical formulations in current use are:

Cowellts method, Encke's method, and the variation of parameters.

Cowell's method is the straightforward integration of the equations of

motion while Encke's method and the variation of parameters involve a mathe-

matically more sophisticated approach. The integration times per step are

smaller for this approach than for either of the other approaches because of

the simplicity of the formulation. However, because of the total accelera-

tions are being integrated and because the attractions change rapidly with

small time changes, a small integration step is required to maintain accuracy

and a large number of significant figures must be carried to prevent loss of

numerical significance.

For many types of trajectories, the Cowell method requires about ten times

as many integration steps as the Encke or variation of parameter methods; and

although computing time per step is approximately one-half, the overall comput-

ing time may be considerably greater. In addition, since round-off errors

accumulate as some power of the number of steps, the Cowell method can be

expected to be more susceptible to accuracy degradation as a result of accumu-
lation of round-off error. Thus, for many orbits, including lunar orbits,

which can be closely approximated by two-body motion, the Cowell method is the

least accurate and least efficient computationally of the three methods.

However, there are some trajectories for which the Cowell method is well

suited; in particular, those in which the perturbation accelerations are

changing rapidly. This type of trajectory occurs, for example, during boost
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and reentry. In addition, this method is universally applicable to all types
of orbits and presents no fundamental difficulties in the exceptional cases of
nearly circular, nearly parabolic, or hyperbolic orbits.

Encke's method has recently been successful in the computation of Earth
satellite trajectories. Becauseonly perturbations from a reference motion
are integrated, larger integrating steps than with CowellTs method are possible.
)_oreover, greater accuracy is possible whenworking with a fixed-word length
because truncation errors effect only the deviations from the reference tra-
jectory. (These errors are generally lost whenadding the two words represent-
ing the nominal and perturbed componentsof the state.) The advantages of
Encke's method have been particularly marked on lunar flights where the devia-
tions from two-body motions are small.

The variation of parameters or variation-of-elements method differs from
the Encke method in that there is a continuous set of elements for the refer-
ence orbit. The reference motion of the satellite can be represented by a
set of parameters that, in the absence of perturbative forces, would remain
constant with time. In the presence of perturbative forces, the reference
orbit is being continuously rectified. Someformulations have inherent singu-
larities, and care should be exercised whenchoosing a set of parameters for
the problem at hand. The variation of parameters method is primarily applica-
ble to missions in which small perturbations act throughout the orbit, e.g.,
microthrust transfer.
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2.3 _J_4ERICAL INTEGRATION

2.3.1 _,Tu'_e_i_al Integration Discussio_

In previous sections, the classical n-body equations of m_tio_ and

the correspo_d_n_ eouat_ons of motion in a non-c_nservat_ve force field

have been shown to be unyielding to an analytic aporoach; therefore, in

this s_ction, recourse is taken to numerical integration technlcu_s.

The basic problem is to snlve the ordinary differential equation

with the "n<tJai condit_ion

later, the solution to higher order differential equations will be discussed.

At that t_e, multiple integrals w_i_ be develooed;an,4 as a secondary effort,

it w_i] be shown that an ordinary d_ffe_e_tial equation of any order can be

reduced to an equivalent s_stem of first-order equatioos. Thus for

simplicity, only one first-order equation will be discussed, i_umor_cal

integration seeks to construct a tabular array of the deoendent variable (_)

in a stepv_ s,:;process from val_es of the function eval1_ated at discrete

val_Jes (g,enerally, b_t not necessarily, evenly spaced) of the independent

var_ ab7 e, x.

There are several nrevalent methods of numerical integration which

wil] be discussed. Accordingly, the section has been divided to d_solay

these approaches: (i) quadratur_ methods, (2) the Run_e-Kutta fan_ly,

(3) predictor-corrector methods, and (A) starting procedures for predictor-

corrector methods. In the conte_+ of this monograph, quadrature refers

to the numerical integration of a definite integral. An equivalent

definition is that quadrature is the num_ricai solution of a £irst-order

ordinary differential equation whose right-hand s_de is a function of the

independent variable only. Thus, equation (3.1) becomes

with

y (zsJ :
In this case, the so],_t:'[oncan be written

(3.2)
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and as noted, the probi_m reduces to the evaluation of the integral. The

general result, as given by quadrature (Reference 2.10) can be written

where

Yo< Xj< . . & Xm_ X

If % n: X , the formula is referred to as "closed", and if X_L Y ,

the formula Zs said to be "o_o__." Alfhough quadrate'e, per se, is seldom

used in connection with the n-body problem, its formulas permeate numerical

analysis; and some of the more sophisticated methods draw heavily upon

quadrature.

The Runge-Kutta faadly is a collection of nmnerical integration

methods which replace a Taylor series with derivative values computed from

points within the step. This fa_ly is well known since several of its

members have been used e_%ensively in tr_iectory work. Currently, however,

most of the adherents of Runge-Kutta methods are turning toward multistep

predictor-corrector methods because of their greater speed and effmciency.

These predintor-corrector methods common]v emnloy two steps, a "predictor"

and a "corrector," although some methods (_nfreouentTv used) reou_ _'e that

the co,rector be. used more than once. Pr_d_cfor-correct.or methods take

the general form fReferepce 2.9):

I •

where the for_u]a is "ooen i'if 6n_, = o an "closed" ot,hem._s_. O,oe_ fo_n_]as

can be u_ed as oredictors because the_ do nnt _nvo]ve >now]edFe of th_ state

at the n+i Do_nt. _,_as. closed form_las, w_c_ req_re the val_e ofy_÷_

and hence _n+_ , must be used as cnrrectors. A more descriptive defin_t_o_
of an "onen" integration fnr_u]a is that it does n_t _e_e_d on the derivatives

of the f_mctio_ at the point where the integral is desired. An exampl_ of an

o_en integration would be a Ta_]or ser_es, i.e., if _': _(_ N) +.hen

A c_osed inteF,rat4on formula is one that, e_n]4c_+,v _"_+ains the derivat4ve

at the oo_nt at w_ch th_ integral is desired. An ewam_]_ o_ th_s t_e of

i_te_ration is the trao_zoidal rul_

It i,_ clear that p_edictor-cnrrectnr methods o_ t_ form f_.3) are not

self-star+,_ng and t_at a _at-_x nf antecedent val_es of _ an4 _' are

required. Predictor-corrector m_t_ods can be i]].ustrated usin_ ve_: s_m_]o
f_r_Qas. The ._l]ustrative formulas c_,osen, beca_me of their ex_re-e

s_plin_tv, aro se]f-start_ng; bo_._ever, one sho_,]d be cautioned that they al_o

rem_ir_ a s_n_u]arly _-,aq! step s_ze. A!] c_rrent]y oo_rat_onal -red ictor-

correctnr method_, bein_ _ore sophisticated an_ m_re eff_c_e-t, requ 4re a

s+,art_n_ Droce,4u-e. F._ler's Net.hods, o_e of the oldest and most $trai_ht-

f_r_,_ar,_o£ n_,er_ca] _tegrat_o_ _e%_ods, is used as a Dred_ctor; and the
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trapezoidal rule serves as a corrector. Let z_×be the distanne between
s_ccessive val_,es of the independent variable, X , an4 the_ E-ler's formula
is

which is s_m_l__ the first te_m in the Taylor series exoan_ion. T_e familiar
trapezoidal r_le is

It is again emphasizedthat the pred:cfn_ foz_m]_adne_ nnt de_end on th_ value
of _ at the_.Ipoint, while the corrector formula dnes (necessar_iy) de_end
onlyat the point. Tn illustrate the use of E_ile_'s method• consider the
or'd_nary d_fee_e'nti al eauation

/

w_t,h the initial con,lition

A p_edictor-corrector cycle w_l] be il]us+rat_d using a s+e_ s_ze h:.l.

(i) com_ute i at x=o

"o :/'(Zo ,yo)= Zo _2o

(21

f31

= 0"/I = /.

pre3int _1

ff, P:._o # (_Jffo) : I # (,i)(i) =

com1_ute -f at X :. ! using p_-edi_cted

(4)

/,/

correct _
= h .I

At this point• the predietor-corrector cycle is comolqte. The eouat4on chosen

can b_ solved io c3osed for_ to g_ve a chec_ o_ the accuracy of the example.

The solution or the g_ven equation a_d i_itial condi+ion is

_C_) : Z _x-i- z
and for _- ./

..if(./5 : 2 (/,/o_z) : zoo -./o = i. llo_

The error• 8p • betwee_ the p_edicted valu_ o9 _, an.a the exacf, value of _#
is

_,o = y,_-2 d.I) =/. 1 - /. I_o_z = - .ozose

and the error• _g, between the corrected an_ exact values of 2_ is

e<:. - o_c -_<.l) _- i. il - I. iiQ.rZ = - .8o_..eZ
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Thus, in this example, t_e corrector cycle has considerably _proved the

accuracy of t_e sol_t_on.

2.3.2 QUADRATURE

2.3.2.1 Introduction

Num_r_ca! integration is the procedure of com_u+ing the valp_ of a

definite integral from a set o_ n_ner_cal va_es o _ t_e integrand. The

process is called quadrature wbe_ it is applied to t_e integration of a function

of a s_nfl_ variable. This m_tbo_ is useful sSn_e position an_ velocity a_e

flmetions o_ t_me (i.e., X : @d_) ,X'= _d_))so that an acoelerat_o_ written as

X" :_(xj_j a ) is real_y a f,Jnnt_o_ of a s_n_le variable, time (i.e., X'_:

F (_) ). However, for trajectory p_oble_s, Fd_ is not known

analytical]_ and quadrat_r_ for_ulas must be used in a corrector cycle

using a tabulated _ge) deve)oped by a predictor formula. In general,

quadrature formulas ar_ developed by represe_tin_ the _nte_rand b_ an inter-

polat_on formula and then _tegrat_n_ this formula betv_een the specified

l_u_ts. Thus, to f_n_1 the vai_e of the integral, _<_×] d_ , the ftm_tio_

Fdx) is replaced by an interpolation forvu7a, often one involvin_ d_fferences,

and integrated between the l_mits a and b. In this man_er, quadrature

formulas c_ be deve!ooed for the approximate integT-at_on of any function for

which numerical valises ar_ known.

The quadrature £or_r_ulas are presented h_re in two categor_ es: those

hav_ng even spacing, the New,ton-Cotes formulas: an _ tho_e hav_n_ uneven

spacinF, Gaussian quadrature for_'u_as.

2.3.2.2 Newton-Cotes Fo_u]as

2.3.2.2.1 Discussion. Newton-Cotes formulas use equidistant spacing and com-

prise the well-known formulas of Euler, Simpson, Lobatto, and others (see

Reference 2.10). The formulas are of two types: (1) open; and (2) closed.
If the integral is represented as

the_ the formula obtaine:I is c_osed

it does not.

if it depends on _(A) and open if

2.3.2.2.2 Closed Newton-Cotes Formulas. The problem of determining the area

under a given curve is frequently referred to as "mechanical quadrature"; and

the oldest method of approximating this area is that of inscribed polygons

known as the trapezoidal rule. In this method, the ordinates are connected

by straight lines; and the area under the curve is approximated by the area

under polygons. In a hand calculation, the ordinate of the curve would not
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necessarily be used; rather the functional value would be chosenso as to
minimize the error in the approximating polygon. However,procedures based
uponthe use of the ordinates can be easily mechanized,whereas_inimizing
the error cannot.

If the o_dinates _ : _o_ _ __- • '_bncorrespond to the abscissa val_es

: Yo _×J _ .... _ Yn , the elementary form for the area of the trapezoid

gives the following result for the area under the polygons:

: tz[ ijoCX,- Xo)- x,,) + -x, )
÷...

For equidistant spacing

_,, -_o = #-'z-_) = . . : _Ln- _n-,, ----

the formula becomes

A _ _C&_o_y, _U_ t" .",,e',,.," t'z_,_)

Now, from the fundamental theorem of integral calculus, the area under the

curve _C_b can be defined as the limit (if it exists) to which A tends as

approaches zero. Therefore,

For theoretical purposes, this limit process is quite satisfactory; an_

from the viewpoint of practical computation, the trapezoidal rule given quite

good results if a significant number or ordinates is utilized. However,

straight lines can be too rigid for a really satisfactory approximation of

curves. If a curve is to be approximated by a succession of straight lines,

a great many small lines are needed for this purpose. Hence, it is generally

more efficieot to approximate the curve with higher-order polynomials.

Polynomials of the second-order are much better for this approximation;

and wit_ the help of such parabolas_a curve with a higher degree of accuracy

can be _nerated. A large number of very short straight line segments is

_ _ce_ oy a smaller n_ber of parabolic sections connecting three

consecutive ordinates. This m_thod yields a much more accuracy solution

because it produces a patched curve which approximates the actual curve

much better than the straight line approximation.
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Consider the graph of a function y = f(x).

Xo x, x. x3 ;% xs ×_ x-, x_ x,, _'_
The total area is divided into an even number of equal panels (an odd number

of ordinates); and for the sake of convenience, the width ( h ) of each panel

is considered to be i. In each double panel, (i.e., two intervais)_the
curve is approy_i_ated by a poi_u%omial of second-order.

