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1.0 STATEMENT OF THE PROBLEM

This monograph considers the n-body problem, its application to the prob-
lem of determining the motion of a spacecraft, and the technique available for
its solution.

The formulation begins with the classic problem of n-bodies. Equations
of motion are written for n point masses (with spherically symmetric force
fields) interacting only through their mutual gravitational attractions. In an
inertial reference frame, let m; be the point masses and fi designate their
position vectors, Then

= 2 (r; -F) .
mr=-%mL m,-’.‘_ip y =l (0.1)
Jte T oh

where k< = the universal gravitational constant.

It can be easily shown (Section 2.0) that ten constants (or integrals) exist for
these equations. Six of these constants show that the center of mass of the
system (barycenter) moves rectilinearly with constant speed. Three more state
that the angular momentum of the system is constant; and the tenth states that
the sum of the kinetic and potential energy is constant. Considerable inves-
tigation has been directed toward the discovery of other constants of motion,
To date, however, no other constants have been found, In fact, one reference,
Baker, (Reference 1.1) states that Brun and Poincare have proved that no other
algebraic integrals exist,

When considering the motion of a spacecraft in the light of the n-body
problem, therefore, simplifying assumptions are made:

1. The mass of the spacecraft is negligible compared to the mass of the
other bedies; and

2. the motions of the other n-1 bodies are known to a degree greater than
that required of the motions for the nth,

Due to numerous perturbations (Reference 1.2), the motion of the bodies in the
solar system do not follow a path that can be represented precisely by an anal-
ytic formula, However, accurate predictions of future positions and velocities
can be estimated from observations of their motion and from a knowledge of the
nature of the perturbations., The reduction of observed data and the generation
of an accurate estimate of a space trajectory was discussed in the previous
monograph (Reference 1.3). (See also References 1.4 and 1.5).

Under these two assumptions, techniques for handling the equations and for

integrating the equations numerically are discussed. This step is required
since the complexity of the equations precludes an analytic solution and is

1



acceptable since a tabular array of positions and velocities can be substituted
for a functional representation.

The monograph divides these discussions, referred to generally as special
perturbations, into two basic sections. The first section deals with the for-
mulation of the problem to effect the most accurate and/or the most efficient
solution. The second section treats the problem of generating the best tabu-
lar array representing the solution,

The three currently prevalent techniques for formulating the equations of
motion for numerical or approximate analytic solution are Cowell's method,
Fncke's method, and the variation of parameters. Cowell's method is the
straightforward numerical integration of equation (0.1l) to obtain position
and velocity data. This method will, therefore, not be discussed at this time.
Encke's method is based on the observation that for the case where the perturb-
ing forces are small, the solution closely approximates conic motion. This
observation allows the derivation from the conic reference to be integrated
independent of predominant motion in the interest of accuracy and efficiency.
The position and velocity in the conic can be found analytically and added to
the perturbed position and velocity to obtain the true position and velocity.
The third method, variation of parameters, is based on the assumption that
elliptic orbital elements can be found and updated at each integration step
so that the osculating (instantaneous) elements describe the position and vel-
ocity vectors of the true solution. These methods are well documented in the
open literature (Reference 1.4), and are thus discussed in a straightforward
expository manner. The strengths and weaknesses of the methods as well as the
types of trajectories for which each method is suited will be discussed.

Having presented the formulation of the problem, the monograph will then
cover specific numerical integration techniques that can be applied to the
equations. The sectlon on numerical integration is divided into four topics:

1. Quadrature

2. The Runge-Kutta family

3, Predictor-corrector methods

L. Starting procedures for predictor-corrector methods.

The first section treats quadrature or the numerical integration of a definite
integral; an equivalent definition is that quadrature is the numerical inte-
gration of a first-order ordinary differential equation whose right-hand side
is a function of the independent variable alone. The well-known Newton-Cotes
and Caussian formulas (Reference 1.,7) are developed in this sectlon. These
discussions are followed with the discussion of the Runge-Kutta family of inte-
gration logics. This family differs from the above in that the right-hand side
of the differential equation can be a function of both the dependent and inde-
pendent variable., The third section discusses predictor-corrector methods.
Predictor-corrector methods are generally multi-step methods of the form

fﬁﬂ =aofo+"~"' anyn"jb?o, +bﬂ :yl;f'/;f/ f/,n-l
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- where the formula is "open" if b = O and '"closed" otherwise., In the pre-
dictor-corrector technique one fgr%ula is used to predict Y+1 and another
used to correct it. The corrector formula yields a significantly higher accur-
acy than the predictor formula alone, (It is noted that open formulas are used
as predictors and closed formulas are used as correctors.,) The methods dis-
cussed range from Adam's first predictor-corrector methods (Reference 1.8) to
later and more sophisticated methods such as Nordsieck (Reference 1.9) and
Lanczos (Reference 1.10). The discussions of numerical integration concludes
with a presentation of starting procedures. This presentation is essential to
the discussions of this monograph since predictor-corrector methods are gener-
ally not self-starting. Important integration formulas from each family are
discussed in detail; the equations are derived; the methods of implementing
the equations, and the accuracy that can be expected are covered.

Finally, the numerical integration techniques are evaluated and compared,
and specific methods are recommended,



2.0 STATE OF THE ART

2.1 THE N-BODY PROBLEM

The n-~body problem considers the motion of n bodies in inertial space
interacting through their mutual gravitational attractions. Historically, in
Astronomy, one of the bodies, (e.g., a comet) has been of negligible mass, and
the motion of the other n-l1 bodies has been known to a good degree. Thus, the
motion of the only one of the n-bodies need be determined. Modern applications
involving the motion of spacecraft are simple extensions of this material dif-
fering primarily in the nature of the forces (need not be conservative)., Thus,
in current usage, the n-body problem has come to mean the problem of determin-
ing the motion of a spacecraft under the influence of gravitational forces
(including oblateness), atmospheric forces, thrust, and solar radiation pres-
sure,

2.1.1 FORCES CONSIDERED

The forces considered in the n-body problem can be many and varied and
are not necessarily restricted to gravitational attractions. The following
paragraphs will present discussions of some of the more important accelerations.
The resultant acceleration is then defined as:

i- LA
where each ;i is the acceleration per unit mass acting on the spacecraft. The
form of some of the more common of these accelerations will be discussed in

the following paragraphs.

2.1.1.1 Gravitational Accelerations

Generally, the origin of the reference system will be fixed at the center
of the primary attracting body. The acceleration of the spacecraft due to the
primary body is

3 3
= A

where « = gravitational constant of primary body
7 = position of the spacecraft
a2 = 17l
If the attractions due to other bodies are to be considered, let7, and Alg

represent the position vector and the gravitational constant of the perturbing
body. Then, its effect on the spacecraft can be written



] (Z - A)
= ==
8 )/"_/Lal
Other perturbing bodies are treated similarly.

Often, it is desirable to include the effect of a non-spherical Earth (or
other body); the gravitational potential is generally written as an expansion

in Legendre polynomials (see Reference 2.,8). Vinti's potential function for
the Earth is:

2:_,&{‘/}(5)25(/_55)

d 7 2 *
RY 5 z*
s‘fz(;; 2;(’3 —;7;;3 )
Y724 z «
() 5912 563 %
n_f’(f«)ff é- (—6 93 ;/*630/;%2 -/05) o }
FE
P4 R 33 Z
S|4l (55
3 2z v
SEE Y £
,@(5)45(—/5+70§—63 ;)
6
“/;(f)ff—é(/f—s'/f;wvf ;—693 =)

where the Ji's are harmonic coefficients,

2.1.1.2 Atmospheric Lift and Drag Forces

The expressions for 1lift and drag are taken from References 2,0 and 2.2.
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where the vehicle velocity relative to a rotating atmosphere with cross winds
is given by

I/z=.i+/f2e+i(coootm¢'m,d + amv X ae B)
U),:/'—zﬂe 7(Moem¢’m/—cooo<m,d)
YV, = Z_i esod ‘coo B

where A = constant fitted to the Mach number variation of the drag coeffi-
cient with a mean sonic speed = 1

Ag = initial projected frontal area of the vehicle
B

= constant fitted to Mach number variation of the drag coefficient
with a mean sonic speed

= CS(CC:-/)

CDO = reference (hypersonic continuum) value of the drag coefficient
(0.92 for a sphere, 1.5 for a typical entry capsule)

CL = 1ift coefficient

Cg = local sonic speed in terms of surface circular satellite speed
2 _ 2
D5 = Cpy Ao o Voo /%8d"
_ 2
£(x) = Mo 02 T 7 (@)
gy = acceleration of gravity at unit distance (surface of Earth)
H = altitude above an oblate Earth =r -1

R
+/m’- ¢’+é—(ﬁ—7’/ anl 28+, ..

where the flattening f = 2;%{3 (units of Earth radii)
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mass of space vehicle

unit vector in the orbit plane perpendicular to the line of
apsides

speed of the cross wind measured in a system rotating with
Earth's angular rate (units of surface circular satellite
speed VCO)

radius from the geocenter to the vehicle

speed of the vehicle with respect to an inertial frame,
directed along Q

surface speed for circular orbit

equatorial coordinates in units of equatorial Earth radii
right ascension of the vehicle (radians)

azimuth of the direction from which the wind is coming

Cp (¥/C)/Cp ., the drag coefficient variation with Mach
number 0

Cp (e )/Cp ., the drag coefficient variation in the transi-
tional regine

constant relating to the rotational rate of the Earth,
0.058834470

mo/m
bank angle

atmospheric density, kg/m3

"sea level' atmospheric density, 1.225 kg/m3

L

A

geocentric latitude, radians



2.1.1.3 Solar Radiation Pressure

The solar radiation pressure may become significant on large area to mass
vehicles or on missions with long flight times.

The magnitude of acceleration due to solar pressure acting on some sur-
fact of the satellite is given (Reference 1.2) as

T 1. P 2 A
]As‘_ _C-(HR) cos o&;

where o = angle of incidence with respect to surface normal
C = speed of light
R = reflection coefficient (=1 for specular reflection and = 0 for

complete absorption)

P = power of the incident light
A = area of surface
m = mass of spacecraft

2.1.1.4 Thrust

The thrusting acceleration is handled very simply

A=
A= 5077y, 72

where Tx’ TV’ TZ are the x, y, and z components of the thrust
m = mass of the spacecraft.



2.1.1.5 Electromagnetic Forces

As a satellite moves through a partly ionized medium, the incident flux
of electrons on the satellite surface is larger than the ion flux, so that the
satellite acquires a negative potential, On the day-side of the Earth, this
effect is opposed by the photoejection of electrons. Jastrow (Reference 2.3)
estimates that the satellite potential may approach -60 volts on the day-side
and will not be greater than -10 volts on the night-side.

In addition to the potential acquired by ionic collision, the motion of a
conducting satellite through the magnetic field of the Earth causes the satel-
lite to acquire a potential gradient which is proportional to the strength of
the magnetic field and the velocity of the satellite, The interaction of the
electric currents thus induced in the satellite skin with the magnetic field
causes a magnetic drag to act upon the satellite; this drag is proportional to
the cube of the satellite dimensions.

If these forces are found not to be negligible, they can be included direct-
ly by the use of Maxwell's equations or indirectly by use of an atmospheric
model which takes the effects into account,

2,1.1.6 Relativistic Effects

2
Perturbations caused by relativity are of the order Yo o ff%z )
where ¢ is the speed of light. Since o is a very small quéitity and any
measurable deviations occur only after a long period of time, relativistic
effects can usually be ignored in the case of Earth satellites. A modifica-
tion of Newton's law, as a consequence of the theory of relativity,can be found
in Danby (Reference 2.4).

2.1.2 BREAKDOWN OF ANALYTIC APPROACH

. . B .
Consider a system of n point masses, m, at  , where (= ,,2,... ,»n
and the i{ are measured in an inertial reference frame. Define Qi to be

R
Then the equation of motion of m; is

& ry—r
”m. ., = -.A'zn7-25. Ve ¢ <75 )
4 ‘% “« &~ T 3
o F4 /%/
where k2 = universal gravitational constant. This is the classic n-body prob-
lem; only gravitational forces are considered and, therefore, the force field
is conservative., There exists ten constants or integrals of the above system
of equations as will be shown below. Suppose that all of the equations (1.1)
above are added. Then the right-hand sides vanish, and the result is a sum

(1.1)



over i
Ja.
'me’o ,; =0
Pa-%)
which can be immediately integrated to give
»
Z/—m"/b‘- = A¢ # 8

- —_
where A and B are constant wvectors,

This result shows that the center of mass of the system moves with respect to
the inertial system of reference in a straight line with constant speed. The
origin can, therefore, be set at the center of mass. The constant vectors A
and B provide six constraints of motion,

Next, cross each of the vectors ¥, into (1.,1) and add the n resulting
equations., Again, the terms on the right-hand side cancel, i,e.,

il

n L
_Z mg X r, o
VAY4
Thus, upon integration
n . .
VAR
. =1

where h is a constant vector;.L provides three more constants of motion. The
tenth constant comes from the total energy of the system.

h

t)

Define U, the force function, by

” C
U= A;Z‘Z: ZT .:Zf_ZQL

i Ny
Then ”
AU P m,
ax“, a yA. o{,:/ /2;/.
n
K- X/
- —kzmA.Z m/(____J_)
’("—'/ rlJ’
“
Therefore, equation (1.1) can be written
m =l (1.2)
where
A D A9 AN,
V.= «— + /5t A
“ 2, d 2y 22,



whereg, 3, k are unit vectors in the directions of the X, ¥, and z coordinate
axes, -U is the total potential energy of the system where the zero level of
potential energy is attained when all of the particles are infinitely separated,

Now, if each .ﬁ is dotted into equation (1.2) and all of the n equations
are added

'M3.

x5

£

1

a n - o
mren =) i GW. I
/ =/

Integration gives
N .
/ 2P _ Zant
L . cornsian
> zz /7&[5#2 = w !
L=/

The left-hand term is the kinetic energy T. The equation can be written

T =U+C, where C is the tenth constant of the problem. Bruns and Poincare
proved that there exist no other algebraic integrals of the n-body problem. A
general solution, thus exists only for the two-body proboem. Investigations
continue, however, to determine if new functions can be found which will yield
additional constants of the motion; no such constants or functions have as yet
been found.

11



2.2 SPECIAL PERTURBATION METHODS

2.,2.,1 COWELL'S METHOD
2.2.1,1 Discussion

Perhaps the simplest technique for the solution of n-body motion is the
direct-numerical integration of the equations of motion; this method is
referred to as Cowell's method.

Given the initial position and velocity vectors at a specified time, the
system of three second-order equations can be integrated to give the position
and velocity vectors at any subsequent time. In this form, the equations are
very simple; and the integration time per step is nominal.

The Gauss-Jackson, or 2;2, method of numerical integration has been fre-
quently referred to in the literature as "Cowell's Method"; however, in this
monograph, the ambiguity will be avoided, and Cowell's method will always
refer to a means of formulating the equations of motion,

2.2,1.2 Derivation of Equations

There is no derivation. The equations are simply an expression of Newton's
second law,

n

.._,
l—;; -/{:-'

~.

2.2,1.3 Method

lhe extreme simplicity of the equations is one of the strengths of Cowell's
method., All that is required is the computation of the accelerations of the
problem in some appropriate coordinate system and the recourse to numerical
integration for stepping the function. The accelerations are integrated once
to obtain velocities. Then the position vector can be obtained either by inte-
grating the velocities or by integrating the accelerations using a second-
order integration technique.

2.2.1.4 Advantages and Disadvantages

Because the total accelerations are being integrated, the attractions
change rapidly with time so that small-integration steps are required to main-
tain accuracy. In addition, care must be exercised in choice of the number of
significant figures maintained, or the effect of smaller accelerations will be
lost with the resultant loss in accuracy in the solution.

Because of loss of numerical significance problems during integration and

12



because of the fact that Encke's method and the variation of parameters method
are so much superior for those problems in which the perturbing forces are

~ small, Cowell's method has been largely relagated to applications where the
non-two-body accelerations change rapidly with time (e.g., during boost, or
reentry).

2.2.2 ENCKE'S METHOD
2.,2.,2,1 Discussion

Encke's method is based on the observation that many n-body motions differ
only slightly from two-body motion (which can be solved in closed-form). Thus,
Encke, a German astronomer, proposed that the difference in the total acceler—
ation and that of an approximately selected reference be integrated. The
position and velocity in the reference conic -are then obtained analytically
and added to the integrated position and velocity vectors to get the total
position and velocity vectors,

It should be carefully noted that absolutely nothing in the formulation
requires the reference motion to be conic. Historically, a conic reference
motion has usually been selected; however, any other convenient motion could
be choses, (That is, secular and periodic motions resulting from the Earth's
oblateness can be included in the reference to magnify the significance of a
special set of perturbing forces.,)

In the derivation presented in the following section, the perturbing
force is expanded in an infinite series about the reference motion., If the
force is expressed in this way (it need not be) then rectification of the ref-
erence motion (i.e., a new reference motion is calculated which is much closer
to the actual motion and generally coincides with the true position and veloc-
ity at the instant of rectification) is performed whenever the actual motion
deviates significantly from the reference motion so that accuracy in the eval-
uation of the force is retained. Such rectification would not be necessary
if the force were expressed in a closed form. The series expansion, however,
allows calculation of the force to a larger number of places when working with
a fixed-word length computational procedure.

2.2,2,2 Derivation of Equations

In this section, the equations will be discussed for the case where the
reference motiorn is conic,

The validity of the Encke approach follows from the linearity property

of the integral. If u, v, ans w are continuous function of t on the interval
a1t £b; and if w(#) + vit) = witd) for ast ¢t £b, then

b b
/640(5)0’6 :/a(t)dt + [ vt
4 4 4
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Thus, the accelerations experienced by the vehicle can be integrated in two
separate parts and added to give the total position and velocity.

The subscript E will be used to denote the reference, or Encke, motion;
thus, (x, y, 2) denote the actual position of the vehicle; and (£,5 Y., 2. )
denote the position on the reference orbit. Let all of the non-two-body accel-
erations be lumped in the expression [ %; . Then, the equations of motion
in an inertial system can be written

L. —-/[(Z .
- . X 4,2
£ r3 g % Z/* I

where
r= Xt Ayere®

M= gravitational constant of central body
Now, using the linearity property of the integral and noting that the first

term in the acceleration is the equation of motion in the conic reference
orbit

- =~ M Xe
e = — 5
£E

then, the deviations from the reference orbit are

E = X-Xg
7= Y- Ye
g - -z

The accelerations actually integrates are thus

§ - ﬁb g
s ou(Xe X
-/u(:ag — pr ) + 2 X,

The bracketed acceleration is generally called the Encke acceleration,
and the quantities within the bracket are very nearly equal; therefore, some
rearranging is desirable to avoid loss of significance.

€2 - (7)) RN
NI Rt

Attention is now concentrated on the term

()
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The term (fo can be expanded as
2
(T) = Glou s einpr gy
= ;I‘—,‘,[r:+2§x5+§2+2/g}ﬁ, rf2+,2j'zs 1]’2]
£
x e % 5 4 . L
~/+;2[(x‘*z-)§+(}’; 7z, 5 )]

If the second term is now defined to be 24 , i.e.,

g2 - [<%£*§/ SRS AL SICAR MY

. . AF -&F
:?[G-Ar'f 2
&

then

Therefore,

e 3~ -3/2

F) ez
Further, define

fp = i- (1r2g)

and expand fq in a binomial series

4

k-1 (2 k #1)/
fg = 2 (~1) ' -2 Y
V4 Py Zk(/(/)af J Z<f <2
and the Encke equation can be written
7 S - 77 79/ 77///_3 ?///.3:
“’f“i"z/ e e el
23 3.2*

_3 (X%,‘ §>* 42 K:. k—v-Y,z

70
When the deviations from the reference orbit are small, the series expression
provides greater accuracy, In addition, a criterion for rectification can be

developed from the series expression., Normally, a certain number of terms,
say six, will be carried in the Encke series. The next term, the seventh,
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could be monitored to determine when it becomes large enough to affect the
final digit of the word, that is, when it becomes significant. When this
occurs, the reference orbit should be rectified.

