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1.O STATEMENTOFTHEPROBLEM

The basic problemto which this monographwill be addressedis the gen-
eralization of precise information regarding the trajectory of an observed
vehicle and the coefficients of the mathmodel employedin the prediction
from a set of observations (different quantities, or the sametype of meas-
urement at different times) madeof the vehicle. However,to completely
define the nature of the problem to be discussed, it is necessary to outline
the assumptionswhich are implicit in the analysis. First, the observations
are assumedto have been contaminatedwith noise (errors) resulting from ran-
domerrors in the instruments and recording devices utilized for the measure-
ments. Thus, if_* denotes the true value of any measuredquantity and
the corresponding error, then the observable (_) is

Next, the numberof linearly independentmeasurementsis assumedto be greater
than the numberof the parametersbeing estimated. This assumptionprecludes
the situations whereno solution exists or where the solution is unique and
leaves the general problemof obtaining "best" estimates from the over-deter-
mined system of equations. Finally, it is assumedthat in the absenseof the
contaminating noise, a unique solution would result which would relate the
observables at the various measurementtimes.

The rigorous problem implicit in this set of assumptions is highly non-
linear. This nonlinearity is producedby the fact that most of the observa-
bles (for example, range, range-rate...) andthe componentsof the instantan-
eous position and velocity vectors (the estimated parameters) are both very
complexfunctions of time; as a matter of fact, no analytic solution exists
which relates this set of parameters as a function of time. Thus, the means
employedto generate the desired estimate (commonlyreferred to as the method
of differential corrections) will be iterative in nature. The first step in
the process will be to define a nominal trajectory by someset of parameter
(_o, to) which represents the observationswithin someallowable error.

This definition avoids most of the mechanization problemsby assumingthat
all of the nonlinear effects can be included in the reference trajectory with
sufficient accuracy to allow subsequentcomputationsto be precise. The
secondstep is the approximation of the dynamicsand the observation processes
utilizing only the linear terms of the Taylor series as in Reference1.1.
That is:

where_ denotes the ordered vector of parameters being estimated; where

(t, to) is on n by n matrix of partial derivatives

l



of the parameters at time t with respect to the same set of parameters at

time to_ where H(t) is the matrix of partial derivatives of the observables

with respect to the parameters being estimated at the epoch of the observa-

tion_ and where _ (t) is the vector of errors in the true observables.

Finally estimates of the parameters at some selected epoch (T) will be

generated. These estimates will be selected such that some measure of

"goodness" in the estimator is maximized when the available information

regarding the statistics of the errors is provided.

The discussions of this monograph will be ordered to answer questions

which arise regarding each of the steps in this process and will relate in

detail the nature of the problem. To accomplish this objective, large amounts

of the open literature have been reviewed. Though this material is generally

referenced throughout the text to provide additional information on topics

being discussed, some of the more pertinent references will be quoted in the

following paragraphs to aid in establishing the nature of the discussions.

The initial investigations will be directed to the task of generating a

reliable first approximation to the true trajectory. This step will be per-

formed by utilizing the material presented in a previous monograph (Ref. 1.3)

and classical work, principally of Laplace and Gauss. In this material, the

true trajectory is approximated by a nearly equivalent conie section to obtain

the position and velocity vectors which, if the force field were central,

would yield the subset of the observables used to define the conic section.

The solution is discussed in detail and precautionary steps which will assume

more reliable solutions are presented. Thus, if no previous estimate of the

trajectory or data from the vehicles guidance system at burnout are available,

an accurate initial estimate can be generated.

The discussions will then turn to the development of the "optimum" esti-
mates of the deviation vector _(t). Particular attention will center on the

development of simple measures of the degree of optimality in the estimator

and the generation of the estimation equations and estimation error for these

measures. These discussions will parallel much of the material presented in

the open literature, though some of the steps are different to facilitate

comprehension of the simplest physical process. The classical least squares,

weighted least squares, and minimumvariance estimators will be derived; then

attention will turn to modern estimation in a recursive mode. The concepts

of Kalman as presented in Reference O.1 (subsequently adopted by Schmidt in

Reference 0.2) and Battin (Reference 0.3) will be reviewed carefully since

estimation in this mode is capable of correcting for some of the approxima-

tionsmade in developing the estimator itself. This latter observation is the

result of the fact that the true trajectory (i.e., nonlinear) can be approxi-

mated by a series of discontinuous arcs, each of which obeys the linear model

of the dynamics, to a better degree than a single arc satisfying the same

linear model.

The filter concepts outlined in the previous paragraph are based on intu-

itive measures of "optimality." Further, they are tailored to problems where

the statistics involved are Gaussian, where the dynamics can be adequately

approximated by the linear model, and where the optimum estimator is a linear



function of the deviations in the observables. Thus, the problem of estimation
is reintroduced in a morecomplete analysis to explain the exact nature of
the material which it follows, and to demonstratethe mechanismwherebysome
of the simplifications just enumeratedcanbe eliminated. In the process, the
problem is demonstratedto be equivalent to that presented by _ddleton in
Reference 0._. This material, while requiring a reasonable knowledgeof
statistical concepts, ties the general estimation problem into a verified
analytic frameworkwhich is capable of demonstrating the effects of the avail-
ability of all data pertaining to the process.

Having thoroughly explored the general problem of estimation, attention
turns to the developmentof material required to yield an estimate of the
trajectory. To be specific, the matrices relating the dynamicsat various
times relative to the nominal trajectory (the State Transition _trix denoted

by _(t, to) and the matrix presenting the error data for the observables are

derived. The first of these developments progresses from the basic formula-

tion of the transition matrix (for example, Reference 0.5) to the generation

of an analytic form for the case of conic motion (for example, References

0.6, 0.7, 0.8, 0.9). This development presents several alternate representa-

tions of the desired matrix and discusses the weaknesses in them. The second

development is an extension of the material presented in a previous monograph

(Reference 1.1) which shows the functions involved in the process and refers

to error data available in the literature for construction of the weighting
matrix.

The monograph concludes with a set of recommendations for the applica-

tion of this materialand one possible mechanization whichwill be selected to
utilize the maximum amount of information in the data and to minimize the

computational problems.

3



2.0 STATE OF THE ART

2.1 INITIAL ESTIMATES OF THE ORBIT

Since the computational rationale proposed for determining precise

values of the instantaneous elements for the space trajectory is built upon

the concept of differential corrections, care must be exercised to assure

that the initial estimates of the nominal trajectory are sufficiently precise

to allow all of the partial derivatives to be evaluated accurately and to

assure that the estimation error lies within the neighborhood about the

true trajectory which is small enough for the process to converge. The

purpose of this discussion will be to develop several such techniques and
to discuss the sources of error. To be specific, the methods of Laplace

and Gauss as well as methods involving the use of range and range-rate data

wdll be presented in detail. The utilization of position and velocity
information obtained directly from an integrating accelerometer (Reference

i.i) will not be discussed at this time since this information can be

be utilized only for those cases in which the trajectory is to be estimated

from the epoch of injection to any other reference epoch (any other possibility

requires updating burnout conditions to the epoch of problem initiation) and

since the data thus provided need no further transformation (i.e., they can

be utilized directly if transmitted to the ground or fed to the on-board

computer).

2.1.1 Data Provided Include Range_ Azimuth and Elevation at Two Epochs

For the case in which the ground-based radar utilized for tracking the

satellite provides range, azimuth and elevation (or an equivalent set of data)

as a function of time, the logic employed to obtain an estimate of the tra-

jectory can be relatively simple. First, the station's position at the two

epochs is computed (Reference 1.2) from

(i.i)

where Re, = equatorial and polar radii of the reference ellipsoid
for the earth

H = altitude of the station relative to the reference ellipsoid

L = Geodetic latitude of the station

UI, U2, U3 = 3 components of the unit vector from the station outward
along the direction inclined by the angle L to the equa-

torial plane

4



i-, /k /_

U, E, N = the up,

_L

= 0

east, north unit vectors

0 _c_ _c_ c_ o X

J -_ c_ o_ o

o _.,wZ JL o o /

c_ = right ascension of the station

= G.H.A. plus longitude

Then. the Position of the satellite relative to the station is computed in
the _, _, _ directions and transformed by substituting for 9, E, _ in terms

(l.2)

At this point, the position vectors are defined as

r : _ +p
(1.3)

and the velocity information is. derived by employing Lambert's Theorem
(Reference 1.3).

2.1.2 Data Provided Include Only Azimuth and Elevation (or Equivalent Data)
at Three Epochs

For the case in which only angular data are available, a complete reformu-

lation of the problem is necessary. However, as in most of the problems

discussed in this monograph, there is no unique means of reducing the data.

The discussions of subsequent paragraphs will present two such schemes: the

methods of Laplace and Gauss.

These techniques were derived primarily for the case in which the orbit

being determined was central relative to a body other than that utilized

for the observations (the sun). Thus, when each technique has been prepared

for the case for which it was originally intended, it will be extended to

the case of primary interest - geocentric motion.

2.1.2.1 Laplace's Method

The discussions of Reference 1.3 showed that six arbitrary constants



were required to uniquely determine the motion of a body in a central force
field. Thus, if the true force field is approximatedby that produced by
the dominantmass(or in the case of motion relative to the earth, by that
producedby neglecting those terms arising from the nonspherical shape
of the earth), a conic trajectory can be found utilizing three sets of
observations composedof angular data (azlmuth-elevation, right ascension-
declination, etc. ).

Consider the vector diagram and the corresponding equations below:

f _R =PF

r +R = ÷pp

f+,E' =
• .o

=>? 2?? +pp

= +( ,
f 3 1.-3

___ (1._)

where _ and _ at the three epochs are known or observable and where the

units of time have been selected so that the gravitational constant is one

i.e., _N= _-_ (t-to) _. Now if the three observations are acquired over

a sufficiently small interval of time, the geometry of the problem can be

approximated by expanding _ in a Taylor series as follows:

"-p_ +'r'_ +_?-_ ÷...

(1.5)

This series will be terminated at the third term so that the three observa-

tions will completely define an initial estimate of _ and _. Further, the

second time point will be utilized for time reference so that the maximum

value orris kept small (to assure the maxinmm accuracy in equation (1.5)).

Assume that three values of_ a_e utilized in conjunction with the series

expansion (1.5) to yield values for _ and_ . Now crossing_into _ and

dotting into Equation (1._) yields

In like manner, cross _ into _ and dot Equation (1.&)

(1.8)
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R,." ¢.x_. = 2 .fl.x._..
(1.7)

Now the procedure is to iterate Equation (1.6) and the law of cosines

:=N-R

or

(l.8)

to solve for the correct value of _rl at._o._ This value of r can then be
utilized in Equation (1.7) to solve for Po; ro can be found from

-..,_o_->o,_,:o_

The nature of the simultaneous solution of Equations (1.6) and (1.8)

is explored in some detail in Reference 1.&. This material develops an

iteration procedure based on a single angular variable. The result of this

procedure is an iteration process which can rely on graphical techniques for

initial estimates of the parameter being estimated.

If the central body is the earth rather than the sun, differences in the
formulation arise due to the fact that the acceleration of the observer is

incorrect. For this case

_ - "'(7_)-dL 2

and Equation (1.6), which was solved iteratively with the law of cosines,
becomes

('%,,,,)(,.,:,._)= ,.[_.,,..4] .
Similarly, Equation (1.7), which was solved for Jo , becomes

(1.6a)

( )(_ ) >.[" "]__/ x -. = -z p. x_.,_. (l.Ta)f2 * ..,2 x/% ._o

The largest source of error in the process is the truncation of Equa-

tion (1.5) at the third term. This step means that the values of _o and Vo



which are obtained from the process will not represent the conic providing
the three observations to the best degree. Thus, it is generally desirable
to differentially correct the_vectors before assumingthat a solution is
known. This process is readily accomplishedutilizing the material pre-
sented in Section 2._ of this monographsince

and

(1.9)

y,4 =Hz x
(1.1o)

where a_ = a vector of observed minus computed residuals at the three

epochs (1-1, V2, T"3 )

H = the matrix relating errors in the observables to small errors

in the position and velocity

A_ = a vector of position and velocity deviations (d?, d_)

Thus, the vector of errors at the epoch _2 (A_o) can be estimated as

and the previously computed values of 3 o

to= ro + ar_

Vo = Vo + a

(l.lla)

and Vo corrected

(1.11b)

(1.11c)

This second estimate of r_o, T o can now be utilized to generate a new error

vector (a_) so that the process can continue until convergence is achieved.

2.1.2.2 Gauss's Method

In Laplace's method, the approximations made to facilitate the solution
were in the truncation of the Taylor series for _. Gauss approached the

problem bymaking an approximation in the dynamics rather than in the geometry.

The method proceeds as follows: Since the motion is assumed planar, any

of the three radii can be expressed as some linear function of the other

two, i.e.,



q "- c,r,+ c 3 6 #i<
(i.12)

Thus

qx6 : c,r,× ra
.__% ._.%

r,×q
__.%

But the area of the triangle of sides ri and _j is

A--[_>O] = 1/2 base x altitude
= 1/2 ri (ri sin_)

= 1/21_ i x _jl

so that an alternate form of the solution for Cl is

c, _ (1.13)
: ?,, ,]]

Similarly

c3-__ x __ _ [_,, _] (1._)

These two scalar constants must now be related to the dynamics so that they

can be determined. As a first step, consider the relation

--_ __% ___

r. =p -,6:'

or its equivalent

(i.15)

or

This equation yields three linearly independent scalar relations in the

unknowns c,,¢3 )_(,_: 1,3) .



i

At this point the dynamics of the problem are introduced in the form

(1.16)

where To, _o will be taken to be the position and velocity of the observed

body at the second of the three observation epochs. However, it is incon-
venient to introduce the exact functional forms for f and g as presented

in Reference 1.3 since this procedure would require knowledge of the para-

meters being estimated. Rather, series representations for these functions

v_ll be employed, reference 1.& gives the form of these series through
terms of the order T2 (higher order terms would introduce parameters of

the motion for which no estimate exists at this point in the solution) as

(l.17a)
&.: , - _ _D _

3_= p (,-y,_-p,) (i.I_o)

_: >_Z (1.17c)

where

_= v-_- (% - <)
_= _,/-_--( % - _,)

Now the follo_lng cross products can be formed by employing Equations (1.16)

r_× 6 =93r2 xr_

r,_ = 9,_ ×_= -2'0_

and the scalar constants C1 and C3 evaluated.

9_ (1.isa)
c_, : -D_.,- 6 _,,

c3 : -_' (l.18b)
r,_ -_ a,

10



But, since series expressions havebeen employedin each of the f and
g, the various factors in these expressions can be developed in series in
powers of T. This step is accomplishedas follows:

-__ +_o'-_'+ y2o-,-_T 3

D_,_-- _ - yo _ _ _- _ o" 7; _ "_
where second-order terms in _ have been dropped. Thus,

and

C = 7;(/-Y_,¢'T_.) _ _ [

C3= _ (I '.,'c,6- 7_) _ I

(1.19a)

(1.19b)

Finally, dotting Equation (1.15) by X p_ yields

where the unknowns in Equations (1.19a), (1.19b), and (1.20) are_ and o_
(i.e., l/r3) '. As was the case with the approach of laplace, a solution to

the problem is possible by iterating Equation (1.20) with the law of cosines.

The velocity is then determined from Equation (1.16). As before, the solution

can be differentially corrected to compensate for assumptions made in the
development of the first estimate of the solution.

In contrast to the method of laplace, however, the method of Gauss is

readily applicable to the task of determining geocentric orbits. Only a

11
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change in notation is required.

_= -77

2.1.2.3 Modified Gauss and Laplace Methods

The formulations presented in the previous sections discuss the nature

of the solution required to yield values of the position and velocity vectors

at some epoch for the case where components of a unit vector from the observer

toward the tracked body are given at three times. The procedures followed

in these cases where either the dynamics or the geometry was approximated

were detailed, and the nature or source of the errors was discussed.

There are variations of these two techniques, however, which have been

developed and mechanized. Several of these are discussed in References
1.A and 1.5. While some of these formulations have definite merit, they

generally add nothing to the knowledge of the processes being employed and

can thus be deleted in the presentation of different techniques of analysis.

2.1.3 Range and Range-Rate Data

For geocentric satellites where there is an opportunity to accurately

measure the range and range-rate (Doppler) of the vehicle with respect to

the observer, an alternate logic is required. One version of the required

mechanization ;_lll be developed in the following paragraphs to facilitate

comparison with the previous material.

Consider once again the equation

or its scalar equivalent

: z (1.21)

and the first derivative with respect to time

(1.22)

But, the dynamics of this problem can be expressed as a function of time

utilizing the f, g series (as was the case before) by expanding about the
second of three observations as:

?=r?o
•

12



Thus,

_ _ = ri_',_ t,Cr],2i),26v_

F. = _r,. ,_ ro.R

• i_ 24r "R = .R , .R

r.,e =r_._ +2 r. .R

Substitution of these approximations into the equations for range and
range-rate yields

(1.23)

and

(_.m)

which can, in turn, be written as

,_- ,_._"

(1.25)

where

• °

13
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= _z d -- ,"/

-_ ..h

=2 R =f = R+

Thus, since the only unknowns are'the components of r-_o,v_ (the coefficients

are approximately known functions of time), three sets of these equations

(three epochs) will yield a solution.

This solution process is simplified for some cases of geocentric satellite

motion, where the three observations are acquired over a relatively small

time periqd, since several approximations can be made to simplify the pro-
blem. First, it is noted that since the time interval on either side of
the second observation is small, the position vector for the observer (_ (t))

can be a_proximated by H (to). Secondly, it is noted that the scalar pro-
duct r _ is small at each of the three epochs for most o£ the problems of

interest, since the two vectors are ne.arly normal. Finally, because the

time interval is small and because _-_ is small, the scala_ product can

be approximated by the term _ "_ (one of the terms of _ R). For this

case, a reasonable approximation of the components of _o and _o can be

obtained by rewriting the solution in the form

p,_ -Rf

.

-R,.R,

"_',_ 2_,g, ,e) z_, zj, o

or

(1.27)

14
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Thus, the parameters denoted by X can be evaluated by inverting the matrix

M as

The components of ro, vo are then obtained in a straight forward manner.

As was the case with the methods of Gauss and Laplace, a differential

corrections process is required to adjust for errors in the representation

of _ and V as functions of the time from the reference epoch and in the

assumptions made to obtain the first approximation of r-_o,v_.

The case in which range or range-rate data alone are acquired at six

epochs can, of course, also yield values of r_o, _o" These applications are

special cases, however, of the material presented in the preceding paragraphs,

and will therefore not receive special attention.

2.1._ Precautionary Numerical Operations

Regardless of the approach taken in developing the initial estimate of

the position and velocity vectors, the quality of the solution will be

dependent on the quality of the data utilized and the time interval between

the observations (the sensitivity of the solution to errors in the observables

will increase as the time interval decreases). Thus, it is essential to

assure that as many of the errors as possible have been adjusted. In particular,

1. the affects of refraction

2. the affects of signal propagation time etc.
3. inclusion in the observations and instrument biases

i. recording errors
5. etc.

must be determined and compensated for. However, these steps in themselves

will not assure a good estimate since the sensors utilized for the observa-

tions are not perfect.

Therefore, normal practice utilizes a preliminary smoothing of the data

acquired over three intervals of time to produce three estimates of the

true observables in the sense of least squares (or weighted least squares).
This smoothing can be accomplished by fitting the data to a line (if the

intervals are small) but is normally accomplished by employing a parabola.

The process is mechanized as follows; (assuming that the data in one interval

obey the equation)

(1.29)

15



where Yi = ith observed value of one component of the observation
vector in the interval A_ t _B

a, b, c = coefficients of parabola utilized for the purposes of

smoothing the data

A matrix equation is now prepared

Y=

/ _, _fl (it

(1.30)

o

and the least-squares estimate of the coefficients are generated (Section

2.2)

= TT_

When this process has been performed for each component of observation vector

in the interval A _ t _ B, a smoothed estimate of the vector is prepared at

an epoch in the interval (normally, t = (B - A)/2). At this point, the

process is repeated for the other two intervals of time. As a final output

then, there are three sets of smoothed estimates of the observables which,

when utilized, will produce generally superior values of r_o, _o"

16



2.2 ORBIT IMPROVEMENT

2.2.1 Introduction

The basic process for determining the position and velocity deviations

from an estimated trajectory involves the measurement of any position, vel-
ocity or time dependent set of parameters and the construction of the linear

system of equations relating the observables to the parameters being esti-
mated at the time of measurement.

JX_Ct) = HCf) 6__C_) (2.1)

[In this notation, ___A(t) is the m-vector of observed minus computed

values of the observables; H (t) is an m by n (n is normally 6) matrix of partial

derivatives of the observations with respect to the state which was developed
in Reference i.i; and g__X(t) is the n-vector of state deviations. These

equations normally do not completely determine the state since the observables

collected at any one epoch generally number less than the: number of components

in the vector ___X(t). Thus, data collected at different epochs are referenced

to some standard epoch through the use of the state transition matrix (Section
2._) as

So

(2.2)

and the task becomes one of generating an estimate of 6X (_.

The estimation of 6__X (to) for the special case of an evenly determined

set of data can, of course, be performed by simply inverting the set of equa-

tions. For example, if

I ]
(2.3)

where _a i denotescalar quantities and where the ti are not necessarily
unique. Then,

or

(2._)

17



However,since errors exist in the instrument utilized to perform the
measurements,and in the mathematical model utilized to computeboth the H (t)
matrix and the computedvalues of the observables (used directly to define the
observedminus computedresiduals), the true and computedvalues of the state
deviation vector g___X(to) will differ. Consequently, it will be necessary to
distinguish betweenthe three types of deviations employedin this analysis
(actual, measured,computed). This distinction will be accomplishedby
adopting the notation

where (N) denotes measuredand where--_is the vector of errors in the
observeddata; and the notation

where (^) denotes computedand whereE is the vector of errors in the com-
puted state deviation vector.

Thusfor _ evenly determined set of data

and the error in computing____ is

This equation can be used to computethe covariance matrix of the estimation
errors E from the covariance matrix of the measurementerrors R. Adopting
the notation

to meanthe expectedvalue of the matrix£ _T , the notation

to denote the errors in the observables and using the material of AppendixA
allows thematrixof estimation errors to be written

$

(2.6)

since

-(mS)-'

2.2.2 Data Filterin_ Techniques

In the introduction to this material, equations were derived for comput-

ing the position and velocity perturbations when precisely six navigation sight-

ings were made. Further, equations were derived that related errors in the

observations to errors in the computed position and velocity deviations for

this case. On evaluation of these error equations, it is found that errors

IB



in the observables of relatively small magnitudescan produce errors in the
computedposition perturbations that are completely unacceptable. The
question then arises as to howadditional sighting might be used to obtain
a better estimate. Several methodsof accomplishing this objective will be
considered.

However,before considering this material it will be noted that any or
all of the various estimation processes canbe employed. The choice, should
however, dependon the amountof information kno_nabout the errors in the
observables. Thus, attempts will be madeto demonstratethe accuracy (estima-
tion error) of each approachand to explain the differences in precision
obtained in terms of the assumptionsmadein deriving the estimator. In all
cases, however, the assumptionof secondorder statistical distributions is
implicit (the discussions repeatedly employAppendixA). Thus, information
pertaining to higher momentsis not employedand the "goodness" of the estimator
should be suspect for non-Gaussianerrors.

2.2.2.1 Least SquaresEstimation

The methodof least squares is perhapsthe oldest and most easily under-
stood of the general techniques for smoothingover-determined sets of data.
For this reason, it will be considered first. The logic behind this filter
is that the squares of the deviations in the observedminus computedobservables
from the estimated straight line (in m-dimensionalspace) defined by the
equations

should be as small as possible. Alternatively, the momentof the deviations
abovethe estimated line will equal the momentOf the deviations below the
line. This statement of the problem is equivalent to computingthe line
such that a comparisonfunction equal to the summationof the squares of the
differences in the observedand computedvalues of the values of _ A is
as small as possible, i.e.,

J4
2_=--'- e.=o ei are not defined.

But, the sum of the squares of the measurement residuals L, can be written
as

19



or, by direct substitution, as

Thus, the variation in this scalar comparison function can be related to a
variation in the estir_te as follows

L will have an extreme value if D L = 0 for any value of 4gX_o. This will be
the case if

ik

or solving for 8Xo ,

A

= (a,8)-,aTG_

(2.lO)

(2.1i)

The errors in the computed estimate of the state vector can now be
related to errors in the measurement of SA

_Xo = gD t-_£ _ _A = 6A • o¢

and

sA = 8_

Using Equation (2.11),

= (a_)-'_(__ _ _)- _

= (_b)-'_ _(a_,o, __)- ___o

20



Then

=(a_8)-'sh (2.12)

Equation (2.12) can then be used to relate the covariance matrix of the

estimation error to the covariancematrixof the measurement errors as
follows:

g =-C£_- = 8_B) -'B_ _'_ 8 -'B

Therefore,

E.,= Ca_8)-,B_Ra(8_a)-,_ ] (2.13a)

2.2.2.2 Weighted Least Squares Estimation

The least squares estimate neglected information regarding the distri-

bution of the measurement errors. Thus, if this information is known, a
better estimate of the m-dimensional line utilized to fit the data can be

obtained. This estimate is generated by modifying the comparison function

in such a manner that moments for the errors which correspond to the higher

quality observations are weighted higher. That is, the comparison function,
L, of the previous analysis becomes

or

_ , _ (2.11,)£= + e.._2 + _e 3 + .... + _
%_ ¢_zcx2 c_a % o_n c_n

/ = _(u-'_ (2.15)

where

21
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A

"_ 0 0

_' _ II _- 2

J 0 \ I

I I \ i
I I

\ 0

0 0 0 a_ _n

(2.16)

(2.17)

In this equation the square of the measurement residual is weighted by a

factor that is inversely porportional to the expected mean square value of

the measurement error. Therefore, if the expected mean square measurement

residual for a particular measurement is large, the contribution of the

term to the comparison function will be small.

The weighted least squares (WIS) estimate of the state deviation vector

can now be generated as in the case of the simple least squares problem.

First, the comparison function is expressed in terms of the parameters of

the problem

7 N A

(2.1_)

Then the first variation of the comparison function, L, with respect to

the estimate of the state vector is formed

Again, this equation can be written as

aL = - (B'U-'6"A-e_O-'86_)a - _U-'5_-B'O'B6L)'a__

since

(u-') u-'

22



But, since both of the terms of this equation are scalars, the transpose

of the bracketed term is equal to itself. This fact indicates that the loss

function will have a stationary value when the estimate is chosen so that

Or,

A

solving this equation for g_o , the WIS estimate becomes

The method of deriving the equations that are required to relate the

measurement errors to the errors in the computed estimate is identical to

that used for the least squares case. The estimation error is defined as

therefore, from Equation 2.19

However, since

Equation (2.20) reduces to

The covariance matrix of the estimation error is thus

If _m__T is defined to be R, then these equations may be summarized as

_: 7_<,,-,_r,,_<,,-,],_[cB.u-,_;,_u-,]_ (_._)
_: (_Tu-'sJ-'8"u-'_-- (2.22)
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Now, for the special case in which the measurement errors are uncorrelated;

i.e.,

Then

R=U

,]
But, since U is a diagonal matrix,

UT= I_."

Cu 97= d-'

and the covariance matrix of the estimation error becomes

E - (_u-'_)-'8"(u-'u)u-'8 [(e_u-'e)-']"

which reduces to

z : (_u"8)-'
[2.21a)

It is of further interst to note if the variances of the measurement

errors are equal, then U can be written as

L/ : 6"zZ o_d U-': 'o_---zi

where 0_z is the variance of each of the measurements. The estimate for 6__X

then becomes

_Xo=('_ -_zS_IB) "' '-_2 8TI &A

*% ( -2 T

94



This equation indicates that for the case in which the variances of the

measurement errors are equal the weighted least squares estimate will reduce

to the least squares estimate.

2.2.2.3 Minimum Variance Estimation

In developing the estimation equations for both the least squares

and the weighted least squares filters, a loss function was utilized which

was simply related to the moments of the errors. The estimation equation
was then formulated to minimize this loss function. In neither case was

the statistical information pertaining to correlations in the components

of the error vector ( _ ) utilized. Thus, at this point a different approach

to the problem will be formulated. To be specific, that estimate (defined
as optimum) of the state deviation vector which is a linear function of the

measurements, which minimizes each element of the estimation error covariance

matrix and which corresponds to the constraint that the estimation error is

not influenced by the quantity being estimated will be developed. That is,
the form of the estimate is to be

2% N

6XD = Q 6A
(2.23)

But,

Thus, by direct substitution,

(2.24)

so that the error in the estimate is

This equation indicates that if the error in the estimate is to be independent

of the quantity being estimated, 5Xo, it is necessary that

Oz_-_T = 0
(2.26)
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The estimation error then becomes

§o = Q___

and the estimation error covariance matrix becomes

CoC_ = 0___ _

or defining

f : q_ 7

(2.27)

The problem now is to determine Q such that it will minimize E subject

to the constraint that

08-I :o

This step can be accomplished by adjoining the constraint equation to E using

matrix Lagrange multipliers as follows. Since

QB-I = o , GrQ_-I= O

4),9'/ -A = ,\_BTQ T- A T = O

(2.28)

where k is an arbitrary n by n matrix multiplier that is not a function of

Q. Thus

T

F : E, +

=ORQ _ _ 00A _ A_8_T-A -A.