X

Letting the first double panel be composed of the ordinates, _o _ _t _ _-L ,

%= 4Cx_ can be ek_panded around the point w --l _to a local power series,

mahing use of the method of differences. _t_rlinz's formula as a Dowe_

series (see _efe_e_ce 2.11) then y_elds:

wh ere

f ( z , _ ) : /" 0.) / S f ( /.)_ +_ _# (__!O_ ;"
7

¢0) = 2,

Here, the curve between x:o and ×=Z is aDoro_mat_d b_ a parabola which

coincides w;+h th_ act_ta] c_ve at the three no_nt,s of interoolat_on _:_,

X, , X_ f_p tb_s parT_cu3ar cas_, let ×o= 0 , X- / , M_ = Z ). The
area un<_er the annrow_at_n5 oarabola can be obtained b v inte_ratio_ between

the oofints 7: o an_ X= Z •

-!

: ',

Now _eneralizin_ for no_ _m_t intervals between Xo, Xl, and x 2

_4o_ch is fam_liarl_ _anmm as S_mpson's rule. The nr_cess ca_ be repeated fnr

th_ rema/_'_F nan_]s Az_ , A_u , .... uotil the t_ta] area is exhausted.

S___m!nF these ar_as, ffeads to the oarabo]ic m_]e _e_e

In th_s fnr_u_a, t_e even and odd ordinates are separated ana appl_ed with
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different we_ghts instead of the sameweiEhts as in the trapezoidal method.
This discrimination of weights greatly increases the accuracy of the result.

Thenecessity of an even numberof panels is sometimesan __nconvenient
limitation for the use of S_mosnn'srule; however, other formulas can be
develooedwhich consider integrating over any numberof panels. In order
to obtain such formulas for the approximate evaluation of an integral of the
form f_b_C_3d_ , it is necessary to introduce the change of variables x =4

((b-a)/_)S where _ is an integer, to obtain the relation

where

FC.O - : (_ ,' b-.__3__._)
f)

Assuming that _C_) can be approximated over(_b)(the open interval (_)

is defined to be the set of _ such that _ X_ b ) by a polynomial which

agrees with it at _÷_ equally spaced points in (_b_ (yielding _ panels),
the approximating formula

s.):./s_ /:_/<)
/o /<'--o_"

may be obtained where

#'I

CO,,) / ,sC-_-/.>•• • (_ -k ,_/3(._-/< -/.> . . .Cs -n) d.s/< : k:.X--O••.:/e-/<+/)(k-k-/,)• •.El<-,',) (3.L,)
@,

Letting _:(b-_)/n and xj=_*/a, the result established can be put ir the more

explicit form

I_o K=o
This error involved in the p-ocess can now be ex'Bressed as

E,, : _:,+,): (_ (::s-/.)... (s-,_.)d:_ ( _ odd.)

Hence, the following formulas known as the closed Newton-Cotes formulas may

be obtained where <c_(g) is the error term, N___E -_×_. They are classified

as closed formulas since the_ are characterized by the fact that the integral
extends from the first to the last (u) ordinate used in the formula but

never beyond.

Simpson 's rule :

:OOd>:: 7 ¢>,;'+ '') - -_:"(_)

_),/z :'E(,"o _'_6 ÷ G ) - _)
9a
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Since ai3 the integral for_u]as of this t_qoe must be exact if_d_)is

a constant, the su_ of the weight coefficients muut equal the lnn_th of the

interval, i.e.,k_ cz-- b -_ • Also, an inspection o:fthe error tetras reveai_
that a fo_mu/a involving an odd nu_nber, n,t = _ _ _ _ , of points wou].d

y.ie3d exact results if _(×$ were a pol2no_m_ai of de_rees _ or less, whereas

one involving an even number n_ I= Z_ , of points would be exact only

if _:Cx3 were a polynomial of degree _ or l_ss. Thus, the two fo_n_as

involv_n_ a_ a_dz_-_ ord4nates hav_ the ss_._eorder of accuracy so that,

generaily, no gr-_at advantagp is gained bv advancAng from a formula involving

&n odd number of o_dinates to one involving one more ordSnate.

2.3.2.2.3 Open Newton-Cotes Formulas. Often, in trying to obtain solutions

of differential equations, it is necessary to be able to integrate ahead,

beyond the last value for which the function is known. This may be done by
employing an open-type quadrature formula where the integration extends

beyond the ordinates employed in the system.

The first few such fo_:.ulas which do not involve the ordinates at the

end d_ the interval may he exoressed as follows:

fx2-f(_jo,,,-: "_/i c'a_-4 +2_) + "x_'_"q.c i'J(g)

<.v

A'&

where in this case, tl_e weighting f_mction Cn)

/I

r<,,_ ={ (_ -I).. • Cs - i< +0 &- ,_ -,'.) . ._- ,, -,)-_ O_ -!) • . • _I< -I< ,I.JCi_ - i< -i) . • . (i_ - _-,)
eJ5
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Notice that although these open formulas do nnt include ¢o and C_ , the

1SmUts of integration extend from No to y_ . Also, equation (3.5) is the

sam_ as equation (3.A) exceot for the elimination of the terms S ,s-u , k ,

and k- _ •

2.3.2.2.4 Difference Table Method. When the data are tabulated for uniformly

spaced abscissas with spacing, h, it is conventional to define the differences

of the tabular data and employ quadrature formulas in terms of these differ-

ences. In these cases, the forward differences _f(Xo) are defined as

ar(_o) : {(_o,kj-i(ro)

r__, : i,- F__, • (3.6)

Sis:_lar]y, the dJ fferences of th_se first differences, called second

differences, are denoted by A_oOr mz4C×o3an_ defined as

The third an:i higher order are obtainrd by continuing in the same manner.

The folGowins difference tab Ge shows how these values are arrar_ed for

convenient usage. Notice that the subscript remains constant along each

forward diagonal.

Xo {o

5(i _cl A2_:o
A{,

_z fz A2{,
afz

aq

xs _

_o
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For calculation near the end of a tabulated range, the notation V for

backwards differences if often more convenient. In this case,

_ud

(3.7)

where the subscripts of the difference tab3es are char_ed to read

"x_._+_.3j

jvQ_, VJQ/
"-_,2¢n/

so that th_ result of eauat_op (3.7) is the s_ as jn the p_evious

eouation (3.6) b_t denoted by a different s,_hseri_t, a_d f,_ sl,bscr_pt

remains c_nstant alon_ each backward diagonal.

For r_mainin _ calc_lations, the n_tat_o_ o? ee_.tral d_?fe_e_ees is

usual_ly _,ost c_nve_ient, Tf t_ calc_lat_o_ i,_ t_ h_ d_no n_a_ a ce_ta-'.n

i_t_r_or tabn_ar Do_nt, it i_ c_nve_ient to m_ber that abscissa as Yo-

Tn central difference notation

an4

r+,{_.) : 8 rfgr- ,' /_, 6 ) - _ r-FCv. - Y_ 6) .

It is seen that _{(_)dmes not necessarily invol,_e tab_,lated o_d_nates.

the seconS d_ffere_ce

: +r'e-z
does involve tahular eDt_ios as do al3 central cVffe_e_ces o? eve_ o-der.

_us, i+ ma_ be w_itte_ that

8f,/_ : f,-(o

The central d_ffe_ence tab)e around ×0 (the zero subscript in this case in-

dicates the center of the i_terval) illustrates that the subscript remains

4O

However,



constant
I

X- 2

alonz t_e h_r_z_n+al lines.

-I _#t / -I _.j,. /

/°LYz_ 2 /°÷-//z_
Xo _'o _'o 8:o

• .
J

"A quadratl_e exoressJon, in terms of d_ffe_enees, _ay now be obtained

by inte_rat_n_ Sti_l_'s formula (Reference 2.22) from x :Xo- h to × = _o

_=-_ to _=_ ) _e]din_

- " z _ Y-_ 3: z

.s: " ÷ #, : _-s / ' ) d_2

ISIZ

B3: advanein_ the s_bser_pts of the y's by one 1_nit, the value of the integral

_oz from. w : Xo to ×--_o*_kis obtaioea. T_e. integrals Z_ )I_ _ .. • ,I__ z
are l_kew_se seen t_ b_

[ ' , - :>+-,,,,_.]

,,o'-. ' °_0]z3_u_ /-_ A
/.5"I_

41



an__, _ is eve _.

_ nne]ect_n _ f_u_t _ a_ ,_f_et._ d'_ '_,, i.Le,_._ces an _ replac_n _ t_e secnn_

d-'ffere_.ces b _" t_e_r vatu_s in tpr_s o e th_ y'_, i + i:_ f_u_,_ tl_at eauat/on

(3.8) reduces to Simpson's rule. Thus, it may be seen that the formula
r_nrese_ts S_mns_n's m_!e _t_ c_r_ect.io_a_

2.3.2.2.5 Numerical Example. As an example, using difference tables, the

approximate value of the integral

i_ c_mnutel. ThSs ex_L_!_ _W]_'t s*_ve t_ ill_strato t_e intpg_ation tec_m_qu_;

h_wever, the sample problem is not similar to the t,_'ajectory problem since the

derivative for this s_mol_, problem is a h_o_,m f_n_t_o _ auS d_e_ n_t s_ffe_

from c_muiativo round-off error resuitin_ from t_e previous in+e_rat_or s+.e_s.

Taking h--.o_ a d_ffe_e_ce table of_=//_ i_ set u_ at ono-tenth unit
_tervals from _= _. v to X = z,_(n_te that the differences ar _ r_fere_ced to

t_e last place in t_e f_n_t_o_). S_bst!tuting in+,o ecuation (3.8) the

appropriate d" ffere_ces f-or_ the table _ie)ds

The correct valise is _q _ = O,6_3/_v/s/.
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Table 3.i. DIFFERENCETABLEFORy = i/x

! ._28s71#3

X

0.7

0.8

0.9

1.O

/.I

/.2

/.3

I,S

/.7

/.8

Z.O

Z,I

2.Z

Z.3

/.ZSOooooo

I.III IIIII

t .oooooo0o

o, 909o qo91 _

0.85333333

O. 767_3077 _

O. 7/'_Z8._7!

O. @ZJO000 o

O. SBS z 3sz_l _

,o.SZ_ 3/3"7,1"y

o._00o0 0oo

o. "F7619 o,f_g

o.e3,_ 78Z{, /

-I 7 9s7/43

"/ 38888_I

-II I IIIII

- 75 7S 7.$8

- ¢_IIOZJr&

- #/666_,7

-3Z_7_73

-2_Z3 ?77

- Z (p3/$7_

-Z 380 _sZ

37(,8 2_'F

2.777778

_OZOZOZ

Is/,sI_TI"_

II@_SO_

ql _ 7_0 _

7 3 =&OZ

S_-_Z 3 7_

_o8_f8 _

3 _3 ?_

Z _0_, z 7

-119o_ 7_

- 7S7S7&

- SOS'O.TI

-3_ _?

- Ze 9TSZ

-18 3 / "_8

-13 73 (_

= IO_O _i

- _/_,9_

- (.._._o_-

- _16"98

-_/77/

-3_/7_

-28Z3o

,FJ2 900

2SZSZ5

_9 897

_S 783

3Z3Z_ _

233 _3

/7/9@ '_"

I Z ?o_/

eBZ7 _

7S ?._

i_ 1803 IS

- 97/23

- 33 2 93

- ZoBz/

-/3 _

- 8q81

- Gl_7

- _

-3077

-ZZ3_

* Denotes values used in example

83ZSZ

12 _/ 7__

73_Z

¢'q 78 _

283e

/BSS _

/,2 1,5"
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2.3.2.3 Causs_an Quadrature

2.3.2.3.1 Discussion. Until the time of Gauss, quadrature formulas assumed

that the chosen points X = Xn were equidistantly spaced by h units. Gauss

conceived the idea that much greater accuracy could be gained by relaxing the

constraint of equidistant spacing, and instead, requiring only that the points

be symmetrically spaced with respect to the midpoint of the interval of inte-

gration. The formulas so obtained are termed Gaussian quadrature formulas.

2.3.2.3.2 Gaussian Quadrature Formulas. To derive the Gaussian quadrature

formulas, let I-f_F(_)_X denote the integral to be computed and change the

variable by substitutin_

Q_b

2

so that the 15nt!ts to integration becom_ -_ ann _. T_e funnt_or _d_)
now

4()_) - )c[(b-a)_ ÷ z J:-gc.)
','z_

Then, sJ_a_e c/× =(6-_)clu, t_e integral becomes Z =C_-_)/; _ C_)U_ .
z

Gauss prooosed that the integral be _itten

I- z/_

wb_re _,_u_> ,w_arn t_e points of subdivision of t_.e interval u =- _/m

to _= @z • The corresponding values of x are, t1_e_efore

and the valise of the integral _d_ d X is

The. values _, , _z ,' • • , _A and. _ , A_ , . .., #A can be fount!
b3,_assun6nE that @L _) can be expan_iny_ in a c_nve_ent po_e_ ser_ es in the

interval _ = -'Iz_ u= Vz • Hence :

Integrat_n7 eouat_on (3.1]) between the limits -_ an4 ½ yields

fV_ _ Yz
Y = ,yfg_Jd_ =/_o +_', u _.... ,'a,.., _",_ . .. ) <,/u

(3._)

(3.10)

(3.11)

(3.12)
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Note that the odd termq d_sappear whenthe __nte_ral is eval_ted at both the
u_p_r an4 low_r l_I_L_ts. Al_o, f_o_ e_uat_o_ (3.11)

¢0<,)- c<<>÷<,,_,,: <2,_,,"_,_!,,<,,<.<,++ .. • ,<,,,,<.,,",'• • •

4'C_',0-<_o+@<.'.-x<*.,_'_','_>.,<4'<_>,<<',+÷' +_,.,_'2+ .
...................................