2.2.2,3 Method

The procedure followed in the computation of position and velocity his-
tories via Encke's method is illustrated in the accompanying flow chart,

2.2.2.1, Advantages and Disadvantages

Since the deviations from the reference orbit are small, it is evident
that integrating steps which are larger than those suitable for Cowell's
method can be taken., In addition, greater accuracy should be possible when
working with a fixed-word length because round-off and truncation errors pro-
duce small errors in the deviations; these errors are then "lost" when the
deviations are added to the reference motion. Although the round-off error
is less, Encke's method, as generally employed, involves expressions that are
much more complicated and ofter less symmetric than Cowell's simple formulas,
In addition, both the necessity of solving the two-body formulas at every
step and the possible need for rectification introduces additional sources of
error.,

2.2.3 VARIATION OF PARAMETERS
2.2.3.1 Discussion

In a two-body problem, six orbital elements are sufficient to determine
the subsequent motion. If non-two-body forces are acting, then an analytic
expression for the motion cannot be found and the concept of "orbital elements"
may have little meaning. It is possible, however, to use the analytic two-body
equations to describe the motion if the existance of time-varying orbital
elements is admitted. In this case, the orbital elements at a particular time
describe a motion which would take place if the perturbing forces were removed
at that particular instant. This instantaneous two-body orbit is tangent to
the actual motion at all times and is often called the osculating orbit. The
variation of parameters method expresses the time rate of change of the orbital
elements as functions of the perturbing force, These derivatives are then
integrated numerically to solve for the actual motion, Note the similarity to
Encke's method in that only the perturbing forces are integrated. In the Encke
method, however, there is only one reference orbit with particular orbital
elements while in the variation of parameters there is a continuous set of
elements for the reference motion.

In Section 2.2.3.3.1 the equations for the variations of the six parameters
a, e, i,02, wand M, are developed. These six elements are not the only ones
which may be used for the variation of parameters technique. Indeed, the com-
ponents of the initial position and velocity vectors can be employed in a
manner similar to that presented in a previous monograph (Reference 2.8). In
fact, any six independent constants of motion can be used. Furthermore, the
motion need not be referenced to conic motion. An inspection of the final
equations in Section 2.2.3.3.1 will reveal that for the parameters above the
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Figure 2.1 Computational Logiec for Encke'!s Method
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equations becomes singular for parabolic orbits. This fact illustrates a
basic difficulty in the variation of parameters technique. This difficulty
can be overcome by switching to a more suitable set of variables whenever one
set starts to fail but only at the expense of more complex programming. The
different sets of parameters used by various people have been chosen to avoid
singularities of a particular type. Variables that are free of nearly all
singularities have been proposed by Garafalo (Reference 2.5) and Newton (Ref-
erence 2.6). These methods break down only when the angular momentum vanishes.
Wong (Reference 2.7) proposes a method which is singular only when the magni-
tude of the position vector goes to zero.

2.2.3.2 Derivation of Eguations

The following derivation is taken from Reference 2.1.

For the variation-of-parameters method any six independent parameters
could be chosen. In this derivation the parameters, a, e, i, 1, w, and M,
will be used.

a = semi-major axis

e = orbital eccentricity

i = orbital inclination

Q = right ascension of the ascending mode
w = argument of periapse

M, = mean anomaly of epoch

If no force other than a central force were acting on a satellite, its orbit
would be a conic section and would be completely described by this act of six
quantities; further, these quantities would be constants, If a non-central
force acts on the satellite, then the six orbital elements will not be con-
stant but will vary with time, The set of differential equations which govern
the time history of the elements is equivalent to the Newton or lagrange set,

In order to derive the equations, a coordinate system in which the non-
two-body forces are expressed and must be chosen. The coordinate system which
will be used will have unit vectors /g 4 /%5 , and #, with the center of the
system at the active focus of the instantaneous two-body orbit. The vector R
is directed away from the focus along the instantaneous radius vector, S 1is
normal to R in the orbit plane in the direction of increasing true anomaly
(i.e.,9-3>0), and W is normal to the orbit plane (along the angular-momentum
vector) completing the right-handed set. The perturbing force vector can now
be expressed in this system as:

F =m(Rne * Sns + Wi,)
If V is now used to denote the instantaneous velocity vector

18



P . . d/‘__ -
V=rn,+tred, = B(d—on,.-f/'ns)

If an expression for @ is obtained as a function of the radius from the con-
servation of the angular momentum

h = rée =hawp = NAZY7-er (2.1)
. 6 = nady s (2.2)

where r2
n = /;—Z—‘: (2.3)

and if an expression for dr/dO is obtained by differentiating the equation of
& conic in polar form
_ P
[ +e c2 &
or P Senr B _ raend

de " (i1recaeyt sk econo )
the expression for velocity becomes [from (2,2) and (2.4)/

2y —eZ /s r & -
V:na//e( g 4 n,,ffns)
r2 /+ 2B -

The time rate of change of energy per unit mass (€ )_is found from the
dot product of the perturbing force per unit mass vector F and v.

de  F
—_— = — Y

(2.4)

But, a second expression fer energy per unit mass is obtained by the addition
of the kinetic energy and potential energy as
-
6 = —_— (2'6)
2a
Thus, differentiation of (2.5) and substituting (2.6) gives an expression for
the time rate of change of the semi-major axis, This equation is the first in
the set describing the variation of the "constants" of integration (osculating
elements):
da 2e dn P 2“’1‘5‘\5

(2.7)

R +
dt niy=ez nr

To derive the changes in the other orbital elements, it is necessary to
know the rate at which the angular momentum vector R changes, The rate of
change of h is known to be equal to the summation of the external moments act—
ing on the body in orbit, i.e.,
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oh _ _L(F XF)
dt m
= rng X(RA, +SA tWAY) (2.8)
:/A.Sﬁw‘f‘u/ﬁs )
But the time derivative of a vector may be expressed as
dh _ c//;/.?. , /7do(5
dE di W gt 3 | (2.9)

where d & is the angle through which the angular momentum vector is rotated
in time dt. Comparing (2.8) and (2.9) it is seen that

b —rw . d4H
= 7S e Th oy

Now, the eccentricity of the orbit may be expressed in terms a and h
through equations (2.1) and (2.3) as

(2.10)

s o\ /.
e=(1-T—)"=(1-Ta)?
MUA

Thus, differentiation yields the following
ade -hA 2 dh A da

a¢é :IZAucze c/t a dt

- Vi-e2 da
= (2 —_ nafr-ez ) (2.11)
2rm‘e ac
Upon substituting equa’c.lons (2.7) and (2.10) for da/dt and dh/dt, equation
(2.11) takes the final form

i/f _ /- ez Mak p f/-e* [az(/- e?) B ,,] S (2.12)
Jt na nate r

The motion of the node is the same as the motion of the projection of A
on the equatorial plane (See Figure 2.3.)
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Let the subscript p denote the projection of any vector on the equatorial

plane. Then it can be seen that

hp = protection of h on the equatorial plane

%%%P= projection of dh/dt on the equatorial plane
:h_P. Cl-h_ = d_}_\_. 1 i h
Lkp)x(dt> component of ot >P which is normal to hp

By referring to Figure (2.3), it can be seen that
E -
/.f x(‘.fi’) /
})p a't P

at Ahp
or using equations (2,9) and (2.11)

- hda =
da ’hp “(ae nS)P'

dt h2

g

But

—~ . 0 . 0O
hy = h st (£ 4cn Q2 - o2 Q)

(2.13)

where 1 and 3 are unit vectors along the X and Y axes, respectively, and

- A . .
(hc‘{-/f‘nsjl,: ~rw[¢(-m¢wu; G —ain Pon )

+JA(~M¢>MQ reva Pz mn.)]

Thus, on performing the cross product, equation (2.13) becomes

dO  rw s
dt —maz’/_ez/d—\'/l—fc

The change in orbital inclination is related to the change in the node.

This fact can be seen by referring to Figure (2.4) in which
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Figure 2.4, Variation of Node

two positions of the node, €1, and 2, , are shown with
4an0=0,-0,
and
A‘: = "-:/—/(‘.0
But these angles are related by spherical trigonometry as
AUV D T HAL, R i, e,
s <, . ] .
= ‘*[m%m%(/—man)+m¢oMAnJ
S P,

Differentiation of this equation and investigation of the limit as a.c — 0
yields the following equation

o< e /L
= ez
a¥¢ S P Jt
Therefore,
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o e ) naz/f/-e?

The change in the argument of perigee,w , arises from two sources. One
is the motion of perigee caused by the forces in the orbital plane tending to
rotate the ellipse in its plane. The other change occurs because W is
measured from the moving node (Figure 2.4). To evaluate the latter changes,
assume that the in-plane perturbing forces are zero. Then the change in wv
equals the change in @#. According to the relations in a spherical triangle,

(120 = SEAQL wad, Faen A 4, cor <,

Differentiating this expression and taking the limit as af\-> 0 now yields

oé (?Yau) . d<L -“f‘4k$a¢$ ot &
— = T -gvae = w
ogE W ot Nnattr-et

dE

where the subscript w means that this is the change in the argument of periapse
contributed by the nodal motion which is caused by the component of the per-
turbing acceleration normal to the orbit plane.

The change in the argument of periapse caused by the in-plane components,
R and S, is denoted by (dw/dt) R, S , The effect of these in-plane forces
is to change the instantaneous velocity vector which must, at every instant,
remain tangent to the instantaneous osculating ellipse. This ellipse will,
therefore, have a changing perigee position. The resulting rate of change of
the argument of perigee will be

(cfu/ a8

-

Here de/dt, the rate of change of the true anomaly caused by the perturbing
force, must not be confused with & which is the rate of change of © in an
upper-turbed Kepler orbit. To evaluate de/dt, refer to Figure 2.3. After the
force m (RA, +sAy) has been applied for the time dt; the velocity vector

is changed from ¥V to V + dV, th> true anomaly from € to & + d®, and the angle,
¥ , between ng abd vg is changed from ¥y to y+d . The expression from the
angular momentum

h=rvead
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Since h = r?0 and v = V2 s c2é2 , it follows that

/ cr 2 ‘.l/
= — — FA
Loz / ? r*(da )

Computing dr/d6 from equation (2,) yields

€ ter P

w2 &

Wrex: tlecor &
and

eM@

4 “Viretrze con B
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Differentiating equation (2.15) with respect to time and using equation (2.14),
it is found that

(0'_(,0) ) [ /+e? y‘Zeu),—zﬁ( 2en B de I J
Rs

ade ele+t coaB) \/[+e%r2e orb c/—t —d_é

Now, if N is defined to be the component of the force normal to V, then

Ndt

dr= =z
But

V=Rewdy ~S s
and

- h ifrter+2e wad

T /F e o

Therefore,

{/\’(/r ecwsp)-(¢€ %9)\5]} (2.16)

at Y h(l/rerslecns)

Equation (2.16) along with equation (2,12) for de/dt, yields

(dW) [7-e*
R,S

ﬂ_{r(ﬁc 02 8)

-— — — . ————-———/
dt " nae [ (wza),?fme(/ fzfcwﬁ)s]

The total rate of change of the argument of perigee is

dw _ (duJ) +( dw
dé dt w dt /RS
The final element, mean anomaly at epoch, defines the position of the

satellite in the osculating orbit at any time also has a time rate. This
relationship is obtained directly from Kepler's equation

My = £ - S E ~-né

and can be found by using the equations already obtained for de/dt and de/dt,
with the relationship between E and © given by

cor £ - &
wae = ———————
/ - & wrf
_ J7-% o F
404.9 =
/] — & ter f

The result is
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aMy ~1[2r I-e%io18 /-e? r 7
~_D:_{__“)R_( 1/# ](41#'\9)5 ~£Q/—
ot Nal q e nae alrre®) 't
The complete set of equations is summarized below,
da 2e 4tr® Za V- et
TSR 2
dt nrfr-ec
ge V/-e¥ 4eno R //-ez'[cdc /-e?) ]
= r - rl3S
ot na nase r
an.  rawy ,
dt na/li-e? Aen i
di _  read W
at nax*f-ez (2.17)
d L ) /-€ KR V) -e? / .
w_ r ¢M4W_/ Z Loz S, 4 S
dt nayr-e* Na € nae /+ectord
dMo /1l 2er y-e2 (/-e2%) du

r .
= m—_—f— - w19R‘ (/" >19LL9 "t
dat na\ a e ) nae alr-e*) > dt
2.2.3.3 Method

The sequence of operations to be performed to use the variation of parame-
ters method is listed below. A block diagram depicting this sequence is also
included:

1. From the initial conditions, i.e., a position and velocity vector at
t = ty» compute the orbital elements a, e, i, 0 , w, My

<. Compute the force in the RSW coordinate system. This computation
will generally involve computing a transformation to the RSW system
from an inertial system in which the forces are expressed.

3. Using the force components from (2) and the current values of the orbi-
tal elements, compute the time rate of change of the orbital elements
as given by equation (2.17) in Section 2.1.3.3.2.

4. Obtain a solution for the r changes in the orbital elements by numer-
ical integration time (t, + & 1t),

5. Obtain new orbital elements by addition of changes in the orbital
elements to the previous values,

6. From the orbital emements at (t, +4t) compute the position and veloc-
ity vector at i, +4t,

217



7. Repeat steps (2 thru 6) until the desired end conditions are reached.

Compute Initial
a, e, i,n,
At Time =t
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Figure 2.6, Computational Logic for Variation of Parameters Method
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2.2,3.4 Advantages and Disadvantages

The essential characteristic of this method is that the integration is
carried out on parameters which are changing much more slowly than either the
rectangular coordinates or the perturbations relative to a fixed reference
trajectory. Further, since they vary slowly, the error accumulation from the
calculation of the derivative is, for a long time, far beyond the last signif-
icant digit of the initial calculation, Thus, it is expected that truncation
error would appear only for very large integration steps, Simultaneously, the
round-off problem is reduced since the number of steps is reduced with the next
result being that much larger integration steps can be taken for a given
accuracy, A disadvantage is that the programming and numerical analysis -
involved in this method are the most complicated of the three methods discussed.
Because of this, the computation time per integration step is at least twice
as long as for a Cowell method. As was mentioned in another section, any par=-
ticular choice of variables will exhibit singularities for certain conditions
and, therefore, each case requires special consideration thus detracting from
the usefulness of parameter methods as a general integration technique., The
variation of parameters method is primarily applicable to missions in which
small perturbations act throughout the orbit, e.g8., microthrust transfer.

2.2,3.5 Comparison

The three most common mathematical formulations in current use are:
Cowell's method, Encke's method, and the variation of parameters,

Cowell's method is the straightforward integration of the equations of
motion while Encke's method and the variation of parameters involve a mathe~-
matically more sophisticated approach. The integration times per step are
smaller for this approach than for either of the other approaches because of
the simplicity of the formulation. However, because of the total accelera-
tions are being integrated and because the attractions change rapidly with
small time changes, a small integration step is required to maintain accuracy
and a large number of significant figures must be carried to prevent loss of
numerical significance.

For many types of trajectories, the Cowell method requires about ten times
as many integration steps as the Encke or variation of parameter methods; and
although computing time per step is approximately one-half, the overall comput-
ing time may be considerably greater. In addition, since round-off errors
accumulate as some power of the number of steps, the Cowell method can be
expected to be more susceptible to accuracy degradation as a result of accumu-
lation of round-off error. Thus, for many orbits, including lunar orbits,
which can be closely approximated by two-body motion, the Cowell method is the
least accurate and least efficient computationally of the three methods.

However, there are some trajectories for which the Cowell method is well

suited; in particular, those in which the perturbation accelerations are
changing rapidly. This type of trajectory occurs, for example, during boost
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and reentry. In addition, this method is universally applicable to all types
of orbits and presents no fundamental difficulties in the exceptional cases of
nearly circular, nearly parabolic, or hyperbolic orbits,

Encke's method has recently been successful in the computation of Earth
satellite trajectories. Because only perturbations from a reference motion
are integrated, larger integrating steps than with Cowell's method are possible.
Moreover, greater accuracy is possible when working with a fixed-word length
because truncation errors effect only the deviations from the reference tra-
jectory. (These errors are generally lost when adding the two words represent-
ing the nominal and perturbed components of the state.) The advantages of
FEncke's method have been particularly marked on lunar flights where the devia-
tions from two-body motions are small.

The variation of parameters or variation-of-elements method differs from
the Encke method in that there is a continuous set of elements for the refer-
ence orbit. The reference motion of the satellite can be represented by a
set of parameters that, in the absence of perturbative forces, would remain
constant with time. 1In the presence of perturbative forces, the reference
orbit is being continuously rectified. Some formulations have inherent singu-
larities, and care should be exercised when choosing a set of parameters for
the problem at hand. The variation of parameters method is primarily applica-
ble to missions in which small perturbations act throughout the orbit, e.g.,
microthrust transfer.
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<.3 NUMERICAL INTEGRATION
2.3.1 Mureriral Integration Discussion

In previous sectiens, the classical n-body equations of mntion and
the correspondine eauations of motion in a non-crnservatsve force field
have been shown to be unyielding to an analvtic approach; therefore, in
this section., recourse is taken to numerical integration technioues.

The basic probler is to solve the ordinarv differential equation

9y
(E = 7((1)5) (3.1)

with the “ntial condition

j(zo) :ya .

later, the solution to higher order differential equations will be discussed.
At that time, multiple integrals will be develoved; and as a secondary effort,
it will be shown that an ordinarv differertial equation of any order can be
reduced to an equivalent system of first-order equatiors. Thus for
simplicity, only one first-order equation will be discussed. humerical
integration seeks to construct a tabular array of the devendent variable (y)
in a siepwise process from valves of the function evalvated at discrete
valves (generally, but not necessarily, evenly spaced) of the independent
variable, x.

There are several orevalent methods of numerical integration which
will be discussed. Accordingly, the section has been divided to display
these approaches: (1) quadrature methods, (2) the Runge-Kutta family,

(3) predictor-corrector methods, and (4) starting procedures for predictor-
corrector methods. In the contevt of this monograph, quadrature refers

to the numerical integration of a definite integral. An equivalent
definition is that quadrature is the numerical solution of a first-order
ordinary differential equation whose right-hand side is a function of the
independent variable only. Thus, equation (3.1) becomes

Ty ,
gz & =)
with

é/(zo) = :o

In this case, the solmtion can be written

(3.2)
X
4k = %o +/f(é) ot

ko
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and as noted, the problem reduces to the evaluation of the integral. The
general result, as given by quadrature (Reference 2,10) can be written

X
/f(t)c/t =Gy flkodta, F(x,)+ .. . ¥ a, F(X,)
where Xo
Xo< X, & .. . & Xp=EX

If X,: X , the formula is referred to as 'closed", and if X,< X ,

the formula is said to be '"open." Althourh quadrature, per se, is seldom
used in connection with the n-body problem, its formulas permeate numerical
analysis; and some of the more sophisticated methods draw heavily upon
guadrature.