(2.29)

Now, recalling that RT- R, the first variation of F ( : F) becomes
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But the 8@ are arbitrary.
extremevalue if

or

R,_T,"BA = 0

QT =_ R-'SA .

Therefore, each element of E will have an

(2.3o)

(2.31)

Thus,

But

thus_

premultiplying by BT yields

8_ _ = -_R-'s_.

B_4 _T = Z j

A =- ('B"R-_J -I (2.32)

so that

and

a =CB m- j-'B m-' (2.33b)

since both R and (_,_-J B)

estimation equation is
are sy_netric. Thus, the minimum variance

It is interesting to note that when the errors in the measurements are

uncorrelated (i.e., R = U), the minimum variance and weighted least squares
estimates are identical.
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Equations (2.27), (2.33a), and (2.33b) can be used to express the
errors in the estimate as follows:

(.B -,8j-I

therefore, in summary

f -- (2.35)

(2.36)

In the development of these equations, Q was constrained to make E

invariant with respect to the characteristics of g Xo Thus, these

equations should be used to estimate 8_o when the statistical characteristics
of 6Xo are m3.k_own. However, when the statistical characteristics of _o

are known, that is, if the covariance matrix of S_o is known, this con-

straint should be removed. _Cnen this is done, the resulting estimation

equation can be determined as follows. From Equation (2.25)7

Now, defining

and rewriting the estimation error yields

E = _[BVSTJ-/_JQ_-@_'V-I/'Sz@-zj. V (2.37)

The variation in E that is produced by a variation in Q is thus
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is to be zero for the case where

+R)qR SV= o ;

S Q is arbitrary

(2.3s)

that is, E will have an extreme value if

Qz= ('8 VB T+ R)-'SV (2.39a)

Thus

since R = RT and V = VT.

The optimum estimate is now found by substitution into Equation (2.23)

A .v (2._o)
6_Xo = VB "(B V'8 T+R) -/ 6A

The error in the estimate is determined using Equations (2.37) and (2.39b)
as

E = vz3rq_ -Qsv- vs_q_+v .

Thus summarizing,

E = v- V_"(MV,_T+R)-,OV

A

_Xo = vs"(B vB', R)-" _'_

(2._la)

(2.Alb)

Equations (2.41) can be put into a form that makes comparison with

Equations (2.35)and (2.36) much simpler since from Equation (2.39)

q : VST(E VBT* R)-I

: (_'_-'B+ v-9 -'(8"R-_ + v-') vB'C_v_/vO -'
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Thus

= (8_R-'B, v -9-'8"R-'. (2.&2)

The estimation equation can then be written as

Using Equation (2.41a) and (2.42), the error in the estimate can then be
written in the form

thus

E

£=

f = (n-'n-'_' + v-'J-'

,,,,%

<__,l',,= (n 'R-'s, v-'J-'8"n 'Z'_

(2.A/_a)

(2.44b)

While Equations (2.41) and (2.44) differ considerably in form, they are

equivalent and will yield the same results. Notice that.Equations (2.44)

differ from the corresponding Equations (2.35 and (2.36) only through the
presence of the additive term v-l; i.e., if V-x = O, the equations become

identical.

Before leaving this discussion, it is worthy of note to demonstrate

that the process employed in this technique to derive an optimum estimate

of g_ (i.e., the minimization of a matrix) is equivalent to one which a
scalar loss function is constructed. One such loss function could be the

summation of the eigen-values of the covariance matrix (see Appendix C).
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Consider the scalar

L = ATEA

where A is an arbitrary vector whose dimensionality is n and where E is

the n by n matrix of estimation errors. Since A is arbitrary, it can be
independent of the parameters of interest so that

AZ = AT_EA

Thus, if a L = O , AE must also be zero provided E is free of constraints.

Thus, a sufficient condition for any scalar measure of a matrix to be
minimum is for A E = O.

It is also worthy to note that no explicit assumption has been made

regarding the distribution of the errors. True, only second order statistics

are utilized so that the estimate will not be optimum in a larger sense (use

all of the information available) unless the errors are Gaussian. However,

this estimate can be generated. A minimum variance unbiased measure of the

performance degradation will be discussed in Section 2.3.

Finally, it is noted that the minimum variance estimate generated in

this manner is unbiased since the conditional expectation of the estimate,

S_o , is _X_o .

2.2.2.4 Iterative Form of the Minimum Variance Estimator

The equation that was derived in the previous section for computing
the my estimate was

This equation is useful when all of the measurements are to be processed

at one time. Quite often, however, it is desirable to process the data

that is currently available to formulate an initial estimate, and then to

compute new estimates as additional data becomes available. This desirability

arises from several distinct factors. First, the numerical operations

themselves would be considerably simplified if only the most recent observation

was being processed. (The amount of data can become staggeringly large.)

Second, the trajectory i% in fact, nonlinear so that errors of assumed

linearity in the transition matrix and in the observation problem combine

to make translation to the fixed reference epoch very inaccurate as the time

from this epoch becomes large (this fault can be avoided if the reference

trajectory is re-defined by adding the reference position and velocity to

the computed deviations and restarting the estimation process). For these

reasons, an iterative (or repetitive) form of the minimum variance estimator

will be developed.
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Thematrices contained in Equation (2.3.5) can be partitioned into
sub-matrices as follows

B

6!

B_

_ B3_

_A,

_'r= "r*, 7, 7 , I -rI i B2 IB._ ,..... )

_) --.

' i I
R,,OIO . . i0

__l_ L_l__ - f--
o Ii Rzl Ol . io
__,- L_----_--

o 'O=R_I , ioI I

- II I _ I
• " i

i I l
I.I.I {

I I I I

" i'l'] I

IOI =

where it is noted that the subscripts in these equations now refer to sets

of quantities. Thus, 8 At , refers to the first set of measurements,

and _A_ means the nth set of measurements. This notation contrasts with

previous usage (Equations _.2)and (2.3)) where the subscripts referred to

individual measurements. It is, of course, understood that the matrices

B and R are partitioned so that the sub-matrices are conformable. This

division guarantees that the required multiplications can be performed. A

further assumption has been made concerning the R matrix in that the different
sets of measurements are assumed to be uncorrelated. Correlation between

the individual measurements of any measurement set is, of course, permitted.

Under these assumptions, the inverse of R can be written as
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[R2 313'. io

Jo: o ,o_ __.__ _L_

R-l = 010 1R_ j . I0

/:, :tl ,

Lo' o, o' ,_'.'
as can be seen by considering the relation

RR -_= Z

Now, the matrix product gTR-Jis

B rR-' ,- -l; r_#_i, , ', , _" -i

and the product z37A'-i8 will then be

or

-/

L:I

The matrix product 8TR-/5 becomes a function of the number of sub-

matrices contained in the product. Therefore, let this product be defined
as follows:

The matrix 2Tm can be written as

Z=/

and in iterative form as
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Similarly, the matrix 8"rR-_A can be written as

(2._9)

_ 4R,_a,, _ ... -'__ (2..50)

Now defining

-- -- ,_=1 --

the iterative form of _ will be,

Equations (2.A5), (2.&9), and (2.51) can be used to express the estimate
of the state vector that is obtained by processing all of the data up to

and including the nt_h set as follows:

(n) -i
_Xo =_% ,

(2..53)

and the estimate obtained from processing all data up to and including the

(n-l) set is

_"'"_=_ ..Z"__,__',',-/
(2.5z,)

The superscripts have been added to &x_o to indicate the quantity of
measurement data used in making the estimate. But, substitution of Equations

(2.L9) and (2.52) into Equation (2.53) yields the estimate of 8X o as

s'_°_ (4-, ,,_,_,_;,'%)-'(__,,_,,_, x,-'_q,,)
__ --" -- _'',_ --

(2.55)

from which
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I

(2.56)

But, from Equation (2.5/,),

(2.57)

Thus, Equation (2.56) can be written as

(2.53)

which reduces to

(s._,,a.r,s;,'g.)s__i"_--(_., ._.,TB.) s_T -'_
(2.59)

Finally, multiplying both sides of Equation (2.59) by the inverse of (_o_/+
"7" --/

_/_ 0 Bn ) y_elds

where from Equation (2._9)

_ (2.61)

Equations (2.60) and (2.61) are the iterative equations that are required

to compute the minimumvariance estimate.

In a similar manner, the recursive form of the covariance matrix for

the estimation errors can be developed. Consider the non-recursive form

s = C_-'_ _
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Comparisonof this equation with Equation (2._7) showsthat the covariance
matrix of the error in the nth estimate is related to _ as follows: #_--_-J
Thus, this substitution into Equations (2.60) and (2.61) yields:

,5_Xo =

_,_ =

. o =_rb;fr4r_ AIVD £o ! _---0

At this point it is interesting to ncg e that the conditional expec-

tation of __co_) is biased by the memory of all previous estimates. Further,

if the time intervals between data points are approximately equal, and if

the errors in the observables are comparable, the bias will increase as

the number of data points increases. This fact may appear to be the result

of an error, since the form of this estimate is a direct consequence of

Equation (2._&). However, it is noted in the way of an explanation that

the solution is biased only in a local sense. The result of the complete

reduction problem will still be unbiased, since the initial conditions for

the problem were unbiased; i.e., the matrix ES was the null matrix rather

than some initial estimate of this quantity.

Now noting that

allows the first of these equations (2.60) to be rewritten as

But
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q

: _-_C_._Iv,,"

and the estimator reduces to

•- .!>.Cn-O I -I

+H_e,, H,_],,,, "'n -

[ _c,,, J= $"n-/

where E _ C'_)
= estimate of 6X_ at the epoch tn based on all

information processed through tn_ 1 _l sets)

qo-[ _._°_o_,+.__:'_,o]-'<_-,

j-nC_)
-I = estimate of J at the epoch tn based on information

processed through tn_ 1

The second equation for estimation error then becomes

= /-//_R_ H,_ * ,_-,
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or

Thus, in summary

- [J_"_ " -' ] g,,R,,-'" -'(_" t "-' ,,-H,_R,,,V,,

T

./f') =- 0 5 ___o - a,-biY',-o, ry

This set of equations allows an estimate of the state to be generated for
the epoch tn from a priori estimate of the state at this epoch[_(_Zn-/)S_-_--'_]

and the observed minus computed residuals available at tn. Further, since

the initial conditions for _o(_ and 6X o are specified, the process can

be initiated at any time. However, the question exists as to how information

which might be available at to for Jo [°) could be utilized. It might be

argued that such a process is simply a continuation of some previous analysis
and that the initial conditions could be substituted directly. However, this

argument is not satisfying; and, therefore, a more rigorous proof will be

constructed.
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2.2.2.5 Schmidt-Kalman Filter Via MinimumVariance

The development of the Schmidt-Kalman (Reference O.1) estimation equa-

tions is very similar to the development of the minimum variance equations,

but differs in the respect that an initial estimate of ___XoX,_ is assumed
to be available for the purpose of biasing the estimator in a total sense

toward a!priori estimate. The optimum estimate is thus assumed to be_klin-

ear function of both the aqpriori estimate _ and the measurements _A and
is formulated to minimize the elements of the estimation error covariance

matrix subject to the constraint that the estimation error is not a function

of S___Xoo

The derivation of the filter equations will then require the following
definitions:

____X' = aV'priori estimate of____o

e_ = error in atpriori estimate of 8_oX

iT
E' = e_ e o = covariance matrix of a'priori estimation errors

And, as was stated, the form of the optimum estimate is assumed to be

X___= P,5__.Xo .I-Q ,SA (2.6/+)

where P and Q are chosen to fullfill the conditions discussed previously.

But,

/_ ' ' _A- = _A /-o( agX0 6x0 eo  _z0=_6x0t_e0 _ _

Thus, substitution of these definitions into equation (2.6&) yields

and the error in the estimate is obtained as

It can be seen from equation (2.65) that if the error in the estimate is

to be independent of g__XX,then

-Z) = o (2.66)
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This constraint allows P to be determined as a function of Q

P =i-@8 (2.67)

and allows the form of the estimation equation (2.6_) to be written as

(2.68)

Therefore, it remains to select Q so as to minimize the elements of the

covariance matrix of e^. This task can be accomplished using equations

(2.65) and (2.67), as-_ollows:

eo (z-4)B)_o, Q__

+cz-Qa) eo _TQT , e __e_o(z__8)_.

(2.69)

Now, defining

eo%_ =-u _ _'J= (__S_)_ (___)_ u _
allows the covariance of the estimation error to be written as

E=_[se'8",.-eu-u_,]o_
(_.7o)

- _[_'-u _] - [E'8_-_]_ _E'
The first variation of E with respect to Q is now required as the first

step in obtaining the relationship for the optimum linear estimate.

+{ ,sO[nE'e_e -su- u'e")<p'-(ee'-u")] 7"
But, 5 Q is arbitrary; thus, the elements of E will have an extreme value

if

or, solving for Q

4>: [_'s"- u][_E_'_e -Bu-u__"] -' (2.71)
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In most applications, the measurementerrors and the errors in the
a'priori estimate of the state are uncorrelated

U = 0 ond

Thus, Q becomes

U_=O

Q =E'8"Fs_'8",R3-' (2.72)

The covariance matrix of the estimation error for this case can be determined

from equations (2.70) and (2.72) as

(2.73)

Therefore,

(2.74):_'--E'B'[BL:'B_'+RJ-'_E'
where

_p : _'B>-[_-'B_,,-R]-'

These filter equations, (2.7L), can be written in a different form, as
follows :

_-(s_,_-,8__'-,)-'(B_-'__e'-,)_'B_(_E'_,R)-'

-_(BTR-_B ÷ E/-/)-/(BTR-'SE'B_'/. Br_'-_,)(/3E'BT÷RJ -'

(2.75)

or
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Thus, the equation for E can be rewritten using equations (2.73) and (2.75) as

E :E/-Qz_E"

or

f --(s "R -'a ÷_"".)-'
(2.76)

Thus, using equations (2.75) and (2.76), the set of equations analogous to

(2.7&) can be written as

z = E'-/) -'
/%1 /_/

q = (STR'8 ÷ -I

(2.77)

Note that (2.77) requires the inversion of a matrix of the dimensionality of

the state vector as opposed to the dimensionality of the observation vector,

as was the case with equation (2.7&). Also note that the estimation error
for this case does not involve subtraction. The first of these differences

is a definite disadvantage due to the fact that there is an increased chance

for numerical error due to loss of significance wheuinverting. However, the

second difference is an advantage since it avoids the problems associated

with assuring positive eigen-values which might result as E approaches the
null matrix in the other formulation.

Also, note that this form of the estimation equation is exactly the same

as that obtained by transforming the minimum variance estimator to the recur-

sive mode. Improvement in the estimate can, however, be expected, since
provision has been made to begin the process with values of J_) and___XoX,

other than those employed in the minimumvariance case.

Finally, note that the estimators (2.%) and (2.77) are both biased.

However, in contract to the recursive minimum variance estimates, this bias
exists on the overall and local senses. This fact graphically displays the

effect of a'priori information in the data reduction problem since the solu-

tion is weighted in the direction of the available data.

When the statistical properties of 8___Xoare known; i.e.,

_ _ _z r (2.78)£__Xoo_T_ = S o_X r_o = _Ta_d a'o_ 7 =U o___o =U,
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this additional information can be used to improve the estimate of S___Xo. The

equations required to utilize this information can be obtained by simply

removing the constraint equation (2.66). _en this step is performed, the

covariance matrix of the estimation error will be found from equation (2.65)
to be

E.(P,'@B-Z)V(,o,Oa-Z)' + :E'/" :-ORO _

+[ :'+o8-zJwP'+:NO',

Equation (2.79) can be written in the form

(2.79)

E = pASry'pcT@T-PF-,:rpr+@6"@7+@dPZ-@D-D_qr÷v ' (2.80)

where

A = V+E'+W+w T

C = 8V+BW_- ST+LI T

O = 8V_-..S "T

F : V/-W x

The variation of _, with respect to both P and Q can be written, using
equation (2.80), as follows:

(_.81)

But, since 6 P and _Q are arbitrary, equation (2.82) indicates that
SE will be zero if

(_.8_)

(2.83)

(2.84)

Equation (2.83) can be multiplied by A-1 to yield

pT _-A -:Cr@ _-= A -"F (2.85)
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and this result can be rewritten as

CPr * CA -/c _Q _ = CA-'F

Now, subtracting equation (2.86) from (2.8A) yields

[ _ -c_"c,] Q'_D -cA-'r
Therefore,

(2.86)

_':E_-_A-'c']-'[o-cA-'F] (2.87)

or

- [_-_-'r 3"[_ -cA-'c_J-'

Equation (2,83) now _,plies that

P "= A-' [F -C'Q'] •

Thus,

,: [,'-oc]A-' ; .s,'.,_c _ A = A T

In summary, the equations required to formulate the estimate are

(2.B8)

(2.s9)

A J%l

where
--!

p :[r'-Qc]A
Q :[_-cA-',,]"[G-cA-'c_3-'
A = V*£'_'W_'W _"

C - SV ÷SV_,Sr,_U w

D: /3V ÷ -5"

F= V_-VV F

R = _<_x_ W.- 6X_ e ;r S= 6Xo_'

(2._)
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A number of alternate forms for P and Q exist and should be investigated to

determine the form most suitable for a particular application. One such

variation can be obtained from equation (2.8&) by post-multiplying by cT G-l,

p,,, T = c 'G-,o (2.91)

and subtracting from (2.83). This process yields

IA_CTG-_CJ pr _ F_Cz G_,D

from which

(2.92)

or

since A = AT and G = GT.

(2.93)

The corresponding expression for Q can be obtained using equations
(2.8A) as follows

Thus,

This derivation of the Kalman estimator employed a minimum variance con-

cept to arrive at the optimum estimate. If the statistics are Russian, this

procedure will yield the optimum estimate in a larger sense (see Section 2.3)

since the higher moments are zero.

However, if the statistics are non-Gaussian, the resultant estimator (a

biased minimum variance estimator) will not be optimum (again in the larger
sense_ since it neglects all knowledge of any higher order moments in the

distributions of the errors. Thus future discussions will provide a reformu-

lation of this problem from the standpoint of a much more general concept of

loss and optimum estimate selection. This discussion (presented in Section

2.3) will develop the specific case for Gaussian errors and _<lll show that the

resultant estimation is, in general, superior to any other which can be
formulated.
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2.3 STATISTICALESTIMATIONTHEORY

2.3 •i Introduction

The discussions presented in section 2.2 lead to the simple development

of a series of computational algorithms which defined an estimabe of the state
deviation vector in terms of a series of observations and the initial condi-

tions. However, implicit in this material were the assumptions that

l) the dynamical model was linear

2) the observation model was linear

3) the optimum estimate of the state deviation was a linear function

of the observed minus computed values of the observables

A) only second-order statistics were necessary.

Further, the "loss" functions employed to develop optimum estimates of

the state deviation vector, while similar, were intuitive, thus giving rise

to questions regarding the uniqueness of the estimates generated. For these

reasons, it is now desirable to re-examine the estimation problem to demon-

strate the manner in which these assumptions can be relaxed and to show that

all of these estimators are special cases of a more general family of estima-

tors. Specific attention will be focused on:

l) the criteria to be utilized in determining the optimality of the
estimate

2) the statistical properties of the variables, and

3) the form of the function relating the observables and the quantities

being estimated.

In general, the particular problems of interest are representative of a class

of problems which is the subject of the general theory of parameters estimation

as set forth in statistical decision theory. Therefore, the fundamental con-

cepts of the theory of parameter estimation form a basis for an adequately
unified approach to fulfill the present requirements. It should be noted that

the simple derivation of filtering methods employs some of the basic concepts

of the theory of parameter estimation explicitly, while others are almost

always implicitly involved. However, when these concepts are not consistently

employed on an explicit basis, their applicability and usefulness are not

fully realized or exploited. In the subsequent sections on estimation, the

basic concepts of the general theory of parameter estimation are presented

for the primary purpose of formulating a more unified approach to determining

filtering methods than the simple approaches outlined previously. The dis-

cussions do not present an exhaustive treatment of the subject, nor is one

intended; rather, primary emphasis is placed upon the basic concepts which
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have general applicability and particular usefulness to the present problems.
Nonetheless, adequately complete discussions of the concepts are presented so
that extensions can be formulated and applied to those problemswhich require
them.

It should be emphasizedat the outset that the problem of state estima-
tion in space navigation and guidanceis completely equivalent to the problem
of transmission and reception of information in a noisy communicationchannel.
All of the methodsutilized for solving the latter problem are totally and
directly applicable to the former one. Further, since extensive application
of the general theory of parameter estimation has beenmadeto the general
problem of communicationsin the presenceof noise, leading to a general
theory of statistical communications,the sameapproach to state estimation
will yield a general theory of statistical navigation and guidance, Should
questions arise during the discussions, it is likely that answerscan be
found in Referencessuch as 0.4.

In the discussions, it is assumedthat the reader is generally familiar
with the fundamentals of probability theory. To be specific, knowledgeis
assumedof: (1) continuous joint probability distribution and density func-
tions; (2) marginal and conditional probability density functions; and (3)
conditional expectations. Thoughan extensive knowledgeof statistics is not
required. This level of familiarity must be assumedsince to do otherwise
would require the developmentof all of the statistical concepts to be
employed. Thus, should the terminology be unfamiliar, the reader is referred
to any of a numberof excellent references (References0.4, 3.1, 3.2, etc.).

The discussions begin (section 2.3.2) with basic notation and definitions,
which are of particular concern to the present subject, and which are not
necessarily emphasizedin the fundamentals of probability theory. This
material is followed (section 2.3.3) with a description of the basic problem
to be considered in mathematical form and a discussion of somephysical inter-
pretations.

In section 2.3.4, the rudiments of parameterestimation are discussed,
and a basic description of the problem is given which emphasizesthe under-
lying concepts. Thesediscussions define estimators, estimation error and
basic properties of estimators. Properties of a "good" estimator are then
discussed to form a basic concept of estimation. Next, moregeneral criteria
for estimation are defined in terms of loss functions and associated risk.
Properties of estimators which are basedon estimator risk follow these dis-
cussions. Finally, sufficiency of an estimator is discussed, a sufficient
statistic is defined, and a test for sufficient statistics is given.

The determination of particular estimators is discussed in section _.3.5
with primary attention given to useful methodsfor determining estimators.
The determination of minimumvariance unbiasedestimators by meansof suffi-
cient statistics and complete probability density functions is discussed, and
the methodof least-squares estimation is shownto yield minimumvariance esti-
mators under the condition of statisticsl independenceof the sample. Attention
then turns to the developmentof a lower boundfor estimator variance and the
determination of Bayesestimators. Th___egeneralsolution (in terms of the
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Bayesestimator) for the case of squared error loss is Shownto be the con-
ditional expectation. (Moregeneral loss functions are also considered.)
Following this material, Bayesrisk is discussed and a comparisonof a Bayes
estimator and a minimumvariance estimator is given to illustrate the differs
ence in the results. Finally, minimumrisk estimation is discussed to
emphasizethe use of sufficient statistics in minimizing risk for the general
class of convexloss functions. (Maximumlikelihood estimation is discussed
and shownto be equivalent to Bayesestimationwith a simple loss function.)

Thesediscussions conclude (section 2.3.6) with the application of Bayes
estimation to the caseof manydegrees of freedom. The first result is the
formulation of the technique to develop the optimumestimator for the general
vector case and for general statistical distributions. The secondresult is
the extension of this material to the general linear case, wherethe statis-
tics are Gaussian. This extension develops a proof that (under these assump-
tions) the Kalmanestimator is th___eeoptimumestimator.This fact could not
be developedfrom the material presented in section 2.2.

2.3.2 Basic Definitions

It is the purpose of the following sections to develop a basic under-

standing of the general problem of parameter estimation. This effort must

necessarily begin with the following basic definitions of the essential

elements of the problem.

2.3.2.1 Random Processes

A random process is defined herein as any phenomenon for which repeated

observations, under a given set of conditions, do not yield identical results.

In general, random processes are characterized by variations in outcomes for

repeated equivalent trails. These variations in outcomes or observations are
considered as the,randomness" of the process, which is equivalent to uncertain-

ty in the outcome of the process. As a contrary example, consider a process

whose behavior is completely described by a known system of differential

equations. Theoretically, it is possible to completely determine the

behavior of such a process if a sufficient finite set of initial conditions

are known. Thus, it would be possible to completely specify the future

behavior of such a process if an adequate set of observations are made at

some time. Such a process is said to possess deterministic regularity. How-

ever, until such time that all physical laws are explicitly established for

the microscopic and infinitesimal domains, the concept of random physical

processes must be admitted, accepted, and dealt with.

Alternatively, a random process could be defined as one which does not

possess deterministic regularity, and subsequent outcomes cannot be predicted

with certainty from a set of observations of the process. However, a random

process can possess definite properties of behavior which make possible a
description on a statistical basis. Such random processes are said to

possess statistical regularity. In such cases, even though particular out-

comes of the process cannot be specified, it is possible to specify the rela-

tive frequency or probability of occurrence of outcomes for the process. That

is, let y denote the outcome of a random process, then the process is

48



described by specifying the probability that y _ill lie in somearbitrary
interval. The commonnotation is as follows:

In this notation P(a _ y _ b) is referred to as the probability distribution
function which is the probability that y lies in the interval a < _ b, and
f(y) is the probability density function of y.

Thus, randomprocesses are explicitly described by specifying their
probability density functions. In Section 2.3.3 a detailed mathematical
description is given for randomprocesses of particular interest in the pres-
ent discussions.

For the sakeof notational convenience, "pdf" will be used to denote
"probability density function" in the text, and "f(y)" will denote the pdf of
y in equations. However,it should be noted that if x and y are two differ-
ent randomprocessesthe pdf of x, f(x), is not equal to the pdf of y, f(y),
even for y = x.

2.3.2.2 Parameters

If a randomprocess possessesstatistical regularity, then it can be
described by specifying all of its statistical properties, which is equivalent
to specifying the pdf of the process. The "parameters" of a randomprocess
are defined as the smallest set of elementswhich specify the statistical
properties of the process or its pdf. In general, all statistical averages,
or moments, of a randomprocess are required to specify it. However, for
manyprocesses of interest, all momentsare not required, and a smaller set
of parameters suffices to specify the process.

For example, in the case of a Gaussiandistributed randomprocess, it is
only necessary to specify the meanand variance of the process, since the pdf
of the process, f(y), is specified by these two parameters; i.e., if y is the
outcomeof a Gaussiandistributed randomprocess, then

where _ and _2 (the meanand variance of y, respectively) represent the two
parameterswhich specify the pdf of a Gaussianrandomprocess.

In general, the set of n parameterswhich specifies the statistical proper-

ties of the pdf of a random process will be denoted by @ = (@l, @2' "'', @snt)"
The pdf of a random process will be shown as a function of the parameter
@ in terms of the conditional pdf, given 9; i.e., f(yZ@). For the Gaussian

ixif Q= = 0"-2) and = f(J ,
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2.3.2.3 Random Samples

A ra_om sample is defined as a collection of observ_ions or outcomes

of a random process. Specifically, a random sample of size m is a set which

contains as eleme_s the results of m observations of a random process. A

random sample will be denoted by Y = (_, _, ..., Ym). It is important to

note that a random sample has a joint pdf which essential_ specifies the

prob_i_ty of the simultaneous occurrences of the m observations. That is,

L (3.3)
For conve_ence, the follo_ng notation wi_ be used to denote the prob_ility

of s_taneous occ_rences of a r_dom sample of m observations.

Where D(Y) is any m dimensional domain of interest, P_D(Y)_ is the probability

that the random sample will lie in D(Y), f(Y) is the Joint pdf of the random

sample Y, dY is an m dimensional infinitesimal, and it is understood that the

integral must be performed over the domain D(Y).

In general, the m observations of a random sample can be statistically

independent or dependent. The random sample is defined to be independent if

f( ) : . .... le )
,,, )

X:= l

where f(yi/@) is the pdf, given the parameters 9, for a single observation of

the random process. Otherwise the random sample is statistically dependent.

As a particular example of f(y/@), consider m independent observations

of a Gaussian random process. For this case,

2.3.2._ Random Variables

A random variable is defined as a real-valued function of F(y) which

exists and is defined for each outcome of a random process. Of course, the

outcomes for many random processes are actually random variables; i.e.,

F(y) = y. Such random processes are considered to be quantitative or numeri-

cal processes, e.g., random voltages, pressures, errors, etc. On the other

hand, random processes exist which are non-numerical, such as the tossing of
a coin where the outcome is either a heads or tails. However, it is possible
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to define a randomvariable for this randomprocess by assigning numbersto
the outcomesor by defining the randomvariable to the numberof headsin m
tosses of a coin, etc.

The importance of the concept of a random variable lies in the fact that

many of the arithmetic, algebraic and analytical operations which are defined

for real-valued functions are meaningful for random variables, whereas they

are not for the outcomes of all random processes. Thus, additions, subtrac-

tions, multiplications, transformations, etc., are applicable to random
variables.