@(u,,) : % + Q,u,-,<_,,.<,_+Qx_ + . . . + <_,.,,_i' + . ...
Sl_bst4 t_It:n_ these val_,es o _ _ (_l) j_ (_z), j_(_,_anclinto e_uation (3.9)

rearran_:3n_ the _,_,_ is o_tai_ed as

o': _<,(R,,,_ ,+_ + • - + % )

-,<o._(ie,u, _<_ ,<• • • ÷#,,>u,D

+ <_,.(_<.,9_-R,u:,<.." _<,4>,,_,#J (3.13)

+<_,.,(_<<,",,,<<2,< ... ,<R,,,-I)
Now if the in+egral r in equation (3.13) is to b_ i_e_tical _/th equation

(3.12), regardless, oe t_e for _- o9 @ C _)___. tbe_ correspon4ing c_effic4ents

of _ , _, , q_ ,... in equations (3.13_ an4 (3.13) must be equal.

Th_ s reou _reme_t yiel:Is

R,+._z *n__+ """+'% -:

I

<>,_<7+,_<4+_.<..:+ " +,e,,.._= o ,
/

R,,f ,-:.,_.*. %_:+ ...+R,,,_=_ >

(3.u.)

Solving t_e_e equations using al_ehraie m_ans is tedious. However, it can

be sho_n (Refe-e_ce 2.12) that i_ eL _)is a po_omial of deFree not

h_gher than au-I , th_n _,_-, U_are the zeros of the Legendre pol}momial

P_ C_3 or the roots o_P_3 _ O. These roots are fnund from the equation

7°d_<" u;" -('?z)_ : o (3.15)

The n roots u,_..._ u_ of tbis equation are all real. Thus, substitutio_

i_to e_uatAon (3.1/+) defines the R's.
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In solving equation (3.15) for any _ , it is to b_ noted that the y's
are s_metrical3.y placed with respect to the _&dpoint of the interval of
integration an_1that the _'_ are eouai for each s_:m_tric pair of u's .

The n_m_r_cal vall_es oe the _'san'_ correspondin_ R'sfnr _=z to _--,o
are g_ven ir the fnl)o_.in_ table (Reference 2.10) where the n_tation for

N and qo _l_sig_ates the n_idpointthe for_ u_ kz N m_mls _<: N and %%<=

Hence, t!_e val_e of the integral m_y be dete_i_n_d b'T substituting these

val_es i_to eouation (3.9).
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n=4

n=S

*?=&

n=7

n=8

n= c?

17 =I0

L.f

LL± / - O. 28867513_/6

[2.0=0

_ £1 = 0.387Z _"8 3J'_6

[Zz/ =0. 16clqqO-.qZl8

Uz2 - O. z/30SGSI.S,3"8

(_o:O

M_I : O. 2G 723q_5SI

c_t/= O. M 93o'_s_ 3 o

_ZZ = 0. 3 3 0G O_(_ ?3Z

Mz3 = O. _623_7S71

_o = 0

Uz/: O, ZOZ_ZS757

UZZ = O, 3 70 7q_S.5"? Z8

_zJ = o.4_7_$539S_Z

U _/= 0.0?/7173 Z 12

_tZ = O. 2&_7 6G 203"0

bl_.+3=0. 37B333_?RB7

_Zo = 0

_tl = O.f&21_6 7117

('/tZ = 0"306_8S71&z/

(.Z_j = O. Z_lSOIE,_JJ7

_t,_ = o. L/B_o8 o //_8

L_ 3 = O, 339 70 "97_/I

_, = O, "e32531(,,033

otto- : O. _/B67S3 2&_3

R

_ /

R = a/_

R = ._lla

t_ : O, 3_60 7Z5 774

R = O. 1739Z 7*22.6

R = o.23531_335Z

R-- o. 233qg&96 7J

R: O. IBOzTBO 7(56,5

R "- O.OBJ_&Z2 _/9

R :o./eoe/So_.33

R = O. O_7_Z_BJO#

_'= O,/813_1B _ I 7

R : o,/s_,8J33_Z?

R: 0,111/905t72

: O, 030(_1926ffl,._

t_= O.l&_llq6 77.5"

= O. IS@ / 73S3 B,S"

R = O, 13 oj os3 _BZ

: 0.090324_08033"

/_ = O,/#77_ Z I/Z_

t_ = 0,/3_633 3 _? 7

/_ : O, IOqS _f S lB l3

R = O, O7_/7_ "& 7_SB

: 0,03333_'_7_1S
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2.3.2.3.3 Computational Procedure and Example. Because Gaussian quadrature

formulas do not involve equidistant spacing of the independent variable, a

difference table set-up cannot be used. However, the application of the

formulas in the ordinate form is straightforward and can be illustrated by

example.

Com_ute t'_e :nt, ervai

x

Solutinn: Def_na the function C_ as
C¢_6

I / # C*) .
_ : Z - 7 e, +8.S

Now assum_n_ D - S

y0 : = '8..._ * o. /17:o_ 70_-9

/ /

_f/ - #Cu/) - 7.(4 ,+as - /o.3av6.e_ =

_ / _ /

_./ : ¢Cu_, ) 7_,_/ Pa.S 6.&/SJS7./

/ /
_Z :_ (/'4'2-) - 76¢z _8.$ - ll,&71GZq_6

/ /

_ = ¢(we) = 7o_z,a.s - s.3zo_?os_

0,096 Z9_o¢39

: O./.gH_.38/Z.

: O, DSS& 7783_?

= O.IB767_ZG3&

Substitut:n_ these values ioto (3.10) with the corresponding

n: 5 yields

I: 7 2-_S X _./17G_70.5"9 ¢ O. Z373/_33.5-Z (O./S/16,3_:I_

0.o9'62_&0'_3_) /- 0//8_63_/eZS(O,IB767_&3G

0.08S&778399)] : 0,873-_68_3-M

In contrast, the tm_e val_e o_ the integral is

A_[t for

2.3.2.3._ Remarks. Hildebrand (Reference 2.12) offers a discussion of other

quadrature methods with the weighting function

udC_) : e- _) e- _ _) 77-;T9/ (/- z) _ (/_ _) _
Gene_al!y, it, should be noted that Gau._s's fol_0u.]a gives an @xact

result wbeo ;_)is a pol._mor_uial of the C z _-_3 degree or lower. However,

though, Gauss's n_ethod is of great accuracy and theoretically sound, it has

the disadvantag:_ o_ being laborous in its appl_cat_on s:nce the limits of

the integral must be transf_r_ed -_ an4 _. Also, if the values of _ are

to be co_'_puted fro_ a fo_:mla, the nm_erical val-e of _ to be substituted
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must have as many s_nificant figures as is desired in the _ _s. After

dete_r_n_ the _'_ to the desired numbe_ of signi£icant f_g_mes, the_- must

be m1_Itipi_ed by the _'_ havin_ at least as many si_nifican+ figmres.

This requirement compels use of a large number of significant figures

in every step to achieve the accu_ac.v that the formula is capable of p_o-

vid_ng; however_ Gaussian quadrature is de£initeiy applicable _]en the d

deter]_J_nat_on of ordinates needed for the conventional formulas would involve

eithe _ d_rect calculation, physical measurement, or interpolation, sin_e

these vai1_s ar_ unlikely to be equidistantly soaced.
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2.3.3 RUNGE-KUTTA FAMILY

2.3.5.1 Introduction

The name Runge-Kutta is given to a family of numerical integration

techniques which approximate a Taylor series extrapolation of a function by

several evaluations of the first derivative at points within the interval of

extrapolation. The family has many members some of which have names of

specific individuals (e.g. Huen) and some of which are designated by an order

number. The order of a particular Runge-Kutta solution is the order of the

highest power of the step size retained in the equivalent Taylor expansion.

A solution for y (%_ _h) is obtained from a knowledge of the current solution

point, y (×_), and the first derivative of y at points in the interval

×_×_×_, _ Values of y at previous points are not necessary for con-

tinuing the solution. The method is, therefore, a single step method

(i.e. a single step method requires only the current solution point as

opposed to multi-step methods which require that previous solution points be

available before the process of obtaining the solution point ahead can begin)

and as such has the advantage of being self starting. An associated dis-

advantage is that the information lost in discarding previous points must be

regenerated (in a different form) at each point along the solution with a

resulting waste of time compared to multi-step methods. The Runge-Kutta

method follows the solution curve well, is capable of good accuracy, and can

easily accommodate any change in step size although a criterion for changing

step size is not available as a part of the solution calculation as is the

case with some multi-step methods.

2.3.3.2 Third Order Methods

2.3.3.2.1 Discussion. The third order Runge-Kutta equations are character-

ized by approximating a Taylor series solution for y to terms of order hA.

As will be seen in the next section, the general equations contain two

arbitrary parameters. Several people have chosen particular values for these

free parameters and their names are generally appended to the Runge-Kutta

name when reference is made to a particular formula (c.g., Runge-Kutta-Heun).

However, it is not the intent to display all possible third order formulas in

this section. Indeed such a feat would be _possible because there exists a

two-fold infinity of possible formulas. Rather, only some of the better
known or more useful formulas are listed.

2.3.3.2.2 Deviation of General Third Order Runge-Kutta Formula. The de-

rivation presented here will be for the general third-order Runge-Kutta

formulation. The differential equation which is to be solved is

with the initial condition

p,o

(3.16)
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The deriviation of the equations begins by considering the integral of

equation (3.16) from x o to (xo + h).

(3.17)

It is known, from the mean value theorem (Reference 2.26), that a solution to

equation (3.17) of the form

exists. The value, _ , is however not generally known prior to obtaining

the solution to the problem. The Runge-Kutta approach to the solution of(3.16)

is essentially of the form (3.18): but since is not known, a weighted

average of three A_ 's is calculated at points in the interval

Xo_ xi_ xo + h. This weighted average is

(3.19)

where

The weights, as, will be chosen so that the value A y calculated from equa-

tion (3.19) _w_ll agree with a Taylor series expanslon of y(x) about the

point (Xo, Yo) to terms of order four. A point to be brought out here is

that when the proper values of ai have been chosen & y will have been de-

termined as a third order Taylor series expansion about (Xo, yo ) even though

no derivatives of y higher than the first will have been evaluated. To de-

termine the appropriate values of the ai's , three A Yi'S must be calculated.

The first AYi will be evaluated at x = xo.

The second _ Yi will be evaluated at (x,, y_ ) where

xI = xo + mh ) Xo_-X,_×o* h

(3.20)

At this point it appears that a problem exists because Yl cannot be found

until the solution to the original problem is known. An approximate value

for Yl can, however, be found from a first-order Taylor series about xo.

51



It will be seen by following the derivation that such a choice for Yl can be
madewithout relaxing the requirement that equation (3.19) agrees with three terms
of the Taylor series for y. Using equation (3.21), the expression for A Y2
becomes

or

(3.22)

The third A Yi will be calculated at x = x2 = xo _ i_h. The value of Y2

will again be approximated by a linear Taylor series, but in two steps. The

derivative of y at (Xo, Yo ) will be used to evaluate y (x) at some arbitrary

x, say at x r = xo ÷ ( A - _ )h, between xo and xo T _ h. Next the change in

y from x = x' to x : xo ± X h is evaluated using the derivative at the point

(Xl, Yl)" An examination of Figure 3.1may aid in understanding the above

description. The relation for Y2 is

(3.23)

and _ Y3 is

or

At this point, the general form of the Runge-Kutta equations has been de-

veloped. These equations are summarized below

52



I

i

I

I
I
I

I

I

!
I

I

I

I J

(A hA

!

I I
i I I
1 *

) J

, _ Gl,I
, )tk '

I
i
f
I

I

i

I

i

i
I

_A

>I

I

I

Figure 3.1. Illustration of Y2 Calculation
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(3.25)

It is now necessary to evaluate the constants al, a2, a_ _ , k , and p. To

accomplish this objective, three z_ y; 's of equations (5.20), (3.22), and (3.2&)
now expanded in a two dimensional Taylor series about the point (Xo,-Yo). In

the following equations, it will be assumed that the function f(x, y) and its

partial derivative fx(X, y), fy(X, y), fxy(X, y), etc., are evaluated at the

point (Xo, Yo) and the argumenis will thebefore be omitted for brevity.

are

If

. , ,t, ,tt <>, 7.,,t,< +21t.,,*l >*

. .
y is expanded in a Taylor series about (xo) , there ms obtained

(3.27)

(3.28)

(3.29)

The relation between _ y and the _y_'s of (3.26), (3.27), and (3.28) is given by

equation (3.19). Thus, if equation (3.26) is multiplied by al, equation (3.21) is

multiplied by a2 equation (3.18)is multiplied by a3 and these results added,

y is approximately obtained. Comparing like powers of h in the resultant

series for A y and that obtained in equation (3.29)the f_llowing set of
equations is obtained if equality to terms of the order h* are desired

a, ,_az _-a.s = / # _}

l

(3.30)
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This system of equations is underdetermined; thus, the choice for two of the
six parameters is arbitrary. Several choices are discussed in the next
sections. It is noted here only that there are somechoices which are not
allowable. If either a3, p , or m is zero, the last equation of (3.30) cannot
be satisfied; if both aI and a2 are zero, the first three equations of (3.30)
cannot be satisfied.