The Runge-Kutta family is a collection of numerical integration
methods which replace a Taylor series with derivative values computed from
points within the step. This family is well known since several of its
members have been used extensively ir traijectory work. Currently, however,
most of the adherents of Runge-Kutta methods are turning toward multistep
predictor-corrector methods because of their greater speed and efficlency.
These predietor-corrector methods commonly employ two stenms, a '"predictor!
and a "corrector," although sore methods (infrecuentiv used) reouire that
the corrector be used more than once. Predictor-corrector methods take
the general form (Reference 2,9):

Ynps = Qoo +2, 4, o QuYnt b4, fb,y/'f SRIRIP- U S (3.3)

where the formula is "open" if bnp,, = © an 'closed! otheriwis~, C(pen formulas
can be used as predictors because thev do nnt involve tnowledge of the state

at the ni1 point. Whereas. closed formnlas. which reguire the value ofj;q+,
and hence yn,; , must be used as correctors. A more descriptive definition

of an "oren" integration formuvla is that it does nnt denend on the derivatives
of the function at the point where the integral is desired. An example of an
open integration would be a Tavlor series, i.e., if y'= f(x,4) then

gn%/:gn7Lh¥(X”’5”)+"'

A closed integration formula is one that evnlicity ~-ntains the derivative
at the point. at which the integral is desired. An examrle of this twvpe of
inteeration is the trapezoidal rule

jn.}; --B‘(Xn)l’ln) + ((YV\‘H ) U.\Y\‘\\‘)] h
2

Tt is clear that predictrr-corrector methnds of the frrm (3,3) are not
self-starting and that a matrix of antecedent valves of 4 and 4’ are
required. Predictor-corrector methods can be illustrated using ver simnle
forrulas. The illustrative formulas chosen. becanse of their extrere
simplicitv, are self-starting; however, one shonld be cautioned that they also
remrire a singularly Jsmall step size. All cwrrently on~rational nredictor-
corrector methods, beine more sophisticated and more efficient, require a
startine procedure. Evler'!'s Methods, one of the oldest and most, straisht-
farward of mmerical integration methods, is used as a predictor; and the
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trapezoidal rule serves as a corrector. ILet ax be the distanre betwean
successive valves of the independent variable, X s, ant then Evler's formula
is

P _ ‘.
Doy = Gn * (£ )(0X)
which is sfmnly the first term in the Taylor series exnansion. The familiar
trapezoidal rnle is
ax), .
€ . (@ax A L,
Yoer = 0t 5 (0 *ne)

It is again emphasized that the predictor formula dones not demend on the value
of y at thenripoint, while the corrector formula dres (necessarilv) denend
only at the point. Tn illustrate ttre use of Euler's method, consider the
ordinary differential ecuation

g = X74

with the initial contition

g00) =gy =1
A predictor-corrector cvele will be illustrated using a sten size h=./,

(1) commute ¥ at x=o
fd:/(lo;ya):Zafyo S o0r/ = /_
(2) predirt Y
P
2 Fhe F(ANF) =/ r (1)) = 4.y
(3) compute f at x:./using predicted
- s P
7(/"{(2'/_)3/ ) = Z/"j, = /AL = 2.2
(%) correct y,
e _ A ./
91 = 4o * (1t f) =/ ¢ > (/#02) = u
At this point, the predictor-corrector cvele is comnl-te. The ecuation chosen

can be solved in closed forw to give a check o» the accuracy of the examnle,
The solution of the given ecuation and iritial conditinn is

f;{(l-’) T 2eX-/-x

and for x=./
e’ = sios2

.tjC.D 22 (/./082)= 100 -.10 = /1104

The err~r, €p , betweer the predicted valne of Y, an’ the exact value of ol
is

Ep =JP‘5C'/) =// = 11052 = — 010852

and the error, £, , between the corrected ani exact values of y, 1is

E¢=;,° ~90.1) =44 =/, 0082 = - .poose
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Thus, in this examnle, the corrector cvcle has considerably improved the
acruracy of the solution.

2.3.2 QUADRATURE
2.3.2.1 Introdiuction

Numerical intecration is the procedure of crmmuting the valve of a
definite integral from a set of nmumerical values of the integrand. The
process is called quadrature wher it is applied to thre integration of a function
of a sincle variable. This m~thod is useful sin~e position and velocity are
funetions of time (i.e., x = ¢ &) ,xﬂ:x(t))so that an acreleration written as
X" 24,5, D is really a finetion of a sinele variable, time (i.e., X”=
F(t) ). However, for trajectory problems, #£¢(%> is not known
analytically; ant quadratvr~ forrulas must be used in a corrector cvele
using a tabulated F(£) developed by a predictor formula., In general,
quadrature formulas are developed by represertin~ the integrand bv an inter-
polation forrula and then integratins this formula between the specified
limits. Thus, to find the valre of the integral,vgbflxydx , the fun~tior
f(x) 1is replaced by an interpolation forwula, often one involvine differences,
and integrated between the limits a and b. In this mamner, quadrature
formulas can be develoned for the approximate integration of any functien for
which numerical valnes are known.

The quadrature formulas are presented here in two categories: those

having even spacing, the Newton-Cotes formulas; an” those havine uneven
snacing, Gaussian quadrature formulas.

2.3.2.2 Newton-Cotes Formulas

2.3.2.2.1 Discussion., Newton-Cotes formulas use equidistant spacing and com-
prise the well-known formulas of Euler, Simpson, Lobatto, and others (see
Reference 2,10). The formulas are of two types: (1) open; and (2) closed,

If the integral is represented as

b
I ={fcx>dx

then the formula obtainei is closed if it depends on f(k) and open if
it does not.

2.3.2.2,2 Closed Newton-Cotes Formulas. The problem of determining the area
under a given curve is frequently referred to as "mechanical quadrature'; and
the oldest method of approximating this area is that of inscribed polygons
known as the trapezoidal rule. In this method, the ordinates are connected
by straight lines; and the area under the curve is approximated by the area
under polygons. In a hand calculation, the ordinate of the curve would not
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necessarily be used; rather the functional value would be chosen so as to
minimize the error in the approximating polygon. However, procedures based
upon the use of the ordinates can be easily mechanized, whereas minimizing
the error cannot.

If the ordinates Y% Wi, correspond to the abscissa values
X=%oyX; 3y "y Xn s the elementary form for the area of the trapezoid
gives the following result for the area under the polygons:

A :::'/z(tjo+7,>(x,+ Xodt oo ol PN (K= Xnr)

= '/z[jo(X, X))+ Y, (X~ Ko )+ gy, (Xa =x, )
Fo e P (Xp~Xnn) %8, (Xn —]z,,_,)] .

For equidistant spacing

A

I

¥, ~¥o= ¥z K = .. 2 ¥,-U,,
the formula becomes
A %h('/z?o*y/fyzf' ' "‘ﬂnw"yz‘?”) )

Now, from the fundamental theorem of integral calculus, the area under the
curve w-+4(xy can be defined as the limit (if it exists) to which A tends as
approaches zero. Therefore,

A =,/6/(u)dv i AL ottt Gy # V2 )

For theoretical purposes, this limit process is quite satisfactory; and
from the viewpoint of practical computation, the trapezoidal rule given quite
good results if a significant number or ordinates is utilized. However,
straight lines can be too rigid for a really satisfactory approximation of
curves. If a curve is to be approximated by a succession of straight lines,
a great many small lines are needed for this purpose. Hence, it is generally
more efficient to approximate the curve with higher-order polynomials.

Polynomials of the second-order are much better for this approximation;
and with the help of such parabolas,a curve with a higher degree of accuracy
can be senerated. 4 large number of very short straight line segments is
vien wepaaced by a smaller number of parabolic sections connecting three
consecutive ordinates. This method yields a much more accuracy solution
because it produces a patched curve which approximates the actual curve
much better than the straight line approximation.

= App roximation by Jrrazjbr /nes

N

Approximation by parabolic arcs

35



Consider the graph of & function y = f(x). A
/‘
93 Y6 I Yo T Jo__—]
Ye
Y
)/
| . X

XO X, Xz XJ X4 XS X‘ X7 xa x7 x/o
The total area is divided into an even number of equal panels (an odd number
of ordinates);and for the sake of convenience, the width ( h ) of each panel
is considered to be 1. In each double panel, (i.e., two intervals), the
curve is approximated by a polynomial of second-oriler.

Letting the first double panel be composed of the ordinates, Yo 4,3y 4z >
y=f(x) can be expanded around the point x =i into a local power series,
making use of the method of differences. stirling's formula as a power
series (see Reference 2.11) then yields:

F(r4t) = £ L8 F(NErEE(D ¢ E
pa
where
=y,
5FQy = 20y~ Yo)

XN =y, "2y e -
Here, the curve between x=o and X =2 is approvimatrd bv a parabola which
coineides with the actual cnrve at the three noints of interpolation X=Xo,
X, » X, {in this particular case, let Xo= O , X= | s Xz = 2 ). The
areca under the anproximating parabola can be obtai ned bv integratine between
the noints x= o0 and x=2 .

AO,_’AY[//afCH\‘.)dt
= fCot+8FUT 2 + 85F W ¢ |
= 2f0y + 3 §2F( :
zzy, + ’/3(%2-23‘ 1Y5)

=l Ye ¥ U3y + 34 -
Mow seneralizing for non wnit intervals between Xo, X3, and Xy

+1

A R A0, * ¥, * Y5 )

which is familiarlv known as Simpson's rule. The nrncess can he repeated for

the remainine panels Az¢ ,A4e 5 -+ - + Until the trtal area is exhausted.
Surming these areas, leads to the parabnlic rvle where
- h
A = /3[‘3°+‘+ﬁ‘+231+433+23q-}. C . +4€]h~l+%'\] .

Tn this formula, the even and odd ordinates are separated and applied with
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different weights instead of the same weiphts as in the trapezoidal method.
This discrimination of weirhts greatly increases the accuracv of the result.

The necessity of an even number of panels is sometimes an inconvenient
limitation for the use of Simpson's rule; however, other formulas can be
develoned which consider integrating over any number of panels, In order
to obtain such formulas for the approximate evaluation of an integral of the
form fq"{(y) dx , it is necessary to introduce the change of variables x =4 +
((b-ad/n)s where n is an integer, to obtain the relation

) N
/{(z)dk - f——"/ F(3)ds
where 4 7 Jo

F(s) = (a # bn‘aS)

Assuming that f(x) can be approximated over («,b) (the open interval Ca,b)
is defined to be the set of X such that ce X < b ) by a polynomial which
agrees with it at n+\ equally spaced points in (ay0) (yielding y» panels),
the approximating formula

” 7

F(S) /s = Z Cf/n) FCK)
0 K=o

may be obtained where

Ccn) _/75(.5-/) e (S-k2)(s-k ~2) . . (s=n) s
K Y k-0 lhk-bkni)(h-k=1) - - Ch-n) (3.4)

Letting h=(b-ad/n and x;7at/h, the result established can be put in the more
explicit form

kn a2
/f(z)dz A2 CUF(%D)
¥

K zo
This error involved in the process can now be exrressed as

bnfa fcnw) n
£, =-———(E)/scs~/)...(s~n)d5 (» odd)
(n+0)! A

n
Ep= h773£C7 'z)(f)/(S* 2)s(5~2) ... (s=n)ds (n even)
(o]

Hence, the following formulas known as the closed Newton—Cotes formulas may
be obtained where {¢"%€)is the error term,X,2E < X,. They are classified
as closed formulas since thev are characterized by the fact that the integral
extends from the first to the last (n) ordinate used in the formula but
never beyond.

Simpson's rule:

4 L
F(X)dy = z({,ff,)—;:?-f (€)
{(x)a/x'z-é-({ 14f, +15) - -ésf"(ﬁ)
3 7o 1 T2) T o0

37



X
/x -"{(x)dx = 3hg(f, +3F, +3 t) = 3‘?‘/507‘ W (E)

S Foodx = 2hfas (74,1326, 12 £, #3263 74 ~8hJous £ ()
Xo

e 77
/%{x)dx = Sht e (194, £ 751, $SOF, +SOF; + 757y #0975 )~ 2751/, 096 F ()
X

124

an? ,gm
ss T ()

4’7/(x>dx:/7" (751F,+ 35774, 4 13234, 727813+ 2989/, + 132345 + 3577 .

7280 2183
+ 75167) T s18%00 f (8)

X
G4
{f(x)d( :/73}7'—5(9575, » 58884, ~ G28F, # 10%56f1, - 9S%0f, # /0% Fg ~ 928 fe
o

X
fxf?xx/x Lty ai 1274 12126 121 F 2 ¥ A)
(4

-]

23¢84" o
+ 5888, + 58%%5) " zi7575 F * (E)

sirce all the integral formulas of this tvpe must be exact iff(x)is
a constant, the sur of the weight coefficients must equal the lensth of the
interval, i.e.,h‘i__‘cL - b -o . Also, an inspection of the error terrs roveals
that a formula involving an odd number, nyi= 2wt \ of points would
yield exact results if f(x) were a polynomial of derrees n+i or less, whereas
one involving an even number n+ 1= 2w , of points would be exact only
if 00 were a polynomial of degree n or less., Thus, the two formulas
involvine 2w andzw-1 ordinates have the same order of accuracy so that,
generally, no grrat advantage is gained by advancing from a formula involving
an odd number of ordinates to one involving one more ordinate.

2.3.2.2.3 Open Newton-Cotes Formulas. Often, in trying to obtain solutions
of differential equations, it is necessary to be able to integrate ahead,
beyond the last value for which the function is known. This may be done by
employing an open-type quadrature formula where the integration extends
beyond the ordinates employed in the system,

The first few such formulas which do not involve the ordinates at the
enc &€ the interval may be exnressed as follows:

Lo 00de = 34z iife) 3hY s £ (E)

o = A2l 1y a2 + 4P s FHCE)

4?()00’:( = ey C1IF, oy #1s F1Ife # %h5//44 i <§) ‘

X, 5 -
/)(o CrexVdx = 3o (I E-1%Fy #2Cf =15ty i) “h e £ (E)

where in this case, the weighting function n)

n) _ “es<1) . . (s-krt)(s-&~1) . L (5~n-1D os (3.9
</ k1) (kb wt)( b ~1) « (f=n=1)
38
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Notice that although these open forrulas do net include fo and {, , the
limits of integration extend from Xo to ¥, . Also, equation (3.5) is the

sam~ as equation (3.4) except for the elimination of the terms s ,5-n, k,
&nd K‘Y\ .

2.3.2.2.4 Difference Table Method. When the data are tabulated for uniformly
spaced abscissas with spacing, h, it is conventional to define the differences
of the tabular data and employ quadrature formulas in terms of these differ—
ences. In these cases, the forward differences of(x,) are defined as

Af(Ko) = f(Xy th) - FA(Xs)

= A,

anrl

Afr, = £, - f}_/ . (3.6)

Similarly, the differences of these first differences, called secon..
differences, are denoted by a%4,or atf(X,yand defined as

e - - - -
A%, = AF, ~Af, = f,-2%, + £,
The third and higher order are obtainecd by continuing in the same manner.
The following difference table shows how these values are arranged for

convenient usage. Notice that the subscript remains constant along each
forward diagonal.

X & af A% A&F A% At 2% AP A8¢
Xo £
o fo) Af, ]
X, § A2f A¥,
2 : Af, AZ{' &4, A4: %, -
X 2
P . R A A
Xe 4 &My XA A%, 2%,
Oy ., 25 \ O, > A,
X. A, a A
5 S A fS . A3 {4 43 K1 {3
X, f 0% 2%
¢ 6 s s 4
O, A
Xs 1 N4,
o1,
Xe fg
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For calculation near the end of a tabulated range, the notation V for
backwards differences if often more convenient. In this case,

VE) = f(x) - £ (k-4)
V«Fs = {S \{S~l (3.7)

and

vkt e = v KF() = VRFLz-h)

where_the subseripts of the difference tables are chareed to read

; L
Xn-3 '('m;
~ /
~ V2
~ —
¥n-2 '(n-Z\ /vz’cn-l
V,Fn- \v3(/
- <, n
Xn-: 'Fn-{ /V ‘(n
vt
Xn .~
so that the result of equatior (3.7) is the same as in the previous
eouation (3.6) put denoted br a different svhserint, ard the svbseript

remains conctant alon~ each backward diagonal.

For remainine calcwlaticns, the notation of certral differenees is
usually most convenient, Tf th=a calevlation is te he dene near a certa’n
interior tabvlar voint, it i=s convenient to numher that abscissa as Xg .
Tn central difference notation

§€(0) = f(X+eh)-flx - Yz h)

and

87 fluy= 8 F(kt Ve h) = 8T F(x = Ve ) .

Tt ie seen that ${(x)d~es not necessarilv involve tabnlated ordinates. However,
the second differerce

82k, ) = 8 F(Kgt Yoh)=-8F (K~ V2h)

= fupy 2% *F ey

dnes involve tabular ertries as dn all central differences of even order.
Thus, it mav he written that

8‘Fl/l = {,*{O
s8¢, = 81y, 8F,, .

The central dfference table around X, (the zero subscript in this case in~
dicates the center of the interval) illustrates that the subscript remains
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constant alon~ the horignental lines.

M H /
X., f_z\ _
6{3/2
X, £, ez
o — T~ -
51-te 54-/,
Xo 1o &4 g%
o o ~ - (o} - [0} ~
Sty 5%e.
X 8% ™~
! 1 ~— - [} \
/5'f3/2
‘XZ 2z ~

4

A quadraturo exnression, in terms of di fferences, may now be obtained
bv integratins Stirline's formula (Reference 2, 12) from X=Xo-h tox=x,+
w=-1 1o u=y ) vieldine
: - Ay, +AYo , 42 2 L u(uR-1) A0y .+ A3y, w2lutr)
7 [/,¢CX)dx—A[I(yofq_f’:Z—° f_Ay_/f 37 > + % A%y,
weu-NCu-4) 85 A8, wl@?-1)(u*-4) ¢
# = # 2:12+ z7 Aj} L) dy

-},[&3, t7s a2y /+%/z¢(~ -—)A z+7zo( -/ *f) 4 7—3]

\Zh[‘j ‘e Aﬂq A32_+ISIZ f!— '

Bv advancing the SUbSCIWpf'S of tha y's by one wnit, the value of the interral
1z from x = x, to x=x,+2h is obtained. The mtegrals 13,1%, .. R A
are likewise seen tr be

2 _ ! _ 1 o« -
I°"2h[7’4caz¢7° /800°7"’+/5/2 e

< L, _ ! 4 /a6
IZ=2h[33chjt /80A +5/2A.70]’

7 / /
Zg 2/’[-‘75 23# /80 -73 1572 ffz:,

/
Iy ,= 2/;[3,,, —A{q,,z o g,,3 hry=y .7n 4]

Addins all these separate inte-ral- vields

Ion =2h [5/”".73 LA /Wy é(‘ff/’ *Azjzf o +Azo‘7”‘2) (3.8)

. g p ¥ LAY + 2% 228 f e g b
/&o(A! * o* +A°/7f 7‘Aj”_3)+/J/Z(Aj_Z+Ajo+Ajzf ra ,,_“)J,

where Xo t nb
/ (XY dx
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and v is evenr,

Bv neglectin~ frurtt and £ifth d*ffererces an’ replacine the second
d* fferences b their valurs in terms of the y's, 1+ is found that ecuation
(3.8) reduces to Simpson's rule, Thus, it may be seen that the formula
renresents 3imnson's rule with enrrectiona’

2.3.2.2.5 Numerical Example. As an example, using difference tables, the
approximate value of the integral

i= crmnutetl. This exaunrle w'1ll serve t~ illustrate the integration technique;
hrwaver, the sample problem is not similar to the trajectory problem since the
derivative for this samnl~ problem is a krovm fim~t o~ and dres nnt suffer
from comulative rourd-off erreor resultine frowm the previous interratior stens,
Taking h:- .or a difference table of y=//x is set un at onc-tenth unit
intervals from Xz 0 7 to x = z3(n~te that the differences ar~ referenced tn
the last place in the finetion)., Svhstituting into ecuation (3.8) the
appropriate differences from the table yvields

I:=0.[6.9317/%03 = J5(159%744) + V)55, (S 73339

~ 191 /e 480 ( 130210) ]
The correct vélbe is £n 2 T ©.693147/8/
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Table 3.1,  DIFFERENCE TABLE FOR y = 1/x
X g Ay A%y &'y 2% a%y a‘y

0.71/ 42857143
-17857/43

0.8|/.25000000 39¢825¢
-/388888% ~//190% 76

O /11114117 2777778 ¥32900
=11t 110 -~ 7S7576 -/80373

/1.0 |/ .00000000 2020202 252528 83252
~909c909 - Sosos/ - §7/23

/.1 0.9090 906 1528 157 155403 %1618"
-1575758 - 3%% 49 -Ss3as

/.2 083333333 /165502 99897 22212
~6%/0256 249752 -33293

1.3)0 76923077 9/5 750" 66604 r29472%
~S%9450¢ ~/183/48 -2082/

/. 4|0. 7142857/ 732402 5783 7362
~4%7¢/90% -13736s /3 %59

1.5 |0.66666ceT 595237% 32324 4478%
- 4/66667 - /05044y - 898/

/.6|0.62500000 490/96 23343 283¢
-3¢7647/ - 8/ 698 ~ G/%7

1.7|0.56823529% «og«g* 17196 % 1855 %
3267973 - 64802 - %292

/.8|o.S5s855556 3¥39% 12 y0% /218
-2723977 - &£/598 -3077

7,90.52¢3/5 79" 292398 2827% 893%
~263/579 -%/77/ -223%

2.0{0.50000000 250627 7593 s89
-23809s52 -34/78 ~16%s

2./ |0 #7679 048 2/¢c449 S48
~2/64503 -28230

2.2 |0 . 4SKs4S%S 1882/9
~/97628%

2.3|0.954«782¢/

* Denotes values used in example
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2.3.2.3 Gaussian Quadrature

2.3.2.3.1 Discussion. Until the time of Gauss, quadrature formulas assumed
that the chosen points X = X, were equidistantly spaced by h units. Gauss
conceived the idea that much greater accuracy could be gained by relaxing the
constraint of equidistant spacing, and instead, requiring only that the points
be symmetrically spaced with respect to the midpoint of the interval of inte-
gration. The formulas so obtained are termed Gaussian quadrature formulas.