In general, if y possesses statistical regularity, then the random vari-

able F(y) possesses statistical regularity. Thus, F(y) is generally specified

by a pdf which is derived from that of y. The derivation of f IF(y)_ from

f(y) is, in general, not a simple transformation, except in the simple case

of F(y) = ay for which f [F(y)_= a • f(y), where a is a constant. However,

the expected values of random variables are usually required, and the pdf of

F(y) is not required since the expected value of any random variable F(y) can

be determined from pdf of y as follows:

where E denotes "expected value." The conditional expectation of F(y),

@, is defined as

given

2.3.2.5 Statistic

A statistic is a known function of a random sample of observations of a

random process whose outcomes are random variables. It follows that a sta-

tistic is a random variable; however, a random variable is not necessarily a

statistic. For example, in the case of a Gaussian random variable y with

unknown mean value _, the function y -_ is a random variable; however, it

is not a statistic since_is not known. On the other hand, y - c, where c

is a known constant, is a statistic.

The important difference is that a statistic is defined as a known func-

tion of a random variable sample set Y which does not contain any unknown

elements. Thus, a particular sample Y specifies the statistic. Of course,

statistics are not unique since many known functions of a random variable

sample can be defined. In general, the set of statistics defined for the

random variable sample set Y will be denoted by

T(Y) =[TI(Y), T2(Y), T3(Y) .... ] •

A statistic represents a transformation of the sample set Y from the

space of random variable observations to the space of statistics. The trans-

formation is not unique for a given statistic. For example, a statistic can

be the simple linear sum of random variable observations in which case many
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different samplesets transform into the samepoint in the statistic space
(i.e., various samplesets can yield the samenumerical value of the statistic ).

Theconditional expectation of T(Y), given 9, is determined from the
conditional Joint pdf of Y, i.e..

Y
where the integral is m dimensional and must be performed over all y in Y.

2.3.2.6 Complete Probability Density Functions

In the consideration of parameter estimation, a question often arises

concerning the uniqueness of the expectation of a random variable. This

question can be resolved in terms of the property of completeness of pdf's.
A random process, y, is specified by its pdf, f(y/@), which is a function of

@. For any interval of @, A _ @ _ B, f(y/@) defines a family of pdf's. The

following definition defines a complete family of pdf's.

DEFINITION: let f(y/@) _ 0 for any interval of a ( y • b and zero

otherwise and let F(y) be a random variable defined on the interval a _ y < b

and independent of @.

Now, if

if, and only if, F(y) _ 0 for a _y • b, then f(y/@) is defined to be a com-

plete family of pdf's. Conversely, if there exists some F(y) which is not

identically zero in a _ y <b for which E _F(y)_ =0 for all A _ @ < B, then

f(y/@) is not a complete family of pdf's.

It should be noted that a pdf can be complete with respect to certain

parameters. For example, consider the Gaussian pdf, f(y/_ , _2), to wit,

If the mean value_ is known, then any random variable F(y) which is defined

as an odd function about_ has zero expected value and, hence, f(y/_, 0 2) is

not complete with respect to _2 for known_. On the other hand, if_ is

unknown, then f(y/zx, _2) is complete with respect to both_ and _ 2 since

the only F(y) which has zero expected value for all_ and _2 is given by
F(y) _ O. Of course, f(y/_,_) is complete for known o_2 if _ is unknown.

The use of completeness can be demonstrated by considering f(y/_,_2)

for _2 = 1. Let F(y) =y2; then E _F(y)] = E(_) = _2 + 1. The property

of completeness determines that there is no other F(y) _y_ such that

E_(y)_ = 2 + 1. For if E_F(y)_ = E(_), then E_F(y) - _] = O. But

since f(y/_, l) is complete, F(y) - y_ must be identically zero for all y;

i.e., F(y) _y_. Thus, since f(y/_, l) is complete, the E_F(y)Sis uniquely

determined.
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2.3.3 A Mathematical Description of Random Processes

In order to promote an understanding of parameter estimation with respect

to the particular problems of interest, a mathematical description is discussed

in this section which describes, in general form, the set of random processes
to be considered.

2.3.3.1 A General Form

For present purposes random processes will be defined in general form as
follows

= EC_e) e (3.7)

where

= m x 1 Observation vector

@ = n x 1 Parameter vector
m

F = m x i Transformation vector

e = m x 1 Noise vector

Equation (3.7) defines a random process as a general non-linear function of

the parameter vector @. The general linear case is defined by _(@) = A@;

i.e.,

= (3.8)

where

A = m x n Transformation matrix

The foregoing terms have the following properties.

e Is always random

@ Is either random or non-random

F Is always non-random

A Is always non-random

Is always random

Thus, for present purposes, a random process is defined as the linear sum

of two processes _(@) and _. The process _ is always a random process. How-

ever, since _ is always non-random, the process _(@) is randon if, and only

if, @ is random. It is extremely important to note that for non-random @,

the process _(@) possesses deterministic regularity. Furthermore, the process

_(@) possesses conditional deterministic regularity, given @; i.e., for a par-

ticular @, _(@) is deterministically regular. Of course, Z is always random
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since e is always random.

A moredetailed discussion of the general form of randomprocesses is
given in subsequentsections. However,at present it is advisable to discuss
somephysical interpretations of the randomprocess as defined herein.

2.3.3._ SomePhysical Interpretations

In the general form of a randomprocess, the vector @represents the
essential unknownswhich are to be determined. For example, in the linear
case, @ represents the "state" vector which is commonlyused to denote the
position and velocity deviations of a spacecraft from a reference trajectory.
However,in the present definition @ is quite general and can represent other
parameters suchas the coefficients of a polynomial fit to data (as in the
case of least-squares curve fitting) or the bias arising from a randompro-
cess, etc.

Thevector _(@) represents someobservable or measurablephysical
phenomenawhich is dependenton @. In general, _ represents a set of known
non-randomfunctions of @. In the case where@represents spacecraft position
and velocity deviations from a reference trajectory, _(@) usually represents
deviations of spacemeasurementsfrom the reference. In this case, _(@)
usually becomesA@whereA is the matrix of first partial derivatives of space
measurementswith respect to spacecraft position and velocity. It should be
noted that, in general, _ is not necessarily constant; e.g., _ can vary as a
non-randomfunction of time. For example, @can denote trajectory injection
deviations which are propogatedinto subsequentvalues of trajectory devia-
tions as a function of time. In such case, _(@) is a function of a time-
dependenttransition matrix.

The vector _ represents errors in measurementsof _(@) or, equivalently,
the uncertainty in observations. If the errors in measurementswere not
present, then, theoretically, the parameters @could be determined directly
from the inverse of Z = _(_); i.e., for _ _ O, @= F--I(z) whereF-I exists
and y is an adequate set. However,in the general case, _ is present and
cannot be determined from F-1 without the risk of large errors in the results,
e.g., in the linear case w_ereZ = A@+ _, A-_ = @+ A-1 e and the error in
taking @= A-_ is A-1 _which could be large dependingon-the nature of A-1
and _.

The vector _ is a randomvariable vector which represents the random
process in general. A particular value of Z represents a particular observa-
tion of the randomprocess. The totality of observations comprises a random
sampleset Y which contains all observations of the randomprocess. The vector
_and the set Y can be interpreted in two equivalent forms. In general, the
totality of observations can be taken in a time sequenceof simultaneous
observations of the elements of _. In this case, Y contains the set of par-
ticular observations of Z, i.e., Y = (_l" Y%_,.... , _m)- However, the vector

can represent the totality of observations with the elements of Y as sub-
vectors of _, in which caseY and _ are the sameset. The particular inter-
pretation of _ is selected on the basis of convenience for a particular
problem.

9
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2.3.3.3 An Ensembleof Non-StationaryRandomProcesses

In the general form of a randomprocess, as defined in equation (3.7),
the termS(@) is dependenton @and can vary as a function of time. Thus, the
general form of randomprocesses actually defines an ensembleof non-station-
ary randomprocesses. Eachparticular value of @defines a particular member
of the ensembleof randomprocesses defined. Since _(@) can vary with time
for any g, the ensemblemembersare non-stationary; however, if _(g) is inde-
pendent of time, i.e., constant for all particular @, then each memberof the
ensembleis stationary, assumingthat the randomprocess _ is stationary.

Twoimportant aspects of the ensembleof randomprocesses should be
strongly emphasized: First, it is important to note that whena set of obser-
vations are madeof a randomprocess, a particular memberof an ensembleis
observedand determining @is equivalent to determining which memberof the
ensemblehas been observed. That is, during a sequenceof observations,
is a constant which, of course, is unknown. The object of making observations
is to determine @, if possible. It should be noted that for each ensemble
member,the deterministic regularity resulting from _(@) is reflected as
statistical regularity in the observations _ = _(@) + e.

Second, it is also important to note that although @is an unknownto be
determined, certain information is often available concerning the behavior of
@. Indeed, @is often a randomvariable with knownpdf. In such cases, it
is possible to determine the probability of occurrence of particular members
of the ensemble. In general, membersof the ensembleoccur with various
probabilities and certain memberscan occur with zero probability. If @is a
randomvariable, then the ensembleof randomprocessesis specified by the
Joint pdf of @. Generally, @exists over someparameter space,A-L, and the
pdf of @determines the probability of occurrence of a particular @in the
parameter space£L.

2.3._ Rudiments of Parameter Estimation

2.3._.1 A Basic Description of Parameter Estimation

The problem of parameter estimation can be described most succinctly in

the following manner:

l) A random process exists which is a function of or characterized by a

set of parameters.

2) The parameters are not explicitly known nor can they be directly

observed.

3) Knowledge of the parameters is required to perform some particular
task.

_) Observations of the random process can be made which yield a set of

sample data.

5) The set of sample data provides the only means for determining the

required parameters.
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Theforegoing is equivalent to the methodof inductive inference, which
is referred to as statistical inference whenrandomprocesses are involved.
That is, from a particular set of observations, conclusions are drawnwhich
concernsomegeneral aspects of the process under observation. The methodis
depicted in Figure 2.3.1. It is a basic theoremof formal logic that the
methodof inductive inference is intrinsically uncertain. It is not possible
to makegeneralizations with certainty on the basis of a set of particular
observations. The situation is apparent whenrandomprocesses are involved.
Nonetheless, useful inferences can be madeif the procedures involved are
judiciously formulated. This is the general concern of the theory of statis-
tical inference and the particular concern of statistical decision theory.

In the general theory of statistical inference, the basic problemwhich
is considered, is that of makinga decision under existing conditions of
uncertainty. Twotypes of uncertainty are recognized: randomnessand the
lack of knowledgeconcerning the state of nature. It is required to makea
decision concerning the state of nature, and it is desirable to makethe
"best decision possible" under the circumstances. In effect, the decision is
an estimation of the state of nature; thus, if the state of nature is deter-
minedby a set of parameters, the decision problemof the parameter estimation.

Theforegoing situation is completely equivalent to the problem of deter-
mining the set of parameters@of the randomprocess _ = _(@) + _. The
uncertainty due to randomnessis equivalent to the errors in measurementsor
observations, denotedby _, and the uncertainty due to the unknownstate of
nature is equivalent to that of the unknownparameters g. Of course, "best

decision possible" is equivalent to "best parameter estimation possible."

Thus, the problem of parameter estimation becomes that of determining esti-

mations of @ from a set of observation data which are "best" with respect to

some applicable criteria. Some comments concerning the general philosophy
are in order.

At the outset (before observations are taken) there exists uncertainty

about the parameters @. However, some knowledge of @ can exist a'priori since

the pdf of @ is frequently known; i.e., the probability of occurrence of a

particular @ can be known a'priori. Thus, in general, complete uncertainty

concerning @ does not exist at the outset. Nonetheless, in each particular

case, it is required to know @ with less uncertainty on greater certainty (as

contrasted with absolute certainty) than exists a'priori. The statistical

regularity of the process, which is characterized by the parameter @, is

present in the observations of the process; hence, the observations must con-

tain intrinsic information concerning the parameters @. Thus, the object of

parameter estimation becomes that of extracting information concerning @ from
the observations thereby decreasing the a'posteriori (after observations)

uncertainty of @ or, equivalently, increasing the a'posteriori knowledge of @.

It is interesting to note that the problem is identically equivalent to the

problem of information transmission and reception in the presence of noise,

which is considered in the general theory of statistical communication. Indeed,

the problem is one of extracting information concerning @ from the observations

Z in the presence of measurement or observation error @.
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In general_ it is not possible to determine the parameters @ with abso-
lute certainty (unless an infinite number of observations are made, which is

generally not practical) ; thus, some residual or a'posteriori uncertainty must

be expected. The concept of "best parameter estimation possible" is equival-

ent to the minimization of a'posteriori uncertainty or the extraction of
maximum information from the observations.

In general, parameter estimations are derived from operations which are

performed on the set of observations or random sample data. These operations

are defined as estimators and are denoted herein by 6 . The general procedure

of parameter estimation is depicted in Figure 3.2. In the following section,
estimators 8 are discussed in further detail.

2.3._.2 Estimator

In general, an estimator g is a known function of statistics (see Section

2.3.2.5) which provides an estimation of a parameter @. Of course, an estima-

tor is a random variable; in fact, estimators are a subclass of the class of

statistics. (That is, an estimator is a statistic but a statistic is not

necessarily an estimator.) In many cases the difference can be trivial; how-

ever, in the consideration of parameter estimation, it is extremely important

to consider all possible known functions of random samples, i.e., statistics.

The ambiguity can be resolved by considering a statistic as an admissible

estimator if its conditional expectation, given @, contains @ explicitly.

That is, if E(T/@) = @ + b(@), then the statistic T is an admissible estimator

6 for @, where b(@) is some function of @, which is referred to as estimator

"bias." It follows that

Thus, in general, admissible estimators can contain a "bias" term b(@) which

is a function of @. However, all admissible estimators are not necessarily

desirable since estimator bias, b(@), whereas admissible, is not necessarily

desirable in particular cases.

It should be noted that the term ,,estimator" denotes a function, whereas

"estimation" or "estimate" generally denotes a particular value of an esti-

mator as a function of a particular random sample.

There are two major objectives in the problem of parameter estimation.

The first of these objectives is to determine parameter estimators _ with

minimum uncertainty; and the second is to appraise the estimator's uncertainty

in terms of its magnitude and behavior as a function of significant factors;

e.g., sample size, random process characteristics, etc. Estimator uncertainty

is usually measured by estimator error, which is discussed below.

2.3._.3 Estimator Error

In general, parameter estimations are inductive inferences and as such

are always subject to uncertainty. The primary objective of parameter esti-

mation analyses is to determine estimators with minimum acceptable uncer-

tainty. In order to approach this problem on a mathematical basis, it is

necessary to express estimation uncertainty in explicit mathematical form.
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Thus, with each estimator there is associated an estimator error, denoted by
, which is defined as the linear difference of a parameters and its esti-

mation, to wit,

(3.9)

The problem of parameter estimation can be considered as equivalent to an

analysis of estimator error. Thus, at the outset, several general properties

of should be noted. First, estimator error is a function of the sample data
set and the parameter @; i.e.,

Second, since _ is a function of random variables, it is a random variable and

must be analyzed on a statistical basis, i.e., g is specified by determining

its pdf, f(_ ). Third, since _ is a function of Y and @, f(_ ) is a function
of f(Y) and f(@), to wit,

S_T(y)F°urth'_the particular form of f( a ) is dependent on the particular estimator

In the analysis of parameter estimators, primary emphasis is placed upon

the statistical behavior of estimator error. This behavior is dependent upon

the characteristics of the random process (especially as a function of the

parameters being estimated) and the particular form of the estimator as a

function of the sample data. The ultimate objective in parameter estimation

is to determine parameter estimators which yield acceptable behavior of the

estimator error. Of course, suitable statistical properties of estimator

error must be used as the object of analysis. The most significant properties

are the first moment, first central moment, and second moment, which are

usually referred to as the mean value, the variance and the mean squared value
of estimator error, respectively. These quantities are defined below:

(i) Mean value of g =

= E(e)

fCe) de

= E(6)- ECG 
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(2) Variance of _ = V(C )

VCC)=E(_- g)2

= l( ( _ _ )2 f(E ) d

(3) Mean-Squared Value of g = g_

= E(c _)

=/_C 2f(_) d_

The mean value of _ is commonly referred to as estimator bias and if

= O, then £ is considered unbiased. The most significant aspect of esti-

mation error is the effect of _ on V(C ) and g_. This effect is stated below.

If for all @, the conditional expectation of £ , given @, is zero, then

the mean-squared value of g is equal to V(-C ) and the estimator variance,

V( 8 ). This can be shown in the following manner _ denotes expectation with

respect to @ and 5-@ denotes the conditional expectation E(£/@_:

= Ee E (G/e)

-_ e
Thus, if E(E/@) = 0 for all @, then_ = 0 and_ =V(_ ). Thatg -_ : V(8) for

E(g/@) = 0 is shown below:

(_.12)

)
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The secondterm is the square of E(£/@) and is always positive, thus,

¢* _ V(6) 0.]-3)

with equality if E(£/@) = 0 for all 0. Therefore, the following is true:

If E(g/@) = 0 for all @, then_ = V(_ ) = V(& ).

It should be noted that E(£/@) = 0 for all @ is a sufficient condition for

gz = V(6 ) = V(_ ). In general, the condition is also necessary if the pdf

of @ is non-zero from all @. On the other hand, if pdf of @ is zero for some

interval of @, then E(g/@) can be non-zero for the same interval of @, and

_2 =V(g ) =V(6) . This is true because if f(@) = 0 for some interval of @,

then those @ in this interval occur with zero probability and contribute

not_hing to the exoectation with respect to @. It should also be noted that

if _ = O,_thenc _ =V(£); however, it does not follow thatg-2 =V(6),
since for 6 =@ it is not required that E(£/@) = O.

2.3._._ Basic Properties of Good Estimators

The primary motivation for the concept of a "good" estimator is derived

from a consideration of the basic properties of estimator error discussed pre-

viously. Consider three different estimators gl' _ and 63 for a parameter

@. Let the estimator errors for the three estimators be denoted by _, g 2

and £ 3, respectively, and assume that they have the following propertles for
all @.-

The pdf's of 61,

_(cz/o)= o

_,(_/_)= o

E(C3/e) = _3

v(cl) < v(_2) < v(¢3)

6 2 and 5 3 are depicted below in Figure 2.3.3.
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Figure 2.3.3: Illustration of Estimator pdfls

Inspection of the pdf's of ill, B_ and _ leads to the conclusion that

1 is the "best" estimator of the three since it has the minimum variance of
the three and is unbiased. This conclusion is further substantiated by con-

sidering the mean-squared values of £ l, _2 and g3" From equation (4.3)

and the specified properties for £1, g2 and g3 i_ is seen that

Thus, it would again be concluded that S 1 is the best estimator of 51, 6 2

and 6 3, since its estimation error has the minimum mean-squared value of the
three bonsidered.

In the foregoing situation, there is no problem selecting the best esti-

mator of the three considered. However, in the general case some difficulty

can arise. Consider a fourth estimator _A whose variance i_ less than that
of gl but which has a non-zero mean value; i.e., E(gl./@ ) = eA _ 0. Of the

four estimators _ A is the one with minimum variance;_however_ it is not
necessarily the one with minimum mean-squared errror. That isA_although

z z _ since C_ O.V(E_) _ V(E1) , it is not necessarily true that _±

Thus, in the set of all possible estimators for @ the one which has

minimum variance does not necessarily have minimum mean-squared-error. How-

ever, if the estimator with minimumvariance also has zero mean value for all

@ then the minimum variance estimator is also the one with minimum mean-squared-
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error in the subset. But, the minimumvariance estimator in this subset is
not necessarily _he minimummean-squared-errorestimator of the total set of
estimators.

It is apparent that, in general, somequestion exists concerning the
selection of a "best" estimator. The final answer is usually dependentupon
the particular problembeing considered. Nonetheless, from the foregoing
considerations someproperties of "good" estimators can be formulated which
actually classify or define sets of estimators as follows.

2.3._._.1 UnbiasedEstimators

An estimator is defined as an "unbiased" estimator of @if

= e :o,.

It follows that an unbiased estimator has zero mean-value of estimator error,

i.e.,

_.3.A._.2 Vh_uimum-Variance Estimators

An estimator is defined as a "minimum-variance" estimator of @ if it has

the smallest variance of all estimators of 9, for all @.

2.3.A._.3 Minimum-Variance Unbiased Estimators

An estimator is defined as a "minimum-variance unbiased" estimator if it

has the smallest variance of all unbiased estimators of @, for all @.

_.3.&.A.A Minimum Mean-Squared-Error Estimators

An estimator is defined as a ,.minimummean-squared-error" estimator of @

if it has the smallest mean-squared estimator error of all estimators of @,
for all @.

2.3.&.5 Loss Functions and Risk

In the previous section, basic criteria for good estimators were based

upon estimator bias and variance, and mean-squared value of estimator error.

Although these criteria are generally acceptable, there always exists the

problem of selection between a minimum-variance and a minimummean-squared

error estimator when they are different. Furthermore, these criteria lack

generality in terms of total performance or behavior of an estimator. A more

general form of estimator performance criteria is formulated from the follow-

ing considerations.

In the general situation of parameter estimation, there exists more pen-

ality or "loss" which is associated with mu incorrect estimation. If this was

not true, then nothing essential could be gained by the efforts of determining

and using good estimators. The loss can be measured in terms of a non-negative

function of estimator error which is a monotonically increasing function of
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estimator error magnitude. Any function of estimator error with these two
fundamentalproperties is referred to as a loss function which will be denoted
byL(-C). Thus, a class of loss function is defined by

L(£ ) = 0 for g = O

2) : L(%_)for

L(E 2) >L(£ I) for I_I_ Ell

L(g- ) = L(- 6)

It is not necessary to restrict loss functions to the class with these

properties, although the class has general applicability. A class of loss

functions can be defined more generally as non-negative, monotonically non-

decreasing with a unique coincident minimum with estimator error magnitude.
Such loss functions allow a cost of measurement to be included and are mini-

mum, rather than zero, for _ = O. Also, constant loss is allowed for an

interval of estimation error C .

Of course, negative loss would be considered as a gain; however, this is
not allowed for non-zero estimator error and for zero error the loss is sim-

ply zero or some minimum. Obviously, there are no unique loss functions of

estimator error; thus, a particular loss function should be selected on the

basis of a particular problem. IB should be noted that "squared-error" is an
acceptable loss function, i.e., g = L((). Others can be as easily defined.

The loss function L(E) measures the loss incurred in making an error g

in an estimation of @ where it is assumed that some appropriate L(£) can be

defined for each problem of interest. Of course, L( g ) is a random variable

dependent on estimator error g = 8- @. Thus, L(£ ) = L(g, @) is a function

of _ and g and measures the loss incurred in estimating @ with 8 . The aver-

age value of L(8, @) is the loss to be expected in using the estimator _ for

@. Expected loss is generally referred to as the "risk" taken, i.e., the

risk is expected to be lost on the average. The risk in estimating @ by 6 is

function of both @ and 8 and will be denoted by R(_, g). It follows that

R(_,8) ---/"Z [,_(Y), o] f(Y/e} dy
Y

Risk or average loss provides a rather general criterion of estimator

performance. Of course, risk is always _ function of the particular loss
function, which includes squared-error _; therefore, risk includes mean-

squared error _ as a particular case. In general, it is desirable to mini-

mize the risk involved in estimating @ by 6 . Thus, for a particular loss

L(6, @) it is desirable to select an estimator 6 which minimizes the expected

loss or risk in estimating @. This leads to a class of estimators referred
to as minimum risk estimators which are defined as follows.

2.3.&.5.1 Minimum Risk Estimators

An estimator is defined as a "minimum risk" estimator for the loss func-

tion L(6, @) if the expected loss or risk R(_, @) is a minimum for all @.
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There is no argumentconcerning the desirability of minimum risk esti-

mators; however, difficulty frequently arises in finding such estimators.

It is usually possible to find an estimator which has minimum risk for certain

@ but which does not have minimum risk for other @. A single minimum risk
estimator does not exist. Such situations are untenable since @ is unknown

beforehand. Thus, two alternate approaches are taken in minimizing risk.

One approach is that of finding an estimator which minimizes the maximum risk.

The other approach is that of finding the estimator which minimizes the

expected value of risk over all @. This leads to the following two classes
of estimators:

Minimum-I._dz_amRisk Estimators (Minimax)

An estimator is defined as a "minimax', estimator if the minimum risk is

aminimum.

Minimum Expected Risk Estimators (Bayes)

An estimator is defined as a "Bayes" estimator if the expected risk over
all @ is a minimum.

The use of minimum expected risk was first introduced by Bayes and,

therefore, such estimators are referred to aS B_yes estimators. The expected

risk is the expected value of R(6, @) with respect to g, i.e.,

=/@ R(6, @) f(@) d@

where f(@) is the pdf of @. From the equation for R(g, @) it follows that

8 Y
Thus, a Bayes estimator is one which minimizes [6(y_.

A general preference from minimax or Bayes estimators cannot be given and

could vary from one problem to another. However, there is an obvious disad-

vantage with minimax estimators in that the g of maximum risk (referred as the

least favorable @) for which the estimator _ minimizes risk can occur with

very small probability; thus, on the average, the minimax estimator can per-

form very poorly. This disadvantage is overcome in the Bayes estimator.

Thus, the Bayes estimator is generally more desirable. That is, the Bayes

estimator makes use of the a'priori knowledge of @ available in the pdf of @

to arrive at an estimator of minimum average risk. Bayes estimation will be

discussed in further detail in Section 2.3.5.2.

2.3.&.5.2 Estimator Properties Based on Risk

Two properties of estimators are based upon estimator risk. These are

estimator "efficiency" and "consistency." Estimator efficiency is a relative

measure of estimator risk while estimator consistence is a property of rick as

sample size increases. These two properties are discussed below.
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Estimator Efficiency (Relative)

Consider two estimators 61 and 62 with associated risks R(gl, @) and
R(62, @)with respect to a loss function L(_, @). The relative efficiency,
r(61,82) of _l to 6z is the inverse ratio of their risks, i.e.,

RC62, e)

If r(gl, 82) > l, then 6 1 is considered a better estimator than 62 and vice

versa. However, it should be noted that r(_l, 6_) is a function of @; there-

fore, r(S1, 62) can vary for different @. That _s, _l can be better than S 2
for certain @ and the opposite true for other values of @.

Estimator Consistency

One fundamental property of a good estimator is that as sample size increases

the risk should decrease and in the limit the risk should approach zero as

sample size m increases indefinitely; i.e.,

An alternate statement of estimator consistency is

Lira PRos L[%-L_ 4.6.,,,<O ,A] =I #o_ _I

for = arbitrarily small. This statement is referred to as simple consistency.

If the loss function is squared error, L(_ ) = £2 s then Rm(6 , @) =C-_m, and
the estimator, 6, is termed squared-error consistent if

Since ¢--2 = V( _ ) + (@ - _)2 squared-error consistency implies that both the

variance and bias of 6 approach zero for indefinitely large sample size.

Estimator consistencies, in the previous context, concern behavior for indef-
initely large samples. However, estimator consistence for finite sample size

is equally impor%ant. This fact leads to the definition of a uniformly
consistent estimator as one for which the risk decreases uniformly for

increases in sample size, i.e., if Rm+l(6 , @) < Rm(g , @), for all @, then
is uniformly consistent.

2.3._.6 Sufficient Statistics

In general, an estimator _ is a random variable which is used to deter-

mine estimations of a particular @ from a random sample. The underlying

principle is that the statistical regularity of a random process, which is

characterized by the parameter @, is demonstrated in a random sample of the

process; thus, information concerning @ resides in the random sample. The
purpose of the estimator is to extract this available information from the

random sample. It should be apparent from the foregoing sections that various

criteria do not directly measure the degree of utilization of the information

available in the random sample. Of course, it is desirable that all of the

available information is utilized by the estimator for @. It could be strong-

ly argued that estimators which fulfill certain of the criteria discussed

s
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must utilize all available information; however, such arguments are largely

hueristic, and some question remains. Fortunately, this question can be

satisfactorily resolved by considering sufficient statistics.

The basic argument is that in order to obtain information about @ sample

data must be taken from a process which is characterized by @. Sample data

taken from a process which is independent of @ are useless in determining @.

Thus, if the pdf of a random sample is a function of @, then the random sample
is useful in determining @; further, an additional random sample whose pdf is

independent of @ provides no additional information for determining @. By

the same argument, if the conditional pdf of a set of data Yl' given a set of

data Y2, is not a function of @, then the data Y1 provides no additional infor-

mation of @. That is, the data Y1, given the data Y2, provides no additional

information about @ if f(Y1/Y2) is independent of @. This leads to the

follo_ing definition for a sufficient statistic.
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Definition: (Sufficient Statistic)

Let Y be a randomsamplefrom a process with pdf dependenton @,and
let Ts be a statistic of Y (a knownfunction of Y). Let T be any other
statistic of Y which is independent of Ts. If, for each T, the conditional
pdf of T, given Ts, is independent of @, then Ts is a sufficient statistic
for @.

Thus, it follows by the definition of a sufficient statistic, that the
information available from the sufficient statistic cannot be increased
by a statistic whoseconditional pdf, given the sufficient statistic, is
independentof 9. That is, since _/_e_(T/T_): o, no additional information
is obtained from T, given Ts.