Froma cursory examination of the derivation leading to equation (3.30)
it may seemthat the underdetermined nature of that set of equations could be
e_iminated by requiring equality to the Taylor series for y to terms of order
hr. If this were done, there would result two additional equations when the
coefficients of h4 and h5 are compared, thus yielding an even determined
system and reducing the error to the order of h . The difficulty with such a
procedure is that equality of the coefficient of h4 and h5 cannot be attained
without imposing severe restrictions on f(x, y).

2.3.3.2.3 Heun's Formulas. It is clear that somesimplifications of equation
(3.25) can be madeby suitable choices of the two free parameters. Henn con-
sidered a family of equations in which _ = p . If the further simplifi-
cation a2 = 0 is madeHeunsformulas are obtained

S

!

iCZo+S ,

: tC <o+5 ,e,s,,+J,,; >#
2.3.3.2._ Kutta-S_pson Third-Order Rule. This set of equations reduces to

Simpson's rule for the evaluation of an integral for the case where f(x,y)
is a function of x alone

z_ / 2 /

"V,:t fo)

I I

af : l V 4, ,v,,,£ Af ,) ,¢

If f(x,y) = f(x), then the first equation of (3.31) reduces to

(3.31)

A_, : _[_'<Z'o) + ,y' (,zo,' _-) *_'c z_'4,)]
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which is the expression for the evaluation of the integral

by Simpson's rule.

2.3.3.2.5 Runge-Kutta-Ralston. In section 2.2.A.2.7, an expression for the

truncation error committed at each step is developed. Ralston (Reference 2.13)

developed this expression and then chose the parameters so that the truncation
error would be minimized

2.3.3.2.6 Computational Procedure. A sample problem and description of the

computational procedure for a fourth order method is presented in section

2.2.4.3. This method is sufficiently general that it may easily be extended

to third order formulas. Therefore, no computational procedure is discussed

here and the reader is directed to section 2.2.3.3.7, for a representative

discussion.

2.3.3.2.7 Error Analysis. A bound for the truncation error committed at each

step can be determined for the general third order equation by writing the

equations for _ Yl, mY2, A y3 and A y as Taylor series with remainders
in place of the infinite Taylor series of equations _.26), (3.27), (3.28),

and 0.29 )
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.t 2

+ie'i,Di,4#z +,

Equation (3.32) is the exact solution for & y. The approximate Runge-Kutta
solution is given by the weighted sum

_.32)

"iV',,<= <_,"<'/'+<_"<_V,,* '_ "t"-' (3.33)

The truncation error is the difference between equations (3.32) and (3.33)

E = ,_,_,<-,_V

The constants al, _2, a3, _ , # , and m have been chosen such that the co-
efficients of h, hz, and h in equation (3.32) match exactly those of

equation (3.33) so that error E will contain only the h4 term
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aj _ 3

+_-{':@..' Ut.._,+'t'i,,, "t 7_,,,;)

+;""'ly (/..+_tt.v+t7_ )"p" _<t_/._,
/

+tt,D,_,"tk,D" t'tA,,j, '},_.,.-,?{s..."'t.._, (,.,,_

+"i.v "-'D_,."t't,,f +bb.'"_tDt.y +j t't_l

+Hi.+,'lid"4. t.,+tt.D, "/D +t {.,.7
If, in the region where a solution is desired, the bounds M and L defined as

follows

Ii ¢_, _)I -_/14 (3.35)

ax" <7_t I M _'

exist, then, a bound for E can be found.

(3.3_) the error bound is

Substituting (3.35)

(3.36)

and (3.38) in

(3.37)

If a method of determining truncation error is to be used as a means of de-

termining step size equation (3.37) may be of little value because the bounds

M and L may not be known before hand.

An approximate value for the truncation error can be found (Reference

2.14) from the results of two integrations one of which has step size h and

the other has step size 2h. If y(x) is the true value, Yl(X) is the value

obtained for y(x) using step size h, and Y2(X) is the value obtained using

step size 2h then using (3.2A)

J(_) =_, (_c) +C, (2 7FJv
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The approximate error, assuming C1 _ C2 is

2r-/

(3.38)

Some care should be taken, however, if equation (3.38) is to be used as a

criterion for changing step size. If the step size is to be changed, it is

probably because the solution curve changes rapidly and a constant step size

is inadequate. If this is the case then the assumption that CI_ _ will
most likely not be satisfied.

In Reference_.l_, it is shown that for a stable differential equation

the accumulated error after a number of steps is proportional to the maximum

error committed at each step divided by the step size h. The constant of

proportionality does not vary with the number of the step so that a bound

for the accumulated error can be found which is independent of the number of

steps taken. Thus, the Runge-Kutta solution is stable in the sense that for

a stable differential equation the error will be bounded and the truncation

error will go to zero as the step size h, goes to zero. For more detailed
information, see References (2.1A), (2.16), and (2.17).

2.3.3.3 Fourth Order Methods

2.3.3.3.1 Discussion. Fourth order Runge-Kutta methods reduce the error by

one order over third order methods at the expense of an additional derivative

evaluation. It should be noted that while third order methods require three

derivative evaluations, and fourth order requires four derivative evaluation

methods of fifth order require six evaluations and methods of sixth order

require eight evaluations. It is probably for this reason that the fourth

order methods are the most popular; i.e., they provide a good compromise

between step size and number of derivative evaluations.

2.3.3.3.2 Derivation of General Fourth Order Runge-Kutta Formulas. The

derivation of the fourth-order Runge-Kutta equations is similar to the de-

rivation of the third order equations presented in section 2.2._.2.2 and the

bulk of the derivation is not repeated. For the fourth order case, it is

necessary to compute a A yA.

The value of yq is determined in a fashion similar to the determination of

Y2 in equation_(13) of section 2.2.4.2.2. Three steps are used in determining
instead of the two used for Y2 with the derivatives at the points (Xo, Yo),

, yl ), and (x2, y2 ) being used over the arbitrary intervals _ , _ , 0_ •

The general form of the fourth order equations is given in the following

equation:
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,,y, = ,_](_o, yo)

"Y2 - %t (r'° +_'_' t° " _"V 'j

The relations between the parameters are given by equation (3.39)

a, ,a 2 ,,a s ,a_ =1 "x

I

a_+asx, a.,_"-=7

01 ,._,t + _l Xf- + O_.q _. 2-= _.7

a2 ._.,, as X_ +% _, _1.q
I

a, 7,,'p, a_, ( _._ , X:zm):1_

a_ _Xlo ,a¥(,,rA + ;>to') :g

I

The set of equations (3.39) relating the parameters is, as was the case with

the third order system, underdetermined and two of the ten parameters may be

chosen arbitrarly.

(3.39)

2.3.3.3.3. Classical Runge-Kutta. This member of the family is the best

known and it is often the form that is being thought of when the term

Runge-Kutta is used. This form is also known as the Kutta-Simpson One-third

Rule and, as might be expected, reduces to Simpson's one-third rule when
•.re_, ,.D)_--_-(_)

# #

"W: 'f/(_. ' s '_,V.+_"i,',)
/ /

"V,: Xt (_'+_x, fo *s_V:)

'Y+: gt ('_'x,_ ,,,V,j
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2.3.3.3.4 Kutta-Simpson Three-eights Rule. This form reduces to Simpson's

three-eights rule when f(x, y) = f(x)

_y-_

_V_= St<_'o 3J, Vo

2,3.3.3.5 Runge-Kutta-_lston. This form pro_-ides n_tn_t_m truncation error
at each step

Z_ :. 174z7_O2B.'_, -.._..ql_BOl& _ t- 1.2 o.s.V2g&o /'_3 + .1711@¢70 8_'_

z__z : JDt d,Je<>,_ .._,4 , _fo t . +'.,, _, $

2.3.3.3.6 Runge-Kutta-Gill. Gill's formulas were developed specifically for

use on high speed digital computers so that: l) a minimumnumber of storage

registers are used; 2) growth of round-off errors is controlled; and, 3)
comparatively few instructions are required. _-Reference (2.16) and (2.18)__.

In the notation previously used, the Runge-Kutta-Gill formulas are

,_ -:_ *__/- _ _,_ ,'%,

X ,
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In order to get a more efficient form equivalent to O°L_O), the auxiliary

quantities, qi and Yi' are introduced and the set of equations become

_ = ,_/_o,_,o_
#

#

/,-y.+j_f,

_.:(2+_-,I.+<-2-_SJj,.

O._l)

Note that from these definitions

At any stage in 0.41) the Ayi, Yi, and qi depend only on stored quantities
of the previous stage and quantities computed during the current stage. As

each quantity is computed, it can be stored in the same register where the

corresponding quantity of the previous stage was stored. Since the quantity

there is no longer required. Hence the overall process requires the storage

of only three quantities at each stage and the same three registers can be

used at each stage.

A further refinement to compensate for some round-off error can be made

without increasing the complexity of the procedure with no increase in

storage requirements. This refinement consists of introducing qo and q4
with q initially zero. The quantityq 4 represents approximately three times

the round-off error in y4accumulated in one step. To compensate for the

accumulated round-off q4 Is used for qo in the next step. The final form
of the Runge-Kutta-Gill equations is
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_ = #/CXo+ 2,

_ = #/(4 +_,_
/

= y, '</+A_(_,_,,-f, )

i -2¢ )

f,

#

2.3.3.3.7 Computational Procedure. The following discussion and sample

proble_ are taken from Reference (2.16). The Runge-Kutta-Gill formulation

will be used for the sample problem. These equations are given in Section

2.3./+.3.6. The probl_n to be _llustrated is the solution of the set of

simultaneous differential equations
!

I

The analytic solutions to these equations are

_._)

The error in the numerical calculation will be defined as

-X
e, = e -/_, (._)
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For the Runge-Kutta calculation, the set of equations (3._2) will be written

symbolically as

L =/,2

where

_oCx) _ X

and the subscript i denotes the first or second equation of the set (1).

The values of the yj's of equation 0._2) will be denoted by the second
subscript j; i.e.,

The calculation proceeds in the following sequence

(1) Let j : 1
(2) Let i : 0

0om ute
(4) Repeat (3) 1 all value of i are used (i = 0, l, 2)

(5) Set i = 0

(6) Compute Yi, _, and qi, _
(7) Repeat (6) u_Jtil all values of i are used

(8) Repeat steps (3) through (7) incrementing j each time until j : 4

(9) The desired answers are obtained as Yl4 and Y24

A flow chart depicting the above sequence is shown in Figure 3.2;

2.3.3.3.8 Error Analysis. The derivation of the truncation error is similar
to that for the third order method and the reader is referred to Section

2.3.3.2.7. The bound for the truncation error is /Reference (2.13_

L

where M and L are bounds on the derivatives over the region in which a
solution is desired

M >l¢c_j_) J

and
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Figure 3.2.

j =j+l

I
L=L+I

I
_j _ _j.

IP

_'°Os : 2)

!'

_'°Os : '0
V£J

r

Flow Diagram of Runge-Kutta Calculation
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Table 3.2 presents the numerical results of two steps in the calculation
with h = .1.

Table 3.2. Intermediate Steps in Runge-Kutta-Gill Calculation

0

i

2

0

1

2

0

i

2

0

i

2

0

i

2

0

1

2

0

i

2

1

2

4

1

2

4

Yij Yij qij

.i0000000 x i01 .50000000 x i0 -1 .i0000000 x i0-I

.i0000000 x i01 .10500000 x i01 .i0000000 x i01

-.i0000000 x i01 .95000000 -.lO000000 x I01

.i0000000 x i0_ .50000000 x iO_I .70710678

.10526316 x i0± .10515415 x i0± .73793765

-.95238095 .95139473 -.67921219

.i0000000 x i01 .99999999 x i0_ I .50000000

.10510884 .11049997 x i0± .54736297

-.95098A78 .90500025 -.44761411

.i0000000 x lO_ .99999999 x i0 -I -.18189894

11049721 x !0_ .11051705 x i01 -.36379788

-.90497760 .90483776 -.90947470

.i0000000 x i0} .15000000 .i0000000

•11051705 x i0± .11604290 x i01 .11051705

-.90483776 .85959587 -.90483776

.i0000000 x i01 .15000000 .70710678

•11633374 x !01 .11621327 x i01 .81554692

-.86175025 .86085787 -.6]]+57684

.I0000000 x i01 .20000000 .50000000

•I1616319 x i01 .12212131 x i01 .60492940

-.86048694 .81887839 -.40501815

.i0000000 x i01 .20000000 -.18189894

.12211825 x i01 .12214018 x i01 -.36379788

-.81885791 .81873137 -.90949470

-ll
x i0_i I
x i0
x 10-12

x I0}

x i0±

x i0 -II

x i0 -II

x 10 -12
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Table 3.3 lists the final values at each step and the correspondingerrors, with h = .I.