2.3.2.3.2 Gaussian Quadrature Formulas. To derive the Gaussian quadrature
formulas, let I -J;" FCOAX denote the integral to be computed and change the
variable by substituting

a+b
2

so that the 1limits to integration becoms -} and 5. Tre functior /00 is
Nnow

Y=(b-a)u +

a+b q -
f(l) = f[(b‘a)(-( + —2——] = ¢(U)
7.
Then, since dx =(b-a)du, the integral becomns 7 :Cb~a)[,L¢ (wdu
2

Gauss pronosed that the integral be written

Y2
l/a((‘(‘)du: R/¢Ca/)7‘/?2¢<q2‘)%' . ."l R,,¢(é/,,) b (3.9)
where u,z,ul)n-,u,, are the points of subdivision of the interval u = - V2

to =42z . The corresponding values of x are, therefor
% =(b-a)y, ¥ (atb)/2z

Yr=(b-a)u, + (atb)/z
and the value of the integral fabféx) dx is

z :/{é(x)c/z = (b~ Q)[R PlUIE R B (Ut F RadCun)]  (3.20)
(74

L]
The values u, 4 Uy 5 -+ - 3 Hn and R , Ry 5 .- -5 Rn can be found
by assuming that &(u) can he expanding in a convergent power series in the
interval uz - ¥2towv='/2. Hence,

BU) =Gyt AUFGUT £ ARy (3.11)
Integratins eauation (3.11) between the limits ~% and % yields
7z Y
T= [ Bl)du=[G,ra,ub. ctamu™s o) du (3.12)
~//Z —//z
S Qo * Yz X2 t Voo Ru * Yo Ay * 2sox Rt o e

44



Note that the odd terms disaprear when the intesral is evaluated at both the
urper and lower limits. Also, from ecuation (3.11)

¢(a/) = Qo ‘/a,ﬂ,f'azalzfd_,é(,zqu‘c(l’f. coe fam((/m" e e
P(4)= aytaq FQ Uyt @ Uttt b Uy #
¢(U,;)=C?0+Q,U,,7‘aza,f-fq_? 7 + QU+

Snbstituting these valres of P Cup) P luy),.. pland into ecuation (3.9)
rearranrine ther, T is ohtained as

Tz Qo(RAR PR # - - -4 A,)
* 2, (R, PRy o tRU,)
* G(Ru}? FRpF fﬁn": (3.13)
*Qm (R &+ R - kR U

lNow if the integsral J in equation (3,13) is to be identical with eguation
(3.12), regardless OFf the form of @ ( W), then corresponding crefficients
of do 5 &, ,a, 5... 1in equations (3.13) and (3.13) must be equal.
This reouirement yields

Ry +Rpliyy #RytUs* - " * Rpuay =0
R/é(,'?"/?zazzf'?."'“;*"‘v‘ﬁna: - /‘_Lz ,

R+ Roty *Ryud + - - Roud = 0, -
Rour Rpuf + /?34347‘--"*/?,,41,;":52—,

Solving trese equations using algebraiec means is tedious. However, it can
be shown (Reference 2,12) that if @ ig a polvnomial of degree not
higher than 2n-1 , then w,,u,,, Unare the zeros of the Legendre polynomial
Py C0) or the roots of p,tu)= 0. These roots are found from the equation

a” n
o [az ~<//z>2] -0 6.15)

The n roots U ,Uxy ) Un of this equation are all real. Thus, substitution
irte ecuation (3.14) defines the R's,
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In solving equation (3.15) for any h, it is to be noted that the y's
are svmmetrically placed with respect to the midpoint of the interval of
integration and that the R's are ecual for each symetric pair of u's .

The mmerical valves of the u's and correspondin” R's for nz2 to n=10
are given ir the followinc table (Reference 2.10) where the notation for
the formu, = N 1arans y_= N and u__ = - N ani y, desigrates the midpoint.

T ¥, -\ &

Hence, the valne of the integral may be deterzinad bv substituting these
valnes into enuation (3.9).
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a”: 0.288675/34¢

ao =
“I/ =0.38B7298 3344

U, =0./699905278
U= 0.430568/558

U, = O
Y, = O 26923655/
Uy 770. 48530899230

U, = 0./1/19309593 0
Uy,20.3306046932
U320 966234757/

WUp= O

U, 202025225757
Upp2 03707655928
Uy3 = 0.47455395¢2

u*/: 0.0%/7/732/2
UIZ =0.2627 662050
UH 0.3783332387

L(t“ = 0. 480/44 9282

Uy = O

U,=0.162/26 7117
U, = 0306685104
Uyy =0.%180/55537
Upy=0.%8%0801/98

U, = O, 07%937/655
Up,= 0. 2166576 97,

Ui} =0.33970 %784/
Upy =0.%3253/6833
Upg 0. 4869532643
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_ /
K=z
R = %9
R =5//18

R=03260725774
R=0173927¢226

R = 64/225
R = 0.2393/433152
R= 0.//8463%425

R= 02335565, 73
R=0./18038078 65
R = 00856622 %419

R=020897759/8
R =0./1909/50253
R=0/398526957
R =0.06%74248308

R=018/3%4/89 ;7
R=01568533229
R =01/1/t1905/72
R=00506/4268/5

R= 0./6¢51196775

Re0./1561735385
R=0./303053%82
R =0.090324 08035
R=0.020637/94/8

R=0./1%47762 11 24
R=0/3%46333597
R=0.1095%3/8/3
R = 0.0147 2567458
K=0,033335¢72,5




2.3.2.3.3 Computational Procedure and Example. Because Gaussian quadrature
formulas do not involve equidistant spacing of the independent variable, a
difference table set-up cannot be used. However, the application of the
formulas in the ordinate form is straightforward and can be illustrated by
example,

Cormute the interval
/2
= o
7z [f .__XL
goluticn: Define the f;mction U as
¥
Yz=(b-a)ut 5 = 74 +8S

2
L2 L = pa) .
- %~ T7«t8S
Now assunine nz=S

/

Jo = P(u,) = g5 = O17c%7057

- ¢(u) - / - / — 0
y/ B 17" 7, 8.8 T 10.384c42e T 096 27c0%37

- / /
= U_ = - -
Y-y #lu.,) 7" 785 © CesIsTa 0 15/163%/2
- _ / - / _
3?- =@ (4z) T7u, +8.5 T /.67/629%6 0.085¢778377
- - / - / _
A =@ lw,):= % 785 - 53z83705% = 0./876 74636
Substitutines these values into (3,10) with the corresponding R’ for

n- S ylelds
cx
I-= 7[ 525 X 0117647085 + O.2393/43352 (C./51163%/2 +
0.096296 0439) » O 118%63%%25 (01876746367

0.0850778399)] = 0.815%68%58 .
In contrast, the true valne of the integral is

_ pl¥dx 2 =
]-[{ LY o L E: b 2% = 0. 875468737

2.3.2.3., Remarks. Hildebrand (Reference 2.12) offers a discussion of other
quadrature methods with the weighting function

. -k -k? /
WCZ) e L€ ) /< gt )(/‘Z)o((/f Z)a

Generally, it should be noted that Gauss's formula gives an gxact
result when £ is a polynomial of the (2wn-1) degree or lower. However,
though, Gauss's method is of great accuracv and theoretically sound, it has
the disadvantage of being laborous in its application since the limits of
the integral must be transformed ~% and 4. Also, if the values of y are
to be computed from a formula, the muerical valve of W to be substituted
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must have as many significant figures as is desired in the g's. After
deterrdning the 4s to the desired number of significant figures, theyv must
be multiplied bv the R's naving at least as many sigrificant figures.

This requirement comnels use of a large number of significant figures
in every step to achieve the accuracy that the formula is capable of pro-
viding; however, Gaussian quadrature is definitely applicable when the 4
deterimination of ordinates needed for the conventional formulas would involve
either direct calculation, physical measurement, or interpolation, since
these valr=s are unlikely to be equidistantly spaced.
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2.3.3 RUNGE-KUTTA FAMILY

2.3.3.1 Introduction

The name Runge-Kutta is given to a family of numerical integration
techniques which approximate a Taylor series extrapolation of a function by
several evaluations of the first derivative at points within the interval of
extrapolation. The family has many members some of which have names of
specific individuals (e.g. Huen) and some of which are designated by an order
number. The order of a particular Runge-Kutta solution is the order of the
highest power of the step size retained in the equivalent Taylor expansion.

A solution for y (X, +h) is obtained from a knowledge of the current solution
point, y ( Xn ), and the first derivative of y at points in the interval
X,€ X< Xa+ h o Values of y at previous points are not necessary for con-
tinuing the solution. The method is, therefore, a single step method

(i.e. a single step method requires only the current solution point as
opposed to multi-step methods which require that previous solution points be
available before the process of obtaining the solution point ahead can begin)
and as such has the advantage of being self starting. An associated dis-
advantage is that the information lost in discarding previous points must be
regenerated (in a different form) at each point along the solution with a
resulting waste of time compared to multi-step metheds. The Runge-Kutta
method follows the solution curve well, is capable of good accuracy, and can
easily accommodate any change in step size although a criterion for changing
step size is not available as a part of the solution calculation as is the
case with some multi-step methods.

2.3.3,2 Third Order Methods

2.3.3.2.1 Discussion. The third order Runge-Kutta equations are character-
ized by approximating a Taylor series solution for y to terms of order h¥,

As will be seen in the next section, the general equations contain two
arbitrary parameters. Several people have chosen particular values for these
free parameters and their names are generally appended to the Runge-Kutta
name when reference is made to a particular formula (c.g., Runge-Kutta-Heun).
However, it is not the intent to display all possible third order formulas in
this section. Indeed such a feat would be impossible because there exists a
two-fold infinity of possible formulas. Rather, only some of the better
known or more useful formulas are listed.

2.3.3.2.2 Deviation of General Third Order Runge-Kutta Formula. The de-
rivation presented here will be for the general third-order Runge-Kutta
formulation. The differential equation which is tc be solved is

y'x) = f(Zs ) (3.16)

with the initial condition
#( %)= 4o
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The deriviation of the equations begins by considering the integral of
equation (3.16) from X to (xg + h).

z,+ A

Af=f(z,+{)-y(z,)=Lf(z,;(z))dz (3.17)

It is known, from the mean value theorem (Reference 2.26), that a solution to
equation (3.17) of the form

ay= z"/(g,,(g)) = %,45)

xofgé,zaf'?e

exists. The value, £ , is however not generally known prior to obtaining

the solution to the problem. The Runge-Kutta approach to the solution of(3,16)
is essentially of the form (3.18): but since is not known, a weighted

average of three Ay, 's is calculated at points in the interval

Xo< X3 < X, T h. This weighted average is

(3.18)

zﬁ;'2=f5 a, A;&

3z

(3.19)

where

A?2= £%/C§J

The weights, a., will be chosen so that the value & ¥ calculated from equa-
tion (3.19) will agree with a Taylor series expansion of y(x) about the
point (x,, y,) to terms of order four. A point to be brought out here is
that when the proper values of a; have been chosen a y will have been de-
termined as a third order Taylor series expansion about (xo, yo) even though
no derivatives of y higher than the first will have been evaluated. To de-
termine the appropriate values of the aj's, three Ay;'s must be calculated.
The first Ay; will be evaluated at x = Xg e

AV, = {7'(10) = £/(Zo5 ?o) (3‘20)

The second & yj will be evaluated at (x,, ¥, ) where
X] T X tmh, X, £X,SXo+h

A7/2= {/(Z/Qi/)
At this point it appears that a problem exists because y1 cannot be found

until the solution to the original problem is known. An approximate value
for ¥y can, however, be found from a first-order Taylor series about Xx,-
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#7po A zes g) (3.21)

Tt will be seen by following the derivation that such a choice for y, can be

made without relaxing the requirement that equation (3.19) agrees with three terms
of the Taylor series for y. Using equation (3.,21), the expression for® ¥
becomes

4%2: %/(Zof‘m’j, /o * y{/(zo’fa))

Aﬁ:f/(x“mi.%,fm/sy) (3.22)

The third A y; will be calculated at x = x5, = X, 7T A h. The value of y,

will again be approximated by a linear Taylor series, but in two steps. The
derivative of y at (x,, ¥,) will be used to evaluate y (x) at some arbitrary
x, say at x' = x5 * ("A - p )h, between and x;, * A h. Next the change in
y from x = x' to X = X, + X h is evaluated using the derivative at the point

(Xl, yl). An examination of Figure 3.1 may aid in understanding the above
description. The relation for yo 1s

Y2 = 4o #+(N-p£) f/(%f,ﬂ/’%/(z,,y,) (3.23)
and & Y3 is
afs = FICARS N (A-p) Rf(Zs o)+ R f (254,

or

Ay, = AP (2, +0Hy g * N -Play, + Pay,) (3.24)

At this point, the general form of the Runge-Kutta equations has been de-
veloped. These equations are summarized below
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(Upoth)

I1lustration of ¥yo Calculation

Figure 3.1.
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Y(Xo+h) -ylXod = a, ay, 1 A, Ay, tay Ay,
Ajl h {CXO)%O)

(3.25)
AYy=h X+ mhyYgo T M AY)

ALjs = hilx, T AW (C ?\‘P>A‘j| o A(jz

It is now necessary to evaluate the constants a;, a,, a3, ™M A, andpe. To
accomplish this objective, three o y‘._'s of equations (3.20), (3,22), and (3.24) are
now expanded in a two dimensional Taylor series about the point (X,, ¥o/-

the following equations, it will be assumed that the function f(x, y) and its
partial derivative f(x, ¥), fy(x, V), f)Q,(x, y), etc., are evaluated at the

point (xo, yo) and the argumen%s will therefore be omitted for brevity.

by = AP (3.26)

Ag, = fff m;(‘(/z 1//f)”é ﬂl{z(}&z*z//zf */Z/ﬂ S (3.27)
i 2 2
Aij ={f +7\£2(/x *%/})"Z il[l (;xz 42/15(/ +/;;(/ ) (3.28)
+2-M/0()Px+}£,f)f’_]+~ -

If Ay is expanded in a Taylor series about (x,), there 1s obtained

S BT R WY VTR R) FIERS

The relation between a y and the ay:'s of (3,26), (3.27), and (3.28) is given by
equation (3.19). Thus, if equation (3.26) is multiplied by aj, equation (3.21) is
multiplied by ap equation (3.18)is multiplied by a3 and these results added,

o~y is approximately obtained. Comparing like powers of h in the resultant

series for Ay and that obtained in equation (3.29)the fellowing set of
equations is obtained if equality to terms of the order h* are desired

Q,rag +ay =/

(3.30)

NI~

azm+a,)\=
2, )(_i
az'ﬁl as 2

;
Gy fPm = 6
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This system of equations is underdetermined; thus, the choice for two of the
six parameters is arbitrary. Several choices are discussed in the next
sections. It is noted here only that there are some choices which are not
allowable. If either a3, ¢ , or m is zero, the last equation of (3.30) cannot
be satisfied; if both a) and ap are zero, the first three equations of (3.30)
cannot be satisfied.

From a cursory examination of the derivation leading to equation (3.30)
it may seem that the underdetermined nature of that set of equations could be
e%iminated by requiring equality to the Taylor series for Yy to terms of order
h If this were done, %here would result two additional equations when the
coefficients of h* and h”7 are compared, thus yiglding an even determined
system and reducing the error to the order of h®. The difficulty with such a
procedure is that equality of the coefficient of h% and h? cannot be attained
without imposing severe restrictions on f(x, y).

2.3.3.2.3 Heun's Formulas., It is clear that some simplifications of equation
(3.25) can be made by suitable choices of the two free parameters. Henn con-

sidered a family of equations in which A = £ « If the further simplifi-
cation ap = O is made Heuns formulas are obtained

I \
AV M £

A#ﬁf(z,,,y,)zﬂ
A%z:%(,zo*é’e’f.*.i/df'){

N

- 2 £
ij—%(‘zp+3— {, %+3Ay2){/
2.3.3.2.4 Kutta-Simpson Third-Order Rule. This set of equations reduces to

Simpson's rule for the evaluation of an integral for the case where f(x,y)
is a function of x alone

Dy =say - 5% 544,

4y, =}V(z,,%) >4

Aff/(z*éﬂ’,;/,.*z/c&g,)?f (3.31)
a4, :/(w £, fo=agt 248y, ) £

If f(x,y) = f(x), then the first equation of (3.31) reduces to

A
Ay - f[f’w roy' )y (21

55



which is the expression for the evaluation of the integral

(A%
A;z =f dx
Z
by Simpson's rule.

2.3.3.2.5 Runge-Kutta-Ralston., In section 2.2.4.2.7, an expression for the
truncation error committed at each step is developed. Ralston (Reference 2.13)
developed this expression and then chose the parameters so that the truncation
error would be minimized

ay: 2794y, + 3 A, + Ve Ay,
Ajl: %¥’<X°Jjo)
AYe Aflxot Y25, Yot /2 ay,)

Aj3 = A{(prj/z{% ):0 * 3/4 sz)

2.3.3.2.6 Computational Procedure. A sample problem and description of the
computational procedure for a fourth order method is presented in section
2.2.4.3. This method is sufficiently general that it may easily be extended
to third order formulas. Therefore, no computational procedure is discussed
here and the reader is directed to section 2.2.3.3.7, for a representative
discussion.

2.3.3.2.7 Error Analysis. A bound for the truncation error committed at each
step can be determined for the general third order equation by writing the
equations for &y, oYyp, AY3 and & y as Taylor series with remainders

in place of the infinite Taylor series of equations (3.26), (3.27), (3.28),
and (3.29)

ay, = (%;’%Z=z

£ ! 3 g
R T S A P AW
i

2 fors # oy * 3 G y’”k:;
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Equation (3.32) is the exact solution for A y. The approximate Runge-Kutta
solution is given by the weighted sum

Ayﬂlf =aloyr *al A%z fd’ A?J (3-33)
The truncation error is the difference between equations (3.32) and (3.33)

£ = A;’xk—A?’