Thefinal conclusion is that estimators which utilize all available
information in a randomsampleshould be functions of sufficient statistics.
(This is the reason for expressing estimators as a function of statistics
in previous sections.) Indeed, estimators are desired which are actually
sufficient statistics. It becomesapparent that if sufficient statistics
can be determined, then they should contain the desired estimators. Fortunately,
it is not too difficult to determine sufficient statistics by makinguse of
the following theorem.

If Ts is a sufficient statistic of the randomsampleY, then the joint
pdf of Y can be factored as follows:

{ ('y.,e)=

where K(Y) is independent of @. The theorem can be proved by the method

of contradiction in the following manner. From the set of sample data Y of

m elements, construct the set T(Y) of m independent statistics. Let each

member of the statistics set have a single-valued inverse(i.e., Y = T-1 (Y))

and let J be the Jacobian of T-1 (Y). Now let f(T) = joint pdf of T and

f(Y) = Joint pdf of the set Y; then f(T) = f [T-I (Y)] J.

Assume that Ts is not a sufficient statistic and that f(Y) = h(Ts, @)

K(Y). Let T_ be any other statistic in the set T. It follows that
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and

Now, if

_(y_e.) = h(_ ,_) ,,f(×)

then,

= _ ,, (y, e)de

it follows that,

f H( "l-s,@)1(. (T}Jd T
#_T,.IT,)= '-",

JH(T_ , O ) I(.(T] Jd T

l'(TjT".) = "_ _(y)dt
S K < Y)d_

H(T s, e) J ._ E(.Y)clT
r.7#

H_Ts,e)J I K(Y}d_

Therefore, f (Ti/Ts) is independent of g. This observation contradicts

the assumption that Ts is not a sufficient statistic. Therefore, Ts is a

sufficient statistic if f (Y) = h (Ts, @) K(Y). Thus, it is often possible

to determine sufficient statistics by inspection from the joint pdf of the

random sample set Y.
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2.3.5 Determination of Estimators

In the previous section, various criteria are discussed which can be

used as measures of good estimators. These criteria can be generally classified

as minimumvariance andminimumrisk. In this section, particular attention

is given to methods of determining estimators of minimumvariance and risk.

2.3.5.1 Minimum Variance Estimators

2.3.5.1.1 Via Sufficient Statistics and Complete pdf's

In Section 2.3.A.6 it was concluded that, in order to utilize all

available information in a random sample, an estimator should be a function

of a sufficient statistic. As a corollary, it should follow that estimators

which are functions of sufficient statistics possess certain criteria of

good estimators. Indeed, it can be shown that, generally, an unbiased

estimator which is a function of a sufficient statistic possesses smaller
variance than an unbiased estimator which is not a function of a sufficient

statistic. That is, let Ts be a sufficient statistic for @ and let _l
be an unbiased estimator of @ which is not a function of a sufficient

statistic. Then, it can be shown that there exists some function of Ts,

S (Ts), which is an unbiased estimator of @ and which possesses smaller

variance than the estimator gl. Therefore, in order to determine minimum

variance unbiased estimators, it is only necessary to consider estimators

which are functions of sufficient statistics. This is sho_m in the proof

of the following theorem.

THEOREM - Let Y be a random sample from a process with pdf dependent on @

and let Ts be a sufficient statistic for @. Let another statistic T be
an unbiased estimator of @; i.e., E(T) = @. Then

(a) E(T/T s) is independent of @ and is a statistic.

(b) E[E(T/Ts)]=

(c) V [E(T/Ts) ] < V(T).

Before presenting the proof for this theorem, a few comments concerning

its meaning are in order. Part (a) states that the conditional expectational

of T, given T , is a statistic for @. Part (b) states that this statistic

is also an un$iased estimator for @, and Part (c) states that the variance

for this estimator is smaller than that of T. Thus, for the criterion of

minimum variance, the latter estimator is superior to the first. The proofs

are as follows. Part (a): That E(T/Ts) is independent of @ follows directly

from the definition of a sufficient statistic. That is, if Ts is a sufficient
statistic, then, by definition, the conditional pdf of T, given Ts, is

independent of @. Moreover, f(T/Ts)is a function of the random sample Y

and the conditional expectational E(T/Ts) is a known function of Y; thus, it
is a statistic. Part (b): Since T is an unbiased estimator of @; i.e.,

7O



Q

E(T) = @, it follows that

E(O = /TS(T;e) dV = g_
T

'//'T/fZ T,;e)dT"dTs
T,T

Now, since Ts is a sufficient statistic

tel T_j_)= F(rl _j h (Tj;aJ

where h (Ts; @) is the marginal pdf of Ts. Thus,

_ (T) =_7_/ T I(T/T_)h ( Ts5 6_)d'TdTs

=/ [_Tf (7/Tz)af7"] h(Ta.; eJdTz

7_

E (7) = E IE (T/T_.) j -'0

Therefore, the conditional expectation of T, given T , is an unbiased
estimator of @ if T is an unbiased estimator of @. _art (c): To prove

this part, let _ denote the unbiased estimator of @ which is E(T/Ts); i.e.,

S = E(T/Ts).

It can be shown that the last term is zero, to wit,
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JdT ( D e >

However, the term in brackets is zero since 8 = E(T/Ts) ' thus E _ (T -8)
(g - @)] = 0 and

VCT) : +z[cT-

Since T _ G, the second term is always positive, and it follows that

v('r) > v(g)

This theorem establishes the following: The set S of unbiased estimators

can be divided into two subsets, S7 and $2, which contain, respectively,
estimators which are functions of _ufficient statistics and those which are

not. Estimators which are minimum variance unbiased estimators are found

in SG, only. Of course, there can exist several estimators in S1, and a
probIem exists concerning the determination of the estimator with minimum

variance in S1. However, if the pdf of the sufficient statistic is complete
(see Section 2.3.2.6), then the unbiased estimator is unique, and the set

S1 contains a single _element which is the minimum variance unbiased
estimator. This can be seen from part (b) of the previous theorem (where

E(T/Ts) is shown to be an unbiased estimator of @). The expectation of

E(T/T s) with respect to Ts is

If the pdf of Ts, h (Ts; 9), is a complete pdf, then E(T/T s) is the unique

unbiased estimator of @, which is a function of the sufficient statistic

Ts. And, by part (c) above, E(T/T s) is the unique minimum variance unbiased
estimator of @.

The foregoing will be ±llustratedwith the following case. Let the

random process of Section 2.3.3 be the particular case of y = @ + e, where

e is Gaussian with zero mean and variance 1. Let an independent random

sample of size m be taken for estimating @. Thus, the joint pdf of Y becomes
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where T is a statistic, i.e.,

NowT can be shownto be sufficient since f(Y) = h(Ts, @)K(Y) (see Section
2.3.2.5); to wit,

: Cz.) ('r- e)e
It immediately follows that T is a sufficient statistic T for @o The pdf

of Ts is also complete, since it is Gaussian with mean va_ue m@ and variance

m. Therefore, i_ follows that the unbiased estimator of @, which is a

function of T s , _ _z , is the minimum variance unbiased estimator of
@. Of course, _='_://_T_ is this estimator since E(6 ) = @ and is a

function of Ts .

2.3.5.1.2 _nimumVariance Via Least Squares

The method of least squares is one of the most common methods of

estimation providing linear estimations of parameters for a linear system

(by minimizing the sum of residuals). If the random sample set is independent,

then the linear least squares estimations become linear minimumvariance
estimators. This can be shown as follows:

Let S = A _@+_e where an estimator _ for @ is desired, givens. The

least squares estimator SIS minimizes the scalar product of the residual

vector 17= __ A _ LS_ i.e.,

g

where the superscript T denotes transpose. ALternately,

Thus, the least squares estimator is
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where

--(A_)-',__ .

The expected value of 6IS is

E ('6_.,)= 9,4_J-9E (_e)

- CA_)-,,_TA_,,?.(_)

Thus, if the error vector e is unbiased, then the least squares estimator

IS is an unbiased estimator of @. The covariance matrix of _LS is
givenby

7"

Thus,

If the random sample is independent, then COV (e) = _2I where _2 is the

variance of the vector e. In this case, COV ( _ iS) = _2 @ QT = _.2 (ATA) -1.

Consider another estimator _MV which has mini_mvariance and is not the

least squares estimator _LS; i.e., let

= CA_ +Ce

where CA = I and C is the linear minimumvariance estimator for @. Thus,
COV ( _ D_) = @2 CCT. Now consider the difference of Q and C as follows:
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Thu s,

and

(c-Q)('c-Q.)7= cc _--cpc%cQ_,+¢_p_"

-:CCZ- (ArA)-'AT C T-CA(A_A)-% QA(A_) -,

: CCT-(A TA)-' _(ATA)-'+(A _)-/

= cc _- CA_A)-_

cc_ = (A-A)-',(C-Q)('C-_.)T

o,,cc": a,_(a%)-,,, _.2(c-_pj(_-_p)T

c.ov'( __u) ,, o,"(c-c])(c- c/) -r

Now, in order to minimize the variance of __}CC, which is the trace of COV
( _S MV), it is necessary to take C = Q, therefore,

Thus, if the random sample is independent, the least squares estimator is

a minimum variance estimator; also, if the vector e is unbiased, then the
least squares estimator is a minimum variance unbiased estimator.

2.3.5.1.3 A Lower Bound for Estimator Variance

In the previous sections it was tacitly assumed that unbiased estimators

are desirable, which is not necessarily a valid assumption; therefore, it is

informative to investigate the effect of estimator bias on a general basis,

if possible. This investigation is possible through an inequality
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of estimator variance as a function of estimator bias. Let $ be an estimator

for @ which has the bias b(@); i.e.,

_ ( 8,) - e ,,b (_j

If 8 (Y) is a random variable of an independent random s_mple Y, then it

can be sho_n that

-->

where f(_/@) is the pdf of the random process and m is the number of elements
in Y. The estimator variance inequality follows from taking the partial

derivative of E(6 ) with respect to G, to wit,

E(,S) : _ ,, b('e)

:/_;c >o.,,'(>'/_)dy
Y

b e _e

/.;(yJ FC)I/QJ d) /= _-b
Y

--_cos)=/scy)_ sc>,/o)d>"
Y

assuming that the interchange of order is permissible.

random sample, Y,

rOy�e) i= ,

Since, for the

it follows that

_--_,.cc>,/e) : ,sCy)Fcy/e)

where
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g,?

_rOy)--Z I _ s@je)
m,m

_,#

Thus,

However,

Y

;E(SSJ .

;_e (I) -_.0

Thus, E( 8, S) is the covariance of _ (Y) and S(Y); it follows that

/F _#_ b(e) : _ [_(Y)>.E(y)3

Using the inequality of covariance, i.e.,

it follows that

7'7



But, V [ S(Y)] is simply the sum of variances for each si(Y); thus,

Therefore,

,,,(._,_}___>[,, _: 6¢,,_]:

For constant estimator bias, independent of @, the estimator variance

bound becomes

!
-- Z

_£

It is generally desirable to achieve the lower bound for estimator variance.

It is important to note that since the variance bound was derived from the

covariance of _ (Y) and S(Y), the lower bound occurs for S (Y), ( _ (Y) is

some linear function of S(Y) ).

At this point, it is illustrative to check the minimumvariance unbiased

estimator derived in Section 2.3.5.1.1. The pdf for y was

IC#i_J- _ o_-Ic_-_J_

hence,

"_J : [-s_-_-_-_]
iC_le J -e_-__ : :v

: vC_J---I
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Thus,

!
•

Of course, this is the variance of

_-I

for f_/@) with variance 1. It is easy to show that if the variance of

is _% instead of l, then the estimator variance bound becomes

v( j>

And the lower bound is again achieved by the minimum variance unbiased
estimator

2.3.5.2 l_nimumExpected Risk Estimators - Bayes

2.3.5.2.1 Bayes Function - AIPosteriori Risk

The Bayes estimator, 6 for @, is the estimator which minimizes the

expected value of risk for some loss function. (See Section 2.3./+.5.) That
is, a Bayes estimator minimizes R [ 8 (Y)] where

Of course, the estimator which minimizes the inner integral is the Bayes

estimator. The inner integral can be reduced further in the following

manner. The produce f(Y/@) f(@) is the joint pdf of Y and 9,: i.e., f(Y, @)

= f (Y/Q) f(g). The marginal pdf of Y, f(y), is given by

ICY) :/i(_)de
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The conditional pdf of @, given Y, f(@/Y) becomes

S( Y, _, ) r(Y/_) f (O)
.f ( _/y) --

y) f( ×)

Thus, the expected risk R IS(Y)] can be written as

,[,<>,.>]
Y

: Sz_[f, (Y)] f (Y) d Y
Y

where B [6(Y)] is referred to as the Bayes function or the a#posteriori

risk. This function is given by

Thus, a Bayes estimator minimizes the Bayes function or the a_posteriori

risk. That is, a Bayes estimator minimizes the risk in estimating @ given

a particular sample set Y. The minimized average risk is the expected value

of B [ 8 (Y)] over all Y.

The procedure for determining a Bayes estimator is, generally, that

of finding the estimator 8(Y) which minimizes the integrand of B [ S (Y)]

for all @, i.e.j the Bayes estimator minimizes the product L [g (Y), @_

f(@/Y) for all @. Of course, a Bayes estimator is dependent on the pdf's

of the random process and the parameter g; hence, a Bayes estimator utilizes

the a priori knowledge of @. Moreover, a particular Bayes estimator is

dependent on the particular loss function used. The determination of a

particular Bayes estimator is illustrated in the following example.

EX_,_LE - Bayes Estimator

Consider a scalar random process similar to that considered in Section

(2.3.5.1.1); i.e.,

where e is Gaussian with zero mean and variance of unity. Thus,

l _I
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Further, let @ be Gaussian with zero mean and variance 0_2, i.e.,

t (e) - _ 6-

Now, let an independent random sample Y of m elements be used to estimate

@. The follo_ing results are obtained for f(Y/@), f(Y) and f(@/Y)o

" Z
X.-_/

where

I

c--(2.;-", _ f * 2' : &" °"";: 2
i:l Z=!

thus,

K K

./
_ : r_+G, 2

Also,
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(8

/('Y) :J_e f(Y_e)°/@

_ _- __ - _ _ -_(K) e

I -/- ] J#C'/) c_ _2

Considering the loss function as squared error, i.e.,

- g) 2, B [8 (Y)_ becomes

L(S, 0) =

6

_ •
E_qoanding and integrating,

Using the calculus of variations,

_B --r
=25-2,_ =o .

Thus, the Bayes estimator 6a is

/_÷/L-

nil

This estimator is seen to be a function of the sufficient statistic T.

Further, the Bayes estimator is seen to be different from the minimum

variance unbiased estimator derived in Section 2.3.5.1.1. The two estimators

are listed for comparison.
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_-Z t.

I_ _ r z "= _,_ _yes

minimum variance unbiased

It is seen that the two estimators can be significantly different for

small samples, though for indefinitely large samples they are approximately

equal. Strictly speaking, if _ _z > > I , then 6 8 5_ In general,

Thus,

,58< 8m

For the case where m _2= i, S8 = -_l_" It should not be surprising
that the Bayes estimator tends to be er than the minimum variance

unbiased estimator since use has been made of the pdf of @ in deriving the

Bayes estimator.

It should be noted that the Bayes estimator is a mininmmmean-squared

error estimator since a squared error loss function was used. It is also

noted that the Bayes estimator is biased since the conditional expectational

of S B is not @, i.e.,

E (4/a) : / @

Finally, it should be noted that for 0_2----._ , i.e., a nearly uniform

distribution for @, _ B = 8 M regardless of the sample size m.

2.3.5.2.2 _inimum Mean-Squared-Error

In the previous section a Bayes estimator was derived for a particular

case by minimizing the alposteriori risk for a squared-error loss function.

This procedure determined the minimummean_squared error estimator. It

would be desirable to determine the Bayes estimator in a more general form.

Fortunately, it is possible to determine a more general solution to the

minimummean-squared-error estimator which precludes some of the detailed

steps involved in the method used previously.

Consider the Bayes function for the squared-error loss function

L(6(Y), @)= [8 (Y)'- @]z ; to wit,
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i

Expanding the integrand, B [ S (Y)] becomes

0

e e_

ore

Now, differentiating with respect to _ (Y) and equating the result to zero

yields

s(y) - e e

Thus, the minimum mean-squared error estimator is given by

f_oe f(_/y) c/e
S(V) =

jF Cel YJd O
-/w S(ely) Ja

However, the right-hand member is precisely the conditional expectation of

@, given Y; i.e.,

6&') : _ (a/y)

This form for the Bayes estimator makes it rather convenient to determine

the Bayes estimator from the conditional pdf of @, given Y, if its mean

value can be recognized.

Consider the particular case of the previous section wherein
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i

rCeiyJ - _. _ - _ (KJ e - -U_]

' {' t ]tf(e/>,J =V2r_ vCel_,J _y - z vCely.) e - ECeI×J

where

V(el×) =K -
0.. 2

/÷ ,_Q,.z

Q, 2 f'_

Thus, f(@/Y) is Gaussianwith conditional variance V(@/Y) and conditional

mean E(@/Y). Of course, E(@/Y) is the Bayes estimator as derived previously.

It is informative to consider the Bayes estimator on a geometrical basis.

For the case considered above, L E g (Y), @] and f(@/Y) are shown in Figure

2.3.A(a), and their product, which is the integrand of B _8 (Y) 3 , is

shown in Figure 2.3._ (b). For this case it is seen that the Bayes estimator

places the mlnimum of L _ 8 (Y), @J in coincidence with the maximum of
f(_Iz).

In general, the Bayes estimator minimizes the areaunder the product

of L E 8 (Y), @] and f(@/Y), since B E 6 (Y)_ is a minimum. It is seen that

for squared-error loss the minimum area occurs for the minimum of the loss

function being to coincidence with the conditional expectation of @, given

Y, or the mean of f(@/Y). However, this occurrence does not necessarily

have to be coincident _th the maximum of f(@/Y), as it does in the Gaussian

case.
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(a) Squared-error loss and the Gaussian pdf

E$(yJ-o]_i(al×)

.i

(b) Integrand of Bayes a'posteriori risk
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2.3.5.2.3 Bayes Estimator for Convex Loss Functions

In the previous section, it was shown that the conditional expectation

of @, given Y, is the Bayes estimator for the squared-error loss function.

Of course, other loss functions are possible. Thus, some question arises

concerning the Bayes estimator for some arbitrary loss function. It could

be conjectured that the Bayes estimator for squared-error loss should

possess desirable properties for loss functions similar to the squared-

error loss function. Indeed, it can be shown that the squared-error loss

function is a single member of a set of loss functions which has the same

Bayes estimator.

Consider the set of loss functions which are defined as follows:

L(_) = Lo for g = 0

L(E2) =L(el) for _.-_,

LCC2) >L (c,)for Ic, I • I_, }

L(G) = n (-E)

The loss functions are continuous symmetrical convex functions with symmetry

about their minimums L_. Let the conditional pdf f(@/Y) be factorable into
• Q

a functlon of Y, fl tY), and a symmetrical function of @ and Y such that

f(9/Y)= fl(Y)f2[9 - g(Y)3

where

Now the alposteriori risk becomes

Taking the partial of B IS (Y) ] with respect to 6 (Y) yields

Since L(6- @) is an even function of _ , its derivatives is an odd function;

thus, it is possible to set the first partial of B [8 (Y) ] identically

to zero by setting 8 (Y) = g(Y), i.e.,
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Therefore, the extremumof B [8 (Y) S occurs for

5(y.) : (,,,)

If B [ 8 (Y)_ has a unique extreme, then, of course, 8 (Y) = g(Y) is the

Bayes estimato_r. Thus, if ?cz [ @ - g(Y)] is unimodal, i.e., has a single

maximum value at @ = g(Y), then 8 (Y) = g(Y) is the Bayes estimator for. all

convex functions L( 6 - @) defined above. Of course, for f(@/Y) as defined,

g(Y) = E(g/Y).

2.3.5.2.A Determination of Bayes Risk

A Bayes estimator minimizes the alposteriori risk B [ 8 (y_)], given

a random sample Y. This, in turn, minimizes the expected risk R [ 8 (Y)] over

all Y. The minimum expected risk for a Bayes estimator is referred to as

the Bayes risk. The Bayes risk can be determined from the expected value of

the a_posteriori risk as a function of the Bayes estimator, to wit,

:jr ('58)f(>'JrJv
Y

where RB is_the Bayes risk and 6 B is a Bayes estimator for some loss function.

Of course, RB is dependent on the loss function.

This equation provides the general means of determining the Bayes risk;

however, there are two cases of particular interest. The first case is that

for constant a'posteriori risk; i.e., quite often B (6 B) is independent of

the random sample Y. In this case, the expected value of B(SB) is simply

B(6B); i.e.,

:/B(4,) f(Y) d Y
Y

Y

Thus, for a_posteriori risk (independent of Y) the Bayes risk is simply the

a _posterior± risk B( 5 B).

The second case is that of a squared-error loss function. In this

case, the Bayes risk can be expressed in terms of the conditional variance
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of g, given Y. That is,

ye

However, for squared-error loss, the Bayes estimator is E(O/Y) (see Section

2.3.5.2.2), and the a'posteriori risk B [ 6B (Y)] is the variance of @, given
Y; to wit,

B [<r,,<>o]: vro<>,)

It follows that

-/v(o/y)/-<y)_,y
Y

If V(O/Y) is independent of Y, then, as in the first case,

: v<'ezyj --/3 [_ <>0_]
where V(@/Y) is independent of Y.

Consider the case previously discussed wherein Y = @ + e with @ and e

Gaussian with zero mean values and variances 62 and l, respectively. The

conditional pdf of @, given Y, is

n

For squared-error loss, the Bayes estimator 8 B is E(g/Y), to wit,

,+..o.. 2Z _
L=I

The conditional pdf f(g/¥) is Oaussian with mean E(g/¥) and variance #'/0÷_
which is the conditional variance of @, given Y. The a_posteriori
risk becomes

_2

/ ¢ ,,,_ 0"-2
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It is seen that B [ 8B(Y) ] is independent of Y, therefore, the Bayes risk
for squared-error loss is

-- v(e/zJ--

It is seen that

and

Therefore, for the problem considered, the Bayes estimator is uniformly
consistent. (See Section 2.3.L.5.)

2.3.5.3 A Comparison of Minimum Variance and Bayes Estimators

In the previous sections, two general classes of estimators are dis-
cussed. These two classes are: (1) minimum variance and (2) minimum expected

risk or Bayes. The class of minimumvariance estimator contains the set of
minimum variance unbiased estimators while the class of Bayes estimators

contains the set of minimum mean-squared-error estimators. In general,

these two sets can be disjoint since a minimummean-squared-error estimator

is not necessarily a minimumvariance unbiased estimator. That is, biased

estimators can exist which possess smaller variance than a minimum variance

unbiased estimator. The situation can be clearly stated in the following

manner.

In Section 2.3.A.3 it was shown that the mean squared-error for an

estimator generally exceeds its variance, i.e.,

ECE /, J : v(s/e ) , z" ( le)

thus

c=(<rj -="vC )

with equality if E(_/@ = @ for all @. In Section 2.3.5.1.3 it was shown
that a lower bound exists for the variance of an estimator_ i.e.,
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Immediately, a ouestion arises concerning the effect of estimator bias.

It is seen that the lower bound for estimator variance can be smaller

for a biased estimator than for an unbiased estimator. That is, for an

unbiased estimator, the numerator in the variance bound is unity. However,

for a biased estimator, the numerator in the variance bound can be either

greater or less than unity for positive or negative bias, respectively.

This follows since the denominator of the variance bound is unaltered by a

particular estimator and is primarily dependent on the pdf f(Y/@) of the

random process and the sample size m.

Thus, if it is possible to achieve the variance lower bound with each

of two estimators 8] and 8 which have negative and zero bias, respectively,
then the biased estimator 8 12will possess smaller variance than the unbiased

estimator 8@. Therefore, although the mean squared-error of 61 is greater
than its varlance, it is still possible that the mean squared error of g 1

is less than that of 62, which is unbiased. That is, let E( 6 i/@)= K@

and E( 6 2/@) = @, then

K •

_D

I

where

If .S1 has negative bias K < 1 and if _l and g2 both achieve their lower
varzance bounds, then

Also,

v(,s,.) >
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From the foregoing it is entirely possible that

Indeed, this can occur, as can be seen in the particular case considered

in the previous sections wherein

D -- /

Z m

I "_

_=I

where 8B = Bayes estimator and 6 m

It is easily shown that

where

= minimumvariance unbiased estimator.

/_ ma-2 i _ _-.-_

Therefore, the Bayes estimator has negative bias. The variance bounds are

K _

/,n

/

-- rn

It was shown in Section 2.3.5.1.3 that 6m achieves its lower bound. But

since 6 m is unbiased, it follows that
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On the other hand, the Bayes risk for 6B is its mean squared error, i.e.,

(See Section 2.3.5.2.A.)

It follows that

¢_('8) < cz(a_) •

Thus, the Bayes estimator which has negative bias has smaller mean squared

error than the minimumvariance unbiased estimator 6 m" Therefore, the
variance of gB must be smaller than that for _m" Indeed, 8 B also
achieves its variance lower bound. This can be shown as follows.

= maK--z[m('l+nn_a)_ ma_z I
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Thus, the Bayes estimator achieves its variance lower bound.

The foregoing clearly demonstrates that a biased estimator can possess

both variance and mean squared error which are less than those for a minimum
variance unbiased estimator!

The foregoing does not categorically settle the question of selecting

a good estimator. If mean squared error is an indisputable criterion, then

the Bayes estimator is preferential. On the other hand, if a situation exists

where bias is highly deleterious, then a minimum variance unbiased estimator

would be dictated. However, consideration should also be given to_her

criteria of evaluation; i.e., consistency, relative efficiency and the effect

of sample size.

For the case considered above, both estimators are uniformly squared-

error consistent, i.e., the mean squared-error decreases uniformly with sample

size m. The relative efficiency, using mean squared-error is

I

- = / /- /

l + mo _a

The relative efficiency demonstrates the sffect of sample size m. Of
course, if sample size is large, such that m _> > 1 then there is a small

difference in efficiency. However, for small sample size and/or small @2

such that _ _2 < l, then a significant difference results.

The foregoing demonstrates the improved performance for small sample

size for the Bayes estimator over the minimum variance unbiased estimator.

This improvement is derived from the use of the a_priori information in

terms of the pdf of @ in the Bayes estimator (this information tends to

bias the estimations of @ toward its average value) which was zero in the

case considered. The improved performance tends to overcome the lack of

fidelity in statistical regularity demonstrated in small samples. That is,

the statistical regularity of a random process is not faithfully demonstrated

in small samples. The utilization of any available information can improve

performance significantly. On the other hand, if a large number of samples

are available, the statistical regularity is more reliablydemonstrated
and the use of additional information not as effective or critical.
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2.3.5.& _nimum Risk Estimation

In general, risk is the expected loss in estimating a parameter @by
an estimator. It is apparent that risk is a measureof estimator performance,
which provides a general criterion of minimization in determining estimators.
A particular case of interest is that of squared-error loss wherein risk
becomesmeansquared-error and an estimator of minimumrisk is a minimum
meansquared-error estimator. Of course, minimumrisk estimators for loss
functions other than squarederror are equally important, and general
properties of minimumrisk estimators are of considerable interest. There
are two general properties of minimumrisk estimators which are of particular
significance. Theseproperties are: (1) generality of loss function and
(2) dependenceon sufficient statistics. That is, for a general class of
convex loss functions, a minimumrisk estimator must be a function of
sufficient statistic. Theseproperties are established below.

2.3.5.&.1 ConvexLoss Functions

A convex function is illustrated in Figure 2.3.5 and can be described
in the following manner. Let l(x) be a line which intersects L(x) at x =
A and B.

/ L ('U

Figure 2.3.5

If, for all A and B, L(x) _ l(x) for A<x<B and if, for A = B = C, L(x) >l(x)

for x, except x = C where L(x) = l(x) then L(x) is a convex function.

Alternatively, through any point on a continuous convex function L(x) there

passes a line is(X) which lies everywhere below L(x). The line ls(X) is
referred to as a "supporting" line for L(x).
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An important property of a convex function of a random variable is

that its expectation generally exceeds its value at the expectation of the
random variable; i.e., if L(x) is a convex function and x is a random variable

then

This can be shown as follows: Let ls(X) be a supporting line of L(x) at

the point E(x). Thus

LCx),>__ (x)
and

However, since is(X) is linear in x E [ is(X) ] = is [ E(x)J thus,

,_ELr,,o-I->___IE_'x.).l
Moreover, since Is(X) supports L(x) at E(x), L [ E(x)] = Is [ E(x)] thus,

  cxJJ z i- cxJJ.
As a particular case consider x as estimation error

squared error loss,: i.e.,

and L( _ ) as

L (c) : c _'
It follows that

El_,_c_J]: _t'_:J->[,c_.)]:
This result agrees with that of Section 2.3._.3 wherein it was determined

that

E (e") : v (E) ,, E "(_)
on

(eD z z:_(E)

with equality for V( g ) = 0 which implies a constant c.

The preceding inequality of convex function expectation is fundamental
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to showing the necessity of sufficient statistics for minimumrisk estimators,
which is considered below.