Table 3.3. Results of SampleProblem

X

0

.i

.2

.3

.A

.5

.6

.7

.8

.9

1.0

 l(X)

•I0000000 x i01

•11051705 x i01

•12214018 x lO1

•13498573 x i01

•14918224 x lO 1

•16487181 x lO 1

•18221146 x lO 1

-20137474 x lO1

•22255342 x lO 1

•24595947 x lO1

•27182715 x lO I

Y2(x) £1xlO 7 _2xi07

•i0000000 x i01 ___

.90483776 4 - 3.4

•81873137 lO
-6.2

.74081905 15
- 8.3

•67032105 23 -i0.0

•60653179 32 -ii.3

•54881286 42 -12.2

•49658660 53 -13• 0

•44933030 67 -13.4

•40657102 84 -13.6

•36788081 i03 -13.7
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2.3.3./+ I_Lt_iherOrder Methods

2.3.5.4.1 Discussion. Formulas for Runge-Kutta method of order higher that

four are not widely used nor well }mown. These formulas have the disadvantage

of requiring more evaluations of the derivative than the order of the formula;

e.g., the fifth-order formula of Kutta-Nystrom recites six evaluations of the

derivative while the sixth-order formula of Huta / Reference (2.19)_/ requires

eight. The reason for requiring the extra derivative evaluations is that a

contradiction exists if the relation between the para_eters is written in the

same form as was done for the third and fourth order methods. A different

approach taken by Shanks _-Referen(-e (2.20)J is to require the equations

which result in a contradiction to be only approximately true. Using this

technique, Shanks develops equations through order eight which may be found

in Reference (2.20).

2.3.3.4.2 Derivation. The derivation of the higher order equations is

similar to that outlined for the tinird order method except that additional

evaluations of the derivative are required in order to get a consistant set

of equations relating the parameters. For the Shanks method, the contra-

dictory set of equations obtained by n derivative equations for an nth order

system is modified so that the conditions for order n-1 are met, and the

remaining equations modified by addition of arbitrary parameters which

represent small errors.

2.3.3.A.3 Runge-Kutta-Nystrom (fifth order).
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2.3.3.4.5 Runge-Kutta-Fehlberg. This technique will provide sixth order

accuracy with only three derivative evaluations. The disadvantage is that it

requires extensive preliminary analysis of the particular problem involved

and therefore cannot be used as a general integration package. The procedure

is to form an auxiliary differential eRuation and develop certain recursion
relations. Durham_-Reference (2.22)2' has applied this technique to the

restricted three-body problem and determined that it was superior to a

single step Lie series method, a multi-step Cowell method and a multi-step
Adams method. More information on this method can be found in References

(2.21) and (2.22)

2.3.3.4.6 Error Analysis. Error bounds for higher order formulas could not

be found although a derivation such as was done in section 2.3.3.2.7 could

be performed to yield them.
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2.3.3.4.7 Computational Procedure. The computational procedure is similar

to that of other method, and section 2.3.3.3.7 illustrates the technique.

2.3.3.5 Comparison

One comparison which can be made between the various Runge-Kutta form-

ulas is that in general for a given step size, the lower the order of the

method the less computation time required. The reduced computation time is

obtained at the expense of a larger truncation error. One exception to this

rule is the Fehlberg technique which trades speed in the actual computation

for extensive analysis of the particular equation whose solution is desired.

If the Runge-Kutta technique is to be used for the entire solution, the

technique such as the Runge-Kutta-Gill formulation which minimizes computer

storage and controls round-off should be used. On the other hand, if the

method is used to start a solution, the primary concern is with truncation

error, and the Runge-Kutta-Ralston formulas should be used.

In summary, it can be stated that the large number of derivatives which

must be evaluated at each step generally relegate the Runge-Kutta methods to

applications requiring special starting procedures or to solutions where only

a few points are calculated, and the slowness of the process if unimportant.

Although each individual problem is more suited to a particular order, if a

general recommendation is to be made, the fourth order methods will be chosen.

In particular for starting the solution, the fourth order Runge-Kutta-Ralston

should be used.
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2.3.h PREDICTORCORRECTORMETHODS

2.3.4.1 Introduction

Single step methods, such as Runge-Kutta (section 2.2.3), compute the

value of the functions, Yn÷l, at Xn+l, by means of a formula which depends

only on xu, Yn, and the step size, h. After the first few points have been

computed_ there is available a large amount of information which is not being

utilized; namely, the history of values of y. In an attempt to obtain greater

efficiency and accuracy, formulas have been derived which depend not only on

Yn, but on the prior values of the function; for example, Yn-1 and Yn-2.

These methods are called multi-step methods and have proved to be signifi-

cantly faster, for the same accuracy, than single step methods. This

advantage is obtained at the expense of some increase in complexity, for

multi-step methods are not self-starting; and therefore, a special starting

procedure is necessary.

Some multi-step methods develop two formulas - one for use as a pre-

dictor, and the other for use as a corrector. That is, one formula is used

to predict the next value of y, Yn+l" This value of Yn_l is substituted into

the differential equation, and Yn+l is obtained. These values are used in

the corrector formula to obtain another "corrected" value of Yntl" The

difference between the predicted and corrected values of Yntl can be

monitored to evaluate the effectiveness of the corrector cycle. Multi-step

methods involving the use of two such formulas have naturally been called

predictor-corrector methods.

The most popular predictor-corrector methods are discussed in this

section as well as some of the more promising newer methods.

2.3._.2 Adams Method

2.3.&.2.1 Discussion. The method of replacing the derivative of a function

by a polynomial and integrating that polynomial over an interval to obtain a

multi-step predictor formula was used by J. C. Adams as early as 1883. The

technique was developed in a text co-authored by F. Bashforth (Reference 2.23);

and probably for this reason, the method is sometimes called "Adams-Bashforth"

and sometimes simply "Adams".
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Although Adamsdid apply a corrective formula, the method bearing his
nameusually involves a predictor formula only and will be so discussed in
this section.

2.3.4.2.2 Derivation of Equations. The integrand in the differential
equation y' = f(x, y) can be approximated with the polynomial formed by

Newton's backward-difference formula (Reference 2.12) using the N+l points

Xn_ _, ..., Xn_ l, Xn

where

Integration of both sides of the differential equation from xn to Xn¢ 1 gives,

after changing the variable on the right-hand side from x to s.

where

j_,,.13Cs+D, ,, (s_k-t)_k = k.'
0/5

The leading terms of which are:

This is the standard Adams',predictor equation in difference notation.

2.3.&.2.3 Truncation Error. The truncation error gorresponding to termi-

nating the series with the Nth difference of fn is

"/2



Error estimation for variable step size integration requires the computation

of an extra difference in order to estimate the higher derivative occurring

in the truncation error expression.

For example, when three differences are retained, the truncation error

incurred at each step is

2_

and is approximated by 251/720 h _ f . The validity of replacing de-

rivatives by differences is provided bynthe relation _c-_(_)_C_})/_ .

2.3._.2.4 Step Size Modification. Step size modification is generally

limited to halving or doubling, which can be performed repeatedly if

necessary. Doubling the step size is straightforward and involves only the

use of alternate points, thus no new information need be generated. _en the

step size is halved, however, information not previously available will be

required; that is, the value of y and y'=f hal_ay between the existing

points.

The following discussion presents a general method of interpolation.

The schematic:

f
n-¥

/ _Yfn-3

_f _v3
/ n-z (..,

fn-J

/ _ v2f.
f_'-I /

vf.
/
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shows that the subscript of the backward differences remains constant along

the back diagonal. It is evident then that Adams' method is an end-point

extrapolation, and once procedures have been specified for modifying the

differences of the end point any integration step size may be performed.

Let e_ indicate the desired interpolation where 0 _ p __ i. The step

size is halved when p = _. In what follows: v denotes backwar_ difference

at spacing h and _zI denotes backward differences at s_acing @ the general
relationship for the rth difference for a new spacing p in terms of the

differences at spacing h is:

(-v_) r= (I-v)e-I _:_ -V)_+ r -v) rt'

r(P-O _ . 1
, _ [_(e-_)+a(r_O(?-Oj (-v) r*_

"¢P-'> - 0 ,..}_ --_--- - C V _
Setting r - l, 2, 3, and k provides the relationships:

1_-$$

Setting _ = ½ provides the relationships for halving the step size:

e/-- T +_- * _ _ /e----6

_7z W3

V 3

16,

Setting p = 2 provides the relationships for doubling the step size: (direct

computation of the differences using alternate points previously computed will

also provide the modified differences)

V, _ : /_ V _
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2.3._.2.5 Starting and Restarting Procedure. The application of the Adams'

formula employing N differences requires N beginning points in addition to

the initial conditions.

The following is a possible method for generating the beginning values,

but is not seriously recommended as it requires a very small step size h.

The Runge-Kutta method will always provide adequate starting values, and

obviates the small step size requirement.

2.3.4.2.6 Computational Procedure. The Adam's predictor formula employing

N differences requires N eqidistant derivative values in addition to the

initial conditions. Once these starting values are obtained, every appli-

cation of the formula yields a new function value, the derivative value, of

which is obtained by evaluating the differential equation. When the corre-

sponding differences are formed, the predictor is again applied, and the

process continues requiring just one derivative value for each integration

step.

The estimate of truncation error is monitored at the completion of each

integration step. If the error is large, the differences are modified and

the step size is halved. Whereas if the truncation error is very sm_ll, the

differences are modified and the integration step is doubled. The process

continues with the step size unchanged when the truncation error tolerance

is satisfied, but indicates no excess of significant figures.

An arbitrary integration step size, h*, may be effected for the purpose

of satisfying constraints or printed output by modifying the differences such

that h* = h.

2.3.4.2.7 Advantages and Disadvantages. Advantages of the Adams' method

are:

l) Step size modification is readily accomplished.

2) Requires only one derivative evaluation per integration step.

3) An estimate of the truncation error is obtainable.

Disadvantages of the method are:

l) Requires a special starting/restarting procedure.

2) An extra difference is required to estimate the truncation error.
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2.3.4.3 Ada/as-Moulton Method

2.3.4.3.1 Discussion. Moulton in 1926 applied a corrector formula to the

Adams' predictor formula and the resulting method - known as the Adams-Moulton

multi-step method - has achieved widespread use. In fact, Adams-Moulton is

probably the most commonly used integration method for trajectory problems.

2.3.4.3.2 Derivation of Equations. The equations will be derived first in
difference form and then in ordinate form.

where

The differential equation is:

The corrector formula is developed by approximately the integrand with

the polynomial formed by the N÷l equally spaced points

X_-tv÷/ ) • - - ) Y_; kz,/÷/

k-- Y_I - Xn

¢ s-.P.5 _ 2
_'(z,_i.) = ,c,_,.s= f,_,_,(.s-_J yr.., t 2 F,_,, ,

Cs-/,) Es-) C,_+O . . . C_ + 4/- z ) _1_'[" ÷/"4y-b o)

tV./
where

v% --_&- v/n-, - _ - e__, , {,_-2
Both sides of the differential equation are then ±ntegrated from xh to xn_ 1

tot_ --/{n÷3 d_

or

The polynomial expression for f n+s is substituted into the right-hand side

and the variable is changed from x to s.

t A/./ #/ J
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The integration yields the correcter formula

/ / _z_ / [73 /_ _ 3 V .f_ .l_c-

The predictor and correcter formulas, in difference forms, are

The correcter formu__a in ordinate form is obtained by substituting 'the
ordinate definitions of the differences.

If differences through the third are retained and the ordinate form is

introduced, the predictor and correcter formulas are:

2.3.E.3.3 Truncation Error. Hildebrand shows an estimate of the truncation

error incurred in the step xn to Xn+ 1 to be:

/I .Co) (P) IF : -

2"70

where C : _ _ IZt when third differences are retained

: z_ "_ 18 when fourth differences are retained

The motivation for applying the correcter formula is that its co-

efficients multiplying the derivative values and step size-derivative factor
in the truncation error expression are smaller than the corresponding co-

efficients in the associated predictor formula so that a greater accuracy is

expected.

It is to be noted that the smallness of the residual formed by successive

iterates of the correcter formula is a measure of only how well the difference

equation _nployed in the approximate integration is satisfied, and in no way
is a measure of difference between the iterate and the true solution of the

differential equation.

It is probably for this reason that most applications of predictor-cor-
recter type formulas apply the correcter only once per integration step.

2.3._.3. £ Computational Procedures. The Adams-Moulton method requires

starting values commensurate with the order of the formula being used. These

values may be obtained by any procedure whatsoever, but are usually obtained

by a Runge-Kutta method.



Once the starting values have been obtained, the predictor formula is

applied and a new function value is determined. The corresponding derivative

value is obtained by evaluating the differential equation. The previous
values and this first estimate of the derivative are then substituted into

the corrector formula_ and a second or corrected function value is determined.

The corresponding derivative value is then obtained and can be resubstituted

into the corrector formula. This iteration of the corrector formula may be

continued until there is no significant change in successive iterates. How-

ever, it is usual to apply the corrector only once per integration step. In

any event, the local truncation error is proportional to the difference

between the predicted and final corrected value, and provides an effective

basis for variable step size integration.

The step size is diminished whenever the truncation error tolerance is

exceeded, and increased when the truncation error is well within the speci-

fied tolerance. %When the specified truncation error tolerance is satisfied

but indicates no excess of significant figures, the process continues with

the step size unchanged.

The procedure for interpolation of midpoints is available for obtaining

a sequence of points at half the step size. Whereas forming a partition

utilizing alternate values previously computed provide the necessary data for

doubling the step size. The Runge-Kutta procedure is often used to generate

a halved or doubled sequence of values necessary to insure an optimum step

size throughout the computation. Since the procedure of interpolation or the

selection of alternate values yields the same or better accuracy_dth far less

computation, this use of Runge-Kutta is not recommended. The problem of

obtaining output or function values corresponding to a non-integrated point

of the interval is also optimally determined by interpolation.