The constants aj, ag, a > » > and m have been chosen' such that the co-
efficients of h h2, ang h3 in equation (3,32) match exactly those of
equation (3. 33) so that error E will contain only the h¥ term
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If, in the region where a solution is desired, the bounds M and L defined as
follows

[fcxs g &M (3.35)
auj' ) L"’/'
a‘;—;j‘; v (3.36)

exist, then, a bound for E can be found. Substituting (3.35) and (3.36) in
(3.34) the error bound is

4 ’ 26
Eé{’/MLJ[J; 2, ma+§(8)\3 #/2/7‘7772¢24//0?’77L)‘ 2—;] (3.37)

If a method of determining truncation error is to be used as a means of de-
termining step size equation (3.37) may be of little value because the bounds
M and L may not be known before hand.

An approximate value for the truncation error can be found (Reference
2.14) from the results of two integrations one of which has step size h and
the other has step size 2h. If y(x) is the true value, yl(x) is the value

obtained for y(x) using step size h, and yo(x) is the value obtained using
step size 2h then using (3.34)

4(x) = 4,(2) +C, (24)”

f(z)=%z(x)+2(;2 ad
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The approximate error, assuming Cl 1 02 is

£=y 4 = ZZ:_ :g, (3.38)

Some care should be taken, however, if equation (3.38) is to be used as a
criterion for changing step size. If the step size is to be changed, it is
probably because the solution curve changes rapidly and a constant step size
is inadequate. If this is the case then the assumption that Cl_ﬂf G will
most likely not be satisfied.

In Reference (2.15), it is shown that for a stable differential equation
the accumulated error after a number of steps is proportional to the maximum
error committed at each step divided by the step size h. The constant of
proportionality does not vary with the number of the step so that a bound
for the accumulated error can be found which is independent of the number of
steps taken. Thus, the Runge~Kutta solution is stable in the sense that for
a stable differential equation the error will be bounded and the truncation
error will go to zero as the step size h, goes to zero. For more detailed
information, see References (2.14), (2.16), and (2.17).

2.3.3.3 Fourth Order Methods

2.3.3.3.1 Discussion. Fourth order Runge-Kutta methods reduce the error by
one order over third order methods at the expense of an additional derivative
evaluation. It should be noted that while third order methods require three
derivative evaluations, and fourth order requires four derivative evaluation
methods of fifth order require six evaluations and methods of sixth order
require eight evaluations. It is probably for this reason that the fourth
order methods are the most popular; i.e., they provide a good compromise
between step size and number of derivative evaluations.

2.3.3.3.2 Derivation of General Fourth Order Runge-Kutta Formulas. The
derivation of the fourth-order Runge-Kutta equations is similar to the de-
rivation of the third order equations presented in section 2.2.4.2.2 and the
bulk of the derivation is not repeated. For the fourth order case, it is
necessary to compute a A;yL.

‘479 = {2?(25,?3)

The value of y, is determined in a fashion similar to the determination of

Y2 in equation™(13) of section 2.2.4.2.2. Three steps are used in determining
¥3 instead of the two used for y2 with the derivatives at the points (%05 7o)
(X1, ¥1), and (x5, ¥5) being used over the arbitrary intervals » , g3 , o .

The general form of the fourth order equations is given in the following
equation:
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Dy = 2,084,728, +Qg Byy t Ay OYy
oy, = Af(Zor go)

8¢, f/(x, fml,% rmag,)

84, i’/(zo A, P (l-,O)Ay, *POY,)

a4, = Af (2 +ihy gt (T-6-T)ag *E LY, roy,)

The relations between the parameters are given by equation (3.39)
a +a, ta, +a, =/ \

1
aQ;m+a, +a47:2
a,m*ra,X+a, J‘=3’-
azm"+a’)\’ +a42”=é

| > (3039)
aympra,(mg+rr)=g
2 2 1

amiora, (mb+ X )=j

a37rz)a/o +a#(7rz,e+)\a-) :8i

=4 /

Ay ML= 27
The set of equations (3.39) relating the parameters is, as was the case with
the third order system, underdetermined and two of the ten parameters may be

chosen arbitrarly.

2.3.3.3.3. Classical Runge-Kutta. This member of the family is the best

known and it is often the form that is being thought of when the term

Runge-Kutta is used. This form is also known as the Kutta~Simpson One-third

I};ule an)c(i(, )as might be expected, reduces to Simpson's one-third rule when
(x,4) = X

Af=3}' a4, +5 84, +§/A73 +AY, \
ag= A (2 g)

Ay2=7f/( %t i,y, +2'I‘A7,)
Ay = £y (x+zi%,% +3 842)
by, = Af (xr Ay 4 1 0g,)

~

/
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2.3.3.3.4 Kutta-Simpson Three-eights Rule. This form reduces to Simpson's
three-eights rule when f(x, y) = f(x)

A;{=8—1A}/, +§A?/2 +§3A73 + by,
A;ﬁ:#/(z,%,)

Ay, = f/( z, +§7€, o +é4%)
A%
SR ALV ALV EFYRYPS

2.3.3.3.5 Runge-Kutta-Ralston. This form provides minimum truncation error
at each step

{/(zoffh’,%,—éA% f—Aé/z}

A!j:,/w?éozsmj, T 85 /4%8066 Ayzf/,zossjsao AY; + ./7//64’7867“
ay, = ﬁf()ro,jo)

ay, =h1(x, ¢ FR, Y P Hay,)

By,= Ff(Xo t 45573025 K | 9, ¢. 2969776/ ay, # ISEIS T4 Ay, )

A%‘:};F(Xo t A > Jo £ 21810040 Ay, ~ 3. 05096516 ay, r 383284576 Ay

2.3.3.3.6 Runge-Kutta-Gill, Gill's formulas were developed specifically for
use on high speed digital computers so that: 1) a minimum number of storage
registers are used; 2) growth of round-off errors is controlled; and, 3)

comparatively few instructions are required. / Reference (2.16) and (2.18)_/.
In the notation previously used, the Runge-Kutta-Gill formulas are

ay =6’_A7/ 7*5'(/—/,5'_)4\5//2 +§(/+/ZF)A7,+ é Ay,
Ay, = i/(r,,,yo)
e 5 G o og) >
Ay, = //(z,*zl{,yo+(-é *:/zT)Ay, +(/—,/2/—)A;«z

80 = A otk 4+ g ag, + Uof ) ag,) J

(3.40)
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In order to get a more efficient form equivalent to (3.40), the auxiliary
quantities, qj and y;, are introduced and the set of equations become

Ay,:/?/(x,,,/‘,)

A%Z://(lofg,ﬂ!{,)
ag, :/i/(zﬁ?,y,)
Aﬁ,:?{/(z‘ﬁf,y,)

% =/a*:§A;’: B (3.41)
?%:=i;+(/jé?)(ﬂ7& '7,)

;3:=7; *(/fyG?J(A}G :fz)
;Q==;G +‘é(A’9-Zi’)

g7 44

4,7 (2-VT)ay, - -2+ 33,
g5=(2+/Z ) ay, +(-2-3/2T)72

Note that from these definitions

gy = 2 5

At any stage in (3.41) the Ay;, y3, and g3 depend only on stored quantities
of the previous stage and quantities computed during the current stage. As
each quantity is computed, it can be stored in the same register where the
corresponding quantity of the previous stage was stored. Since the quantity
there is no longer required. Hence the overall process requires the storage
of only three quantities at each stage and the same three registers can be
used at each stage.

A further refinement to compensate for some round-off error can be made
without increasing the complexity of the procedure with no increase in
storage requirements. This refinement consists of introducing q, and q
with q initially zero. The quantity q) represents approximately three times
the round-off error in y, accumulated in one step. To compensate for the
accumulated round-off q, is used for q, in the next step. The final form
of the Runge-Kutta-Gill equations is
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o Af (no )

Ay, = //(x,,+ g,;/,)

sy, = Az, é,y‘,)

a4, = 7{/()5, A, pe )

&= Yo +2‘/ (A?/, —2?0)

AN e (/-/5)(4&}2 ~2.)

YA f(/f/gr)(.ayj-iz)

P2 :fj*é" (ag, “Zg,)

97 +3[z(ay, _Zfo)]—éA%

g2 = g 0N sy, -0 )]- /5 ) g,

9= g:+3(0 /3 N ay, 9]~ (1+/3 ) ay,

§,=9s *3[61(A‘7x/—2i, )]—fA%/
<-3.3.3.7 Computational Procedure. The following discussion and sample
problem are taken from Reference (2.16). The Runge-Kutta-Gill formulation
Will be used for the sample problem. These equations are given in Section

2.3.4.3.6. The problem to be illustrated is the solution of the set of
simultaneous differential equations

== (0) =/
4 y 7

/ (3.42)
/«2’ = -— /2(0)=’

!

The analytic solutions to these equations are

_ X
# €
7z =<
The error in the numerical calculation will be defined as
x
€= ¢ —?(/‘/(z)
-x
€,=e ~Yay (x)
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For the Runge-Kutta calculation, the set of equations (3.42) will be written
symbolically as

%,’ 76 (jo(’-'),//(z)aﬁz (z)) =Lz

where

% () £ X

and the subscript i denotes the first or second equation of the set (1).
The values of the yj's of equation (3.42) will be denoted by the second
subscript j; i.e.,

471. CX*/,) - (7/,'4
The calculation proceeds in the following sequence
(1) Let j=1

(2) Let i 0
(3) Compute AY;,

(4) Repeat (3) untd1 all value of i are used (i =0, 1, 2)

(5) sSeti=0

(6) Compute yi, j, and a3, 3

(7) Repeat (63 until all vaiues of i are used

(8) Repeat steps (3) through (7) incrementing j each time until j =4
(9) The desired answers are obtained as yj, and yp,

A flow chart depicting the above sequence is shown in Figure 3.2;

2.3.3.3.8 Error Analysis. The derivation of the truncation error is similar
to that for the third order method and the reader is referred to Section
2.3.3.2.7. The bound for the truncation error is /Reference (2.13)7

£ < {/é/b,/+ s|by] # by +3by] #]26, +3b3] #+ [bz #65/ # byl +8 )byl

+/bs| +]2bg *b,/ ) bg 4y tby] ] bl + 26e+b5] # ]3] 42/ 05]f
where M and L are bounds on the derivatives over the region in which a
solution is desired

M= £y |
L;.‘rl - BLJr A‘,{
Ml"\ ngaLai

and
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Figure 3.2.

START

J=Jj#

(=(+1

L= L

STOP

Flow Diagram of Runge-Kutta Calculation
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with h = .1.

Table 3.2.

Table 3.2 presents the numerical results of two steps in the calculation

Intermediate Steps in Runge-Kutta-Gill Calculation

0 10000000 x 10t 50000000 x 10~% 10000000 x 1011
1 -10000000 x 10+ .10500000 x 10t .10000000 x 10

2 -10000000 x 101 .95000000 ~.10000000 x 10

0 .10000000 x 10% . 50000000 x 1011 .70710678

1 .10526316 x 10 .10515415 x 10 .73793765

2 .95238095 95139473 -.67921219

0 .10000000 x 10° .99999999 x 101l . 50000000

1 .1051088L, 11049997 x 10 . 54736297

2 .95098L78 .90500025 — 44761411

0 10000000 x 10% 99999999 x 1011 ~.18189894 x 102%&
1 11049721 x 10 .11051705 x 10 ~.36379768 x 1015
2 .90497760 .90L83776 ~.90947470 x 10

0 .10000000 x 10% . 15000000 1 .10000000 x 1oi

1 .11051705 x 10 .11604290 x 10 .11051705 x 10

2 .90483776 .85959587 -.90483776

) ,10000000 x 10% .15000000 . . 70710678

1 11633374 x 10 11621327 x 10 .81554692

2 .86175025 .86085787 -.6145768L

0 .10000000 x 101 . 20000000 . 50000000

1 111616319 x 101 12212131 x 101 . 60492940

2 . 86048694 .81887839 . 40501815

0 10000000 x 101 . 20000000 .1818989L x 10~1i1
1 12211825 x 101 12214018 x 101 _.36379788 x 10~11
2 .81885791 .81873137 ~.90949470 x 10™12
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Table 3.3 lists the final values at each step and the corresponding
errors, with h = ,1.

Table 3.3. Results of Sample Problem

x y(x) y2(x) £,x107 £ ,x107

0 .10000000 x 10t .10000000 x 101 - —
1 .11051705 x 101 .90483776 L - 3.
.2 .12214018 x 10% .81873137 10 - 6.2
.3 .13498573 x 10t 74081905 15 - 8.3
4 .1491822, x 10T .67032105 23 ~10.0
.5 .16487181 x 10% .60653179 32 -11.3
.6 .18221146 x 10% . 54,881286 42 -12.2
7 .20137474 x 10 . 49658660 53 ~13.0
.8 .22255342 x 107 44933030 67 13,4
.9 (24595947 x 107 40657102 8L, -13.6

1.0 .27182715 x 10© . 36788081 103 -13.7
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by = lzo —lWeq (M a, + A%as 7a4)

ba= Yao ~ Yo (MmA2PG; +AumB+ AeAC)
by = 1f120 - 14(Mieay tau MB tay A 0)
by = s ~ Y2 (MApay +ay M8 +2yA%)
bs = Y20 ~ /2 MEpPIa«

Yo ~ /2] mPpPest u(mpBr A6)* ]
b7 = 720 —m(/f/\)QO"CZg

bg = Y20
2.3.3.4 Higher Order Methods

o
1)
[

n

2.3.3.4.1 Discussion. Formulas for Runge-Kutta method of order higher that
four are not widely used nor well known. These formulas have the disadvantage
of requiring more evaluations of the derivative than the order of the formula;
e.g., the fifth-order formula of Kutta-Nystrom requires six evaluations of the
derivative while the sixth-order formula of Huta / Reference (2.19) / requires
eight. The reason for requiring the extra derivative evaluations is that a
contradiction exists if the relation between the parameters is written in the
same form as was done for the third and fourth order methods. A different
approach taken by Shanks / Reference (2.20)_7 is to require the equations
which result in a contradiction to be only approximately true. Using this
technique, Shanks develops equations through order eight which may be found

in Reference (2.20).

2.3.3.4.2 Derivation. The derivation of the higher order equations is
similar to that outlined for the third order method except that additional
evaluations of the derivative are required in order to get a consistant set
of equations relating the parameters. For the Shanks method, the contra-
dictory set of equations obtained by n derivative equations for an nth order
system is modified so that the conditions for order n-1 are met, and the
remaining equations modified by addition of arbitrary parameters which
represent small errors,

2.3.3.4.3 Runge-Kutta-Nystrom (fifth order).
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23 128 8/ /125

Q7 G224 57895 T r Ms + e A4
AY, = hf(Xo Yo)

h A
LY, = hf(xofg)go* —3‘1')

24 « c
AY3 = hf(Xe #7553 Yot 5244, # 35 8Y,)

/ /5

8gu = hf (X th,y 4o + 54y, - 30y, + Z-ay,)
Ay = hf (X + 5 5 %0+ 5 8y, "5/ 892 " &Y * BT AYx )

£« 6 3¢ /0 8
Aj‘ = /;f(xo f?é)ga + 7—5.Ao({/ ¥ 75—_&52‘/' fdgl "fdffy)

2.3.3.4.4 Shanks Fifth Order Formula

. /o5 Soo <45 8/
A7 3229 7 532893 7 S8 7 55 AYs

a4, = hf(Xo 4,)

_ A A
A, = hF(Xo * 5000 ) J° "o00m

8Ys = hf(X, /3—;' ) Jo ~HOF T2y, + 405 4y, )

3h 202%/ 202350 /s
Ady = hf(Xo # 225 Jo + =—5—ay, - z 29:% 5 49s)
- g3/0%/ 93/3500 «%0 /72
Ajs- -/lf(Xo"‘/))go- Py, Ag,v‘ = Ajz~ Z/—A“ﬁ;f ?,‘434«)

2.3.3.4.5 Runge-Kutta-Fehlberg. This technique will provide sixth order
accuracy with only three derivative evaluations. The disadvantage is that it
requires extensive preliminary analysis of the particular problem involved
and therefore cannot be used as a general integration package. The procedure
is to form an auxiliary differential eguation and develop certain recursion
relations. Durham / Reference (2.22)_/ has applied this technique to the
restricted three-body problem and determined that it was superior to a

single step Lie series method, a multi-step Cowell method and a multi-step
Adams method. More information on this method can be found in References
(2.21) and (2.22)

2.3.3.4.6 Error Analysis. Error bounds for higher order formulas could not
be found although a derivation such as was done in section 2.3.3.2.7 could
be performed to yield them.
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2.3.3.4.7 Computational Procedure. The computational procedure is similar
to that of other method, and section 2.3.3.3.7 illustrates the technique.

2.3.3.5 Comparison

One comparison which can be made between the various Runge-Kutta form-
ulas is that in general for a given step size, the lower the order of the
method the less computation time required. The reduced computation time is
obtained at the expense of a larger truncation error. One exception to this
rule is the Fehlberg technique which trades speed in the actual computation
for extensive analysis of the particular equation whose solution is desired.
If the Runge-Kutta technique is to be used for the entire solution, the
technique such as the Runge-Kutta-Gill formulation which minimizes computer
storage and controls round-off should be used. On the other hand, if the
method is used to start a solution, the primary concern is with truncation
error, and the Runge-Kutta-Ralston formulas should be used.

In summary, it can be stated that the large number of derivatives which
must be evaluated at each step generally relegate the Runge-Kutta methods to
applications requiring special starting procedures or to solutions where only
a few points are calculated, and the slowness of the process if unimportant.
Although each individual problem is more suited to a particular order, if a
general recommendation is to be made, the fourth order methods will be chosen.
In particular for starting the solution, the fourth order Runge-Kutta-Ralston
should be used.
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2.3.4 PREDICTOR CORRECTOR METHODS

2.3.4.1 Introduction

Single step methods, such as Runge-Kutta (section 2.2.3), compute the
value of the functions, Yn+l, at xp+]1, by means of a formula which depends
only on x,, Yn» and the step size, h. After the first few points have been
computed, there is available a large amount of information which is not being
utilized; namely, the history of values of y. In an attempt to obtain greater
efficiency and accuracy, formulas have been derived which depend not only on
Yns, but on the prior values of the function; for example, yn.] and Yn-2.
These methods are called multi-step methods and have proved to be signifi-
cantly faster, for the same accuracy, than single step methods. This
advantage is obtained at the expense of some increase in complexity, for
multi-step methods are not self-starting; and therefore, a special starting
procedure is necessary.

Some multi-step methods develop two formulas - one for use as a pre-
dictor, and the other for use as a corrector. That is, one formula is used
to predict the next value of Ys> Yp+1- This value of Ypn+1 1s substituted into
the differential equation, and yﬂ+l is obtained. These values are used in
the corrector formula to obtain another "corrected" value of Yn+1+- The
difference between the predicted and corrected values of Yn+1 can be
monitored to evaluate the effectiveness of the corrector cycle. Multi-step
methods involving the use of two such formulas have naturally been called
predictor-corrector methods.

The most popular predictor-corrector methods are discussed in this
section as well as some of the more promising newer methods.

2.3.4.2 Adams Method

2.3.4.2.1 Discussion. The method of replacing the derivative of a function
by a polynomial and integrating that polynomial over an interval to obtain a
multi-step predictor formula was used by J. C. Adams as early as 1883. The
technique was developed in a text co-authored by F. Bashforth (Reference 2.23);
and probably for this reason, the method is sometimes called "Adams-Bashforth"
and sometimes simply "Adams".
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Although Adams did apply a corrective formula, the method bearing his
name usually involves a predictor formula only and will be so discussed in
this section.