2.3.5._.2 Iv_nimumRisk Via Sufficient Statistics

In Section 2.3.5.1.1 it was shownthat if T and Ts are an unbiased
estimator and a sufficient statistic for @,respectively, then E [ E(T/Ts)]
is an unbiased estimator for @;and the variance of E(T/Ts) is less than
the variance of T. Theseresults can be generalized in two respects. First,
any function of @,U(@), canbe considered; and, second, variance can be
replaced by risk for convexloss functions. Theseresults will be proved in
the following theorem, which is an extremely important extension of the
theorem of Section 2.3.5.1.1 concerning sufficient statistics and minimum
variance estimators. In effect, this theoremdemonstratesthe fundamental
importance of sufficient statistics in determining estimators.

THEORY4:Let Y be a randomsamplefrom a process with pdf dependenton @,
and let Ts be a sufficient statistic for @. Let T be another statistic
which is an unbiased estimator for any function of @,U(@); i.e., E(T) = U(@).
Then

(a) E(T/Ts)is independent of @and is a statistic

(b) = U(O)

(c) R(T, : R( s,

where the risk is for convex loss functions and 8Ls = E(T/Ts).

Before proving this theorem, two comments are in order. First, it

should be noted that biased estimators for @ are included since an unbiased

estimator of U(@) includes a biased estimator of @; i.e., the case U(@) = k_

where k _ 1 is included. Second, 6 Ls is anunbiased estimator of U(@), or a

biased estimator of' @, and 8Ls is an estimator which has less risk than T
for all convex loss functions.

The proofs of parts (a) and (b) of the theorem are direct extensions

of the proofs given in Section 2.3.5.1.1. Part (a) is an obvious extension
and part (b) follows.
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Part (c) follows from the property of expectation of convex functions as

shown in the previous section. Let L( 2, Q) be a convex loss function with

respect to the unbiased estimator 6 for U(Q); i.e., for fixed Q, L(_ , @)

is a convex function of 6 • Taking the conditional expectation of L( S, @),

given Ts, it follows that

_> /_ (6_ ,o)

Taking the expectation over all Ts it is found that

Therefore,

The foregoing is extremely important since it establishes that minimum

risk esti_.ators are functions of sufficient statistics and, thus, only

sufficient statistics need be considered in determining minimum risk estimators.

Furthermore, if the pdf of Ts is complete, then the unbiased estimator 8 s
of U(@) which is a function of Ts is unique and the estimator of minimum
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risk for the class of convex loss functions. These results represent
extremely important extensions of the significance of sufficient statistics
in determining estimators.

2.3.5.5 Maximum Likelihood Estimators

In general, maxinmm likelihood estimators are determined by maximizing

a pdf. This method of estimation does not explicitly seek to satisfy criteria

of estimation, rather, the method is based upon the premise of the most

probable occurrence being observed most frequently. In effect, it is

assumed that a random sample is always one of high relative probability.

Nonetheless, the method is often equivalent to other methods of determining
estimators, and similar results are often obtained. The method is discussed

herein to show its significant similarities and differences with other
methods.

2.3.5.5.1 Principle of Maximum Likelihood

The principle of maximum likelihood is predicated upon a "most likely

occurrence" of a set of variables. In general, a pdf is a relative measure

of the probability of occurrence of its variable. The particular set of

variables for which the pdf is a maximum can be considered as a maximum

likelihood set. Any pdf associated with a set of variables is considered

to be a likelihood function for the set of variables; e.g., the pdf's
f(@/Y) and f(Y/@) are likelihood functions for the variables @ and Y. If

the likelihood function possesses a maximum value, then the particular set

of variables for which the maximumvalue occurs is the set of most likely
occurrence or maxinmm likelihood. This set of variables is referred to

as the "mode" of the likelihood function or pdf of the set of variables.

The principle of maximum likelihood leads to the following method of

estimation, which is based on maximizing a pdf as a function of a set of

parameters @.

2.3.5.5.2 Maximum-Likelihood Estimator

Let the likelihood function for a random sample Y be some pdf for Y

as a function of a set of parameters 9. If the likelihood function has

a maximum value for @ (@ is some function, 8 (Y), of the random sample, Y),

then 6 (Y) is the maximum-likelihood estimator of @. Thus, the maximum-

likelihood estimator for @ is the one for which the random sample Y occurs

with maximum likelihood.

The method of maximum-likelihood estimation is depicted in Figure

2.3.6.
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It is easily seen that a maximum likelihood estimator will, in general,

be different from a Bayes estimator. However, for a simple loss function

the methods yield equivalent results, as shown below.

2.3.5.5.3 Bayes Estimator for a Simple Loss Function

A simple loss function is defined as one which has zero loss for zero
estimation errors and constant loss for all non-zero estimation error;

to wit,

L [. ,_(Y)_ e.] = o _(Y) = e

- K> 0 ,_(Y.) _e

The Bayes function is

._ LE ,S,e'l f('elY,)c/e

lOg



Hence, B [ $(Y) _ is minimized by maximizing f(@/Y) at S = @. The integrand

of B [ 8 (Y) J is depicted in Figure 2.3.7. Of course, this is exactly

the maximum-likelihood estimator for f(@/Y).

K

o m_e oF"
+Y_/y)

_y

Thus, it can be stated that the Bayes estimator for a simple loss

function is a m_ximum-likelihood estimator. However, it should not be

concluded that maximum-likelihood estimators are Bayes estimators. The

difference lies in the likelihood function which is maximized by the

maximum-likelihood estimator and the loss function used. That is, the Bayes
estimator for a simple loss function maximizes f(@/Y) which is also a

maximum-likelihood estimator. However, a maximum likelihood estimator can

also maximize the conditional pdf f(Y/@), which is not a Bayes estimator.

It should be noted that a Bayes estimator for simple loss can be the same

as that for squared-error loss. That is, if the maximum value or mode of

f(@/Y) occurs for E(@/Y), then the Bayes estimator is the same for both

simple loss and squared-error loss functions. Therefore, if the mode and

E(@/Y) of f(@/Y) are coincident, the maximum likelihood estimator for

f(@/Y) is the Bayes estimator for squared-error loss, also. However, this

is only true if E(@/Y) is equal to the mode of f(@/Y).

Consider the particular case of Section 2.3.5.2.1 wherein f(@/Y) was
Gaussian with

( a / y) : ,r___2"
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The maximum of f(@/Y) occurs at E(@/Y), therefore, the Bayes estimator is

the same for both simple and squared-error loss. It is easily shown that

the maximum likelihood estimator for both f(@/Y) and f(Y, @) are E(@, Y);

however, if the likelihood function f(Y/@) is used, then the maxin_im likeli-

hood estimator is the same as the minimum variance unbiased estimator,

i/__C_=I,_ determined in Section 2.3.5.2.1.

In general, if the likelihood function is dependent on the a priori

pdf for @, then the maximum likelihood estimator is the same as the Bayes
estimator for a simple loss function, and both estimators utilize the

a Spriori information available concerning @. If, on the other hand, the
likelihood function is independent of the pdf for @, the a_priori infor-

mation concerning @ is not utilized. However, it should not be concluded

that Bayes estimators can generally be derived by the method of msodnuum
likelihood.

2.3.6 Application of Bayes Estimation

2.3.6.1 Introduction

The discussions of the previous sections have established the criteria

of value in defining estimators and measures of the "goodness" which results.

This section is intended to conclude the discussion of estimation by

applying the most general of the previously developed estimators (Bayes)

to the general non-linear estimation problems. This application will,

however, fall short of providing computational algorithms which can be

utilized in analyses since the pdf's for the variables involved and the

functional relationships between them must be specified. Thus, the special

case of the general linear system of equations and Gaussian statistics will

be developed.

2.3.6.2 Non-Linear Case

The general case of interest is defined by the follov_ng vector

equation: (See Section 2.3.3.)

The parameter vector @ contains n elements, and an estimator for each

element is required. Thus, an estimator is denoted by the vector 6_.

Estimation error is like_lse a vector defined by

A loss function for the estimation error vector _____is defined as a scalar

function of some positive definite measure of the modulus of g__; e.g.,

sum-squared-error, SSE, is a particular loss function which is defined by
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Lsl

where T denotes transpose.

A more general loss function is defined in terms of the squared modulus

of a linear transformation of __.; i.e.,

L c 6

= gTME

where B is some linear transformation and M is a real symmetrical matrix.

In this case, L(E_) is a generalized quadratic loss function which is a

positive semi-definite function with L( E ) - 0 if, and only if, E__ ---0

for B _ O. Of course, for M = I, L(E__)-_--SSE = __T___.

In general, L(E__) is a function of m_ and @_; i.e., L(g ) = L(S__, @_).

For generalized quadratic loss, L(8___,@_) becomes

Note. This form exists because each of the terms involved is a scalar.

The Bayes estimator _-B for generalized quadratic loss is the vector
of estimators which minimize the expected risk or the a'posteriori risk,

as discussed in Section 2.3.5.2. The Bayes function for this loss is

The Bayes estimator Z_-B can be found by differentiating B ES..(_.)] with

respect to 8 and equating to zero, to wit,
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The resulting axpression can be made identically zero for all n if

or

A =SerC_-i_J<te
since

Thus, it is seen that for a generalized quadratic loss function the Bayes

estimator__.B is the conditional expectation of @_ given Z; i.e.,

g..-8 -i _ f (_.l_d_ :E (_a/_.) .

This result is equivalent to that determined in Section (2.3.5.2.2) for the

explicit case of a single parameter @.

The Bayes risk _B for 8 B is the expected value of B(g_B) over all _L,

ice°)

= _ {e[_.c'__,_>s>/#.])
For generalized quadratic loss, the Bayes risk becomes
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If B(_B ) is independent of y, then

It should be emphasized at this time that the results given above are

not restricted to the linear case since the explicit form of the process

does not enter into the determination of the Bayes estimator as the con-

ditional expectation of @, given X. However, it should be noted that the

form of the process, as determined bye(@), definitely enters into the

determination of the E(@_/X); and, therefore, the Bayes estimator is dependent

on the form of the process. That is, the conditional expection of @, given

X, is the Bayes estimator for a generalized quadratic loss function for any

functional relationship of @ and Z- On the other hand, the specific form

of the Bayes estimator is dependent on the form of _(@). Further, the

Bayes estimator can be a non-linear function of the observation vector X.

Moreover, the Bayes estimator for a particular case is dependent on the

statistics involved; i.e., the pdf's f(@), and f(e__). Thus, it can be

concluded that for a generalized quadratic loss function the conditional

expectation of @, given X, is the Bayes estimation which willminimize the

expected risk. In a particular case, the specific form of the Bayes estimator

is determined by the form of the process, _(@), and the statistical nature

of @ and ___ as reflected in their pdf's.

The determination of a Bayes estimator for the general case can be

formulated by determining the conditional pdf, f(@_/X), and its conditional

expectation. This procedure will be outlined for the case that the

statistical nature of @ and c must be known; i.e., the pdf's f(@) and
f(e__) are assumed available, m

105



First, the conditional pdf of y, given @, is determined by considering

F(@_) as a constant in the process y = F_(@_)+-_. Thus, f(z/_@) is derived

from f(e__) by including the additional term _F__) in the expected value of

_G_.

Second, the joint pdf of y and @, f(_/@) is formed. For the most
common situation of statistically inSepen_e_t @_ and e, f(z/@_) f(_@).

Third, the marginal pdf of y, f(z), is determined by integrating f(y, @_)

over all @, to wit,

ae

Fourth, the conditional pdf of 9, given Z, is formed by the standard

form for conditional pdf's, to _rit,

=
l /o_1

Fifth, the conditional expectation of @_, given y, is determined from

f(@, y). Once f(@_/y) is determined, it is often possible to recognize the

E(@_/yV by inspection; and, hence, the Bayes is directly determined. Other-

wise_ the general approach is to determine the conditional expectation by

integrating, to wit,

The degree of difficulty in determining a Bayes estimator is

directly related to the nature and degree of complexity of the functional

form of _F(@_)which significantly affects the determination of f(y). Moreover,

the form of the pdf's f(e) and f(@_) affect the determination of a Bayes

estimator; and often the task can be somewhat difficult. However, the approach

provides a general method of determining the optimum estimator using minimum

expected risk as primary estimation criterion for generalized quadratic loss.

In general, it is to be expected that the Bayes estimator will be a

non-linear function of y, even in the case for a linear form of F(@_) = A@_,

depending on the statistical nature of @_ and e. However, quite often it is

highly desirable to utilize a linear estimator; and under such a constraint,

the resulting estimator will not be a Bayes estimator though it is possible
to determine the linear estimator which will minimize the expected risk.

Such estimators would be sub-optimal in the sense that the Bayes estimator

wouid possess uniformly smaller risk. The use of sub-optimal linear estimators

must be considered on the basis of particular problems if the utilization

of a non-linear estimator presents a difficult situation in terms of data

processing an estimator mechanization in other respects.
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On the other hand, the Bayes estimator can be a linear function of 2;

and in such cases, no particular problem arises. This is particularly true

for linear systems with Gaussian statistics. This case is of general interest
and is discussed in detail below.

2.3.6.3 linear Case, Gaussien Statistics

The general linear case is defined by _(Q) = A@, i.e., _ = A@ + e,

where A is a known matrix independent of _. However, A can be time dependent

or, generally, non-stationary. For the case of Gaussiar, statistics, it can

be sho_n that the Bayes estimator is a linear function of Z. This particular
case is of general interest and is derived in detail herein.

The pdf's for _@ and e are assumed to be n and m dimensional multi-

variate Gaussian pdf's _._th the follo_ng specification:

_(_e)= To

v(o)-E(_e-_,,)(.o_%)r

V(e)= _(e_-_,)(e___,)T

_,h_re, of course, V(@) and V(e) are the covariance matrices of @ and e,
respectively.

Further, the pdf's f(v_/@_), f(y, @_), f(z) and f(@_/Z), where @_ and

e are assumed as statistically independent are:

: xp J v- o,
where

C

I

,t' = ._ -Ae - _me = .,_ - A_O _-A _-e - m_ = (+e' - m_ ) -A (@ -_)

} V(e) I = determlnamt of

/'_¥, o) : ,"c_/# ) •r(o)

v(_)
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Rather than integrating f(y, @_) over all _@ to obtain f(y)_ it is easier

to use the fact that Z is the linear sum of two independent Gaussian random
variables, hence,

E(_= ___= A__e +,_

_ )T

=,4 V(B.)A T+ V(e)

It follows that

r(_) =c_lv_J exp[-_-(_-___fv_{_-___]

_ow

Hence

/ . )]

where

and

_ _ _ V_ _W _Q(e,_;=CW-,_VFV_e)(W_-AV)÷ V_e)v_ _ VC_f)W

V.=g-__ e

The term Q(_, y) specifies the conditional Gaussian pdf f(__/y), and its
genera 1 form is
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where V(@/y) is the conditional covariance matrix of _ given y. Thus, in

order to determine the Bayes estimator, it is only necessary to determine

the reduced quadratic form for Q(@_, y).

Expanding Q(@_, x) in terms of _ and E, it is found that

Q+o_,++:_v"[v-t.o++._v+°_,,]_v-,+v_"v+°_v.,-_+"[v",.+,-,,-:,_.j]+
=<y - _WJ r vte/?)(_v-_ W)

where K and V-1 (@/y) must be determined. It should be noted that the term

K essentially determines the Bayes estimator since

c_v-_+__:[+-++]

Thus, the Bayes estimator is

s_B = _(o/_)

s_8 - _ + _:(._-m_).

The term K can be determined by expanding the second expression for

+_(£,z)

Qce,_)= y" v"(o/_)v-zv'v-to/g)_w+w'_.'v"(e/f)v._

and by equating terms in the two _::'_+-;: _s

v-'co/_): [v_o_+,-A"v"_a]
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Thus, it is found that two solutions exist for K. The second equation yields

K, ---V_Ol,t) N V '(e)

Substituting the second eauation into the third, it is seen that

V,.'rAT= V (e) [ V'_('e)-V-_'_)]

= I - V(e) V"(_)

Taking the transpose and substituting V(e) = V(y) - AV (@) AT,

that

it is found

Thus,

k:,: vce) v-I )

The two solutions for K generally imply two Bayes estimators for the case

being considered; however, it "will be shown later that the Bayes estimator

is unique and that K1 and K2 represent two equivalent forms of the same
estimator.

Several comments concerning the Bayes estimator for this case are in

order. It is seen that the Bayes estimator for this case is a linear function

of Z; thus, _-B is a linear estimator.

The matrix K is a "gain" matrix which, in effect, specifies the

weights in estimating @ that are given to the deviations in the observed

Z from its mean value _my. If the mean value _ is actually observed, then

the Bayes estimate for-_ is the mean value of __; i.e., for Z =_, /L-B = _-

On the other hand, if the observed Z is identically zero, then t_e Bayes

estimate for @ weights the mean value of _ by the gain matrix K to form the

estimate of @; i.e., for _ _ 0
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In general, the deviations of observed Z from_my are weighted by K to
form the Bayes estimate____B as shown. It is easily_shown that 8B is a
biased estimator, to wit,

r (__s/__)= "%, k:[Ec_.ze)- _t']

Of course, if KA = I, then E(gu/@) = @; and _-B would be unbiased. It is
interesting to note that if V_ = O. Which implies a constant e = n_, then

v-l(y) = (AV(@) AT)-l and KA = V(@)A T (AV(@)AT)-lA = I, where A=l ex-ists.

However, in this case

or

: v<e>A"[Av<,,m]-'

: +A _ :e

= % +E(._- _t)

This is to be expected since,

determined exactly.

if e is a known constant, then @ can be

In general, V(e) _ O, and an error eeB exists in the Bayes estimate.

The Bayes error ____Bis

___ = _S_-__

: _me ÷K(_-_)-_

- _e -_e ÷_c(g-__)

_-s : (z - KA)(e - _e)' _(e- - ___)

The conditional expectation of __eB, given @, is thus
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B

-(__-o)+KA(__-__)

E(:a/e.) = (I-KA)(_8- m_) .

The total expectation of _--B is zero; i.e.,

a-(._%)-- o

The covariance matrices for 6___Band W_B can be readily derived and one found

to be equal, to wit,

where

and, likewise,

.

Thus, _ - E(___BI@) = _ - E(EBI@), and it follows that V(BB ) = V(6 B)"
The covariance matrices for $ B _n_ _B can be determined in explicit form

by using the conditional expectation of iB, given _, to wit,
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Now,

-, {[-_-'¢_,'_,._][o-,u_,'_.O%}

II(E s I_) " { V-'(e.) # A" U'teJ A )-/ o

Thus,

v%J : E V(E,_I._)

vcEs_: ( v-'@j+A_v-'C<J_)-' .

Thus, the covariance matrices for 8_B and _---Bare actually independent
of K and are essentially dependent on the intrinsic aspects of the problem;

i.e., the covariance matrices of the parameters, @; the measurement errors,

e; and the transformation, A, of parameters @ into observables, X"

The Bayes risk can now be determined as follows: first, the generalized

quadratic loss function is constructed

Z(_¢) :£__E

: ('_,, -_ej%(_%-_j
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Next, the Bayes risk is defined

Finally, the weighting matrix (M) must be selected. Consider the special
case (of particular interest) wherethe risk desired is the sum-squared-error
loss; i.e., M= I and L(___)= ET_ = SSE. For this case, RB is the minimum
mean-sum-squarederror, M_%SE.---T_eSSEcan be expressedas

=_r z

The Bayesrisk becomes

However, it is seen from the equations for L(g_) that the I,_SE can be
determinedfrom the trace of the covariance matrix for e B; i.e.,

= MM SS£

--rRAcE rv%>]

- tRAcE[ v-t'o. -,

From the foregoing it is seen that the Bayes risk and the covariances

of the Bayes estimator and its error are not explicitly dependent on K.

However, this does not mean that the minimum expected risk is obtained

independent of K. Rather, the Bayes estimator as a function of K achieves

the minimum expected risk, which is explicitly dependent on V(@), V(e) and

A only. That is, the trace of V(_ B) represents a minimum-mean sum squared

error which is intrinsic to the problem, and the Bayes estimator achieves

the _SE. Thus, for the linear case since K has two solutions, there exist

two equivalent forms for the Bayes estimator.

The equivalence of K1 and K2 can be shown in the following manner. By

inspection, it is seen that K1 can be derived from K2 by a series of
elementary transformations (i.e., row and column operations of interchange,

multiplications by scalar and additions); i.e., K2 = PKIQ where P and Q

must be non-singular square matrices of proper order. Since
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K,- vCe/.v)A_V-'(_)

.i

P and Q can be selected by inspection as

p = v(e) v-'(el_.V.)

_p- vde.)v-'_2) •

Since P and Q are non-singular, KI = p-IK2Q-I.

that K1 and K2 are equivalent matrices; i.e.,
other by a set of elementary transformations.

seen that K2 and K1 transform directly by two identity matrices P and Q;
i..e., let

Thus, it is established
one can be derived from the

In particular, it can be

P : v-'(_13J V(ely.) -- z

Then,

K, = v-'(e/_J v(_/sJ K.z

: v-Y_,'_.J[v-'@)+A_v-'(_)]v_eJA_v-'_) .m
: v-'<',,,._j[Ev-t'_._,,_"v-'<'_),_vc,,__"v-'<'_J]

= V-{alyjA_V-,(e)[A V(e)ATV-I(_J +v@Jv-'(£fJ]

,<,: - +  ,"cjj]

.1"

./-

K,= A'z..z.z
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Thus, K1 and K2 are identically equivalent. Moreover, consider the two

non-singular linear transformations represented by the square matrices

KIA and K2A. These transformations represent a mapping of parameter space

into estimator space, since

where, without loss of generality, the mean values of _ and e are assumed

zero. Hence, for X = Am +

6B = KAY_+ Ke.

2.3.6.3_1 Limiting Cases for Bayes Estimation in the Linear Case

In general, the Bayes estimator utilizes the available information

concerning both the parameter to be estimated and the uncertainty involved
in the observations of a process. In determining the B yes estimator, the

pdf's of @ and e are generally required which represents the a'priori

information utilized in the Bayes estimator. It is informative to consider

the Bayes estimator for limiting cases where the a_priori information is

unavailable. In such cases, it can be shown that the Bayes estimator

becomes equivalent to other estimators, such as least squares and minimum
variance.

Two types of limiting cases will be considered which will be referred

to as parameter and observation uncertainty limiting. These limiting cases

can be representing by null matrices for V(e), v-l(e), V(@) and v-l(@), to

wit,

LimV(e) _ 0

Lim v-l(e) = 0

mim V(@) = 0
mmv-l(_) = o

MiNI},IUM OBSE_{VATION UNCERTAINTY

_vZL<!MUM OBSERVATION UNCERTAINTY

MINI_,_,[ PAR&_.TER UNCERTAINTY

_6_IMUM PAPu&METER UNCERTAi%_TY

That is, in the limit a null covariance matrix represents a constant,

whereas a null inverse covariance matrix represents a uniformly distributed

random variable. For these limiting cases, the following results are

obtained.

For the case of minimum observation uncertainty, it is found that the

parameters are determined exactly with zero risk. This is seen by considering

the limit of iB for the limit of V(e), to wit,
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L /°frl

v(_) .-,o
_B 4 L,',., K(_-L#_,)

_e) -_ o

_6, * L,'.., K(A __÷_ -A_ -Ge)
v(eJ_o

= _/3e/ z,',. KA(e -_e) ,' z,'.,, _(_ -_Me)
V_¢)-_O -- L/de.)_0 -

(_-_)
V(_--,o I_ vd_.).-,o" "V(_-_o

vdeJ-_o - v(eJ-_o

- __o_Vde)A'(AV(_)A_)-'A(e-_) ÷ 0

= _Mo,'v(_JA",_-'Vi;,) _"A(_-_M,,)

= M_e ÷ Z(_e-_e)

vdeb-,o

For the case of maximum observation uncertainty, it is found that the

observations are ignored and the Bayes estimator is the mean value of the

parameters; and the Bayes risk is the sum of the variances of the parameters,
to wit,

,;,,, _,_ = ,'.'z_,+z:,., /<(._ -_m_J
v C'_)--,o - v(eb "_o

=_ +L,',,v(#/V)A_V_J(_-__)

V'('_) 1-tO

- 7-RAC_ /,'_ v(e/v]
vz'e)-_ o
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: TRACE L,',. (L/'_2 /'Arl,,'-_debA.) -I
v-'_e)_ o

- 7,'?ACE V(e.)

For the case of minimum parameter uncertainty, it is again found that

the observations are ignored and the Bayes is again the mean value of the

parameters; however, the Bayes risk is zero since the parameters are con-

stants equal to their mean values, to wit,

/-"" _s = _ + z.,',,,,
v(e) _ o J(e).._O

= _hie 7, L ;,,_
v( eJaÜ

= -/'/o t. o

L ,',, _-o - _ e

L,',,_ R_ = TRII C E L,'_
v(_e.).-*o _,(eg_o

: 7-R,qc -,,',,, Ev't'* ]-'

v(o) --,o

For the case of maximum parameter uncertainty, it is found that the

Bayes estimator reduced in form to the methods of minimum variance, weighted

least-squares and least-squares dependent on the characteristics of the

observation errors. Without loss of generality, the mean values of @_ and

e will be taken as zero to show the direct equivalence of the Bayes estimator
I

for maximum parameter uncertainty and the estimators derived in Section 2.2.2,

to wit,
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u " CeJ..+o "

= L;,., aTV'?e35
V_Ee)-_0

= Z,',_ (V(e)_t.A'V_(e.)A'_'/A TV
v "(e_ o

/_:,, - tRAcE (A"v 'J

If the observation errors are statistically independent and stationary,

i.e., V(e) = _e2 I, then the Bayes estimator for maximumparameter uncertainty

is the same as the least-squares estimator as derived in Section 2.2.2.1.
The Bayes risk for this case is _e 2 TRACE (ATA) -1.

If the observation errors are statistically independent and non-

stationa_:; i.e., V(e) is a diagonal matrix, then the Bayes estimator for

maximum parameter uncertainty is the same as the weighted-least-squares
estimator as derived in Section 2.2.2.2.

If the observation errors are generally statistically dependent and

non-stationary, then the Bayes estimator for maximum parameter uncertainty

is the s_me as the minimum-variance estimator as derived in Section 2.2.2.3.

From the results presented here, it follows that the estimators derived

in Section 2.2.2 are minimum-mean-sum-squared-error estimators if the observa-

tion errors are Oaussian and if the parameters are uniformly distributed

over the parameter space, which represents no a'priori information

available concerning the parameters.

2.3.6.3.2 Single Parameter Estimation

The Bayes estimator given in the previous section is a generalization

of the linear case considered in Section 2.3.5.2.1 for which y = @ + e where

@ and e were Gaussian with zero mean values and variances _and l, respectively.

This previous example can, however, be considered as a special case of single

parameter estimation. In order to demonstrate some of the general character-

istics of Bayes estimation, this example will be considered on a more general

basis. For single parameter estimation, the set of observations can be
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written as

where i is the unity column vector of order m whose components are each

unity; i.e., 1. The components of _ are considered as the errors of

observations, i.e., ei in the error in the observation Yi" The parameter
@ is Gaussian with mean value JX_ and variance _ 2. The error vector is

also Gaussian with mean value v_ctor____e and cova_iance matrix V(e) as
follows:

v@): El( __- a,)fe_ - __,7]

The Bayes estimator 6 B for @ is given by

where

_z-<,_: (o__I/.<_,+_)

K -- _ V(elV)!_vt_)

The Bayes risk for sum-squared-error loss is minimum-mean-squared-error,

_SE, since_only a single parameter exists. Moreover, V(@/Y) is a scalar,

and _MSE = Ru = TRACE V(@/Y) becomes

_ : _M_E: TRACE v@l×) : v(_/y)

The Bayes estimator can thus be written in the following form:

68 : Ixe - a v(eiY)Cl" v"(e.)_ ) + cx vt@lYJ(j" v-'(eJ#)
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Consider the case of independent observations with e_ual mean values
and variances for the observation errors; i.e., V(e) = ez I and 14 =

(a_@ +Me). _. Substituting and noting that I_T_ = m, it is fo_--dYdthat

v(_/d = 2 Tr .T _ ]-I-_//,'_ _1t-_j) x
-/

v(ely)= (&, _2 _._÷ _a_ 2)

and

I

__'v't'eJ:/': _ z

The Bayes estimator is thus

: - _ _ ÷a v(ei !

% : ,uo -o_e(a/x_+l,,,)_ K.Z, t£
%._.#

7

121



where

!

= aiM+ 7

The corresponding Bayes risk is

R 8 = M_VSE

ForY£@ = YJe = o andre 2 = a = i, _B and RB reduce to the results obtained

previously, to wit,

with

/

/

For the more general case, the following comments are in order which

illustrate some general characteristics of Bayes estimation. It is seen

that the Bayes risk, or _E, is _roportional to 6_e2 and inversely pro-
portional to a2. However, as _ e becomes large without limit, the Bayes

risk approaches a definite limit, i.e.,

The reason for this limit is found in the limit of K and 6B aS_e 2-_ _, i.e.,
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and

=0

L;,,, 58 =..U_

Thus, it is seen that as _2 becomes indefinitely large, the observations

are essentially ignored anS the Bayes estimate of @ is taken as the mean

value of @. The risk in this case is_@ 2 which is simply the uncertainty
in @ as measured bye@2.