2.3.4.3.5 Advantages and Disadvantages. Advantages of the Ad_ms_oulton

method are:

i)
2)

Potentially more accurate than Adams' method.

An estimate of the truncation error is obtained.

Disadvantages are:

l) Requires a special starting/restarting procedure.

2) Requires at least two derivative evaluations per integration step.

2.3.4.4 Lanczos Method

2.3.4.4.1 Discussion. Most multi-step predictor methods make use of the

function value at one previous point and the derivative values at several

previous points (most commonly at 5). Lanczos (Reference 2.11), however,

has derived a family of predictor formulas that _ke use of both function

values and derivative values at the previous points. This form of solution

allows development of what Lanczos calls "extrapolation of maximum efficiency"

and "extrapolations of minimum round-off. _

78



The Lanczos method, unlike some other methods (e.g., Adams-Moulton),

does not have a long operational history from which to draw experience.

Therefore, evaluation for trajectory problems is not complete.

2.3.4.4.2 Derivation of Equations. Generally, multi-step predictor methods

take the following form

n_ n_

K=I k:l

However, Lanczos, in order to be completely general and include all possi-
bilities, considered this problem in the light of Lagrangian interpolation in

which every point of interpolation is a double point consisting of function

and derivative. That is, instead of matching the interpolating polynomial at

function values only, Lanczos matched both functional values and derivatives.

In this way, he obtained

" , (,..9

where

and

'}]I + f- __
z---%

k/

Identifying m with i, 2, 3, 4 he obtains the following sequence of formulas
called "^-_ r 1=_ apo ations of maximum efficiency. "

, hz _-I

rf_=Z
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Inspection shows that the y ordinates are multiplied by factors larger than

l; therefore, whenever these formula are used in a repetitive fashion, small

errors from a previous step will be subject to rapid amplification and quickly

dominate the solution. However, the fact that these formulas are unstable

does not preclude their use in special situations such as in starting/re-

starting procedures.

Noting this feature of his solution, Lanczos then abandoned the concept

of matching both function values and the derivatives at every point in favor

of an approach which attempts to match only the derivatives at each point.

As a portion of this process, he imposed conditions necessary for numerical

stability by letting

and showed that the function contrlou_1on of the formula to be the arithmetic

mean

minimized the effect of rounding errors (the best statistical averaging of

random errors is obtained by the arithmetic mean). Another, more practiced,

reason for choosing the _ small is that B i are given a greater role, and
since these coefficients are not effected to the same degree with noise (the

derivatives are determined by the differential equations) the accuracy of the

solution is expected to be improved.

Subject to these conditions, the general predictor becomes:

I

the remaining coefficients B k can be uniquely determined by the method

of undetermined factors. This family is called "extrapolations of minimum

round-off" and follows for m=l to m=5. _=I

t 3

rn -3

,_ .=41
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where

I

2.3.4.4.3 Truncation Error. After applying a predictor formula to obtain

Ym from a given set of Ym-1 and Y_-l data, an estimate of the truncation

error is necessary to ensure the specified accuracy of the solution. Since

the higher derivatives are not easily obtainable, an alternate approach would

be to use the same set of Ym-1 and Y__I data and extrapolate to Ym+l" This
is a reference value only and will be _enoted by ym+l. The difference ( A )

between the reference value Ym+l and Ym+l obtained from the predictor serves

to estimate the truncation error (n) and provide as effective criter_o_ _or

variable step size integration. This truncation estimate assumes y t_)
does not change drastically as the scheme proceeds from Ym to Ym+l" " '
Lanczos lists the following reference value formulas for m=l to m=5.

m:l

m=3

/i = O. Zd

n = O./&Zi

f_ : O./ZS Z_

2.3.A.h._ Step Size Modification. As in previous methods, doubling the step
size is straightforward since existing function values can be utilized if

they are stored. When the step size is halved, Lanczos lists the following

formulas in matrix notation for midpoint interpolation. The notation Yol
refers to the midpoint value of y halfway between Yoand Yl, similarly Yl2

to the midpoint value of y halfway between Yland Y2 , and so on. It is
tacitly understood that the arithmetic-mean M is added to the tabular products
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hy1
i -i --8

YOI =

m_-2

Yol = 2 -ii -3

YI2= 3 ii -2

m=__!

hy6 hyi hyi ,
YOI =

15 -2O5 -163 -31

Yl2= 31 147 -147 -31

y23= 31 163 2O5 -15

38_

YOl = 348 -7518 -545& -3930 -726

Y12=794 3178 -5178 -379& -760 ÷

Y23 = 760 379_ 5178 -3178 -794

y3_= 726 3930 5454 7518 -388

11520

2.3._.4.5 Computational Procedure. The initial conditions and the m equally

spaced function and derivative values which the starting procedure provides,

comprose m+l equidistant function and derivative values necessary for evalu-

ation of the predictor and reference value formulas.

The predictor formula is applied to the first m function and derivative

values. This result is compared with the m+l function value. If the speci-

fied accuracy is not met, a new starting sequence of m+l function and de-

rivative values must be obtained. If the specified accuracy is met, the

reference value for the next integration step is obtained by evaluating the

corresponding reference value formula again using the first m function and
derivative values.
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The successful completion of one integration step then yields a new

function value from which the derivative may be evaluated, and a reference

function value to be used for comparison at the completion of the next inte-

gration step.

Diminishing the integration step size when the truncation error exceeds

the specified tolerance is accomplished by applying the midpoint interpolation

formulas, thereby obtaining a partition at half the step size.

Increasing the integration step size when the truncation error is well

within the specified tolerance is accomplished by deleting every other

function and derivative value, thereby obtaining a partition at twice the

step size.

2.3._._.6 Advantages and Disadvantages.

Advantages

i)
2)
3)

Requires only one derivative evaluation per integration step.
Provides an estimate of the truncation error.

l,_kes available a matrix of local function and derivative history

applicable to interpolation for the purpose of satisfying con-

straints or printed output without recourse to integration.

Disadvantages

i)
2)

Requires a special starting/restarting procedure.

Convenient step-size modification is limited to halving or

doubling.

2.3.A.5 Nordsieck Method

2.3.A.5.1 Discussion. Nordsieck, by noting that all numerical methods of

integration are equivalent to obtaining an approximating polynomial for y(x),

derives a family of methods that is based on the higher derivatives of the

approximating polynomial rather than the usual past function and derivative

values. The main advantage of such an approach is that the procedure is

nearly interval-independent since the higher derivatives at the current point

specify the same polynomial regardless of the interval size. Care should be

exercised, however, in the use of the method because the effect of noise in-

herent in the calculation of the higher order differences which are matched

by the approximating polynomial has not been resolved, at least in the

literature reviewed for this monograph. Thus, while the method is theore-

tically accurate, practical restrictions in the mechanization of the solution

may arise.

2.3.&.5.2 Derivation of Equations. Nordsieck first approximated the function

y(x) by a polynomial, denoted here by Ps(x) (indicating fifth order). He then

considered the Taylor series expansion

3!

- )h 3 ,.( ,,,,
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where for the fifth degree approximating polynomial i_ (x) : _d _)jP%dx) : _(×_ (×b)•

The quantities

are chosen for a parameter set as they are reasonably controllable due to the

step size h and their relation to a change of interval being simply a multi-

plication by a constant.

Suppose that the step size is changed from h to

a, b, c and d are modified as follows:

h then the parameters

The Taylor series expansion terminated at hb then yields

P_

where { = _[x)%Qxb]* t_[_ _ _bQ_1 + _c d×b + g_] d_ (the predicted

value of &L× +_>_ Cx + k5 _ )

A Taylor series expansion can also be written for { [×, _) I in terms of

at×]_ bC_b _ c t_) and d (×)

Similarly, expansions can be written for _C×_ , btx_; <-C_ and d<_

_(_,_J :_),_(_J+_c<_), ,os(_) ÷ -_ f(_+_ ,_(_+_))_i "P
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Nordsieck's analysis shows that the replacement of the six coefficients

1/6, l, 15/6, 20/6, 15/6, 1 multiplying the [ ] term by the new coefficients

95/288, l, 25/2_, 35/72, 5/£8, 1/120 provide an essentially optimum choice

with respect to stability and minimum degradation of accuracy. This choice

of coefficients then leads to a set of working equations, which Nordsieck

recommends as the best choice of the possible lower and higher order versions

of the method for a large-scale digital computer. It is to be noted that his
experimentation and conclusions are dependent upon _'fixed-point" (i.e., a

method of ca]culation in which the operator must keep track of the decimal
point as with a slide rule) arithmetic procedures; and, therefore_ the

relative merits of a "floating-point" (a method of calculation which

automatically accounts for the location of the decimal point) version remain

conjectural. However_ it would appear that double precision for all com-

putations except for derivative evaluations and convergence tests would

provide the same results. This extended precision would undoubtedly be
necessary in any event if high accuracy over a large integration interval is
to be maintained.

Working equations corresponding to a fifth degree approximating

polynomial for y(x) with corresponding truncation error estimate are:

/z o -fP

2_3.&.5.3 Starting. The starting problem, namely to determine y, f, a, b,

c, d_ at× + h given only the initial conditions and the differential equation

is a rather intricate procedure. The essential idea is to assume abnormal

values of a, b, c, d (namely zero), in absence of any estimate as to their

normal initial values; and to assume that after integrating a few steps that

they will have approximately their normal values. The process Nordsieck
outlines consists of integrating forward several steps then reversing the
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sense of integration and integrating backwards, thereby arriving at the

starting point with y (x) somewhat in error but with first approximations

to a, b, c, and d. The correct value of y (x) (as specified by the initial

conditions) is reinserted; then the process of integrating forward several

steps, reversing the sense of integration, and integrating backwards is re-

peated. This process is continued until the computed value of Yo converges

to the given value of Yo- The computational logic for starting is illustrated

in the accompanying flow chart.
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Figure 3.3

LOGIC FOR THE STARTING PROCEDURE IN NORDSIECK'S METHOD

BEGIN STARTING PROCEDURE -)

a. (:_) --0

c (_) :0

dC_):O

a(z_4) = a(z) + 3](_)+6bEx) + /od(z)

_(z+A')-._(z) + z/c(z) + lOd(x)

c (z _ f)= cEx.) + _ddz)

d( x k _)= d(x )

Integrate another
step forward?

Integrate bother
step backward?

|

Set ::Z': _ +_ h

and Z ÷ _" C

Set F

and _ _ _

Is the difference betwe_

he computed _o and the \

iven_o less than _ ? / No

l

I Yes

I Starting Procedure is complete.

ccept final values of

&(Z)_ b(z)_ CC_,) _znd ddz)

Resubstitute the correct valui

of _ and integrate forward
and backward again to get

better approximation to a(_3)
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2.3._.5._ Computational Procedure. The procedure for continuing the integra-

tion process, i.e., the solution of the working equations listed previous_is
not unique and should be performed as follows: A first-predicted value y--)

(xth_s obtainedby omitting the bracketed term, then a first approximation

to the correct derivative is obtained by f(1)(x_h)=f Lx_h,y_ l) (xth_ .

The corrected value y(2) (x_h) is then obtained by including the bracketed

term. The second a_final approximation to the correct deriMa_ive value is

obtained by f_h,y t2_ (x+h_/ . The final corrected value y(3) (x_h) is

then obtained by again including the bracketed term (see flow chart). Each

cycle of the integration process includes the tests

and

I

I ?I -_= B llhl
I

where e is a specifiable positive integer and "max" means the largest value

obtained from the system of differential equations. The first test insures

stability, in that the iteration error is overshadowed by the truncation

error. The second test bounds the truncation error for a single integration

step. The context of e here is then the local preservation of the etH digit

in the solution.

The integration step size selected is then the largest value that satis-
fies the above tests. Nordsieck includes four minor modifications of these

tests in order to improve the usefulness and efficiency of the method and

the smoothness of automatic interval control.

2.3.A.5.5 Advantages and Disadvantages. Advantages of the Nordsieck method

are:

i. Step size modification is readily accomplished.

2. An estimate of the truncation error is obtained.

3. Step size is selected so as to insure stability.

A. Capable of high accuracy for a large number of integration steps.

Disadvantages are:

i. Requires a special starting/restarting procedure.

2. Requires two derivative evaluations per integration step.

. The desirability of this method, when used with fixed-word length

computers, is questionable since the higher orders differences are

inherently noisy.
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Table 3.4. Logic for the Continuation of Nordsieck's Integration

L

I \

I Begin the integration I

| step /

•Lt ,x,_,'-/']_

!
r End of the "_tegratioln

I step [

h

_-----

continue?

I

I
[. End of Integration \I

/
\ _/

Yes
L

v

Set _: g÷

and
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2.3.A.6 _2 Method

2.3.&.6.1 Discussion. The S2 method is developed by doubly integrating an

interpolation formula involving finite differences (the finite difference oper-

ator is b). The method is of interest because it provides a direct method for

integrating second-order differential equations without reducing them to a

system of first-order equations. If the force is conservative, as is the case

with many astronomical and physical problems, then the first derivative need

not be evaluated as part of a step by stsp integrating process; and the double
integration performed directly by the _ _ equations is simpler and faster than

two single integrations by a 6 formula (single integration of the interpola-
tion formula) or related methods such as Adams-Bashforth. If the accelerations

are a function of velocity, then it will be necessary to use the _ equations

to obtain this quantity. However, it is still desirable to obtain position

by the 62 formula rather than by two applications of the _ formula. (Refer-

ence 2.2&).