2.3.4.2.2 Derivation of Equations. The integrand in the differential
equation y' = f(x, y) can be approximated with the polynomial formed by
Newton's backward-difference formula (Reference 2.12) using the N+l points

Xp-ns ++*> *n-1> *n
S ( - NV
¢ */)UZ’(ﬂf- ) s#0 L (S ED T fn

f = *
Nts {n ‘San ts 2! N’

h *S‘X‘

Vi, =Fn ~fa,

2r - -
V==Lt F=2f, #Tn-2

/

Integration of both sides of the differential equation from x, to x4 gives,
after changing the variable on the right-hand side from x to s.

’ U k
- = a, V £
f;lnvt/—jn #‘/'o/{,,rjds :h'l-/')kzza k n

where

/’ seser) ... (SEk=1) s
o k!

The leading terms of which are:
- ! 2, 303, 28 ger I 9S4 ),
gnr}’gn*h(/*zv"r%—v *8V f7zov Z&’Bv )¥n

This is the standard Adams',predictor equation in différence notation.

2.3.4.2.3 Truncation Error. The truncation error gorresponding to termi-
nating the series with the Nth difference of f, is

~ 2
£ =@y, h fzy(w 25 (Yﬂ-~< 13 "7/;,«-/)
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Error estimation for variable step size integration requires the computation
of an extra difference in order to estimate the higher derivative occurring
in the truncation error expression.

For example, when three differences are retained, the truncation error
incurred at each step is

257 ¢ v

720 479" (8)

and is approximated by 251/720 h gk r . The validity of replacing de-
rivativés by differences is provided bynthe relation‘f“kg):(v"n“{%/h“

2.3.4.2.4 Step Size Modification. Step size modification is generally
limited to halving or doubling, which can be performed repeatedly if
necessary. Doubling the step size is straight forward and involves only the
use of alternate points, thus no new information need be generated. When the
step size is halved, however, information not previously available will be
required; that is, the value of ¥ and y'=f halfway between the existing
points.

The following discussion presents a general method of interpolation.
The schematic:

4 f

n-4 n-4
™~
vf
n-3
B fn—} / \VZ £
\ / n-2
vf BN o3 ¢
n-2 Fn-z/ \vz f — IM\
\ / n-l 4
V'Fn_' \VJ f/ v fn
r £ ™~ 92 "
n-{ n-{ ///// n
™~ v,
£, 4;

73



shows that the subscript of the backward differences remains constant along
the back diagonal. It is evident then that Adams' method is an end-point
extrapolation, and once procedures have been specified for modifying the
differences of the end point any integration step size may be performed.

Let p" indicate the desired interpolation where 0O< p= 1. The step
size is halved when p = 3. In what follows: v denotes backward difference
at spacing h and ) denotes backward differences at spacing ¢ the general
relationship for the rth difference for a new spacing p in terms of the
differences at spacing h is:

(-v,) = [( I~ v)P—;] r:/o”{(~V)r+ r (':’)(- v)™

r(P-1)
+ Z—“II‘{((hz) + S(r_J)(P-/)](\v)r”'

+ Lﬁi[a(/’—z)(?-s) +&(r-D(P-r)(p-2) +(r«;)(r_z)(,o_,)z](-\7)'”'3 } .

44
Setting r - 1, 2, 3, and 4 provides the relationships: )

- Pl P-1)(P- 3 - (P-2)(P- «
V;:/V—F(ZI)VZ* ( /)“( )V _ 213 (P-2)(P-3) Y s

24
VIZ:IOLVZ_IOL(P_/)VB" (02 (_'7__;0(7(0—//)V4ff/-

V03:p3V3 ’%/"J(,O LAY
n
Vi =p vty

Setting p = 4 provides the relationships for halving the step size:

v vz v sv*
T - = = —
Vi= 7 tg T T ze
2. vE, o gd, & g«
3
3 _ __V_ 3 &%
4- v‘)‘
/ A

Setting p = 2 provides the relationships for doubling the step size: (direct

computation of the differences using alternate points previously computed will
also provide the modified differences)

Vv,=2v-?

Vi= 4vi-4vdiv®
vP=8v2-i2v*
VY o= e v*
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2.3.4.2.5 Starting and Restarting Procedure. The application of the Adams'
formula employing N differences requires N beginning points in addition to
the initial conditions.

The following is a possible method for generating the beginning values,
but is not seriously recommended as it requires a very small step size h.

The Runge-Kutta method will always provide adequate starting values, and
obviates the small step size requirement.

9= g0 *hYe

Yo = . +h[ 9]+ 5 vy, ]

A3 = gerh|[2: 75 vy, + 5 0y, ]

Yo * Gt h[ 9542 0G5 Vyie g 0ty ]

. "wd gy S w2 42 g3y 4 2SI ¥
%‘j#*h[%"zvjl"févg«fgv «? 350V 54‘]

2.3.4.2.6 Computational Procedure. The Adam's predictor formula employing
N differences requires N eqgidistant derivative values in addition to the
initial conditions. Once these starting values are obtained, every appli-
cation of the formula yields a new function value, the derivative value, of
which is obtained by evaluating the differential equation. When the corre-
sponding differences are formed, the predictor is again applied, and the
process continues requiring just one derivative value for each integration
step.

The estimate of truncation error is monitored at the completion of each
integration step. If the error is large, the differences are modified and
the step size is halved. Whereas if the truncation error is very small, the
differences are modified and the integration step is doubled. The process
continues with the step size unchanged when the truncation error tolerance
is satisfied, but indicates no excess of significant figures.

An arbitrary integration step size, h¥*, may be effected for the purpose
of satisfying constraints or printed output by modifying the differences such
that h¥ = h,

2.3.4.2.7 Advantages and Disadvantages. Advantages of the Adams' method
are:
1) Step size modification is readily accomplished.
2) Requires only one derivative evaluation per integration step.
3) An estimate of the truncation error is obtainable.

Disadvantages of the method are:

1) Requires a special starting/restarting procedure.
2) An extra difference is required to estimate the truncation error.
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2.3.4.3 Adams-Moulton Method

2.3.4.3.1 Discussion. Moulton in 1926 applied a corrector formula to the
Adams' predictor formula and the resulting method - known as the Adams-Moulton
multi-step method - has achieved widespread use. In fact, Adams-Moulton is
probably the most commonly used integration method for trajectory problems.

2.3.4.3.2 Derivation of Equations. The equations will be derived first in
difference form and then in ordinate form.

The differential equation is:
gty

The corrector formula is developed by approximately the integrand with
the polynomial formed by the N+l equally spaced points

Xpwsr 5 = 2 Xn, Xau

h= X ~ Xn
where

(s-D5732
FOEY) = Fres = Fpogt (=0 Uyt 5 Vs #
(s-D(8) (3#1) - - (S+N=-2Z) _y
* N ! v N+
where
v - kEn
S = (————h )
V{n =7‘-H_{n~/

V2, = Vfn =y, =l = 2=t * Tn-2
Both sides of the differential equation are then integrated from X, to X1

Ener Knts
j/%'d¥ i/g%*s ax
Ln “n
or
Ents
ynﬂ'gn =/ frts dx
En

The polynomial expression for f . is substituted into the right-hand side
and the variable is changed from x to s.

{ - z
Inr =dn *O/ [{nf/* (s~1) Vi, *(SZ/)‘SV ot T 00

(s-0s(s*1) - (srn=-2)
# T

V‘”fn,_,] s
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The integration yields the corrector formula

7 / / 19 Ky
_ _ 2 - L 2 _ 1 3 27 ot 3 - e
jm«/-ﬁn*/’[/ 2 V-V 54 V _720V"/'2_0V Jf'”'

The predictor and corrector formulas, in difference forms, are
- z S o22303, 8571 _«, 98 s
jm«/‘.%*%[/*zV*,zv*gV * v 7‘23871*...]{”

720
= edo L o214 3_/9 ¥_ 3 o5
It 7""}'[/ zV /27 24 v 720 v 160 ARIEEE 7(nw

The corrector formula in ordinate form is obtained by substituting the
ordinate definitions of the differences.

If differences through the third are retained and the ordinate form is
introduced, the predictor and corrector formulas are:

P _ A 257 ,
gﬂf/ -yn *8_4(55/” -$94,_, #3745 2 = 9%-3) v h“gv(g)

(¢ _ A /9
y’H/ = In *2‘3«(97{7*/ *7%, =S, *{n~2)"72—0 hgiu(i)

2.3.4.3.3 Truncation Error. Hildebrand shows an estimate of the truncation
error incurred in the step X, to X,+] to be:

/ (c) D)
E=2C | Inp ~Inn
where C = Z:: o |14 when third differences are retained
C:= SZi < |8 when fourth differences are retained

The motivation for applying the corrector formula is that its co-
efficients multiplying the derivative values and step size-derivative factor
in the truncation error expression are smaller than the corresponding co-
efficients in the associated predictor formula so that a greater accuracy is
expected.

It is to be noted that the smallness of the residual formed by successive
iterates of the corrector formula is & measure of only how well the difference
equation employed in the approximate integration is satisfied, and in no way
is a measure of difference between the iterate and the true solution of the
differential equation.

It is probably for this reason that most applications of predictor-cor-
rector type formulas apply the corrector only once per integration step.

2.3.4.3.4 Computational Procedures. The Adams-Moulton method requires
starting values commensurate with the order of the formula being used. These
values may be obtained by any procedure whatsoever, but are usually obtained
by a Runge-Kutta method.
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Once the starting values have been obtained, the predictor formula is
applied and a new function value is determined. The corresponding derivative
value is obtained by evaluating the differential equation. The previous
values and this first estimate of the derivative are then substituted into
the corrector formula, and a second or corrected function value is determined.
The corresponding derivative value is then obtained and can be resubstituted
into the corrector formula. This iteration of the corrector formula may be
continued until there is no significant change in successive iterates. How-
ever, it is usual to apply the corrector only once per integration step. In
any event, the local truncation error is proportiomal to the difference
between the predicted and final corrected value, and provides an effective
basis for variable step size integration.

The step size is diminished whenever the truncation error tolerance is
exceeded, and increased when the truncation error is well within the speci-
fied tolerance. When the specified truncation error tolerance is satisfied
but indicates no excess of significant figures, the process continues with
the step size unchanged.

The procedure for interpolation of midpoints is available for obtaining
a sequence of points at half the step size. Whereas forming a partition
utilizing alternate values previously computed provide the necessary data for
doubling the step size. The Runge-Kutta procedure is often used to generate
a halved or doubled sequence of values necessary to insure an optimum step
size throughout the computation. Since the procedure of interpolation or the
selection of alternate values yields the same or better accuracy with far less
computation, this use of Runge-Kutta is not recommended. The problem of
obtaining output or function values corresponding to a non-integrated point
of the interval is also optimally determined by interpolation.

2.3.4.3.5 Advantages and Disadvantages. Advantages of the Adams-loulton
method are:

1)  Potentially more accurate than Adams' method.
2)  An estimate of the truncation error is obtained.

Disadvantages are:

1) Requires a special starting/restarting procedure.
2) Requires at least two derivative evaluations per integration step.

2.3.4.4 Lanczos Method

2.3.4.4.1 Discussion. lMost multi-step predictor methods make use of the
function value at one previous point and the derivative values at several
previous points (most commonly at 5). Lanczos (Reference 2.11), however,

has derived a family of predictor formulas that make use of both function
values and derivative values at the previous points. This form of solution
allows development of what Lanczos calls "extrapolation of maximum efficiency”
and "extrapolations of minimum round-off."
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The Lanczos method, unlike some other methods (e.g., Adams-Moulton),
does not have a long operational history from which to draw experience.
Therefore, evaluation for trajectory problems is not complete.

2.3.4.4.2 Derivation of Equations. Generally, multi-step predictor methods
take the following form

m m

However, Lanczos, in order to be completely general and include all possi-
bilities, considered this problem in the light of Lagrangian interpolation in
which every point of interpolation is a double point consisting of function
and derivative. That is, instead of matching the interpolating polynomial at
function values only, Lanczos matched both functional values and derivatives.
In this way, he obtained

m 2
<m»/) 2m (2m)
= £+ / —_— -
I ,(ZZ;(“&«"W« P 2t G PR (hemn <X <)
where
A, = ( ™\ [/-24 L7‘—/7‘ o —
k’(k)[ /- k 2-k ) m-A}J
and
4 = ( <)k

Q/Z(/ (Zq) A éle 6/"’0/’7/&/ Coef.ﬂ'C/.ﬂ*
(m}_ m (m-k)/!
k/ - < !

Identifying m with 1, 2, 3, 4 he obtains the following sequence of formulas
called "extrapolations of maximum efficiency. "

_ / /)Z yevi m=1
g(/ _<70+/'30 f?o(f ()() mz=2z
_ B , h" 1474 v
ng ~-‘4'{:/"-‘5-‘::7::"ﬁb(ﬁl«?/~'L25¢>)" 7 (Z) m=3
gt ra e DL (O,
3= T8 15y, +10y, £ (94 r /8yl +34, )4 2o (¥ =

/zﬁ 7 ’ s ’ 68 —
Jo® " T 9T v bk s B G rh gy rrzy raairtg]) e By Ply)
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Inspection shows that the y ordinates are multiplied by factors larger than

1; therefore, whenever these formula are used in a repetitive fashion, small
errors from a previous step will be subject to rapid amplification and quickly
dominate the solution. However, the fact that these formulas are unstable
does not preclude their use in special situations such as in starting/re-
starting procedures.

Noting this feature of his solution, Lanczos then abandoned the concept
of matching both function values and the derivatives at every point in favor
of an approach which attempts to match only the derivatives at each point.
As a portion of this process, he imposed conditions necessary for numerical
stability by letting

- = - -
A, = A, e R
and showed that the function contribution of the formula to be the arithmetic

mean

7/.7(30"5/+' © T ‘gm—/)

minimized the effect of rounding errors (the best statistical averaging of
random errors is obtained by the arithmetic mean). Another, more practiced,
reason for choosing the & small is that £ ; are given a greater role, and
since these coefficients are not effected to the same degree with noise (the
derivatives are determined by the differential equations) the accuracy of the
solution is expected to be improved.

Subject to these conditions, the general predictor becomes:

m
/ 4
Yoo = 5y 2, #e oo e P L P S
The remaining coefficients £ can be uniquely determined by the method
of undetermined factors. This family is called "extrapolations of minimum
round-off" and follows for m=l to m=5. m=/

, . Akt
%1/': pq/*'b§1o'* Z ﬁ,,

3
’2)

=M A ’ ’ 3 "
ﬁ(zf 2"4:(75/ 50)*8/73;1
=3

3

_ ﬁ , ’ ’ /3 &L g
Ys= M3t 20139 =% #35]) + b s
mz=¥
= _ﬁ — ’ ’ 9S8 1S, (S
Yy = M 10 (1235, - 795+ 8947134, ) # 538 #T 4"
m=s
pld

- A ’ ’ p ’, , ¢/
Y= Ms t52 (697 4l ~6Bby! # 936y, 3224 ~954) ) * oo h‘;C‘)
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where

Mm:r\écjo"gl LRI +3m—/)

2.3.4.4.3 Truncation Error. After applying a predictor formula to obtain
Jm from a given set of y, 7 and Ym-1 data, an estimate of the truncation
error is necessary to ensure the specified accuracy of the solution. Since
the higher derivatives are not easily obtainable, an alternate approach would
be to use the same set of Ym-1 and yy; 7 data and extrapolate to Ym+1+ This
is a reference value only and will be éenoted by ¥mi+1- The difference ( A )
between the reference value Ym+1 and ¥4 obtained from the predictor serves
to estimate the truncation error (n) and provide as effective criterion for
variable step size integration. This truncation estimate assumes y ?X)

does not change drastically as the scheme proceeds from y, to Yot

Lanczos lists the following reference value formulas for m=l to m=5,

— — m=/
Y, = M r2hy; F2hEy" (1) =033
m =2
7 - h 4 ‘ &f 3 t va by
53 = Mz+7(/7jl—7ﬁo)f§h; (X) n=o.za
m=3
- A r ’ ’ i‘&s‘ “« 1107 =
Y, =M+ A(7%9, ~729]+ 2947) + 32 44y (%) n:o.re8
m=«
— A , , , €277, - ;
Ts =My jg(#95g -6esy; RSNy =12340) F s /’SJCOCD = orsa
) =5
— A .
- Z &« ) [ 4 ’ _ )
T= 15 %50 (49119592204 102 72y - S1104; #1093y, )
2738 ¢ (o), n=o
? xwo P g9 (%) e

2.3.4.4.4 Step Size Modification. As in previous methods, doubling the step
size is straightforward since existing function values can be utilized if
they are stored. When the step size is halved, Lanczos lists the following
formulas in matrix notation for midpoint interpolation. The notation Yol
refers to the midpoint value of y halfway between Yo and yq, similarly Y12

to the midpoint value of y halfway between Y1 and yo , and so on. It is
tacitly understood that the arithmetic-mean M is added to the tabular products
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=2

hyé hyi
1 -1 ~-8
Iyl =
hyé hyi hyé
YOl: 2 —ll -3
= 24
V15 3 11 -2
m=4
hyd hy{ hy) hyj
Yol= 75 205  -163  -31
y12= 31 147 ~-147 -31 = 384
Y23~ 31 163 205 -15
g
1 1 1 1 1
hyo hy1 hy2 hy3 hyé
yo1= 348 7518  -5454  -3930 =726
y12= 19 3178 -5178  =3794 =760 + 11520
Y23~ 760 3794 5178  -3178 =794
ya,= 726 3930 Su5L 7518 -3uB

2.3.4.4.5 Computational Procedure. The initial conditions and the m equally
spaced function and derivative values which the starting procedure provides,
comprose mtl equidistant function and derivative values necessary for evalu-
ation of the predictor and reference value formulas.

The predictor formula is applied to the first m function and derivative
values. This result is compared with the mtl function value. If the speci-
fied accuracy is not met, a new starting sequence of m+l function and de-
rivative values must be obtained. If the specified accuracy is met, the
reference value for the next integration step is obtained by evaluating the
corresponding reference value formula again using the first m function and
derivative values.
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The successful completion of one integration step then yields a new
function value from which the derivative may be evaluated, and a reference
function value to be used for comparison at the completion of the next inte-
gration step.

Diminishing the integration step size when the truncation error exceeds
the specified tolerance is accomplished by applying the midpoint interpolation
formulas, thereby obtaining a partition at half the step size.

Increasing the integration step size when the truncation error is well
within the specified tolerance is accomplished by deleting every other
function and derivative value, thereby obtaining a partition at twice the
step size.

2.3.4.4.6 Advantages and Disadvantages.
Advantages

1) Requires only one derivative evaluation per integration step.

2) Provides an estimate of the truncation error.

3) Makes available a matrix of local function and derivative history
applicable to interpolation for the purpose of satisfying con-
straints or printed output without recourse to integration.

Disadvantages
1) Requires a special starting/restarting procedure.
2) Convenient step-size modification is limited to halving or

doubling.

2.3.4.5 Nordsieck Method

2.3.4.5.1 Discussion. Nordsieck, by noting that all numerical methods of
integration are equivalent to obtaining an approximating polynomial for v(x),
derives a family of methods that is based on the higher derivatives of the
approximating polynomial rather than the usual past function and derivative
values. The main advantage of such an approach is that the procedure is
nearly interval-independent since the higher derivatives at the current point
specify the same polynomial regardless of the interval size. Care should be
exercised, however, in the use of the method because the effect of noise in-
herent in the calculation of the higher order differences which are matched
by the approximating polynomial has not been resolved, at least in the
literature reviewed for this monograph. Thus, while the method is theore-
tically accurate, practical restrictions in the mechanization of the solution
may arise.