The results given above can be readily extended to the case of non-

stationary observations where, in the variance and mean value of observation,

error varies. In this case V(e) _ O-e 2 I and the Bayes estimator must be

modified accordingly. Consider the case of independent observations with

the mean value and variance of the error in each observation being_ i
and _--i2. In this case

_

• £ 0 o00

0 _0 00

0 0 0 0

0 00 0

0 O 0 0 O'_

and

o

0 o

0 00

The term V(@/Y) becomes

£= l .l

-!
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Also,

and

"( )

i" / (_

The Bayes estimator becomes

%
.o c,. !_]

._ a _ I

In this case it is seen that in the Bayes estimator for @ each observation

Yi is "unbiased" by substracting _ i + ad_ from Yi and the resulting unbiased
observation is weighted inversely proporti6nal to the variance of the error

in the observation. The unbiased, weighted observations are then summed

and again weighed, multiplied by aV(@/Y) and added to the mean value of @,

g/Q, to obtain an estimate of @. In this manner, the observations which

have error of large variance are essentially de-emphasized in the estimation

of @. The Bayes estimator can thus be considered as a selective filter of
observation data.
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2.3.6.3.3 Recursive Bayes Estimators

For reasons outlined in Section 2.2.2.1 and 2.2.2.5, it is frequently

desired that a new estimate of the parameters be generated from a previous

estimate and information acquired since this lost estimate. It might be

argued that this step can be performed simply by utilizing the last estimate

of the parameters and the covariance matrix of the estimation errors as the

a'priori information or initial conditions for the continued process. This

argument is predicated on the observation that an optimum estimate must be

locally optimum to be optimum in the large. However_ to demonstrate that

this situation does in fact result in the optimum estimate it is essential

that the risk for the estimate still be minimum. The following paragraphs

were prepared in way of proof•

Let the random sample Y of m observations be grouped in terms of subsets

of m observations each, i.e.,

y:

where

j'=/

Each subset Zj of observations is related to the parameter vector @ as
follows:

The total observations can be written as a function of the parameter vector

in partitioned form. In this manner the system Z = A_ + _ becomes

..p,

m

A I

A_

eI
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It becomes apparent that a Bayes estimator for @_ can be determined for

any particular subset or collection of subsets of observations. The objective

of this effort, however, is to show that the Bayes estimator _ _ for the first

K sub_e_s of observations, Yv = (El, Zo, ..... , y_) is an explicit function
_--i • _ _ "" " " il "

of -_B only. That ms, the _ayes estLmator can be determlned mna slngle-
step" recursive form. This objective is readily accomplished for the case

of observations which are statistically dependent within subsets but which

are statistically independent between subsets. In this case the covariance

matrix of the observation errors becomes a partitioned diagonal matrix; i.e.,

vCe),o o o o
o v(% o o o
0 0 '. 0 0

0 0 0 V(e),i"

o o 0 0 "{/(_.
.(

where V(e). is the covariance matrix for the observation error of the jth

subset of 6bservations.

The Bayes estimator _B for the total set of observations Y is

Adding -}_ and premultiplying by (v-L(@) + AT v-l(e) A) it is found that

Substituting for A and V(e), the previous equation becom.es

L

,,1=/

In a similar manner, it is found that

d:l

where
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o_" /

and g K is the B_yes estimator

B-r-l= 6 _ = for the first K subsets of observations._rse,Of
....6 B -_B" Similarly,

k-/

#'=1

By adding AK VKI(e) (YK -_K ) to the right hand member,

Similarly,

v"toid _v

By substituting vK-I(@/Y) in terms of V K (@/Y) it follows that

Premultiplying by the inverse of vK(@/Y) it is determined that

k k-i [ °_ )1:& +V" "_ +
J:!

From the foregoing it is seen that the Bayes estimator can be determined

as a "single-step. recursive process in which the observations are processed

sequentially provided the errors in the observables are not sequentially

correlated. In this manner, if the Bayes estimate g_g_Kand VK (@/Y) are
known and an additional set of observations XK+l are available for which

A_, Va_(e), and __vJM-_ are known., then the Bayes estimate 8 K+I can be

determined recursive_t_s follows: _---B

12'7



J

where

#_,.+, _+, - _. +,, .

g____=_ since 8__'Bisgiven by

The initial 9onditions for vK(@/Y) and S___ are V°(O/Y) = v-l(o) and

These initial conditions follow from the fact that (V(@/Y) -1 is the covariance

matrix of @, given y. For the case of no observations, V(@/Y) = V(@) and

the Bayes estimate is simply _:_.
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2.& THE STATE TRANSITION MATRIX

The navigational filters described in sections 2.2 and 2.3 required

knowledge of the relationships between the state at various epochs so as

to allow all observations to be referred to a given epoch or so as to

allow for the generation of an alpriori estimate of the state at the epoch

of the observation. Thus, this matrix is an explicit part of the navigational

logic and will be discussed as such. It is noted before initiating these

discussions, however, that there are many other applications for this matrix

which will be explored in future monographs of this series (Midcourse
Guidance).

Consider the following nonlinear system of equations (which define the

motion of the vehicle being considered)

where _ is the "state" vector for the system (commonly, {F,-_} T ) and
where _ denotes the control applied to the system. Now _onsiaer a neighboring

trajectory defined by the same system of equations and the vector displacement
from a "nominal" solution

_(_) - - (_.2)= _ -.7.. o .

Combining these two notations, the time rate of change of the displacement is
obtained as

but since _(t) is assumed to be small, _ (_, t)

linear combination of two functions, i.e.,

(_.3)

can be represented by a

Now, the vector difference [_o ('_,;_)-f'(<,_)] can be expanded in a

Taylor series as

=
Similarly, the vector function B (_, t) can be obtained from a Taylor

series in terms of the state along the nominal trajectory

= 8
8X .
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Thus, the differential equations for the system become

- A(_)_+ f(_J,

(h.7a)

(A.7b)

But, the trajectory for the motion under consideration itself is
expressible (analytically and/or numerically) as a unique function of the

position and velocity at some epoch, and as a function of the accelerations

experienced relative to a nominal path (differences in the gravitational

accelerations and in any applied thrusts). This set of relationships is

represented by

r = ro _3r_, r.+_ ,BI_

Thus, by a Taylor's expansion

and

(_.9)

_ _ _ _ _ T( )" --: _ . C 8_ (_.io)
r:r_ + _-_ _r_ + _

where _( S_ ) is a set of linear functions which additively (due to the
small assumed magnitude of the deviations) represent the effects of the

differences in the perturbing forces, and where B and C are 3 x 6 matrices.

These linear equations can, in turn, be expressed as

(_. lla )

(h.llb)
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showing that, to the first order, the dynamics of the problem can be repre-

sented by the two matrices _ (t, t o ) and _ (t, to).

Now, comparing the two equations for 8and _-equations (&.7) and

(&.ll)_/, it becomes apparent that the fundamental solution matrix _-the

state transition matrix, the matrix denoted by @9 (t, to)_7 is the solution
to the homogeneous equation obtained for # = O. In order to define the

nature of the term _ (t,_t o) _ (6_) it is, however, necessary to
consider the solution to 8 (t).

Let _ (t) denote the homogeneous part of the solution for _ (t).

Then

But

Thus,

(_.12)

At this point, introduce the system of differential equations adjoint to

this family

(_.13)

and note that

d

Performing the substitution yields

(z_.z4)
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which, upon integration, can be written as

t÷f x( dr
_o

t°

(4.15a)

(4.15b)

-i

Multiplying by J__ (t, to) now reduces this result to

4 t

_o

(4.16)

Finally, comparing_the form of this equation to that given earlier

_-equation (_.iI)_/ for _ (t), it is apparent that

and that

(4.i7)

(4.is)

The preceding material clearly establishes the mathematical nature of

the state transition matrix and, at the same time, introduces the adjoint

equations as one means which might be employed to compute this matrix. The

sections which follow will explore these avenues in some detail for the

purpose of providing the state transition matrix as required in the naviga-
tional filter.
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2.4.1 Generating The State Transition Matrix

2.4.1.1 By Direct Integration

The introductory paragraphs to this section of the report showed that

the state transition matrix obeys the differential equation (4.12)

and the boundary conditions

-z

Thus, the desired matrix can be obtained directly by numerical integration of

each element of the array. This procedure is completely adequate for most

applications in which the task is concerned only with the reduction of

observed sightings (fixed values of to).

However, there are applications (midcourse corrections, for example) in

which the state transition matrix relating the state of the present epoch

and a fixed future epoch (e.g., the epoch of rendezvous) is desired. For

these applications, it is unnecessarily complex to require that the preceding

integration be reperformed at each epoch (i.e., a new to at each epoch).

Rather, it is convenient to generate the desired solutions as follows:

(r) - ¢,{T,t.,) (4.19b)

Thus,

(0: to) ).
This technique requires that two integrations and an inversion be accomplished.

First, the transition matrix Eelating the arbitrary epoch (to) and the fixed

end time (T) is _enerated. L This integration need be performed only once,
providing that g (t) never leaves the neighborhood of the nominal trajectory

about which the partials are evaluated.__ Secondly, the transition matrix

relating the arbitrary epoch (to ) and the epoch of the present state must be
generated from the previous transition matrix, the differential equation, and

the change in the time. Finally, the latter matrix must be inverted.

The first two of the three steps outlined are relatively simple. However,

the third involves a considerable amount of effort if normal matrix inversion

techniques are employed. Thus, it is instructive to present a means of

developing the inverse in an analytic manner from the transition matrix

itself. This procedure, if employed, will avoid roundoff and loss of

significance problems inherent in numerical techniques, in addition to

133



drastically simplifying the mechanization logic.

Consider a linear system (expressed in cartesian coordinates) described

by the following equation

2 :A(:_) i(,O (&._l)

where 6 (t) is an even-ordered state vector composed of a set of output

variables and their derivatives; and A(t) is a coefficient array for the

system composed of square, symmetric, even-ordered subarrays of the following
form

[4,-Io]
This form for A(t) is representative of motion in conservative force fields.

To be specific

A#Z =I

r 2 ]
for motion in the vicinity of

(&. 22b )

(_.2#c)

If equations (1..22) and (1..23

following identity results

J, ]

are substituted back into equation (l,.21), the

and upon expansion, equation ( " ) .yields

_,z : Wzz

%z,: __L_,,_r

9F

(1..25a)

(A.25b)

(&.25c)

(&.25d)
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Equations (&.25) may now be operated on to produce an equivalent set of

differential equations. This operation is performed as follows:

a_

• T r
g #_,= g, g,

or

d r T

a7(_,,#,,-_,,_0 -o
r

(&.26a)

(/_.26b )

Similarly

#,_¢,,-#,2_, =c_ (/_. 27)

Finally, the results of the integration can be restated in matrix
notation as

T

i i<-_Z _'J L#,, ¢_] , q
and the constant arrays resulting from these integrations may now be
evaluated by substituting the initial conditions

_,,(o; = _, (o) - z

(z_.30)

_,, Co) - #_,(o) =o.
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This step produces

C, -- 0 (_ .31a.)

cz=I (4.31b)

C3= 0 (4.31c)

c4=f (4.31d)

and reduces equation (4.30) to the identity matrix. But, the only matrix
which can be utilized to reduce an arbitrary square matrix to I is its inverse.

Thus, .,

= c/*.32)

Equation (/,.32) is important for general linear systems in that it
provides an analytic means of constructing the inverse transition matrix

directly from the elements of the known transition mat,_x by rearrangement
of terms and the change of a few simms. In conclusion, it is noted that the

true meaning of the terms A12 and A21 _/-equation (/*..'12)_ was never employed,
and only s,_nnmetry is required. Thus, there is an immediate _eneralization

providin_ that an arbitrary system can be described bv equation (4.22). (rr

_eneral, this formulation is possible only in terms of inertial coordinates.)

2._.I.2 By Integration of the Adjoint Equations

The differential equation for the adjoint matrix was shown to be

with boundary conditions

(/*.33)

Further, the inverse of the adjoint matrix was shown to be the transition

matrix. Thus, the adjoint enuation can be integrated and the result inverted

by employing the analytic inverse property developed in the previous

paragraphs to }_eld the transition matrix.

This techDique offers little in the problem where observed sightin_s

are bein_ sequentially reduced (fixed to, variable T). However, if the

problem also involves the generation of midcourse _uidance commands (fixed T,

variable t o) so that both @ (t, to ) and _ (T, t) are required, an

adaptation of the adjoint technique is equally as suited to the problem as

the more straightforward approach.
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so that

and

Define the time to go as

= y'-_

d_lo = -d_

Now, substituting into

But,

Thus,

= -A(T-

$(r-_o, r) =-A(r- _,o)_(r _I.,T)

and the system of adjoint equations is

A(r-_., r) : _(r-_r.,r) A(T-_.)

But at the epoch = 0 @ (T, T) and thus
identity matrix tg° '

.A.(T, T) :Z

@-I(T, T) or (T,

(_.35)

(L.36)

(a.37)

(_..38)

T) is the
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Therefore, the adjoint equation expressed in terms of the t_me-to-_o can be

integrated from t _ -- O (backward in real time) to the epoch in question to

yield _ (t, T). _U

Note is made before leaving that this process involves successively

small values of t_o. Thus, it is either necessary to store these successive

values of _- (ti, T) or to construct these successive matrices as follows:

Thus, _£Z) : _(_. _ _ ) _(_, T) gCT)

2.A.2 The State Transition Matrix For Conic Notion

The precedin_ paragraphs have presented several means of determinin_

the state transition matrix for the true motion. However, the amount of

effort required is considerably in excess of the amount normally spent in

preliminary analysis, or in those cases where only moderate precision is

desired. For this reason, an approximate lo_ic for constructing this matrix

will be developed based on the two-body solution of the equations of motion.

This development is justified since the deviations from the true and conic

trajectories will agree to a higher de_ree than the trajectories themselves

(i.e., the error introduced by neglecting the variations in the perturbi_

forces is small compared to the ma_itude of the variation in the state of

the system produced by erroneous initial conditions).

The development of the matrices of partial derivatives to relate the

first order variations (from the nominal conic trajectory) in the state at

two arbitrary epochs will be accomplished in four steps:

i.

2.

3.

Circular orbits (rotating and inertial coordinates)

Elliptic and hyperbolic orbits (rotatin_ coordinates)

Elliptic and hyperbolic orbits (inertial coordinates)

Approximate method of inc!udin_ the effects of trajectory

perturbation

As will be apparent, the material of these discussions is related and

sometimes overlaps. However, as will also be noted, there are computational

problems associated with some of the functions, and significant differences

in the coordinate systems employed in the analyseswhich combine to suit a

given formulation to a given task to a higher degree than is possible with

any single step.
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2.1.2.1 Circular Motion (Rotatine and Inertial Coordinates)

Consider the perturbation equation

/" = r. ÷_r

and its second derivative with respect to time

under the substitution of central force field dynamics.

.. ._ ._, _s .,..
+A = r"s rS r

Thus,

r

_J ros r_

(_.39)

GS
(_.&o)

_ AT
where I (the identity matrix) and ro ro are 3 by 3 matrices.

Now assuming that the eccentricity is small (i.e., 0-_U: -_ :
produces the equation

(A._l)
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But, as has been shown, this equation possesses the solution

Thus, an explicit solution for _ (t, t ) can be obtained (for circular

motion) by noting (from the previous equation) that A ? can be expressed as

by substitutin_ this representation back into the differential equation (&.hl)o

First, however, a simplifying assumption will be made in that the coordinates

selected will be centered at the nominal position and rotating with the

satellite so that

,_ -- ro(_-)
= F,,o)x %(o)

and

f
A
Y- -_:£

_.---0

At this point, the derivatives of

into the differential equation will be accomplished.

• _% 4%

A r (t) are formed and substitution

(h.h2)
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N oN

-- O

O

and

o o]
0 0 -W ,

So_ equating the components of equations (/+./4.2)and (_._3) yields

_2_#, - _,__ --_

or

#, -3u2 F,- 2.o_& =0
B)

& +z #,.,F;=o

+o,__ :o . (4.&&c)

These three second order scalar equations define the time dependent
coefficients of _ r.

Note that the third of these equations is uncoupled from the first two,
and thus may be integrated directly. The solution is:

(a.aSa)
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But

Thu s,

Now,

s = F, (o_

integrating the second equation

_(d=-2,.,., ;,(_),#,(o)÷z_q(o)

and substituting into the first allows the following solution

_,-s_F,-Z_(-2_F,÷&(o)+2_F,(o)):O

F, ,J F, = Z_,_, CO)._2 F,(o)

,- Fz(O)÷4F,(O) ,
(4)

where

Thus,

fi(t) =F,(o),_;o

s' = -_--F2(o)-sF,(o)
_)

F;(o)
CO

to be developed:

(&.&6a)

(&.L6b)

(&.&6c)
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and

this latter equation into the first integral of F'_Substituting yields

(_._7)

or

k¢o) ]
(.4.)

+_(o) ,2_F,(o) a#

-2;;(o)[_,] .
(4.&8)

Thus,

,m_('_)=-F,,('O) [602_ -6495_(_£]

z_,co_
60

= P,, ( O ) [ 6 ( AL,,, co _ - (o _ )]

(z,.._9)
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Finally, employing the boundary conditions

F2(_)-=_(O) , _=o

yields

g(o) Z ÷c = r 2 _o)
(._

or

c- _co)-
2_(o)

CO

Thu s,

The extension of this analysis to the case in which inertial rather

than rotating coordinates are utilized is obtained simply by noting that the
.-L

first derivatives of 6 can be expressed as

(&.5o)

where

A=_

s=&

c=#s
for rotating

coordinates
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b

or where

A- #,-_,F2

A_,P,_- _co),_, _ _o)x_-(0_.

inertial

coordinates

In this latter case, of course, the initial conditions for the functions FI
• F3 become

_('o) : a_co) • _.(o)

&co) =af(o)-?co) -_F, CO)

#s_o_=nkco) .#(o) .

(h.52a)

(h.52b)

(4.52c)

(h.52d)

(_.52e)

(_.52f)

The results of this process are presented in Tables 2._.I and 2.h.2 for

the cases of rotating and inertial coordinates, respectively.
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2.4.2.2 Elliptic and Hyperbolic Motion (Rotating Coordinates)

2._.2.2.1 Elliotic Motion. The complete description of the motion in an

elliptic orbit is obtained from the following set of equations:

r = _ (I - _ca_ E) = radial distance

a = F_ (2 _ - rV2) -_ = semimajor axis

p = (rv(x._)zzl -I = semiparameter

e = (i_ _)_z = eccentricity

(t-tp) = (£-g_£9_ -I = time from periapse

n = _-31a = mean motion

(@-cu) = gz_-' ( p - r)_- = true anomaly

= angle in the plane of motion measured from the ascending
node

= argument of periapse

-i )i = _ (_L_u_ = inclination

( c_/_ ) = longitude relative to
l) = _-' _ the ascending node

= azimuth

Thus, by straightforward differentiation, the column vector representing

the change in the elements can be constructed for a given set of errors

occurring in the initial position and velocity vectors. Now, since the

modified constants of the motion (a + Aa, etc) are known, the implied

variations in the position and velocity vectors at all subsequent times can

be obtained by solving the six simultaneous equations for these quantities

in terms of the known errors in the elements. This process, like the first,

is direct though slightly involved.

The transition matrix, i.e., the matrix of partials relating errors in

the state vector at any epoch to errors in the state at a given epoch, is

readily constructed from these two matrices by direct substitution; that is,

.ib

8C

(_.$_)
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Thus, the analysis will turn to the development of the two matrices denoted

_e_ z and _

2._.2.2.1.1 a_, a_ = f ( a aj Ae . . A/h ). Expansion of
those equations required to define the components of &_ and Av in terms

of variations in the elements will be presented on the following pages.
These expansions and the associated substitutions are presented in detail to
facilitate a rapid understanding of the process, to demonstrate the manner

in which computational difficulties can arise, and to establish the means of
inverting the process to define the changes in the elements as a function of
the changes in the position and velocity.

Consider first the radial distance

r---aU-ec,_) .

Thus,

r
dr = -- da + a e _£,,zE d£ - _ @ F- de

But, t rather than E is the independent variable of the analysis.
Kepler's equation must be differentiated.

n

Thus

/ ,3 C_-Ep) d_d_p = I r dE *-- _,z F_ d P_ - --
a n 2. a

Now, substitution yields

dr = -_ r

GtZe ]
_- -a. _ E ,-- ,,_z4Z E de

r

÷[ _16c2--e_zl'zEJr d_p .

(_.56)

Now, consider the displacement in the circumferential direction (i.e., per-

pendicular to r but in the plane of motion).

(_. 57 )
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where

a(/-_ 2) -r

r_

or

/ r

-.aOz _ d9 = I('-- /_e 2)
re L.

da -2 a e de -dr]

r2_a de r ¢dr

Substituting for dr in terms of dE reduces this equation to

r ae f-L 7 p  E E]Ide +

,r

Now, substituting for dE yields

d_

÷[- (r-a)_-a_e__O(re 2) + P-_r _]

pa_

d_ (#._8)

The next step in the analysis is the construction of the errors in the

planar components of the velocity vector. The rotating axes for this

application will be selected along, and perpendicular to, the direction of

the velocity itself. Consider the energy equation

V _ -- __ --__

F

dV = -- - a22V r2' dr * -- da

(_.59)
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substituting for dr

r a a t -2 r -_

_._x 2._x aZe _xS,_EI de

2.z.z /l a 2 e _xz g ] dip+-;;-7-

or

V J .zz oc ]
dv = -_-- + emma d_

Za X r_v r

+ -- en_ d6p
r

Finally, consideration of the angular momentum will provide the infor-

mation necessary to construct the variation in the velocity perpendicular
to the nominal direction

rZv _ Cmo2 y =._a(I-e _)

2 _z___# 2_p
dr + dv - 2_p_v_ _ d _" (A.61)

r V

2_xzp [ (l-eZ) ae ]
Z p da - --p de

so that

V r dr dv

vd_" =_ [ +r F v -- de -
P
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Substitution of previously derived expressions and the identity _,_E/ta._'=
/ _ now reduces this final equation to

vd_'= -- -- _ I-_ da
2 r a rv ;_

[ ,J+ .... de
r "_ _r rv • (A .62)

The development of the variation in the out-of-plane angle and the

azimuth (or the corresponding position and velocity perpendicular to the

plane of motion) will be accomplished in a slightly different manner
(Ref. &.l). Since the dimensionality of this subset of variations is two,

and since these variations are independent of the in-plane variations, this

set and the inverse set _-i.e., _L j _fl =l(aB j _ _ _7 will be derived

simultaneously in the followin_ paragraphs.

¢

Consider the sketch

90°-L - dL L = Latitude

= Azimuth

/ \\
I
I
/

Now, employing the law of cosines for the spherical triangle involving the
colatitudes and d_

_ ( 90 -L -dL ) = cao ( qo-L ) cao d _"

+.d.d._ (90-/.) ._ d_ e.aoC90-_)
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which is approximately

or

.a/_ L _" c_oL d L = ,_ L - eeo L .,uZ,_X_ d lt,

d/..= - -,_,_ ._d_. (_.63)

But, from spherical trigonometry

e.o<,Z = _ao/...,_ .,d

so that

d,,_ - dp,

(&.6_)

The error in the node (dx_) is obtained by considering the projection

of the erroneous trajectory on the reference plane, i.e.

_(7/' +dz) -d.a) -"
_(/s ,d,_) (L_.65)

.,_._(i,di)

which is approximately

or

But

ea_ 7.)- _ _)(d z)- d _ ) =

z# (dz)-do.)-

_ / + e..aoL dZ

¢e,,_o,,_-.,_,_.,_d,a)(/_e_MZdZ)

..ax.J_(d zs) =
_x_ ( 90 +/3 )

(90-L -AL )

d,8 7" dg

d_
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so

_x9
----- d#.
_L (k.66)

Thus,

do.= d,d - dz" -/"

or

These variations can be written in the form

L _'2, a22J

e_L
d_

(&.67)

(&.6s)

Thus, solving for the column vector (d_ , d_ ) is possible by computing
the inverse matrix

A-,.ra,, -_,,] --

L-_21 _,, J /AI

The results of this process are

.[- _,_(_ '_, '___)1
_t _L ,J

dz.:

(6.69)

and

These results are summarized in Table 2.i.3.

(_.7o)
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2.&.2.2._.2 ( Aa, Ae • • Ae ) = ( A_, _). The de-
rivatives required to construct the linear equations representing the inverse
of those presented in Table 2._.3 were, for the most part, presented in the pre-
ceding section. Thus, the developmentof this section will be muchsimplified.

The first variation of interest will be in the semimajor axis. This
equation waspresented intact as:

The variation in eccentricity is from the equation defining the
variation in the flight path angle, simply by substituting to eliminate da
from the equation. That is,

or, upon substituting for do.

--- P O05E dr-l'_g C05Edv÷ ____5/A18 (VdY)
-F'z r v v_.

(& .72)

The development of the change in the epoch of periapse passage initiates

with Kepler's equation in the form (presented previously)

d@p - -3 /Vl d_../- 51AIE de - Y" dE

,2 "a.o_ h. _ o.,

This time, however, it is necessary to substitute for dE in terms of dr,
dv .... Thus,

: a(i- cosE)
dE : / J dY'- _" do.. -I- 0. COSE _e }
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J

or

IN E - "I"C05E "7 de

_ --_N_'J

÷[-'r ]at'.1lo.. Z e ..51ALE

Now, eliminating d_ and de from the equation by substitution, and combining
terms yields

]_ V o... e

(a.73)

The final equation required is

so that

eos ( # - _)

or

: a.(,,-e2)
eY"

obtained by noting that

- F"

F
d&V= _ / P 0'0-

_,_(___o,-..*-")

d_

(a.%)

158



Now, once again substituting for da and de yields

+

which reduc%s to the following

d_cJ = .SIAIOew" o'w" "-/--2.SI/VS_V dV -[__4-C05EI_Vd_)V_ "

/ (rd._)

),-

(_.75)

The results of this analysis are summarized in Table 2.4.4. Note that

in contrast to all previous equations, the equations for dtp and dw contain
terms of with factors (l/e). This fact displays the physic&l problem

associated with the indeterminancy of the line of apsides. This approach,

nonetheless, completely describes the propagation of the differentials around

the orbit, as can be seen by examining the limits of the terms contained in

the product matrix (matrix of Table 2.&.3 times the matrix of Table 2.A.&)

and comparing the results with the terms of the matrix presented in Table

2.4.1.

2.4.2.2.2 Hyperbolic Motion. The equations presented in Tables 2.4.3 and

2.&.& can be applied to the case of hyperbolic motion when the following

substitutions are made.

E =-iF

sin E = i sinh F

cos E = cosh F

= LX4 --

a h = - a

k/l-ez = _ ,J__l

The results of this set of substitutions are presented in Tables 2.&.5 and
2._.6.
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2.4.2.2.3 Elliptic and Hyperbolic Motion (Inertial Coordinates)

2.1;.2.2.3.1 Transition Matrices and Coordinate Transformation. The propagation

equations developed prevlously (with the exception of the case of circular

motion) were built around the transition matrix relating errors occurring in

a rotating local coordinate system. However, there are sound reasons for

studying this propagation in other frames of reference (e. g., in an inertial

frame as in the case with an IMU, in systems which exhibit the principal

values of the error ellipsoids of position and velocity on the coordinate

axis, and for the purposes of propagation studies in patched conic tra-

jectories). For this reason, several systems of primary interest will be

introduced, and the mechanism through which these effects can be introduced
will be presented.

For the purposes of generality, a composite transformation matrix will

be established which will transform the errors represented in the local

system into those expressed in an arbitrary inertial system. In the process,

the transformation necessary to establish the relationship between the ro-

tating system and any other frame of reference will be apparent.

A
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Referring to the sketch, if the following shorthand notation is adopted

Tx (_ ) = COW ROTATION ABOUT X

Ty (_ ) = CW ROTATION ABOUT Y

TZ (_ ) = CCW ROTATION ABOUT Z

the vectors X, Y, Z, i, Y, and Z can be readily expressed in terms of the

known vectors R, S, W, v and VA_ .

rz (-_n..j C-LJ

Now, combining the transformations and utilizing subscripts I and R to denote

inertial and rotating, respectively, the transformation becomes:

Z O T _ _" R
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Similarly, if other frames of reference are desired, the transformation can
be readily constructed by performing a series of rotations (in an inverse
manner) from the inertial frame to any other frame.

4

2.A.2.2.3.2 Transition _latrj'zc_eA fro_mUni_e£sa! Variables (Inertial Coordinates__.
The equations of conic motion in terms of the so---l_al_$-d-_ni_ers_va-ri_s

of Dr. S. Herrick will be utilized to develop another means of defining the

partial derivatives of the components of position and velocity at any given

time (on the conic section) relative to the components of position and

velocity at some other arbitrary epoch. This task will be performed to

avoid limiting cases and to simplify the development when interest is

centered with inertial coordinates. The development will utilize a formu-

lation valid for a non-rotating coordinate system and will be based on the

development presented in the discussion of the two-body problem (Ref. 1.3).