2.3.A.6.2 Derivation of Equations. The derivation of 82 formulas begins by

approximating the second-order function being integrated with a polynomial and

by integrating the result twice to give the desired equations. The approxi-

mating polynomial for the second derivative is derived from formulas for inter-
polation or extrapolation. For this section, the 62 equation, which results

from the use of Stirling central difference interpolation formula, is devel-

oped. It should be noted that if a different interpolation formula is used to

approximate y", a different but equally valid $ 2 e_uation will result; for
example, Scarborough (Reference 2.10) developed 6 equations using Newton's

formula for backward interpolation.

Stirling's central difference formula can be found in any standard text

on numerical analysis and is simply reproduced below

mere × - Xn

h

6 -- central difference operator (&_n _ _n_ y_X n- _/_

= averaging operator [_×_ = _a(Xn _./__×_- _/_)]

Integration of equation (3.&3) with respect to x yields

/ ss _ Is'

6 /

At this point, the value of the constant C is determined by substituting x =x n

in equation, _.A3).. If x =Xn, then,y = Yn and the constant is seen to be
c = _n. Thus, if C is replaced by Yn and another integration performed, the
result is
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d Z_

The constant c' is now evaluated by requiring that y = Yn at x = xn. The

result is c' = Yn.

..)

Values of y at y = Yn-1 and y = Yn+l are now determined by evaluating the

equation at the points x = Xn_ 1 and x --Xn+1 (i.e., at Xn+ 1 =x n + h).

z
+ . .. )

sl

G (3./+5)

Addition of equations (3.hA) and

/ 2

+,-E

Since S_X_ = _+i - Z_ + ___
written in its final form

[$./+5) now gives

, equation (3./+6) can be

3/

2.3.&.6.3 Truncation Error. In order to obtain a solution for Yn+l by the
use of the equations derived in the last section, it is necessary to know

the values of higher order differences such as 8 2 Yn, 6& Yn' etc. Since

these values cannot be calculated directly without Yn_l , it is neces-
sary to approximate y and Tat the next epoch by a truncated series and sub-

sequently, estimate the desired derivatives. With these approximate values

of _Yn etc., a corrected valculation for Yn+l can be made. This corrected
estimate can then be used to obtain a more accurate estimate of the higher

differences needed in the equation for Yn+ and a new value for Yn+l can be
found if desired. The difference between _e preliminary values of Yn+l and
the corrected value will serve as an estimate of the truncation error. It

should be noted that the actual truncation error cannot be obtained by this

technique; however, it provides a criterion for selecting the proper step size.

2.3.&.6.& Step Size ModificAtion. Any change in step size which increases

the previous step size by an integer amount is easily handled by simple delet-

ing the unwanted solution values provided sufficient preceding solution points

have been retained. In general, unless all previous solution points have been

retained, the number of previous solution points available will be less than
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the minimumnumberrequired to increase the step size. In such a case, the
solution simply proceeds with the current increment until the minimumnumber
required to change the step is reached. If the step size is to be decreased,
solution points must be generated within the intervals of the previous steps.
Generation of these points is easily accomplished by the use of an interpola-
tion formula. The accuracy of the interpolated points can be madethe same
as the original solution points by choosing a suitably high-order interpola-
tion formula. A selection of interpolation formulas suitable for this pur-
pose can be found in Hildebrand. (Reference 2.12).

2.3._.6.5 Computational Procedure. The use of the 82 formula will be illus-
trated by performing one step in the solution of the equation

= - x (3._8)

This example is reproduced by consent of Dr. S. Herrick (Reference 2.25 ). It
is assumedthat a starting procedure is available which has generated the data
in Table 1 which corresponds to the beginning of n = 9 step. The values in
parentheses are part of the calculation of the step n = 9 and are described
below. The last values in the several columns (except those in parentheses)
are X8, SX_,/__6_X_ &XTv_>S_&3_S_X_ , and _Sx_./_ ; those values are

correct within the limits of rounding error. The first step in the calcula-
tion is to estimate 6z _ B . This estimate can be obtained from the equa-
tion

8zx ÷ S3Xn - 5

This equation is obtained by assuming that _b_._ is zero and working back-

ward by substituting the definition of 6_ etc. A similar expression for

6_n = S_2(n_z ÷ Z_ Xo_ZV z (3.50)

Using equation (3.&9) and equation _.50) and the data in Table 3.&, there is
obtained

(._368 _ 7_o-0 - 5-6& -89

7/6.69

(3.51)

= - £6& - /78

= - 7_

The values from equation (3.51) are now used in the 8 2 equation developed in

Section 2.3.A.5.3, i.e.,

a x,, - ÷ -z. ,,

So
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= o,( oooooo I,) I= - 0o7/G, 7S86 (3.52)

The vertical lines in equation (3.51) are drawn to set off the digits that are

carried only to reduce the accumulation of round-off error. This value, from
equation _.51) is entered in Table 1 in parenthesis and is used to calculate

X9 from the relation _Xn:×n_,-2×_ + y___ .

×_ = 7_s3_ _zs (3.53)

If it is desired to correct this value of Xq, the procedure would be to obtain

X9 from the equation (3.48) using equation (3.53) as the value of X9. The
differences _z _ and s_x, would then be determined by differencing. The

estimated differences are then used in equation (3.47) to predict @ value of

X 9 which may be compared with the value obtained in equation (3.53) to deter-
mlne if any significant change has been made.

2.3.4.6.6 Advantages and Disadvantages. One advantage of the _ 2 is its

relative speed in solving a second-order differential equation as compared to

methods which reduce the second-order differential equation to a system of

first-order equations and perform two single integrations. Further, it will
be more accurate than such methods because there will be truncation error for

eac__hhof the variables in the system of first-order equations. One disadvan-

tage is that, like other multi-step methods, a separate starting procedure is

required. The method is not as desirable as the Gauss-Jackson method, which
also directly integrates a second-order differential equation. (Gauss-Jackson

is discussed in the next section.

2.3.4.7 _2 (Gauss-Jackson) Method

2.3.4.7.1 Discussion. The _2 or Gauss-Jackson method is, like the 6 2

method from which it is derived, another method which directly integrates a

second-order differential equation. (_ is the inverse operation for S ). As

was the case with the _ 2 method, double integration by the _2 formula is

simpler and faster than two s_ngle integrations. The __ 2 method provides a
degree of smoothing to the 6 equations by effectively shifting the coeffi-

cients of the higher order differences so that errors in these quantities

have less effect on the value of the solution point. _ompare equation (2.47)

with equation (3.55)_. Thus, the _ 2 method converges better than the g _
method and for this reason is generally preferrable. The remark made for the

6 procedure that the solution for position should be made independently of
the solution for velocity (i.e., a single calculation for position by the _ 2

2
formula rather than repetive single integrations) is equally valid for the

method.

2.3.4.7.2 Derivation of Equations. In the derivation presented here, the _-
formula is obtained from the a 2 formula of Section 2.2.4.5.3 by considering

5 to be an operator whose inverse is Z . (The _ operator bears the same
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relation to the integral operator as the Soperator bears to the differential
operator.) Consider the operator _ transforms Xn according to the equation

Thus, if _ is the inverse of 5 , the following equation must hold

Substituting equation (3.5_ for SXn now gives

__Xn_ - IX _ =Xn-_ n

or

If the set of numbers under consideration begins with Xo, then it will be
necessary to arbitrarily define _ Xo. Such an arbitrary definition should
not seem strange in view of the relation between the Z operator and the inte-

gral operator which it is recalled that an arbitrary constant, dependent upon
initial conditions, is required for integration.

Now consider the a2 formula from Section 2.3./,.5.2

2C 2,,8_i = i£ y."+k2 _ y. -½_,o6 "<.__o_8o 8_#o"

Z89 8

-_ _ _",...)
36 28 8 oo

Applying the _ operator twice to this equation yields the _2 integration
formula

2. i . I 2 3/ _. 2S9 6 ,.

60_'80 36288

An equivalent backward-difference predictor formula, the " Z b2''formula, can
be similarly derived and is written below

ZZ+ i ,,a - I1_ _--_o tcZ- i

It is significant to note in both of these equations that the coefficients of
the various powers have been shifted, thereby permitting larger estimation
errors to occur without penalty in the ,,_2,, method as opposed to the ,,_2,,
method.

(J._?)

Since equation _.56) is effectively a double integration, there are two

arbitrarily constants to be evaluated. A special starting procedure is
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assumedto be available to generate sufficient points _o.that the2cqpstants
can be evaluated. An equation for these constants (_ yl and _ y2 ) is
obtained by rearranging equation (3•56)

_z 12 *2qo

31 8" " 289 •
60q80 y, + 6 "+.

3628800 _ "" (3..58)

,, = _ - --I . + __I (S_ ,, 31 ,_._ ,, + Z89 _ ,,
12Y" 6o so o y, 36zssoo 8 +...

With these initial conditions, a sum table can be constructed in the same
manner that a difference table is constructed. The sum table will have three

columns: a _z ._ column; a _'_ column; and a _ column. The h"_ column
can be filled in by the use of a suitable starting procedure and the first
two terms in the _2 column are calculated by equation (3.58). If the _a

operator is applied to equation (3.54) the result is

This equation allows the calculation of the first member in the _ column using

_zw. and ZzW_. The rest of the table is then completed by repetitive applica-
tion of equations (3.59) and (3.55).

",,3 ,,
z . _ /_ _

/'_ z I__ _,,
> ,,

Thus, for those problems in which the force field is conservative (i.e.,
the acceleration is a function only of the coordinates not the rates), the

complete ephemeris can be generated without determining the velocity. However,

while this capability is very useful in certain problems, it is not compatible

with most of the problems of common interest. Thus, it is necessary to develop

the first integral as well. This process is performed in exactly the same

manner as was outlined for the double integral. The result is:

(3.60)

Before continuing, it is noted that this equation provides a means of

evaluating the second "constant" of integration based on the initial condi-
tions uncontaminated directly by the noise in the integral at a point along

the trajectory as in equation (3.59). This feature is derived by solving

equation (3.60) for the averaged first sum at the epoch of the initial condi-
tion
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+ Icll

To yield

7__,j__- z 77o+ y___A<>

Therefore, it is possible to construct the sum table without differencing

two computed second sums.
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2.3.%.7.3 Truncation Error. As with the _ 2 method, a measure of the trun-

cation error may be obtained by comparing the resulting value for Xn+l

calculated from equation (3.59) with that calculated from equation (3.60).

Again, while the difference is not a pure function of truncation of the series,

it does serve as an effective means of estimating the error involved in the

mechanization of the solution process.

2.3.A.7._ Step Size Modification. The discussion on step size modification

made for the _ 2 procedure applies equally to the 12 method that dis-

cussion is found in section 2.2.4.6.A.

2.3._.7.5 Computational Procedure. The following discussion is reproduced,

with a few modifications, from Herrick's book on astrodynamics (Reference

2.2.5) by consent of the author. The equation for solving a second order

differential equation is

where h = _+I -Ti is the uniform interval of the argument.

be illustrated is the solution of the equation

The problem to

_(T)=-X(T) , z(o,) =o

The analytic solution is recognized to be

×_ _

Table 3.5 shows the E 2 integration table for the example above. It is noted

that the table omits the decimal place in the differences of x since the last

digit may be recognized as being in the 7th decimal place.

In the several columns of Table l, the last values above the dashed line

are known at the beginning of the integration step to be illustrated. These

z .... • - S_X'Z- J_ _ £ Z/l_ where
i=8, i+i----9. The first operation in the integration is the prediction of X_+<

xi+ I. This objective can be accomplished in two distinctly different modes.

The first and most accurate mode, in general, would be to step the function

and its first derivative using the predictor formula; then, the equations

of motion would be solved to yield the predicted acceleration. In contrast,

the second mode employs the summation of the last acceleration and the

differences along the trailing diagonal containing the last known accele-

ration (this process is equivalent to assuming that the last difference being

carried is invariant to a sufficient degree) to eliminate one of the required

functional evaluations. For the purpose of the sample problem, the simple

expansion technique is assumed completely adequate
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and

-- 7' 7,8x7o "_ # . • • ÷ 7, E'Z/_

*Note that the 5th difference is replaced by 0 in order to show that a large
error (+76) can be introduced into the estimation process in the _2

procedure without requirin_ a corrector cycle such as that made necessary by
a smaller error in the _ _ procedure.

By equation (3 61), using h = _i+l _ = 0.1

2

I I .)z,.÷, = £z( Z +/2-- z""l'" -2#0 

=0.0/ (* 78.398, 00[2

- 6,_,2 7

- ,9 +...)

= 00/(÷78.332,69 * )

" *0.783,3269

(The vertical line is drawn to set off digits that are carried only to

reduce the accumulation of rounding error). Then the value

i : - _Xf - - 0.782, ,321,,9k +i +I (for this sample)

is entered into Table 1 and summed and differenced to obtain the numbers in

the diagonal below the dashed line. These values are correct, and the cycle

is complete, as the reader may verify by comparing them with the analytic
solution.