2.3.4.5.2 Derivation of Equations. Nordsieck first approximated the function

y(x) by a polynomial, denoted here by Po(x) (indicating fifth order). He then
considered the Taylor series expansion

y(xrh) = ;(z)%ﬁ{{(z,g(u)*zﬁ’ %,,“)*3_;,’_2%,”(1)

h3 147 /7“ 1001
too R P (7:)}
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where for the fifth degree approximating polynomial A (X)= y(x), Pe(x)= f(x, GO .

The quantities

- /) ll - iZ e
a(yy = = &7(0 60K =3, A7)
h3 71/ “ vr27¢
c(v) = — A" (W a(x = —h—f’ (z)

are chosen for a parameter set as they are reasonably controllable due to the
step size h and their relation to a change of interval being simply a multi-

plication by a constant.

Suppose that the step size is changed from h to « h then the parameters
a, b, ¢ and d are modified as follows:

- Z
Co(h = 0(3C/’
Aah = A

The Taylor series expansion terminated at hb then yields
y (xrh) = j(x)v‘h{«([x b()m]\\ alx) +6 (X)) c{x)+d (x) v‘/[f()ﬁl« g(XH\) ,,]}

where "2 {{x,400]+2a0) +3bLO ¥ “4c () # S (%) (the predicted
value of FUx +w,y Cx+ h)1 )

A Taylor series expansion can also be written for {[x, 40> 1 in terms of

alxy , bexd y cx)y and d (x)
FLeen, greny]=f [")'J(-‘)] t2a(k)t 3K+ 4c (D) +Sd(L)
MECTNVIINE 7]

Similarly, expansions can be written for adCx), ©ix),
Alx+4) = alk) +3b(¥) + =3 P
(W +ecluyt 040+ 7 [f(u/,lg(z.,/,))..f ]

C(x) and doxy

6CErh) = b(k) ¥ % (¥)£/0d (k) # gza [f(w;,) gczﬁ.)) ~ fP_]
curh) = cC) #8ade) ¢ L [f(xeh, yCurn)) - 57 ]

d(wh) = a(x) +/ [f(xrh , yCrra)) - 57 ]
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Nordsieck's analysis shows that the replacement of the six coefficients
1/6, 1, 15/6, 20/6, 15/6, 1 multiplying the L 1 term by the new coefficients
95/288, 1, 25/2i, 35/72, 5/.8, 1/120 provide an essentially optimum choice
with respect to stability and minimum degradation of accuracy. This choice
of coefficients then leads to a set of working equations, which Nordsieck
recommends as the best choice of the possible lower and higher order versions
of the method for a large-scale digital computer. It is to be noted that his
experimentation and conclusions are dependent upon "fixed-point" (i.e., a
method of caleculation in which the operator must keep track of the decimal
point as with a slide rule) arithmetic procedures; and, therefore, the
relative merits of a "floating-point" (a method of calculation which
automatically accounts for the location of the decimal point) version remain
conjectural. However, it would appear that double precision for all com-
putations except for derivative evaluations and convergence tests would
provide the same results. This extended precision would undoubtedly be
necessary in any event if high accuracy over a large integration interval is
to be maintained.

Working equations corresponding to a fifth degree approximating
polynomial for y(x) with corresponding truncation error estimate are:

Y(¥+hn) = YW +h {f[z,g(z)] Ya(¥) + bk +ely)
F = 1]z ‘;1(x>] +Za{E) +3b(X) +#c(X) £Sd (L)

a(x+h) = a(x) +36C¥) + G () riod (k) + zélz{{[““‘ﬂl“‘”‘)] - fP}

{

bluth) = blr) +4e(1) +10d(¥) + 22 {ctuw,gmm] -7}

c(Lrh)= (XY +5d () *;; {{[Hh)g(uh)] ~f”}
/ P
d(keh) = dCx) + 72'5{4'[141-11,;(?!%)]‘{ }

7
E, = (8¢3/12) 7i, g

223.4.5.3 Starting. The starting problem, namely to determine y, f, a, b,

¢, d, atX+ h given only the initial conditions and the differential equation
is a rather intricate procedure. The essential idea is to assume abnormal
values of a, b, ¢, d (namely zero), in absence of any estimate as to their
normal initial values; and to assume that after integrating a few steps that
they will have approximately their normal values. The process Nordsieck
outlines consists of integrating forward several steps then reversing the
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sense of integration and integrating backwards, thereby arriving at the
starting point with ¥y ( x) somewhat in error but with first approximations

to a, b, ¢, and d. The correct value of y (x) (as specified by the initial
conditions) is reinserted; then the process of integrating forward several
steps, reversing the sense of integration, and integrating backwards is re-
peated. This process is continued until the computed value of yo converges

+o the given value of y,. The computational logic for starting is illustrated
in the accompanying flow chart.
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Figure 3.3

LOGIC FOR THE STARTING PROCEDURE IN NORDSIECK 'S METHOD

(BEGIN STARTING PROCEDURE )

F;

a(x):=0
4(x)=0
c(%) =0
o (x)=0

alz+£)=alz)+ SB(x)+6¢(x) + /0d(x)
Hx+h)= b(x)+ YeCz) s 10d(z )y
ClzrAh)= e(z) + 5d(x)
dlx ¢ £)= diz)

'

/(Zi £) =ty(x) * /([z:, ?(z)]fa(z) + 4 (z) +C(Z) 4 (z)

[

Integrate another Yes
step forward?

Integrate another

X step backward?

set  xZ=x+A o
and oy s ey
Set

ang K ¥iA _J

zt A= x

Is the difference betwe
the computed yo and the
given Yo less than £ ¢

esubstitute the correct valtﬁ
of ¢4, and integrate forward

and backward again to get
No better approximation to a(y,

b(l’); C(K)) d(k)

Yes

Starting Procedure is complete .
Accept final values of

afz)y blz)y Clx) and d(x)
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234504 Computational Procedure. The procedure for continuing the integra-
tion process, i.e., the solution of the working equations listed previous%%_is
not unique and should be performed as follows: A first-predicted value Y )
(xth)is obtained by omitting the bracketed term, then a first approximation
to the correct derivative is obtained by (1) (xmh)=f [xrh,y 1) (xth)/ .
The corrected value y(2) (xth) is then obtained by including the bracketed
term. The second and . final approximation to the correct derivagive value is
obtained by f/xth,y 2) (xth)/ . The final corrected valus y{3) (xth) is
then obtained by again including the bracketed term (see flow chart). Each
cycle of the integration process includes the tests

B> 2) =L ) _ )
‘ %b ﬁL maox -8 %L %L Mmay
and

\ £.0x+h)- N s 8 %/1Inl

‘ max

where e is a specifiable positive integer and "max" means the largest value
obtained from the system of differential equations. The first test insures
stability, in that the iteration error is overshadowed by the truncation
error. The second test bounds the truncation error for a single integration
step. The context of e here is then the local preservation of the eth digit
in the solution.

The integration step size selected is then the largest value that satis-
fies the above tests. Nordsieck includes four minor modifications of these
tests in order to improve the usefulness and efficiency of the method and
the smoothness of automatic interval control.

2.3.4.5.5 Advantages and Disadvantages. Advantages of the Nordsieck method
are:

1. Step size modification is readily accomplished.

2. An estimate of the truncation error is obtained.

3, Step size is selected so as to insure stability.

L. Capable of high accuracy for a large number of integration steps.
Disadvantages are:

1. Requires a special starting/restarting procedure.

2. Requires two derivative evaluations per integration step.

3, The desirability of this method, when used with fixed-word length

computers, is questionable since the higher orders differences are
inherently noisy.
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Table 3.4. Logic for the Continuation of Nordsieck'

{ Begin the integration \
| step /

Rk B

é(w(zfl) =?/(x) *i{[_z,}/(z)] +*alx) +}(z)+ccz)f—a(x)}
/%x#f):/[:&f 7{, %m(xfi)]

/P= /[ x,%(z)] +t2a(x)+ 34y +4elx) + Sdcx)

@z £)= y(z)hf{pp[z, (z)] ta(x) + Blx) +e(x)+ dix)
4 +[/‘"(zf ,f)?-,f P]]
/m(xnf) =—/[2:f [,y"(xf [)]

f’”(zn?)= g x) + A {/[z,y ()] +acz)+ Bex) +clx)rd (x)

+[/{z}zli) —/P]}

End of the integration
| step

L -4

Set ¥- z¢ A
Should integration Yes and
continue? YA =u 424

s Integration

S o ces

|/ End of Integration \I
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2.3.4.6 §° Method

2.3.4.6.,1 Discussion. The 52 method is developed by doubly integrating an
interpolation formula involving finite differences (the finite difference oper-
ator is )., The method is of interest because it provides a direct method for
integrating second-order differential equations without reducing them to a
system of first-order equations. If the force is conservative, as 1s the case
with many astronomical and physical problems, then the first derivative need
not be evaluated as part of a step by stsp integrating process; and the double
integration performed directly by the b equations is simpler and faster than
two single integrations by a & formula (single integration of the interpola-
tion formula) or related methods such as Adams-Bashforth, If the accelerations
are a function of velocity, then it will be necessary to use the 8 equations

to obtain this quantity. However, it is still desirable to oBtain position

by the 82 formula rather than by two applications of the & formula. (Refer-
ence 2.24).

2.3.4.6.2 Derivation of Equations. The derivation of 82 formulas begins by
approximating the second-order function being integrated with a polynomial and
by integrating the result twice to give the desired equations, The approxi-
mating polynomial for the second derivative is derived from formulas for inter-
polation or extrapolation, For this section, the §2 equation, which results
from the use of Stirling central difference interpolation formula, is devel~
oped. It should be noted that if a different interpolation formula is used to
approximate y", a different but equally valid 52 eguation will result; for
example, Scarborough (Reference 2.10) developed &< equations using Newton's
formula for backward interpolation.

Stirling's central difference formula can be found in any standard text
on numerical analysis and is simply reproduced below

12 SZ 2, 7
= ¢ 4 " - /
4" =Gy TIMEG T T O g (3.43)

8 = central difference operator(ﬁxnlrl Xnsve Xn- s

u

averaging operator [ux,, = 7Z(xn*w1+-x“__vl)]

Integration of equation (3.43) with respect to x yields

7 - /, ( 1 Sa I 5 J z 7
g’ = jnj";/léjn* z 5;n+...)fc
At this point, the value of the constant C is determined by substituting x = Xj
in equation (3,43). If x =X, then y =y, and the constant is seen to be
c = yﬁ. Thus, if C is replaced by yﬁ and another integration performed, the
result is

90



529, 53 S*
9= hsy, +/72(%) U LA 8542 + .. Dsgt

The constant ¢! is now evaluated by requiring that y = yn 8t x =x,. The
result is ¢! = y,,.

52‘701: 53 S« 2

= ’ P-4 ’ o

Values of y at y = Yyn-1 and y = Yn+1 are now determined by evaluating the
equation at the points x = Xp-1 and x =4 (i.e., at X4y =x, t h).

W A, 89,

In-1 = JIn _bfn, */)2( i ) _6—6‘;7” ’ Z{” o ) (3.4)
n 4 AEG) /

Jr+/ =jn*ﬁy,i*/"(‘i_ * 6," * Z‘Szjn""‘) (3.45)

Addition of equations (3.44) and (3.45) now gives

_ 2( “ / 6‘2 _ / 5« " 4 3/ 56 II* )
Ires P dn-1 “ZIn =H(Gn * 58 9, = 558 4, co%so ° G
Since 85 X, = Ynrl T 2wt Yal, s equation (3.46) can be
written in its final form
2 < L2 / 2 / ¥ i e
5 Xn “'/) (g,/; +/—26 é’n ZTOJ (7)7 +60 «B80 3 ;ﬂ * ) (BOLP?)

2.3.4.6.3 Truncation Error. In order to obtain a solution for Yn41 by the
use of the equations derived in the last section, it is necessary to know
the values of higher order differences such as § Yp » 87 ¥» etc. Since
these values cannot be calculated directly without yth s> it is neces-
sary to approximate y and y at the next epoch by a truncated series and sub-
sequently, estimate the desired derivatives. With these approximate values
of 8y, etc., a corrected valculation for Jn+1l can be made, This corrected
estimate can then be used to obtain a more accurate estimate of the higher
differences needed in the equation for Yn+y and a new value for Yn+1 can be
found if desired. The difference between the preliminary values of Yn+1 and
the corrected value will serve as an estimate of the truncation error, "It
should be noted that the actual truncation error cannot be obtained by this
technique; however, it provides a criterion for selecting the proper step size,

2.3.4.6.4 Step Size Modification, Any change in step size which increases
the previous step size by an integer amount is easily handled by simple delet-
ing the unwanted solution values provided sufficient preceding solution points
have been retained, 1In general, unless all previous solution points have been
retained, the number of previous solution points available will be less than
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the minimum number required to increase the step size. In such a case, the
solution simply proceeds with the current increment until the minimum number
required to change the step is reached. If the step size is to be decreased,
solution points must be generated within the intervals of the previous steps.
Generation of these points is easily accomplished by the use of an interpola-
tion formula. The accuracy of the interpolated points can be made the same
as the original solution points by choosing a suitably high-order interpola-
tion formula. A selection of interpolation formulas suitable for this pur-
pose can be found in Hildebrand., (Reference 2.12).

2.3.4.6.5 Computational Procedure., The use of the 82 formula will be illus-
trated by performing one step in the solution of the equation

X = -x (3.48)

This example is reproduced by consent of Dr. S. Herrick (Reference 2.25 ). It
is assumed that a starting procedure is available which has generated the data
in Table 1 which corresponds to the beginning of n = 9 step. The values in
parentheses are part of the calculation of the step n = 9 and are described
below. The last values in the several columns (except those in parentheses)
are X8,8X7W_,61X7,5X7v1)5‘X7,63X1hJ84Xb , and 8 Xg¢vy, ; those values are
correct within the limits of rounding error. The first step in the calcula-
tion is to estimate 82 ¥g . This estimate can be obtained from the equa-
tion

3 ¥ s
52K, = 8%y, + 8 Xn sy # 8Ky 28 X2y (3.49)

This equation is obtained by assuming that 5° X -z is zero and working back-
ward by substituting the definition of §° etc., A similar expression for
§¥%n 1s

7 .
8Ky = " Xp2* 28K, 51, (3.50)

Using equation (3.49) and equation (3.50) and the data in Table 3.4, there is
obtained

5‘)‘(‘8 - L4368 F 7ISO - 566 -89
= 77663
(3.51)
s¥ Xg = - 366178
= - 7 KL

The values from equation (3.51) are now used in the 52 equation developed in
Section 2.3.4.5.3, i.e.,

52K, =h3(gy * U2 8°9) ~ V2n089y)
So
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5°Xg = .o/ (~.7/7356/ + .0a597/|9+. 0000003’/ )

= —.007/67586 (3.52)

The vertical lines in equation (3.51) are drawn to set off the digits that are
carried only to reduce the accumulation of round-off error. This value, from

equation (3,51) is entered in Table 1 in parenthesis and is used to calculate

Xg from the relation 8% x,=X,,, 2Xn *+ ¥Xn-1 -

Xg = 783320723 (3.53)

If it is desired to correct this value of Xq, the procedure would be to obtain
X, from the equation (3.48) using equation (3.53) as the value of Xg. The
differences & X1 and 5‘X4 would then be determined by differencing. The
estimated differences are then used in equation (3.47) to predict a value of

X, which may be compared with the value obtained irn equation (3.53 to deter-
mine if any significant change has been made.

2.3.4.6.6 Advantages and Disadvantages. One advantage of the 5 is its
relative speed in solving a second-order differential equation as compared to
methods which reduce the second-order differential equation to a system of
first-order equations and perform two single integrations. Further, it will
be more accurate than such methods because there will be truncation error for
each of the variables in the system of first-order equations. One disadvan-
tage is that, like other multi-step methods, a separate starting procedure is
required., The method is not as desirable as the Gauss-Jackson method, which
also directly integrates a second-order differential equation. (Gauss-Jackson
is discussed in the next section.

2.3.4.7 S 2 (Gauss-Jackson) Method

2.3.4.7.1 Discussion. The $<° or Gauss-Jackson method is, like the & 2
method from which it is derived, another method which directly integrates a
second-order differential equation. (S 1is the inverse operation for §). As
was the case with the 5 2 method, double integration by the 52 formula is
simpler and faster than two s%ngle integrations. The % method provides a
degree of smoothing to the §< equations by effectively shifting the coeffi-
cients of the higher order differences so that errors in these quantities
nave less effect on the value of the solution point. /Compare equation (3.47)
with equation (3.5527. Thus, the = 2 method converges petter than the §
method and for this reason is generally preferrable, The remark made for the
§ procedure that the solution for position should be made independently of
the solution for velocity (i.e., a single calculation for position by the z 2
formula rather than repetive single integrations) is equally valid for the =
method,

2.3.4.7.2 Derivation of Equatigns. In the derivation presented here, the 2.2

formula is obtained from the & < formula of Section 2.2.4.5.3 by considering
5 to be an operator whose inverse is > . (The ¥ operator bears the same
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relation to the integral operator as the 5 operator bears to the differential
operator.) Consider the operator 8 transforms X according to the equation

6 = - L ]
Thus, if £ is the inverse of & s the following equation must hold

(8 x)=x,

Substituting equation (3,5.) for SXh now gives

2 Xn-r% - 2 Xn- - Xn

Nt

or

26, = Ay v 2%, (3.55)

ob—

If the set of numbers under consideration begins with X ,» then it will be
necessary to arbitrarily define > X_.. Such an arbitrary definition should
not seem strange in view of the relation between the S operator and the inte-
gral operator which it is recalled that an arbitrary constant, dependent upon
initial conditions, is required for integration.

Now consider the szzformula-from Section 2.2.A.5.2
2 2 ” Y/ 4 £ 2" 3L L4
S ﬁ:é’ (?/.+/125}/“ -’/24/057‘- + Ybowso 5‘7,

3

289

3628800
Applying the ¥ operator twice to this equation yields the 52 integration
formula

58;/”*—. L)

2z 2 / / 2 3/ Y 4 289 & .
i S Yy N/ Sy 8%4 4. ..
A AT 24 an O H *soge0 97 T5azes S 4 (3.56)

An equivalent backward-difference predictor formula, the " Zii" formula, can
be similarly derived and is written below

Y 2. s / /9 2
X, = h2(3 Livs * 72 X, *,—.25l<-//a" 52,8°%,_,

/8 3. 726 g /eSO s
T Y-y * 5758 8 ¥ gt Z%,92 S Zé"Z'/z 7‘) (3.57)

It is significant to note in both of these equations that the coefficients of
the various powers have been shifted, thereby permitting larger estimation
errors to occur without penalty in the "$ 2" method as opposed to the ng2n
method.