The required expressions for this analysis are:

wh ere

A

_- -- R-- U

-F = --_/Y'ro

: = /- C_/r

r : inertial position vector = XX + + Z

A

X _

= noz_alizedvelocityvector--_/_/_--(X_

is the X unit vector. (This notation is adopted to avoid

confusion with a variable to be defined subsequently)

_' =o..C/ -eos x)
A

u - o_._/._(_'-5/NX)
.4

s = _ '/2.(S/NX)
.4
X =agZX

0__ = - //oC

Do : _-o "-So

eo =/+root

X : E'Eo

EL LIPTI

AgO T/ON

= o..(/-eos/,x_

C-_z.)_C_-__,_x)[

C-_?_ (s/A//_ x)

C-co) '/2.x

H YPERBOL IC

1140 T/ON

(EZ/Pr/C /V/0rl0N ) = :"- ,co {#Y,°£RBOZ/C /I_0TION..)
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The first step in obtaining the desired partial derivatives involves
differentiation of the equations for _ and T with respect to the components
of_ ° and_ o. This task will be drastically simplified if full advantageis
taken of the similar form of these derivatives at the outset. Thus, a short-
hand notation will be adopted in that u and v (Q and v) can assumethe values
of s, y, and z (_, y, and _).

where

(/+.77a)

Bu =_5ov÷Uo a¢ 4u_:- (A.77b)

_vo Bvo 9_ (&.77d)

÷

_uv :O U _V

=1 U:V'

Thus_ the problem has reduced itself to one of obtaining the derivatives
of f, g, f, and g with respect to T and s. This task will in turn be simpli-

fied if a set of intermediate parameters is selected, since the x . .

do not appear explicitly in the equations for f . g. The set to be

utilized is suggested by the equation for the magnitude of r in this set of
variables.

=F(_jDoj_)

Having selected the intermediate variables, the next task is the

differentiation of f, g, f, and g.

For f

A

-to _ rc (z_.78a)

,4.

_Do ro _ _o

(A.78b)

(z_.78c)
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For g

For

i

and for g

a_& ar aul -- -- --

aG a_ a&

A

_Do _ Do _ Oo

_ro -gT; * )
(fro) 2

) Do
( r to) 2

/
-- = _ _ .
ad,

(rQ) z

a_ -r Tg +
aro

r z

Do _-_ a--_
FZ

(/4..79a)

(_.79b)

(_.79c)

(4.80a)

(4.80b)

(4.8oc)

(4.sla)

(4.83_b)

ra
A .A/%

Now, attention turns to the derivatives of C, S, U,

respect to ro, Do,

A

For C

_-5o= a_o

A A

_- 3 _ )_:s _--_,c_a--a = ga ' (/- e''a z a_

For
a_

a,'oa$= a,/,(./_ _)-a-go a--_

a_a :e a_'
ao_ az)_

- - U,a.

/'_ },

(4.81c)

etc., with

(g.82a)

(g.82c)

(4.83a)

(4.83b)

(4.83c)
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For

8Zo - _fo

B5 c_y az
a--So - _--_o

(a._a)

(L_.84b)

(_.8_c )

For fi_

--- 0
_Do (4.85b)

and for r

-- = /+Do + Co ¢_C (/_.86a)

a__c_r= __,Do _f ^

A _ A

ar --Do _s _a (4.86c)

A

The final set of partials required is now recognized to be that of X

with respect to r , D and c_ . This set requires the equation for time

(analogous to Kep_er'_ equation) be differentiated as follows:

A _ A

for B_X

_ro A

" _- , -- _ _u +(/+_ro) _
0=_ +roar ° ° _ro _o

A

= _ + _ v + r _--7_

_r_ r

(A.&/a)
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A

for _--_
-_o

a_E c
_)D.- F

(_.STb)

p

A

for __X

alt = - U Co
o__ r

(_.87c)

Now, substituting back into the previous expressions and coll.ectin_
terms, the derivatives required to compute the partials of f, g, f and g

with respect to the intermediate parameters are:

A

For C A
_C __z- - 0+. 88a )
_rD r

A

For U

A ^Z

__._u= _C_G_ (&. 89b)
9 Do r

A

_)u_ c_ + _0__ t)_ (_-._9o)

For S

3% r

_Do r

a_

(4.90a)

(A.9Ob)

(_._uc)
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For r

Do_

For f

For g

For f

For g

aro

_Oo 7 73

(_.gla)

(4.91b)

(4.91c)

Finally, the required partials of f, g, f, and g with respect to ro,
and _ are:

A _Z

_f_c_ ÷!
_ ro ro _ fro

bf-_±c

(4.92a)

(L.. 9_b)

(4.92c)

_= c_z
_Do r

, [_-30 8
a,_

(4.93a)

(4.93b)

(4.93c)

2to- r3r# ÷ _ (r_ z ÷ rof)

ai / __

_r_ ra

_Oo rS

3_ f_

(4._4a)

(4.94b)

(4.95b)

(4._5c)
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Thus, the only remaining steps at this point are to provide the
derivatives of the intermediate set of parameters with respect to the

components of __ and To, to construct the derivatives of f, F, f, and _ with

respect to r'o a_d _o, and to relate the results to the parameters r and 9".
The first step is accomplished by referrin_ to the definitions of ro, Do, and

z 3 3 Z

_=1 l=l

Dro X_ 6 ro
"_ _ 0

axL ro DsL

Do =_'o .50

Do - 5 _ a Do
=Xi

o_ =5 "5-2

ro

a oc 2X__L a oC =5,'
o x_ - ro 3 a 5 L

The second step is accomplished through the medium of the chain t_]_e, i.e.,

etc., and the third and final step is employed to remove the normalization

factor applied to the comoonents of the velocity. Since

._m ..b

S = V

d£=l_d_

the desired matrix is

dV

y-
I

I / a_

a-% ]b5
llb

50
(&.96)
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2.1,..2.3 Approximate _.ethod of IncludJn_ the Effects of Trajectory PerturbatJ ons

If the trajectorv itself is being. Fenerated with precision (i.e., all
perturbative forces are bein_ integrated in such a manner that their net

effect is accurately known), two simple means exist for compensating, for the

deletion of the effects of the variations in the perturbin_ accelerations

in the computation of the transition matrix alon_ the true trajectc.ry. The

first and most accurate of the two schemes is obtained by considerin_ the

true trajectory to be composed of a series o_fconic arcs, one terminal

(i.e., r-_, _) of which matches the true trajectory at the epoch corresDondin_

to the terminal selected. Under this assumption, the total t.ra_._ition matrix

relatin_ the _resent epoch and some arbitrar_ initial epoch is obtained b.v

forming the product of the most recent transition matrix Zrelatin_ t and
-_o

tn_l; @_ (to, to ) = I_, and that formed usin_ the present values of r and -_

and a propagation time equal to the step size of the numerical J_te_ration.

_hat is,

--- ,a' +°)

This method does not involve integration but is, nonetheless, subject to
error acm_nulation due to the fact that loss of significance can result in

the series of required matrix multiplications. Thus, improved accuracy may

result if larger steps are taken for the purpose of incrementin_ _ (t, t^)

_.e., increment _ (t, t ] each nth integration ste_7. It is important, to

note, however, that the lim_tinF assumption inherent in the equations of

motion will never admit _reat precision in this approach. Thus, extremely

involved lo_ic to determine the proper _ropa_ation time appears unwarranted.

A second, less accurate, approximation is obtained by consideri_ only

the two terminals _ , t and _ , _ , T. For this case, two estimates of
the transition matr°x cV°n b ° _enerated. The first is obtained simply by

evaluating one of the conic matrices for the condition _o , V_o , T-to, i.e.,

The second estimate is obtained by considerin_ the trajectory from _T, Sm, t
in necative time _-i.e., - (m _ to) -/

(to) - 7-.2 q cz)

Thus,

1_1



These t_o estimates can now be combined by weighing them in some fashion.

For the case of equal _ights

This second procedure is easily mechanized if the transition matrices

relate inertial errors, since the analytic inverse theorem can be applied to

avoid numerical problems in the process. In fact, this theorem can be

utilized even in those cases where rotating coordinates are employed when it

is noted that the rotating and inertialmatrices are related as follows:

where S (t) is an orthogonal transformation. Thus,

!

The accuracy of the second technique is somewhat unkno_m. From physical

reasoning of the case in which T-t is less than one period, it can be argued
that the inclusion of the second estimate will provide an improvement in the

accuracy. However, a measure of the improvement is difficult to construct

since the magnitude of the perturbative displacement (secular plus periodic;

resulting from the non-central forces of the problem) from the conic trajec-

tory varies from point to point along the trajectory. For the case where T-t o

is greater than one period, the same effects exist. In addition, errors are

introduced due to the fact that pure conic reference is being assumed for

increasingly long intervals of time.

Another family of approximations can, of course, be generated by com-

bining the first two types.
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2.5 DATA WEIGHTING

2._.] Gen_l _n_o_v

Th_ _m_l_m_nt_tion o_ th_ vsr_ous estimators +ha+ s_e _troduced _n th_s

monograph reouires a knowledge of the cova_an_e matrix of the observables.

Th_s covar_ance matrix can be determined from the covar_anee matrices of in-

strument error_ _nd navigation model errors. Th_s section will present

the general expression that relates thes_ covsr_n_e m_t_ces. The fo]low_n_

seetinn (2.5.2) will Kive th_ det_1_d exo_ess_ons for eseh tv_ of n,_einn

measurement that will exnl4 c_t]y define this cova_iance relat _onship for

any comb_ nati on of nsv_ _mtion measurement.

When a navigation observation is made, it will d_ffer from a predeter-

mined nominal measurement because of several reasons. F_rst, th_ veh_ ele

will be off the nominal trajecto_ by some amount _n both pos_t_on and

velocity. Second. the constants of the navigation model that were used to

calculate the non_inal _.easure_ent a_e themselves _n error, becau,_e of uncer-

ts_nties in th_ physical dimensions and uncertainties _n celestas] body

positions. Finally, the uncerta_hty of the instrument that _s ua_d for the
measurement will constr_bute to the difference _n the messurement.

S_nce all of the sources of the deviations are small and the nominal

measurement _s assumed to be known, the measurement may be exDanded dn a

Taylor Series about the nominal, vaSue by including derivatSves with resD_ct

to all of the variables that _nfluence the measurement.. Furthermore, s_nce

the contrSbution of each deviation source is very small, the higher order

terms may be neglected _n the Taylor Series. Letting _i be the measurement

of interest, the Taylor Series can now be expressed as

where q_o is the nominal value of the measurement

dX is the true state vector deviation

d/_ is a vector comnosed of the model uncertainties

d_ i is the instrument measurement error associated with qi
X is the state vector

._s the vector comDosed of the navigation model parameters

__i ds the vector of measurement parameters

Ecuat_on (5.1) can be recognized as a more general form of the pos_t_on

devlat_on e_u, tion thot was presented in a previous monograph. Reference 1.1.

It _s recalled that a deviation in some observation from s nominal value

could be related to the _osition deviation as follows:
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where 8_ is an observation vector composed of the 6q_'s

qi = ai - qio
R = position deviation from nominal

A eomos_son of Eauations (5.1) and (5.2) reveals that Equation (5.2)

corresponds to the second term of Equation (5.1), where the state vector

deviation is considered to be oos_t_on deviation only. The significance ef

all of terms _n Eauation (5.1) should now be ao_arent. The first term _s

merely a predetermined auantlty that gives the value of the auantlty under

perfect condSt_ons, i.e., that value that would be measured _f the vehicle

were exactly on the nominal trajectory, all positions and dimensions of

objects used for the observation were known exactly, and the instrument

used for the measurement were error free. The second term corresponds to

the deviatlons in the measurement that are due to perturbations of the

state vector about the mom_nal trajectory. The thCrd term represents all

measurement deviations that are _ntroduced bs uncertalnt_es in the navigation
model. The number of elements _n th_s vector depends on the number of uncer-

tainties in the model that have a direct first order effect on th_ measurement.

Finally, the l_st tp_m _n Eauation (5.1) reores_nts the error due to the

u_certa_nti_s _n the _nstrument that is used for the it_h measurement. In

cases where the navigation observable and the measured quantity are the same,

the vector _ will merely contain a "one" in the appropriate location.

However. _f the messu_ed auantity and the navigation observable differ, as

_n radar measurements where phase and frenuency measurements are indSrect

and range-rate measurements, then the vector _ must contain therange

appropriate oartial derlvative to account for the uncertainty in the sensor.

If a series of navigation measurements is made. Eauat_on (5.1) can be

extended to a vector eouation.

b_ -- _ ÷ dE

It sho_1 d be noted that the model uncertainty term _s now shown as the pro-

duct of a matrix, _ and a vector dM. This notation can be adopted becaus

molel uncertainties, even though they all may not be used for a particular

observation, may be entered into a column vector. If a particular model

uncsrtainty _s not used for an observation, then the _ matrix will con-

tain zeroes in the appropriate locations. _-_

The covariance matrix for _ can be found by employing the expected
value theorem. (See Appendix A.) The result is
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Eauation (5.4) can be evaluated once the expected value of a is determined.

This step can be accomplished by taking the expected value of Equation
(5.3), i.e.,

(5.5)

S_nce go _s a calculated nominal vector, its exoected value is ao. Further,
the exoeeted value of dX is dXbecause dX is the true deviat_ou. The last

two terms in Equation_.5) a-re zero, si-nce dM and-_E are random variables

_th zero mean (by choice of the nominal vales of t--heDarameters). It

should be noted that the result obtMned from Eauation (5.5) after the

expected value is taken, _s consistent with Eauation (5.2) which assumes

the true values of the measurements and _osition deviation are known, i.e.,

_K -
(5.6)

or

Equation (5.4) can now be evaluated if the auantity o - E (_ is expressed
as

a_ dX ," a._o,'_ ,'- o__de -.._- as. dx

: __-_ ÷ a_a_/__'
(5.T)

The result is

Before proceeding, it should be noted that cross correlations between the

vectors dM and d__ usual3_v do not exist, since components of these two

vectors are not affected by one another. This statement becomes evident

from an examination of the followin_ chart that shows the nature of any
correlation that would exist if the vectors were not uncorrelated.
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Affected Vector

o
4o

O

.r

dM

d_

dM d£

X

Influence of _nstrument uncertain-

t_es on the uncertainties of the

uavIKation model.

[nfluences of uncertainties in

the navigation model on the

accuracy of the instruments _sed
in the measurement.

X

Since there _s no cross eorrelatlon between dM and d£ the ex_eeted

value of any _oss nroduct term in E_uatdon (5.8)--_11 b_-the null matrix.

Hence, the covar_auce of _ cad be written as

O

o
(5.9)

Now, the eovar_ance matrix of the observables can be related to the covar!ance

matrices of the navigation model uncertainties and sensor uncertainties as

follows:

The ms,trices B and C have been defined to be matrices of partial derlva-

t_ves. In the followin_ section, 2.5.2, a detailed ana].ysis thRt will define
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the elements of the B and C matrices will be presented for each type of

navigation measurement and sensor developed in Reference 1.1. The covariance

matrices for the navigation model and sensors can be constructed from the

various uncertainties that are encountered in the particular measurements

and sensors being used in the observations. Following the derivation of the

elements of the B and C matrices for a particular measurement, a sample

problem will be presented in Section 2.5._ to demonstrate how the complete
B and C matrices are constructed from several measurements and how the

covariance matrices of the model and sensor uncertainties are determined.

2.5.2 Navigation Measurement Uncertainties

This section will develop the detailed expressions that represent the

B anc C matrices introduced earlier. The expressions for the navigation

model uncertainty will be presented in Section 2.5.2.1 and those for the

sensor uncertainties in Section 2.5.2.2. It should be noted that each

measurement (i.e., observable) defines but a row of these matrices; thus

simultaneous measurement of several quantities requires that successive rows
be added to both matrices.

2.5.2.1 Navigation Model Uncertainties

The following section will present the expressions for the navigation

observable uncertainties as related to the navigation model uncertainties.

The terms developed herein will be elements of the B matrix, i.e., they are

the partial derivatives of the navigation observables with respect to the

model uncertainties. The terminology was introduced in Reference 1.1.

2.5.2.1.1 Planet Diameter Measurement

The planet diameter measurement as discussed in a previous monograph

(Reference 1.1), assumed that the physical dimensions of the model were known

exactly, so the deviations from the nominal trajectory could be found by taking

first order variations of the angle measurement with respect to position

deviation in the radial direction. If consideration is to be given to

uncertainties in the model, the p_rtial derivatives of the angle measured

with respect to planet position and planet diameter must be found and be

incorporated into the B matrix.

Consider the following planet .diameter measurement:

lq7



0

B

If the planet were in a slightly different Dosltion than anticipated and

all else were exactly correct, then a f_rst order change in the angle
measurement due to this plane position uncertainty could be shown as

follows:

Since the original relationshio that desn_bes the exact measurement is

_ D/a (_.ll)A
z- Z

the variation of A w__th resDect to Z can be determined by straightforward

differentiation. The same teehniaue can be used to f_nd the first order

variation of A with resneet to the uncertainty in the planet diameter.

The differentiation is shown below:

, --

Hence, *,he total model unee_ainty in the measure& angle is

(5.12)

dA = -D dz dO+ (5.13)

The quantity d,_ is the projection of the b! vector _n the ra,;.:_al direction.

So d,.Z ca_ be written as n'l. A_Z , and now
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E_uation (5.14) is the final expression for the measurement uncertaintv

due to the navigation model uncertainty -in the olanet, diameter measurement.

The _revlous sna_vsis slso assumed a _erfectl_ s_herical olanet.

However, s_n_f_cant difficulty _s encountered if an analys_s that considers

planet flattening is attempted. The difficulty stems from the need to

express in an analytical manner the general angle subtended by an ellipsoid

from a _oint in space. An ao_rox_m_e _nalys_s of the flattened _lanet

measurement can be performed by defining an enuivalent sphere as shown _n
the followin_ sketch:

)

In th_s sketch, a circle is defined in the subtended angle that is formed
by the flattened olanet. In order for this circle to be as close to the

flattened planet in its d_ameter measurement characteristics, it should

have its center as close as possible to the center of the planet. In

general, the two center points will not coincide. Therefore, th_ circle

centermust be defined to be at a _o_nt such that a radius that Is _erpend_cular

to a line of s_ght. _sses through the center point of the planet. An

u_certainty _n the relative attitude between the observation _olnt and the

planet would introduce an uncertainty in the diameter of the_u_valent c_rale

to be used. Furthermore, the flattening will cause a different measurement

for every different plane that is defined by the lines of s_ght of the

measurement ofthe elli_sold. Such an a_rox_mate analysis would be

acceptable if the esu_valeut planet diameter uncertainties were known for

some oredetermined nominal model. Usually, however, a continuous mathematical
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relatlonsh_p between the observable and the uncertainty is desired so that

a general case can be t_eated. The derlvation of thls _elationshi_ _s nu_+,e

le_+hv _nd h_s been o]_e_d _n A_oend_ D _or completeness.

2.5.2.1.2 The A_=le Between the "Close" Bodies

The model and sensor unee_talnt_s that _ngluenee the measurement of

the angle between two close bodies will now be considered. (There are

uncertainties due to the fact that the positions of the bodies _re not

known exactly, and due to the fact that the sensor has a llmited accuracy).

First, the uncertainties in the an_le due to the uneertalnties in the bo_v

nositions w-ill be considered. If e_eh body nosition deviation vector is

resolved _nto components In ehe _, _nd _z d_rect_n_s, and _aeh Is _e]_ted

to & eh_g_ in eh_ an_]e me-surement. _t is ev/dent that the components

that are perpendicular to the lines-of-sight have a contribution to the

an_]_ measurement. (Reference i.i deflned _ (_z) to be a unit vector

Dernendicular to _(Z) and in the nlane determined by the saK]e measurement. )
Those that are nara]lel to the line-of-sight have no contribution. From

the fol]owID_ s_eteh, the bo<v oosition uncertainties, AY and _z, can be

seen to have a_ influence dA o_ A, _zhere

_/ Body 1

Body 2

U_certaint_es due to body

nos_ti on uncertainties

Since the sensor device measures the angle directly, the uncertainty in the

angl_ due to the s_n_or uncertaint_ is Just the _ount In the sensor.
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2.5.2.1.3 The Angle Between a "Close" Body and a Star

The inaccuracies associated with the measurement of the angle between

a close celestial body and a star are the uncertainty in the position of

the celestial body, the uncertainty in the direction of the star, and the

uncertainty in the instrument making the measurement. However, only the

component of the body position uncertainty vector that is perpendicular to

line-of-sight to the body has a direct influence of the angle measurement.

Therefore, the total model uncertainty in this measurement is

where the parameters are defined by the following sketch:

in
Star Direction

Angle of

Uncertainty in
Planet Position

Off Nominal

2.5.2.1.A Star Elevation Measurement

The inaccuracies associated with the star elevation measurement are

the planet diameter, planet position, and star direction. From a previous

monograph, Reference 1.1, the geometry of the star elevation measurement
is recalled to be:
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Thus, if an error in the planet diameter is considered, the corresponding

error in the elevation angle can be found by keeping all of the other para-

meters of the measurement fixed. The geometry for the diameter uncertainty

analysis is shown in the following sketch:
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Since changes in D do not change the magnitude of the angle (A + 8 ), then

it can be said that AA =-&6 . Hence, the uncertainty in the angle

A is the same as the uncertainty in _ . The relationship between the

uncertainty in _ and D can be found from the following relationship:

_ D (5.17)

Now,

The uncertainty in the elevation angle due to the planet diameter uncertainty
can now be expressed as

AA) D _- Z_D
Z _ ; (5.19)

Another uncertainty that will influence the elevation angle measurement

is the uncertainty in the planet position. The following sketch shows the

geometry of this condition with _ being the planet position uncertainty
vector and all other parameters fixed to their nominal values.
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Here, the vector AZ can be resolved into components in the _ and
directions. The co--mponent in the __P direction will influence angle A, but

the component in the Z direction will not. Hence, the uncertainty in A

due to the uncertainty in the planet position is

Any uncertainties in the star direction or the instrument have a
direct influence on the measurement and require no further analysis.

total model uncertainty in the star elevation measurement is thus:

The

_ a o ÷ # .a__z
(5.21)

2.5.2.1.5 Star Occulation Measurement

The model uncertainties that influence the star occultation measurement

include the planet position, the planet velocity, the vehicle velocity, the

point of tangency during occultation, and the star direction. The effect

of each uncertainty will be investigated independently in order that the

effective partial differential change can be found.

First,

meters being exact.

consider a change in the _anet position with all other para-

The following sketch shows the geometry:

k
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During the change in time between the expected and actual occultation, the

vehicle moved a distance y At The planet, being slightly off the expected

position, moved a distance vp A_ • Now, an equation relating the components
in the _ direction can be written as

(5.22)

or

Thus, the uncertainty in the occultation time that is due to the uncertainty

in the planet position can be written as

where

VR: v- v'p

The following sketch shows the effect of an uncertainty in the planet

velocity on the occultation time:
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A completely analogous derivation can be performed for this case. Here

AV2A _ is the additional distance that the planet travels during the

time difference between the expected and the actual occultation.

The equation for the components in the _ direction becomes:

(5.25)

In order to determine the differential that___ introduces in a_ , the

occultation time deviation, it is necessary to find the deviation without

_a • This requirement introduces a problem since there would be no time

deviation if all parameters were exactly correct during the occultation.

Yet,the partial differential change is desired, requiring that all parameters

other than those being considered be assumed known. The paradox can be
circumvented if a fictitious _t is assumed to exist. 8t is the result

of some parameter being off nominal. This parameter will not be specified

since the parameter being considered, _ , has already been specified.
With _V___p=O__, equation (5.25) becomes

(5.26)

where S_ is the fictitious time deviation. The influence of _yp on _L
can now be determined by subtracting Equation (5.26) from Equation (5.25).

The result is

m.v(4_-s_ }= P. vp(a_-s_) + p.nv m n_ (5.27)

The quantity (AE-8_) can be considered to be the uncertainty in the

occultation time deviation __(AL)v' due to the uncertainty in the planet
velocity.

(A _)vp- e- _re (5.2_)

Where

VR--V-V P

The uncertainty in the vehicle velocity can be handled in a manner

similar to that of the planet velocity. The following sketch shows the

geometry:
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The equation for the components in thee direction becomes

For no inaccuracy in V, the previous expression becomes

(5.30)

where 8b is again the fictitious time deviation discussed earlier. The

uncertainty in the time deviation due to the vehicle velocity uncertainty

can now be found as before by the difference between Equations (5.30) and

(5.29). Solving for the time difference ( At -g_ ), the result is

If the actual point of tangency differs from the nominal point of

tangency during the occultation time, a correction term for this effect

could be included in the time deviation equation. This is pointed out in

Reference 1.1. Since the point of tangency cannot be determined exactly,

there is an uncertainty in the time deviation due to this tangent point

uncertainty. The component of the time deviation, SL , due to the change

of the point of tangency is shown in Reference 1.1 to be
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If there are uncertainties involved with an exact determination of _E_ and

_E, , then the difference vector, ( E_-_E, ), has a correspon4ing uncer-

tainty, _ . Associated with AS _Is a time uncertainty ( At )_ The

final expression for the deviation time uncertainty due to the tangent
point uncertainty can be written immediately from Equation (5.32) as

The last model error to be considered for the star occultation measure-

ment is the uncertainty in the direction of the star used for the occultation.

The following sketch illustrates how such an uncertainty can influence the

occultation time deviation uncertainty:

Once again the fictitious time deviation ( _ ) used earlier is employed

so that the partial differential change can be evaluated. Note should be

made of the fact that the vector between the two points of tangency is

A_ , because all parameters other than star direction are assumed to be
known exactly. If the components of the vectors in the _ direction are

written, the followingexpression is obtained.
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(5.34)

where _ is a vector from the observer to the point of tangency. As

before, the expression that is obtained with no star direction uncertainty
is

The difference in F_uations (5.35) and (5.34) gives the time uncertainty

due to the star direction uncertainty.

or . cv- vp)(a 

Hence,

(5.37)

Finally, the total uncertainty for the star occultation measurement is:

2.5.2.1.6 Elevation-Azimuth Angle Measurement

The model inaccuracies associated with the elevation and azimuth angle

measurement are the inaccuracies in the planet position, landmark position,

and the reference attitude of the platform from which the measurement is

made. The following sketch illustrates the geometry for the case where the

planet position is uncertain by an amount A_ (_ is a unit vector in the X-Y

plane and is perpendicular to the projection of Z on the X-Y plane and_is

a unit vector in the elevation angle plane and is perpendicular to _).
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This a__zcan be resolved into components in the _a, #g_ and z_directions
( _ is a vector from the vehicle to the planet--center). The component
in the _z direction does not influence either of the two measurements,

because its change is not seen from the origin. The component in the ___
direction does have an influence on the measurement of A by an amount

Similarly, the component in the_edirection contributes to the measurement
of E.

A completely analogous derivation can be performed for the uncertainty in
the landmark position, AP •
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The results are

__n_ a___P
s

where E_ _,and _ are defined with respect to _ ÷£ instead of _Z .

The uncertainty in the attitude of the platform is a function of the

hardware limitations and the accuracy of the star directions with which

the platform is aligned. These uncertainties can be expressed directly in

terms of A and E and will not be discussed any further here. In summary,

AA = (AA)z * (AA)p +AAsT.R

I z l c.oeE I t + P l e,o_E "
+AAsTAe

z_ = (Z_E)z ,(Z_E),,*aE,,,,,

& .,_z _.&_p
-- +.

I ,.,21 I_,B/
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2.5.2.1.7 Tracking Station Measurement

An earth based tracking station has a position uncertainty that introduces

corresponding uncertainties in both the position and velocity observables

for the object that is being tracked. Since the station location is usually

expressed in terms of altitude, latitude, and longitude, the uncertainty

can best be described for present purposes in terms of the topodetic axis

system described in Reference 5.1. In this system, the uncertainty in the

altitude can be expressed in the _To , or outward normal to spheroid
model direction. The uncertainty In latitude and longitude can similarly

be expressed in the _,° or south and _o or east directions respectively.
Using the geocentric spherical coordinhtes to specify the station location,

the uncertainty in the location can be written as

where Rc : geocentric radial distance to station

¢_c = geocentric latitude of station

k_ : geocentric longitude of station

Now, the effect of this station location error on the observation of

some object will be investigated. The position of the tracking station and

the vehicle are shown below in an inertial system such as the geoequatorial

system of 1950.O. ___E_C_

STATION LOCA_ON ___/._

//_ro

////

_, so / //

YGEso
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The position of the vehicle can be expressed in terms of the topodetic

system by specifying the range, azimuth and elevation, (_o _ ATo _ _ ).

It is desired to find the partial differential changes in r_ , A_ and

t_ that are caused by A R_ . This step can be accomplished by expressingvehicle position in thee true tracking station coordinate system and the

nominal tracking station coordinate system.

Z,o

NOMINAL TRACKING

STATION POSITIOJ

'_rp

Although the topodetic systems that could be constructed at these two dis-

tinct points would not align with each other, they are considered to be

aligned in this analysis because the partial differential changes in range,

azimuth, and elevation are desired as functions of the original displacement.