2.3._.7.6 Advantages a_d Disadvantages. The main advantage of the _2

method, as with the 6 z method, is the speed with which second order differ-
ential equations involving only conservative forces, are handled. The _ _

method is, however, less subject to round off error problems than the 8 2

method because of the smaller coefficients for the higher order differences.

Thus. the [ 2 method generally accomplishes with a "predictor" alone what the

_ procedure (and other related procedures such as Adams-Bashforth) require

a "predictor" and "corrector" to accomplish. However, it is generally a good
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idea to provide a "corrector" for the _2 method, even though it isn't

always required, to assure consistency and provide a higher level of stability.
The method suffers from the usual multi-step starting problems (i.e. it is
not self starting).
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2.3.5 STARTING PROCEDURES

2.3.5.1 Startin_ by Taylor Series

2.3.5.1.1 Discussion. One of the most straightforward methods of finding

the matrix of starting values for those routines which require them is to

determine the coefficients of a Taylor expansion

(3.62)

_= ×--Xo

where the last term compensates for the error and ×_ _- _ -< Xo +

Different integer values of S give distinct values of y, and the series is

evaluated for as many integer values of S as are required for starting.

Generally, Yo : y (Xo) will be known, and S will range from I to N, or from
-N to + N.

The problem lies in finding the derivatives of Yo ; however, by re-
' _ the relationscalling that _ : _ -- ,

may be obtained and thus, it follows that

and so forth for higher derivatives.

2.3.5.2.2 Remarks. Since y(x) is not generally known, it is usually

difficult to obtain a reliable estimate of the truncation-error term given in

equation (3.62) even though it be known that the series itself is convergent for

the values of S under consideration. Further, in many cases, the equations

for finding higher order derivatives will either rapidly increase in com-

plexity or be undefinable. Thus, while Taylor series is the basis for most

starting procedures, it is seldom used in its simplest form.
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2.3.5.2 Startin_ by Modified Euler Method

2.3.5.2.1 Discussion. The first order differential equation may be inte-

grated

#

(3.63)

to give y as a function of x, y=F(x).

The graph of equation (3.6&) is a curve in the x-y plane which ms_v be defined

in an approximate sense by setting _x = x - xo , by = y(x_ - y(x o)

and writing the following approximate relations

d_

Then the values of y corresponding to

!

x2 =x l+ h, x3 =x 2+ h, ... are

f,+, :"lt,,* ),,"f
if h is small enough, proceeding in this manner allows the integral ofThus,

equation (3.63) to be tabulated as a set of corresponding values of x and y.

However, the method is generally either too slow for h small or too inaccurate

for a larger h to be of practical use. These considerations have led to a

modification of Euler's method.

Starting with the initial value, Yo, and approximate value for Yl is

computed from the relation

<,,... )

where the superscript, (i), indicates the first approximation.

imate value of y/ is substituted into the differential equation

an approximate value of d#/dx

This approx-

(3.63) to get

t/'_)<"= _'Jl

An improved value of _ y is then found by multiplying h by the mean of

the values of _ld×at the ends of the interval xo and x1 , or
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The second approximation for Yl is now

f

f (2)
This improved value o Yl is substituted into equation (3.63) to get a second

approximation for(_/a@,, or (d_/d_)_ z) : _ [ _ _ _z) _ . Likewise, the

third approximation for Yl is found to be

2

and this process is repeated until no change is produced in Yl for the

number of digits retained.

The computation for the next interval x1 to x2 = x1 _ h is similarly

carried out, by first finding an approximate value of A y and then applying

the averaging process until no improvement is made in Y2"

Although the first approximations to Y2' Y3' ..... could be found using

the first approximations to succeeding y's can be more accurately found from

the formula

as soon as two consecutive values of y are known. This fact may be readily

proven by subtracting two Taylor expansions (one for _h one for -h and

observing that the term involving the second derivative cancels. Thus, this

approximation is correct to the third order).

2.2.5.2.2 Remarks. The modified Euler method is slow and has limited accuracy.

However, it can be recommended for applications where simplicity is more

important than accuracy or for those cases where corrector cycles (employing

closed integration formula) will be applied to the results once the process

has converged to a satisfactory degree.

2.3.5.3 Starting by Milne's Formulas

2.3.5.3.1 Discussion. When higher derivatives of y cannot easily be found

but the first and second derivatives of y can be determined without difficulty,

the starting values can be found by Milne's formulas. The formulas will be

derived here for the case when five starting values of y are required.
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First, representing the function y' in the neighborhood of x = xo by a

fourth-order Taylor series yields

IV v
I , II II¢ _ I#,

(The fourth order terms will not be used in the derivation and will be carried

only to provide an error estimate). Now, adding (3.65) and (3.66) yield

_'*F-,:2yo + + +... (3.67)

Similarly subtracting (3.6&) from (3.65) yields

,v #J
(3.6_)

n_

Now solving (3.67) for Yo and (3.68) for yov,and substituting these results
into (3.65) and (3.66) provides

_'-=_ *z-_ / +'6_,' z .l+., ,r_ _ w'-

J[ s ] '" ""- II _ V

Similarly, Y2 and Y-2 are found to be

x,:R *3 L_'-_' - ",r"+

(3.69)

(3.70)

(3.71)

,u,-fo--g--IZ_'-,-9'o '_'o_''-
7

ioVy.,- (3.7_)

Milne uses additional formula in checking these values of ya and Y z"

Subtracting (3.70) from (3.69) yields

_-_-, : . ; "'_" +r,' -,,'o"

Since this formula holds for any interval of width 2h, a general formula may
be written

y,,,,:_.,+._- 9',__,+_,,;,',,,,..,-_ _ (3.73)
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It can be noted that the quantity(h/3)[__1_ ÷ _'n÷l ] is evidently
Simpson's Rule and is an approximation to the definite integral _ '__ _ d_ .

In the application of these formulas, the terms in y_ are omitted; and

hence, the formulas as used are accurate up to and including fourth differ-

ences. The formulas (3.69) - (3.73) are used in two iterations to obtain the

starting values. The first iteration obtains Yl and Y-1 and proceeds in four

steps.

! l

(a) Trial values of Yl and Y-1 are computed from Euler's method
(sect.)

= / _ tl

(b) These values are substituted into equations (3.69) and (3.70) to
get first approximations to Yl and Y-l"

(c) These approximate values, with the corresponding x l and X_l

are substituted into the given differential equation

(d)

and improved values for y_ and _-l are obtained.

The improved values for Yl and Y-1 are then substituted back

into equations (3.69) and (3.70) to get the improved values for

Yl and Y-l"

Steps (c) and (d) are repeated until no change is produced in Yl and Y-l"

At this point, the iteration is said to have converged and the values of y1
!

and Y-l' and the corresponding Yl and Y-1 , are accepted as final values.

The second iteration uses (3.71), (3.72), and (3.73) to compute values of

Y2 and Y-2; and the iteration proceed in three steps.

(a)

(b)

(c)

The three consecutive values y'_, y', and y@ of the

desired degree of accuracy and substituted znto (3.71) and (3.72)

to get approximate values of Y2 and Y-2"

These values together with x2 and x_2 are substituted

into differential equation to obtain approximate values

of y_ and Y_2 "

The approximate values of y_ and y'-2 are substituted into

(3.73) to get improved values of Y2 and Y-2"
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Steps (b) and (c) are repeated until no change occurs in Y2 and Y-2" At

this point, five values of y and y' have been obtained, and the starting

procedure is complete.

2.3.5.3.2 Remarks. The requirement that the derivatives y' and y'' exist

is less restrictive than the requirements for starting by Taylor series, and

more restrictive than the requirements for Euler's method or Runge-Kutta

starting. _lne's method is more complicated than the previous methods in

that two iterations are required; however, the additional complication can

be Justified by a higher accuracy potential.

2.3.5.& Starting bY Runge-Kutta

2.3.5.&.1 Discussion. The Runge-Kutta method of numerical integration is

discussed in section 2.2.3 of this monograph; a starting procedure using the

standard fourth order method, will be illustrated here.

For a first order equation, y' = f(x,y) , assuming that the functional

value Yi is known at the ith step, the next value Yi+l is obtained by the

formula

where

4 =@(_,.,_, t',.t _)

(3.7/+)

_,--,t/(_,. ÷,_,Z., _, )
It can be shown that (3.7A) will reduce to Simpson's one-third rule when-

ever f(x,y)is a function of x alone. Hence, having obtained three successive

equally spaced values Y_-l, Yi 'Yi+l' Simpson's rule may be used as a

corrector over the two zn_ervals to obtain a new estimate of Yiel

_,, =_. ,-y '_,,.z ,. f.÷, .

This has the same local truncation error as the Runge-Kutta method, and one

c_n use the difference Yi+l_-Yi+l as an error estimate. If the estimated

error is greater than that expected in the integration procedure, the step

size can be reduced.
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2.3.5.A. 2 Remarks. The main disadvantage of the Runge-Kutta method is the

necessity for four evaluations of the function per step. However, this draw-

back is more than offset by the simplicity, and potential accuracy of the

method. Thus, this procedure is well suited to the roll of starter. However,

the use of Runge-Kutta for starting predictor correction integration formula

requires one of several precautions to assure accuracy in the results com-

patible with those obtainable from the continuation routine since the order

of accuracy of those formulas which were derived was somewhat less than most

of the predictor-corrector formulas. The first and simplest alternative is

the integration of the desired function at one-half or one-fourth of the ex-

pected integration step size. Then if the integration step must be halved,

no additional starting values need be computed. The second alternative would

be to employ a corrector cycle to revise the tabulated arrays of position and

velocity. This mechanization could be accomplished using the differences as

provided by Runge-Kutta and a central difference formula such as 8 _ or

_ The last alternative is generally the most difficult and inefficient

(the other technique's generally required no additional mechanization logic).

This alternative is the inclusion of higher order terms in the Runge-Kutta

formula.
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3.0 RECOMMENDED PROCEDURES

This monograph considers the analytical techniques available for the

solution of the n-body problem. The methods available are discussed in two

sections. The first section (section 2.2) discusses the three analytical

formulations most commonly used in handling the equations of the n-body

problem. The second section (section 2.3) discusses numerical integration

and the specific methods that have been most successful in dealing with the

n-body problem. Recommendations in these two areas will be made independently.

The three most common mathematical formulations of the equations of

motion in current use are: Cowell's method, Encke's method, and the variation

of parameters. None of these methods is superior for all types of trajec-
tories; however, for most practical problems a choice can be made based on

the available information. If large pertabative accelerations which are

changing rapidly are being experienced as, for example, during boost or
re-entry, then small integration steps are required with the variation of

parameters method and Encke's method as well as with Cowell's method. In

this case, the accuracies of the three methods are comparable; however, since

the Cowell method requires less time per integration step than the other two

and since it avoids problems pertaining to the definition of the reference

motion, it is preferred. For phases of the flight where the force field is

nearly conservative and/or nearly central with respect to the body about

which the motion is occuring, advantage can be taken of the more sophisticated

approaches such as Encke's method or the method of variation of parameters.
The choice between these two methods is seldom clear cut and is more often

dictated by the analysts engrained preferences than by any demonstrable

superiority. However, in the past, Encke's method has been used mainly for

those lunar or interplanetary orbits where the number of reference trajectory

rectifications is small (generally no thrust capability is considered). In

contrast, the variation of parameters method has been used where small per-

turbations acting throughout the orbit, e.g. microthrust transfer produce
relatively large changes in the traJectoryrelative to a conic reference.

Of the available numerical integration techniques, multi-step predictor-

corrector methods have been proven to be significantly more efficient (i.e.,
faster for the same accuracy) than any other method. Two of the methods

discussbd, Lanczos and Nordsieck can be classified as new and promising.

Thus, any contemplated use of these methods should be tempered by this

observation. This comment should not be interpreted as disparagement since

it is felt that more experience is needed with these methods; rather, their

use is encouraged whenever circumstances allow an exploratory approach.

However, the Gauss-Jackson method of integration is recommended for general

application. This recommendation is substantiated by a long history of use

in astronomy where its accuracy has been demonstrated and by the fact that

the first and second sums carried in the solution afford much better pre-
dictions than possible with the other approaches considered. (Thus, fewer

predictor-corrector cycles are generally required for a given accuracy). As
a close alternate, the Adams-Moulton predictor-corrector method is recommended.

Both of these methods have been in use for a considerable length of time and

have emerged to a position of eminence in post digital computer re-evaluation
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of integration techniques. It should be pointed out that while the Gauss-

Jackson method has historically been used for integrating conservative forces

there is nothing in the formulation which precludes its use with non-con-

servative forces provided the first integral is evaluated.

Even though the multi-step methods discussed above are more efficient

than single-step methods, there is one outstanding attribute of the single-

step Runge-Kutta method which makes its use desirable in some cases. This

attribute is its stability, i.e., its tenacity in following the solution

curve. Therefore, when the nature of the solution is unknown and a sta-

bility problem is suspected (e.g., a boost trajectory) the Runge-Kutta method

should be used.

In section 2.2.5 several methods of starting multi-step methods were

discussed. Of these methods, the most versatile as well as the simplest is

Runge-Kutta. So straight forward, in fact, is Runge-Kutta that it is

recommended without major reservation as a starter for the multi-step methods.

In general, however, the tabular array of functional values generated by the

Runge-Kutta method should be differentially corrected before initiating a

predictor-corrector process to assure comparable accuracies in the two phases

of the process. This corrector process can be accomplished by employing the

corrector equations directly; thus, no additional logic is required.
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