Since equation (3.56) is effectively a double integration, there are two
arbitrarily constants to be evaluated. A special starting procedure is
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assumed to be available to generate sufficient points so that the cqpstants
can be evaluated. An equation for these constants (% yq_and S “y2 ) is
obtained by rearranging equation (3,56)

Diyr=t-L oot s%yr -2 8% ¢ E2T 5y
¥ T 1z 290 ° # 60480 " 7 7 3628800 3.58)
289
” _L _ L / 2 u _ 31 q 6 .
Z/ £, /z 24/0 7z 60480 7z * 3628800

With these initial conditions, a sum table can be constructed in the same
manner that a difference table is constructed. The sum table will have three
columns : a Zlg; column; a ¥4,, column; and a Y% column. The 4% column
can be filled in by_the use of a suitable startlng procedure and the first

two terms in the S<2 column are calculated by equation (3.58). If the s
operator is applied to equation (3.54) the result is

EXV\ = len+ l/.,__ Z Xy\-l/_,, (3059)

This equation allows the calculation of the first member in the ¥ column using
>%x, and $%x,. The rest of the table is then completed by repetitive applica-
tion of equations (3.59) and (3.55).

sy 2y g

EZ " (2‘3”\‘/7) I
P T~ S ‘3” .. / 2

i =

> 2‘33/,_

2‘34

Thus, for those problems in which the force field is conservative (i.e.,
the acceleration is a function only of the coordinates not the rates), the
complete ephemeris can be generated without determining the velocity. However,
while this capability is very useful in certain problems, it is not compatible
with most of the problems of common interest. Thus, it is necessary to develop
the first integral as well. This process is performed in exactly the same
manner as was outlined for the double integral, The result is:

/- A[/Z(E ZZ* Yz > Zé’f///z) ‘//Z«(é Zél*yzf 524"772 )

(3.60)
/4«0(5 ZAv"/z 76 Z:u—//z) ]

Before continuing, it is noted that this equation provides a means of
evaluating the second "constant® of integration based on the initial condi-
tions uncontaminated directly by the noise in the integral at a point along
the trajectory as in equation (3.59). This feature is derived by solving
equation (3.60) for the averaged first sum at the epoch of the initial condi-
tion
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1
Y2 3

. - Xe o ¥
FEX, ) : T2 (BXy, T EX )

- Il E Ve
o (87X, 16%°X_,,)

19¢
20960

~ < .-
<5 X;/?_ f 5 X‘I/z>

X,
and then making use of the fact that

')'(b = Z XI/Z - Z 5(._,/2

s(‘o'f' szgl/z = ZX|/7_+ ZX-—’/Z

25 X,

I

To yield

Y2 ©

Therefore, it is possible to construct the sum table without differencing
two computed second sums,
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2.3.4.7.3 Truncation Error. As with the 2;2 method, a measure of the trun-
cation error may be obtained by comparing the resulting value for xn+]
calculated from equation (3.59) with that calculated from equation (3.60).
Again, while the difference is not a pure function of truncation of the series,
it does serve as an effective means of estimating the error involved in the
mechanization of the solution process.

2.3.4.7.4 Step Size Modification. The discussion on step size modification
made for the 3§ 2 procedure applies equally to the ‘2? method that dis-
cussion is found in section 2.2.4.6.4.

2.3.4.7.5 Computational Procedure. The following discussion is reproduced,
with a few modifications, from Herrick's book on astrodynamics (Reference
2.2.5) by consent of the author. The equation for solving a second order
differential equation is

L e
¥ 8% ) (3.61)

_prpty
’Zl'ﬂ - { (2 zu-/ +/2 cr 240 (vl

where h = T{;1 -7 is the uniform interval of the argument. The problem to

be illustrated is the solution of the equation
Z(r)=-x(7) , z(0) =0

The analytic solution is recognized to be
X = sum ¥

Table 3.5 shows the £° integration table for the example above. It is noted
that the table omits the decimal place in the differences of x since the last
digit may be recognized as being in the 7th decimal place.

In the several columns of Table 1, the last values above the dashed line
are known at the beginning of the integration step to be illustrated. These
are izk,‘:-&[)lei-fl/l)il.' )5).('4:-’/2_)51%/:—:)52-/’/1)8“5(,[—1 3 55 5(4'—2//2_ where
i=8, it1=9. The first operation in the integration is the prediction of X C4
Xi+1+ This objective can be accomplished in two distinctly different modes.
The first and most accurate mode, in general, would be to step the function
and its first derivative using the predictor formula; then, the equations
of motion waquld be solved to yield the predicted acceleration. In contrast,
the second mode employs the summation of the last acceleration and the
differences along the trailing diagonal containing the last known accele-
ration (this process is equivalent to assuming that the last difference being
carried is invariant to a sufficient degree) to eliminate one of the required
functional evaluations. For the purpose of the sample problem, the simple
expansion technique is assumed completely adequate
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_ .. 2_,' 3 Py S‘",
Kirs * ZLfSZL'-//ZfS zl*/*é Z‘-_/,/’_"S -z XL opt
= -0.7/7,35¢1 ~73,/38% #£¢, 4368 * 7750 ~ 546 - o¥ 4 ...

= ~0.783,3/93% # . .. =~ 783,3282

Szi' = 2 3”. “« .. <
bur S8 T BBy FBER P EE Xyt

n

*C,4368 # /,5900 -sc98 -0% £ . ..

i

#7,8570% # . 4 7,82/%

#Note that the 5th difference is replaced by O in order to show that a large
error (+76) can be introduced into the estimation process in the $2<
procedure without requiring a corrector cycle such as that made necessary by
a smaller error in the & procedure.

By equation (3.61), using h = T4 - 75 = 0.1,
2, /. / ..
z, = AT i, * 7 i a0 621‘.', +..)
=0.0/ (+78.398,00|2
65,277
- 313+...)
= 00/ (+78.332,6912+...)

- +0.783,3269
(The vertical line is drawn to set off digits that are carried only to
reduce the accumulation of rounding error). Then the value

Xﬁ», = - X4, = ~D.783,3269 (for this sample)

is entered into Table 1 and summed and differenced to obtain the numbers in
the diagonal below the dashed line. These values are correct, and the cycle
is complete, as the reader may verify by COmpéring them with the analytic
solution.

2.3.4.7.6 Advantages and Disadvantages. The main advantage of the = 2
method, as with the & < method, is the speed with which second order diffeg—
ential equations involving only conservative forces, are handled. The =
method is, however, less subject to round off error problems than the & 2
method because of the smaller coefficients for the higher order differences.
Thus, the S 2 method generally accomplishes with a "predictor" alone what the
§ 2 procedure (and other related procedures such as Adams-Bashforth) require
a "predictor" and "corrector” to accomplish. However, it is generally a good
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idea to provide a "corrector" for the S < method, even though it isn't

always required, to assure consistency and provide a higher level of stability.

The method suffers from the usual multi-step starting problems (i.e., it is
not self starting).
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2.3.5 STARTING PROCEDURES

2.3.5.1 Starting by Taylor Series

2.3.5.1.1 Discussion. One of the most straightforward methods of finding
the matrix of starting values for those routines which require them is to
determine the coefficients of a Taylor expansicn

# y “s* n n s” arl (n4l)) SM‘
ST vy

P ?(Z + As) = fa+7ffas+

(3.62)

5= i/ntejer

b= X — X,

where the last term compensates for the error and Xo = § < Xo + h
Different integer values of S give distinct values of y, and the series is
evaluated for as many integer values of S as are required for starting.

Generally, y, = ¥ (x ) will be known, and S will range from I to N, or from
-N to + N.
2 2

The problem lies in finding the derivatives of y, ; however, by re-
calling that dx ;; +y’ g% , the relations

= Zf(::,?f)
A L A S ALY
8= Lo )2 g By o)y )

may be obtained and thus, it follows that

o :f({o’yo)
4 = f s o) 40 fy (Es o)

and so forth for higher derivatives.

2.3.5.2.2 Remarks. Since y(x) is not generally known, it is usually

difficult to obtain a reliable estimate of the truncation-error term given in
equation (3.62) even though it be known that the series itself is convergent for
the values of S under consideration. Further, in many cases, the equations

for finding higher order derivatives will either rapidly increase in com-
plexity or be undefinable. Thus, while Taylor series is the basis for most
starting procedures, it is seldom used in its simplest form.
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2.3.5.2 Starting by Modified Euler Method

2.3.5.2.1 Discussion. The first order differential equation may be inte-
grated

g = flxy) (3.63)
to give y as a function of x, y=F(x). (3.64)
The graph of equation (3.64) is a curve in the x-y plane which be defined
in an approximate semse by setting ax = x - X, s ay = y(x) - y(x,

and writing the following approximate relations

_/d
Ay :(ﬁ)o ax

~ d
y, & L]ﬁ(‘gg")o AX

Then the values(gf ¥y corresponding to xp = x] +h, X3 = xp t h, ...are
;2 y/ dzx 7

d
= +(—Z_) ‘£
%/H-I yﬂ dz h
Thus, if h is small enough, proceeding in this manner allows the integral of

equation (3,63) to be tabulated as a set of corresponding values of x and y,
However, the method is generally either too slow for h small or too inaccurate
for a larger h to be of practical use. These considerations have led to a
modification of Euler's method.

Starting with the initial value, y,, and approximate value for ¥y is
computed from the relation

4= 4 (£ 4

a&:o

where the superseript, (1), indicates the first approximation. This approx~
imate value of y’ is substituted into the differential equation (3.63) to get
an approximate value of dy /e x

dy \
(GE) =415, 4]

An improved value of A y is then found by multiplying h by the mean of
the values of dy/dxat the ends of the interval X, and x; , or

| (dy/dz )o + (df/c/x),w}
Ay = [ 4 2 ﬂ
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The second approximation for y; is now

= g ;

This improved value of y(z) is substituted into equation (3,63) to get a second
approximation for(4/dy,, or (dy/a)i® = £ T x , 4t* ] . Likewise, the
third approximation for y; is found to be

(2) R (d;(/a’z)o *‘(O’f/o’z),w £

(9 ldy/az), + (dy /dx )’tl) £

T2 O 2

and this process is repeated until no change is produced in y; for the
number of digits retained.

The computation for the next interval x; to x, = X3 7 h is similarly
carried out, by first finding an approximate value of Ay and then applying
the averaging process until no improvement is made in y,.

Although the first approximations to y,, Y35 seeee could be found using

= + _dZ
Saer =t )f(a’)_’ )

the first approximations to succeeding y's can be more accurately found from
the formula

yﬂil = yﬂ-l fz/'f”,

as soon as two consecutive values of y are known. This fact may be readily
proven by subtracting two Taylor expansions (one for +h one for -h and
observing that the term involving the second derivative cancels. Thus, this
approximation is correct to the third order).

2.2.5.2.2 Remarks. The modified Euler method is slow and has limited accuracy.
However, it can be recommended for applications where simplicity is more
important than accuracy or for those cases where corrector cycles (employing
closed integration formula) will be applied to the results once the process

has converged to a satisfactory degree.

2.3.5.3 Starting by Milne's Formulas

2.3.5.3.1 Discussion. When higher derivatives of y cannot easily be found
but the first and second derivatives of y can be determined without difficulty,
the starting values can be found by Milne's formulas. The formulas will be
derived here for the case when five starting values of y are required.

104



First, representing the function ¥' in the neighborhood of x = X, by a
fourth~order Taylor series yields

Af LA A

f,’=%l*%”;7"%”lz7 f-% 3_! *"sz' . (3.65)
"=yt ”‘ w {‘_ w IJ Vi"
SR OGS NP YR M A R (3.66)

(The fourth order terms will not be used in the derivation and will be carried
only to provide an error estimate). Now, adding (3,65) and (3.66) yield

&
A
+

/ /= I+ V73 2* y .
Horg s g At £, (3.67)

Similarly subtracting (3.64) from (3.65) yields

{3
RS AP AR S (3.68)

Now solving (3,67) for Y5 and (3.68) for Yo, and substituting these results

into (3.65) and (3.66) provides

= *fi l+/6 / ’ " £2 {‘

e 24[%/ 70"7%]’% 47';(",70 (3.69)
._f" # o7 | 6%"%l*,% 7% 5 (3.70)
Similarly, Yo and Y_p are found to be

2 7 ?[5%"%"%} '270”’?2*1/% %VW (3.71)

Vg , ) 7, s
#2" Fo 'T[J}.,' 4o 'ﬁ,]“zﬁ' fz‘{g,% 7 (3.72)

Milne uses additional formula in checking these values of ¥, and Yy,
Subtracting (3.70) from (3.69) yields
5

- —f ’4’ V V{
R VA e

Since this formula holds for any interval of width 2h, a general formula may
be written

= .f / ’ ’ v {I
}/ﬂrl - %-/ * 3 yﬁ-/ +4//[ f-y’“’ -/II % (3-73)
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It can be noted that the quantity@ﬂs)Lﬂchl+4g;, + Y'ny, ) is evidently
Simpson's Rule and is an approximation to the definite integral _[2 y' dx

In the application of these formulas, the terms in yY are omitted; and
hence, the formulas as used are accurate up to and including fourth differ-
ences. The formulas (3.69) - (3.73) are used in two jterations to obtain the
starting values. The first iteration obtains yj and y_3 and proceeds in four
steps.

(a) Trial values of yi and yll are computed from Euler's method
(sect.)

4= 4ot Ay
4,8 A%

(b) These values are substituted into equations (3,69) and (3.70) to
get first approximations to yj and y_7.

#Fxy)

(¢) These approximate values, with the corresponding Xy and X_j
are substituted into the given differential equation

7/1 fix,y)

and improved values for y} and y%l are obtained.

(d) The improved values for y) and y_j are then substituted back
into equations (3.69) and (3.70) to get the improved values for
¥y ard y_j.

Steps (c) and (d) are repeated until no change is produced in y, and y_j.
At this point, the iteration is §aid to have converged and the values o% Y1
and y_j, and the corresponding y; and y_j; , are accepted as final values.

The second iteration uses(3.71), (3.72), and (3.73) to compute values of
yo and y_2; and the iteration -proceed in three steps.

(a) The three consecutive values y'i, ¥0» and y! of the
desired degree of accuracy and Substituted Into (3.71) and (3.72)
to get approximate values of y, and y_5-

(b) These values together with X and x_, are substituted
into differential equation to obtain approximate values
of ¥, and yjz .

(¢) The approximate values of y} and y!, are substituted into
(3.73) to get improved values of yp and y_o.
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Steps (b) and (c) are repeated until no change occurs in yo and y_o. At
this point, five values of y and y' have been obtained, and the starting
procedure is complete.

2.3.5.3.2 Remarks. The requirement that the derivatives y' and y'' exist
is less restrictive than the requirements for starting by Taylor series, and
more restrictive than the requirements for Euler's method or Runge-Kutta
starting. Milne's method is more complicated than the previous methods in
that two iterations are required; however, the additional complication can
be justified by a higher accuracy potential.

2.3.5.4 Starting by Runge-Kutta

2.3.5.4.1 Discussion. The Runge-Kutta method of numerical integration is
discussed in section 2.2.3 of this monograph;.a starting procedure using the
standard fourth order method, will be illustrated here.

For a first order equation, y' = f(x,y) , assuming that the functional
value y; is known at the ith step, the next value Y341 1s obtained by the
formula

Zivi = 4 ff)[é’, + 24, + 24, + {,,] + O(47)

=4 * 4y, +O(A£%) (3.74)
where
£, = {/(z‘-,%-)
£,
7
4,
7 )

lzz’f/(z(*zi’ ;(‘.r
£, = ﬁyp(zq *i?y 4t

{;’:{/(1‘47{,%.4-{_,)

It can be shown that (3.74) will reduce to Simpson's one-third rule when—
ever f(x,y)is a function of x alone. Hence, having obtained three successive
equally spaced values Yi-1> Y1 5>¥i41 o Simpson's rule may be used as a
corrector over the two 1n€érVals to obtain a new estimate of Yi+1

/

s _ .7 .
Fin —Z' v 3 ﬁz‘-/ *27‘ ’ Z'HJ ’

This has the same local truncation error as the Runge-Kutta method, and one
can use the difference yj11”7y;j11 as an error estimate. If the estimated
error is greater than that expected in the integration procedure, the step
size can be reduced.
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2.3.5.4.2 Remarks. The main disadvantage of the Runge-Kutta method is the
necessity for four evaluations of the function per step. However, this draw-
back is more than offset by the simplicity, and potential accuracy of the
method. Thus, this procedure is well suited to the roll of starter. However,
the use of Runge-Kutta for starting predictor correction integration formula
requires one of several precautions to assure accuracy in the results com-
patible with those obtainable from the continuation routine since the order
of accuracy of those formulas which were derived was somewhat less than most
of the predictor-corrector formulas. The first and simplest alternative is
the integration of the desired function at one-half or one-fourth of the ex-
pected integration step size. Then 1if the integration step must be halved,
no additional starting values need be computed. The second alternative would
be to employ a corrector cycle to revise the tabulated arrays of position and
velocity. This mechanization could be accomplished using the differences as
provided by Runge-Kutta and a central difference formula such as 8T or

2 The last alternative is generally the most difficult and inefficient
(the other technique's generally required no additional mechanization logic).
This alternative is the inclusion of higher order terms in the Runge-Kutta
formula. '
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3.0 RECOMMENDED PROCEDURES

This monograph considers the analytical techniques available for the
solution of the n-body problem. The methods available are discussed in two
sections. The first section (section 2.2) discusses the three analytical
formulations most commonly used in handling the equations of the n-body
problem. The second section (section 2.3) discusses numerical integration
and the specific methods that have been most successful in dealing with the
n-body problem. Recommendations in these two areas will be made independently.

The three most common mathematical formulations of the equations of
motion in current use are: Cowell's method, Encke's method, and the variation
of parameters. None of these methods is superior for all types of trajec-
tories; however, for most practical problems a choice can be made based on
the available information. If large pertabative accelerations which are
changing rapidly are being experienced as, for example, during boost or
re-entry, then small integration steps are required with the variation of
parameters method and Encke's method as well as with Cowell's method. In
this case, the accuracies of the three methods are comparable; however, since
the Cowell method requires less time per integration step than the other two
and since it avoids problems pertaining to the definition of the reference
motion, it is preferred. For phases of the flight where the force field is
nearly conservative and/or nearly central with respect to the body about
which the motion is occuring, advantage can be taken of the more sophisticated
approaches such as Encke's method or the method of variation of parameters.
The choice between these two methods is seldom clear cut and is more often
dictated by the analysts engrained preferences than by any demonstrable
superiority. However, in the past, Encke's method has been used mainly for
those lunar or interplanetary orbits where the number of reference trajectory
rectifications is small (generally no thrust capability is considered). In
contrast, the variation of parameters method has been used where small per-
turbations acting throughout the orbit, e.g. microthrust transfer produce
relatively large changes in the trajectory relative to a conic reference.

Of the available numerical integration techniques, multi-step predictor-
corrector methods have been proven to be significantly more efficient (i.e.,
faster for the same accuracy) than any other method. Two of the methods
discusséd, Lanczos and Nordsieck can be classified as new and promising.
Thus, any contemplated use of these methods should be tempered by this
observation. This comment should not be interpreted as disparagement since
it is felt that more experience is needed with these methods; rather, their
use is encouraged whenever circumstances allow an exploratory approach.
However, the Gauss-Jackson method of integration is recommended for general
application. This recommendation is substantiated by a long history of use
in astronomy where its accuracy has been demonstrated and by the fact that
the first and second sums carried in the solution afford much better pre-
dictions than possible with the other approaches considered. (Thus, fewer
predictor-corrector cycles are generally required for a given accuracy). As
a close alternate, the Adams-Moulton predictor-corrector method is recommended.
Both of these methods have been in use for a considerable length of time and
have emerged to a position of eminence in post digital computer re-evaluation
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of integration techniques. It should be pointed out that while the Gauss-
Jackson method has historically been used for integrating conservative forces
there is nothing in the formulation which precludes its use with non-con-
servative forces provided the first integral is evaluated.

Even though the multi-step methods discussed above are more efficient
than single-step methods, there is one outstanding attribute of the single-
step Runge-Kutta method which makes its use desirable in some cases. This
attribute is its stability, i.e., its tenacity in following the solution
curve. Therefore, when the nature of the solution is unknown and a sta-
bility problem is suspected (e.g., a boost trajectory) the Runge-Kutta method
should be used.

In section 2.2.5 several methods of starting multi-step methods were
discussed. Of these methods, the most versatile as well as the simplest is
Runge-Kutta. So straight forward, in fact, is Runge-Kutta that it is
recommended without major reservation as a starter for the multi-step methods.
In general, however, the tabular array of functional values generated by the
Runge-Kutta method should be differentially corrected before initiating a
predictor-corrector process to assure comparable accuracies in the two phases
of the process. This corrector process can be accomplished by employing the
corrector equations directly; thus, no additional logic is required.
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