The vectors of interest can now be expressed in one coordinate system

and the influence of _T can now be found. This is done by defining the

unit vector _A and _ as shown in the following sketch, and resolvingt

____T into components in the directions of _v , __, , and
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_TO

/
/

( YTo

and _ are defined in a manner that is similar to the azimuth and

elevation measurement. __a is in the X-Y plane and is perpendicular to the

projection of _ on the Xoy plane. _ is also perpendicular to _" , but

in the plane of the elevation angle measurement. _en ___T is resolved

into components previously mentioned, the differential influences can be
found as follows :

_ -_R____ (5._)

R." (5. 2b)AE =
'°

The uncertainty in the velocity observables, due to the tracking

station uncertainty, will now be considered. The geometry of the proble_

is shown in the following sketch.
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True

Station

Uncertain

Nominal

Stat i on

_G£$0

As before, there are two aligned coordinate systems for the true and

uncertain tracking station. The notation specifies these systems as being

topodetic systems. Hence, they are fixed to the surface of the earth and

experience the corresponding motion associated with the surface. The inertial

reference is shown to be the geoequatorial system of 1950.O.
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The object of the analysis is to determine any uncertainties in the

velocity observables that are introduced by the tracking station location

uncertainty. The observables that are necessary for a tracking station

to determine velocity are the range, range-rate, elevation, elevation-rate,

azimuth, and azimuth-rate. From the previous analysis on observable angle

deviations, the true and uncertain observables can be related as follows:

A'To - ATo * A,A.ro

E;o = Ero *AE,-o

,Q",, = #,,,Aft',,

(5.L,3)

Thus, the rates of these observables may be written as

TO TD TO

4
The quantities AA,D , &E,o ,and zx_v may be considered the velocity

observable deviations that are introduced by the station location uncertainty

and may be determined from the time derivatives of F_uations (5.h2). Before

the time derivatives can be taken, however, the time derivatives of the

vectors _ , _ , A_j ,and _ must be calculated.

Since these vectors are expressed in a moving coordinate system, the

total derivatives are

= - "/" G3 X ____.,,-_

_ - the apparent rate of change seen by the moving observer in

the topodetic system.

where

= the rotation of the moving coordinate system which is the

rotation of the earth in this case.

196



But, the apparent rate of change of __ and can be easily found as

(5.46)

where

=-_o _

Further, the vector __RT is always fixed in the topodetic axis system.

This corresponds to the fact that the true and uncertain stations are fixed

in position _ith respect to each other in terms of their own coordinate system.

Hence,

a_ (5._7)

Finally,
I

A_ v can be expressed in orthogonal components as follows

so that the vector _ can be found as

(54.8)

where

LRv ]

Rvz'/= #,,C_.,,,'E;o,A'ro,l_,,,E_.o,A,.o_
• j

"' =£_(R,, E' "' "',o,f<,E,o)

(5._9)
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Now that the terms in the total derivative expressions of F_uation

(5._5) have been defined, the differentiation of F_uations (5.&3) may be

performed. First, the uncertainty in the azimuth rate will be derived.

The expression of the azimuth deviation is

_o

JR; E'J

(5._1)

In a similar manner, the expression for 3g can be found.

_E _ ,
2v

d

AL:
,e,;

: _._. _._ c_.a___._]#;
. -- __ •

I

,ev ['q,, ]

(5._2)
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(5.53)

or

The expression for A__ can be obtained by differentiating

Ak)_-__k)___"____',,
,%

t Z

(5._#)

• "/

Using the expression for &_ and _-v developed earlier,

-- - e.

&_ becomes

(5.55)

Equations (5.51, (5.53), and (5.55) are thus the final expressions for the

uncertainty in the velocity observables due to the uncertainty in the

tracking station location.

2.5.2.2 Sensor Uncertainties

In the previous section, 2.5.2.1, the measurement accuracies were

related to the navigation model dimension uncertainties. This section will

present the relationships that are necessary in order to convert sensor

uncertainties that are not originally expressed in terms of the navigation

observables to navigation observable uncertainties. Several measurements

are accomplished by indirectly measuring the phase or time delay of wave

forms electronically. The uncertainties of these measurements are expressed

in terms of the measured quantity. If such information is to be useful in

determining the covariance matrix of the observables, it must be converted

to a measurement uncertainty in terms of the navigation observables. It is

pointed out that mar_vmeasurements are originally expressed in the corrected

form, e.g., sextant angle measurements, and thus the conversion factor is 1.
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The relationships derived in this section are those which are of use in deter-

mining the C matrix as discussed in the General Theory, Section 2.5.1.

2.5.2.2.1 Range Measurement Conversion

In a previous monograph, Reference 1.1 three basic methods of deter-

mining range were discussed. They were: (ii Pulse Time Dealy, (2) Fre-

quency Modulated Continuous ?_ve Radar, an4 (3) Mu]tiple Frequency Con-

tinuous _ve _dar. The final expressions relating the navigation observable,

R, and the measured parameters are respectively:

-= CCtz-_t) (Pulse Time Delay) (5.56a)
Z

Fro
g - 4f,, _f (F_-CW) (5.56b)

Ca_
R * (Multiple Freq. CW) (5.56c)

The three different techniques require three different types of

measurement for the same navigation observable. In the first case, a time

delay between the transmitted and reflected signal is measured. The accuracy

with which the time of the occuranceof the leading edge of a pulse can be

measured is discussed in Reference I.i. For convenience, the result is

repeated here

_ : [ ZS_E/No ]_ (5.57)

Hence, the accuracy of the range measurement can be related to the accuracy

of the pulse measurement as

If the kno_ accuracy of the radar is given in terms of AR , then a conversion

is not necessary. However, if the accuracy parameters are given in terms

of signal-to-noise ratios, then this relationship must be used in order to

convert the accuracy to navigation observable terms.

The second method of measuring range (FM-CW Radar) consists of measuring

the beat frequency between the transmitted and reflected signal. The

accuracy with which this frequency can be determined is discussed in Reference
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1.1. The range accuracy can thus be detenmined as

where z_ r is the uncertainty of the beat frequency measurement.

The third method of range measurement, Multiple Frequency C-WRadar,

uses a phase measurement as the measured quantity. If the instrument uncertainty

is known in terms of the phase measurement accuracy, F_uation (5.56c) can be

used to deterndne the range accuracy as

where _a¢)is the uncertainty w_th which the instrument can measure phase.

2.5.2.2.2 Range-Rate Measurement Conversion

Reference 1.1 gives the range-rate measurement as

Zfo

The accuracy of the range-r_te measurement, therefore, depends on the ability

to measure Doppler frequency. Since the accuracy for the Doppler frequency

is given in Reference 1.1, the accuracy of the range-rate measurement can
be found from F_quation (5.61) to be

C

where &_ is the uncertainty in the Doppler frequency measurement.

2.5.2.2.3 Angular Measurements

The uncertainties of most instruments that measure angles are usually

expressed in terms of the navigation observables originally. In such cases

the C matrix will contain l's in the appropriate locations so that the un-

certainty in the navigation observable due to the instrument is identically

the uncertainty in the instrument. Reference 1.1 gives the accuracy to be

expected from the measurement of azimuth and elevation angles by radar devices.

Most other angle measuring devices have uncertainties that are int_te_v
related to the features of the device.
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2.5.3 Accuracy Data

In order to use the weighting theory that has previously been discussed,

it is necessary to have a knowledge of the uncertainties that are involved

in the navigation model and the sensors that are being used for the particular

observation. The purpose of this section is to provide sources of data that

enable the determination of these uncertainties. When feasible, the actual

data will be presented in the text. Many quantities, however, require extensive

tables and can only be referenced.

2.5.3.1 Planet Diameter Uncertainty

The diameters of the planets in our solar system have been measured

by many individuals. For convenience, the values adopted by R.M.L. Baker,

Jr. are included in this section. A compilation of other available sources

of planet diameter measurements is presented in Reference 5.A along with
confidence levels.

Plan et

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

F_rth's Moon

Equatorial Diameter

A,660 + 30

12,200 + 20

6,378.150 + .050

Polar Diameter

(m)
i/f

6,356. + ?

?

?

298.30 + 0.05

6,830 ! i0

IA2,750 + i00

121,000 + i00

A9,700 + lO0

50,000 + 500

3,000 + 1,O00

1,738.57 + 0.07

1,738.58 + 0.07

6,78A _+ 24

133,358 + i00

109,138 + 90

?

A9,1A6 + 500

?

1,738.21 + 0.07

150 + 50

15.2 + 0.i
m

10.2 + ?

58.5 + ?

Since the purpose of this section is to provide sources of data that

estimate the uncertainty in the navigation model, the detailed information

will not be discussed any further. Instead, the reader who is interested in

more data as determined by other individuals is referenced to Reference 5.3,
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5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.1A, and 5.15.

2.5.3.2 Planet Position and Velocity Uncertainty

The uncertainties associated with planet positions and velocities stem

from the fact that the astrodynamical constants of the solar system are

not known accurately. Realizing that the accuracy of these constants will

continually be improved, astronomers decided to "freeze" the values of the

astrodynamical constants in order that an Ephemeris could be written. This

enabled them to construct tables of the planets that matched previous
observations and predicted future observations. The uncertainties in the

constants prohibited the use of standard units in these catalogs, for the
values would have to be modified each time a constant became known more

accurately. Instead, a system of units that were independent of the uncertain

constants was employed. This gave rise to the use of the astronomical unit.

Although the astronomical unit is not known accurately in terms of conventional

length measurements, it still provides an excellent parameter to describe

the orbital behavior of the planets, because the relative motion of the bodies

in our solar system can be defined very precisely in terms of this unit.

Further, the Ephemeris is independent of the uncertainties of the astrodynamical

constants. For these reasons, the Ephemeris can contain an extremely precise

and self consistent set of data that describes the motion of the planets.

It should be noted that although the data in the Ephemeris is extremely

precise, the accuracy with which it agrees with reality may not be as good.
This observation results from the fact that the conversions to conventional

measurements require a knowledge of the constants which are usually not known

as accurately as the precision of the Ephemeris. In particular, the position

of a planet may be known to an uncertainty in the eighth plance in terms of

astronomical units, but the astronomical unit is only known to five places.
The uncertainty in position can now be defined in terms of conventional units.

A convenient way to visualize the relationship between the uncertainty

in the astronomical unit and the planet positions is to consider the Ephemeris

as a catalog of the planets that differs from reality by some scale factor.

The scale factor does not change the apparent angular motion of the planets,

but does change their absolute positions and velocities. The uncertainty in

the value of the astronomical unit can be thought of as a change in the scale

of the solar system model. The accuracy of the model to reality depends on
the accuracy of the astronomical unit.

The predicted position of a planet for a navigation observation can be

obtained from the Ephemeris in terms of astronomical units. The uncertainty

in the astronomical unit can then be used in order to find the position

uncertainty. This estimate of the position uncertainty is about the best that

can be achieved with the Ephemeris. If the astronomical unit is someday

known much more accurately, the method of computing the uncertainty from

the Ephemeris will be the same, although the uncertainty will be smaller.
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The uncertainty in the velocity of a planet is needed in the star

occultation measurement. A very good approximation can be made by assuming

the orbit of the planet to be perfectly circular. Since the angular velocity

is known, the uncertainty in the radius of the orbit can be used to calculate

a very good estimate of the velocity uncertainty. Furthermore, the uncertainty
in the direction of the velocity vector for circular orbits is not affected

by wriations in the radius. The reader interested in the exact expressions

of elliptical orbit velocity sensitivities is referred to Table 3 in Section

2.A of this monograph. It can be seen that tbe enumerated approximations are

very good for most practical cases, if the appropriate values for the eccentricity
are used. The following sketch illustrates the velocity uncertainty associated

with the orbital radius uncertainty of a circular orbit.

vl

If the kno_11 mean angular velocity of the planet about the sun is _, the

tangential velocity of the planet is

Wo --Ro ; (5.63)

Now a sm_ll change in V that would be introduced by the uncertainties in the

angular velocity and the radial distance can be found as

AV = 8_L_ ÷ CU_R (5.64)

where z_ is the uncertainty in the angular velocity of the planet

_ is the uncertainty in the radial distance of the circular orbit

The uncertainty in _ will come from the limited precision that can be found

in the Ephemeris, and the uncertainty in_R is the result of the limited

accuracy of the astronomical unit. References 5.3, 5.5, 5.6, 5.7, 5.11, 5.12,
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5.13, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 give some of the more

recent determinations of the astronomical unit. At present, there is some
discrepancy in the value for the astronomical unit calculated from radar

reflections and dynamical theory. _The consistency of the various radar

measurements has been so good that astronomers interested in the best value

of the astronomical unit have been impressed. Although some discrepancies
have been explained, there are still differences between results of radar

reflections and astronomical methods that cannot be explained. If successive

results are obtained by the radar method under differing conditions and with

planets other than Venus, then the radar method figure will probably be

accepted as the standard figure.

2.5.3.3 Star Direction Uncertainty

The determination of the locations of stars in the celestial sphere

is part of the field of Astrometry. It is beyond the scope of this monograph
to discuss the error analysis in the star direction measurement. The reader

interested in such analysis is referred to Reference 5.2_. An order of

magnitude estimate for the mean squared error in modern catalogs is

0.008 to _ O.O10 for right ascension (units -sec. of time)

and _ 0.15 to _ 0.20 for declination (units -sec. of arc)

The unit of measurement for right ascension is the second of time and that

of the declination is the second of arc. Since the earth rotates 15 ° in

one hour, the second of time corresponds to about 15 seconds of arc. Hence,

the accuracy of the right ascension is of the same order of magnitude as the
declination measurement.

2.5.3.& Tracking Station Location Uncertainty

The tracking station location uncertainties for various tracking station

locations are given in Reference 5.2. There are several coordinate systems
that are used in order to specify the station location error. Reference 5.2

uses the X-down range, Y-off range, and Z-verticle system. The s_stem used
in this monograph, however, is the topodetic coordinate system ( eference 5.1).

This system was chosen because of it_compatibilitywith the radar range,

azimuth, elevation system and its compatibility with the uncertainties expressed

in terms of latitude, longitude and altitude. A suitable transformation can

be used to f_nd the station uncertainty in terms of the topodetic system

if not originally expressed in these coordinates.

2.5.A Sa___ple Problem

For convenience, a sample problem will be presented in order that the

theory of Section 2.5 can be associated with a practical problem. The

problem will be simple in nature for the sake of clarity. The final result,
of course, is the covariance matrix of the observables.
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Consider the measurement of a planet diameter, the angle between a

planet and a star, and the angle between two planets.

A

C

Assuming that the flattening effect is negligible, the uncertainty in

the angle of the diameter measurement, A, is

dB = (5.65)

Rewriting this equation in terms of vector components yields

Dm,_ D m_ Dp'_ I ]
_D

(5.66)

where mx, my, mz are direction cosines of unit vector m. Similarly, the
uncertainties in the planet-star and planet-planet measurement are

respectively:
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dA =

dC =

(5.67)

(5.68)

Expressed in terms of vector components, Equations (5.67) and (5.68) yield

Z_ w

A%

A A_TAR

(5.69)

[

A,Ax

Zgx
(5.70)

Generally speaking, the measurement of angles A, B, and C will be at

different epochs. But, if the covariance matrix of the observables is to be

meaningful, it must be related to the covariancematrixof the model uncertain-

ties when all components of the model uncertainty vector, dM, are related to

the same epoch. However, it is noted that each of the dMvectors utilized

(Equations 5.66, 5.69, 5.70) must be expressed in components of the particular

epoch of the measurement. (The same is true of the direction cosines of the

various unit vectors, _, _, m, and o.) Since it is desired to have one model

uncertainty vector and one model uncertainty covariance matrix, the components

that change are related to an epoch at which error data is available by a

transition matrix for the particular uncertainty being considered. For instance,

if all uncertainties in the position of the planet used in the diameter measure-
ment are to be related to epoch I and the planet diameter measurement is taken
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at epoch II, then

'_,"_1

A._,, I

.J"r

m

a-r,

(5.71)

where _._- is the transition matrix for A_ from Epoch II to epoch I.

Although the velocity uncertainty is of no concern in this error analysis,

it must be included for epoch transition calculations because of the coupling

to subsequent position errors.

If the planet-star measurement is taken at epoch III and the planet-

planet measurement at epoch IV,

&e X

ae_l

Z3 e x I)_

A e_

_5 ez

the following relations can be v_itten:

Z_ _×]

A e.,,, I

A _£=,1

Z_ exl (5.72)

A e,,I

t_ e..,i
-.]E'

A_x

aAz _.'4z I
_!

"1ZX_z

(5.7_)
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- I

F_uations (5.66),

A_z

(5.69), and (5.70) can now be written as:

. o

A_

(5.7_)

(_.75)

Z

d A = [_ _ #_'i _-_t ° 0 0ee I1

A _.x

zl e_

A e x

a e3

/_ A _FAR
TIT

(5.76)
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000 °°1 aSx

a2,

(5.77)

11Z

Now combining the notations yields

I 1
I

fz_
I

I

I _4
Z_D

(5.78)
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dA =
I

!

ZX_ x

ZX e_

ZX_

A &x

,,_&_

AA_TA R

(5.79)

I

]' Ox °_ °, o o o0 0 I --

I

n ,6x

6 A_

max

n A s

A Az

xx_

n _x

a6z

(5._)

I

where

e.. -I

h -I

211



In order to obtain a form that is compatible with the theory presented

in Section 2.5.1, these equations can be written symbolically as

C

(5.81)

where

0 0 o

I t
I

I / I

oo
o

0 0 o o

o

t

o o I
1

0 o I
i

I
| = t
I I I

0 0 0 00101 0 0 0 000_0 0 0 0 O0
I I I

,n_n_ n__oo_ I' I'ioo o 00o,0o o ooo
o ,y_-_ ,,

I l& J_ tz Io,o_ o_ ooo
o I _oo _,0 o 0 o oo,0'-- -- °11_- _ _'_,AAA

t

i

(5.82)

f_ 0 0 o 0 o
,I

o I o o 0 0

0 0 _/I/T o o 0

o o o / 0 0

/.1

"mj'z.

0 0 0 0 ]

(5.83)
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& ex

A e5

i

di____[=
A AS-TA R

AA_

6Az

Az

_x

T

(5.8_)
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It should be noted that manyzeroes are introduced into the matrices
in this process at the expenseof space for purposesof illustration of the
form of the problem. In an actual mechanization of this problem on a cow,purer,
it is moredesirable to perform the computations in parts in order to avoid
useless core storage of zeroes.

Nowthat the covariance matrix of the observables (Z(d__Md_.r)) has

been "frozen" to a particular epoch, the results of Section 2.5.1 can be

applied to deterv_ne the covariance matrix of observables to be

Note should be made that the previous results simplify if the three measure-

ments are taken close enough in time to be considered simultaneous. If dN

is known during the epoch of the three measurements, then

=I (the identity matrix)

and then

where _ and _ h_ve been defined previously.

Since the measure_,ent made in this sample problem are angles, it is

not necessar_ to convert the measurements to navigation observables. Hence,
the covariance matrix of the instrtunent inaccuracies can be added to the

result of Equation (5.86) in order to obtain the total covariance due to
the model and instrument uncertainties.
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3.0 RECO_NDED PROCEDURES

The discussions presented within the state-of-the-art review present

several variations of the means which may be employed to obtain initial esti-

mates of the orbit and subsequently improve these estimates through data

smoothing. Thus, it is desirable to suggest specific applications for this

material or conversely recommend combinations of these techniques for problems
of common interest.

The initial fix on the trajectory as was shown can be accomplished in

several distinctly different means depending on the data available. These
methods are summarized in Table 3.1.

However, as was discussed, there is a distinct chance for non-negligible

error in the initial orbit if raw data are employed in the process. Rather,

it was shown in Section 2.1.A that a series of preliminary operations should

be performed to eliminate biases and random scatter in the data resulting

from errors in the observation process, the mathematical model, and the instru-

ment employed for the measurement.

The developments then turn to means of improving knowledge of the initial

orbit and including the affects of perturbing accelerations. In particular,

three types of estimators are developed:

least squares

weighted least squares

minimum variance (recursive and non-recursive)

are developed from simple concepts of "loss" or "optimality" of the fit.

Subsequent developments then addressed themselves to the task of explaining

the basic estimation problem, the mechanism in which the statistics of the

errors, non-linear estimation techniques and/or non-linear dynamics might be

introduced to the problem, and the equivalence of the estimators previously

developed under certain assumptions regarding the statistics of the data. It

was in this latter discussion where the concept of sufficient statistics was

introduced and there it was shown that, in general, the Bayes estimator was

superior to others which might be developed. It was also in this latter dis-
cussion that it was shown that the minimum variance biased estimator (_.[_Bor

Kalman) was a Bayes estimator where the statistics are Gaussian and where the

loss function is simple.

Since the set of assumptions utilized in developing the MVB estimator

closely corresponds to the nature of __mostorbit determination problems, it is

recommended that the MVB estimator of the form developed in Sections 2.2.2.&

and 2.2.2.5 be applied. Care must be exercised, however, to confirm for any
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TABLE 3.1 APPLICABLE I_ITIAL FIX METHODS

Range-Rate

Range-Rate

Azimuth &

Elevation

Range

6 epochs

employ Eq. (1.25)

without assuming

R(_) = R(_)

Range-Rate

3 epochs

employ Section

2.1.3 in the

form of Equation

(1.28) then dif-

ferentially cor-

rect_o, To as in

Eq. (i. ii)

Azimuth & Elevation

2 epochs

employ Section 2.1.1 in

conjunction with Lambert's
Theorem (Ref. 1.3)

2 epochs
this combination of data

was not investigated - but

rather, it was assumed that

3 measurements would be

taken and only azimuth and
elevation data utilized

6 epochs

employ Eq. (1.26)
to solve for

estimate of r_o,

V_o then differen-

tially correct

fEq. (1.1).7 to

adjust for

approximations in
the formulation

employ Gauss's method

fEq.(1.16), (1.19), and

1.20)g or Laplace's method

EEq. (1.6), (1.7), (l.8)J

then differentially correct

for errors as in Eq. (i.ii)

Gaussls method is prefered

for low eccentricity orbits
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given application that the use of this estimator is justified. If not, an

alogrithm must be developed from the Bayes formulation for that specific

application. This test will not, in general, be easily performed; however,

should the statistics of the problem be sufficiently different from those used

in developing the _B, the results could differ to a large degree. There is,

however, one means of applying the MVB so that the results will be approxi-

mately correct if the number of error sources is large. This means exists
due to the central limit theorem of statistics which states that the distribu-

tion of a function of random variables approaches Gaussian as the number of

variables increases. Thus, a Gaussian model can be constructed which will be

equivalent to the more precise process.

The mechanization of Kalman's form of the minimum variance estimator is

shown in Figure 3.1. This procedure is preferred above other _B estimators

because of the fact that it provides for the utilization of initial data

regarding the state of the system and because it is recursive (to minimize

estimation problems and to provide a means of limiting the assumed duration

for linear expansion about the nominal trajectory). One source of trouble may

exist in that the procedure illustrated for updating the matrix J involves

differencing. If J ever approaches the null matrix, it is thus possible for

one of the eigen values of the updated matrix to be negative (due to roundoff,

loss of numerical significance, etc.). Thus, for these cases, J should be

updated in the manner specified in Equation (2.77).

Attention is drawn specifically to the decision function illustrated in

the lower right-hand corner of the previous figure. A simple test is made to

determine if the covariance matrix for the estimation errors is sufficiently

small to allow the estimated state to be added to the reference trajectory so

that future computations can employ a more precise reference. One such test

consists of comparing the summation of the terms along the diagonal of J (or

its diagonal equivalent, Appendix C) to a comparison function constructed to

define _u acceptable re&ion (6 dimensions) for errors in the radius and veloc-

ity vectors. (For example,

F
/

Attention then turns to the development of the state transition matrix

for perturbed and conic motions. This material is intended to provide the

user with a series of tools which can be applied to achieve a level of accuracy

adequate for his needs. This objective is accomplished by approximating the

true trajectory (for the purposes of constructing the transition matrix only)

with a series of aonic arcs, as described in Section 2._.2.3, and by employing

an analytic inverse property which is developed for this matrix.

The covariance matrix for the errors in the observables is constructed as

the final major step in the presentation. This development relates the affects

of navigation model uncertainbies and sensor errors on the observables being

processed for the purpose of providing the navigational filter with data

required to weight the observed minus computed residuals. This step is accom-

plished by constructing the linear relationships between the errors in the
observables and the errors in the model itself for each of the navigational
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techniques discussed in Reference I.i. These partial derivatives are then

utilized in conjunction with error data for constants of the model (assumed

to be normally distributed) to construct the desired covariancematrix. This

procedure, _nile not always precise (due to non-Gaussion errors, etc.) is

recommended for all cases in which more accurate data are not available.

The monograph concludes with a series of appendices which are designed

to provide a background in the most normally applied statistical procedures.

This material leads to the development of the concept of an error volume and

the assignment of a probability of enclosure within the volume, thus allowing

the covariance matrix for estimation errors (Sections 2.2 and 2.3) to be

interpreted geometrically. This fact is particularly useful in discussing
the results of a specific analysis.
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APPENDIXA

The Expected Value Theorem

Throughout the text of this monograph, linear functions of variables

(normally, the observed minus computed residuals, instrument errors, etc.)

have been formed, and the question has been tacitly posed, "If the original

variables themselves are normally distributed, what are the distributions of

the functions which are formed?" and answered, "The functions themselves are

normal." This appendix was prepared to substantiate this conclusion, and to

develop the mathematics describing the moments of the resulting functions.

Consider any element of a multi-dimensional vector function defined to

be a linear function of a set of normally distributed parameters (not

necessarily independent)

m

J-, ae. zj. (-'= /...n (I)

and form the moment generating function of this scalar

_(_,... _,) : L-(e _,t,._; ) (2)

where E denotes the expected value. Now substitutin_ for Ui yields

where

WyS

= E .-,,).ti
c"=/

(3a)

(3b)

Thus, upon replacing the notation E by its mathematical equivalent
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.,,,...,.,--j=../-r

C2 _')'_ j.,

where

. ]
2. ,'.1 ./-I

_-lis the inverse of the matrix of variances and covariances for

the m-vector X

G -'j is the element in the it__hrow and jth column of

is a product function

_ denotes the average value of the kt__hhelement of the m-vector X

Now, adopting the simplifying notation Y = X - X and completing the

square of the terms in the exponent, will allow integration. This process

will be perfored below. First note that

Inm (i

j'-Ii=I j =/ ,J-_

+ s r.._:
j=/

Now note that the portion of exponent within the brackets will be a perfect

square if a term involving T is added. This term is recognized to be

n

Z'=/ j,l

Q_m/ _ will not be a function of either q_) or [7"

Performing the required addition, the exponent becomes

(where _ is an element of the covariance matrix, i.e.,

which is required so that the product terms of

.)
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rn I n m

J=/ _z::_ o- y,.,,0i-I ,j=l
I wI-; ;?,

Z'=/ j=l

/ _ m m

_-I j-I

I Z' a-'J
2 ,':1ja J4" %

j ,,em m

¢'=1j=i

(5)

At this point, if this form of the exponent is substituted into equation

(_) and if the final two terms (those not involving y) are factored outside

of the multiple integral, the result is

... j.,%.7; U =o
• = =

-oO

_×p -_. x r. o-'_ _ _.r_)d=/ j=_ =
(6)

But this expression reduces to

_,1 " .j,I

since the density function being integrated represents a multivariate normal

distribution (with means of _ : _ (_=l,m) and _j- Z_j _ (J:/,_)

and with variance _ ), and since this function is mn_egrated over the

entire region of definition.

The rthh moment of the distribution for the variable UK can now be

obtained by differentiating the moment generating function with respect to

t K r times and evaluating the result for all t = O. For the distribution

just developed, this process _vields
V

(7)
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Thu s,

{/l+J{

The variances and covariance are obtained in the same manner when it is

noted that O_i--_" -_ _

But

_i-'o _i --o

Thus

d_v I

li--O

_i--o
I

[%' #-_-_#'x d£,

j2 i:; i._

But since the summation is performed over all i and all j, this result reduces
to

i_'l j'-I O"_j It.i

Finally, this result is equivalent to

[_-]: A[_-]_A_ (a)
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where [G'] = a real symmetric matrix of variances and covariances

Equations (7) and (8) are basic to most of the discussion of this mono-

graph and studies of error propagation in general. However, their application

requires _uowledge that the process being analyzed approximates the assump-

tions made in this derivation to an acceptable degree. This assumption was

that all of the variables X. were normally distributed (had no higher
l

moment s).

It is interesting to note that the general linear transformation

= A

conserves the moments such that

an_

: A" = A_"A T

However, in this cacc, hi::_:_:_o:'der moments become extremely difficult to

compute. This fact is the underlying reason that most of the "simple"

estimation formulations and propagation technie_es concern themselves with

only the first and second moments.
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APPENDIX B

CO_._UTATION OF MARGINAL DENSITY FUNCTION

For problems in which the probability associated with a particular sub-
set of the variates of the multi-variate normal density function is desired,

it is necessary to modify the approach of the previous analysis. This

approach evolves from the fact that the desired probability is defined by

integrating the density function f(X 1 ... Xm) over the volume of the m-dimen-

sional volume element; i.e.,

zs)d , ...P(/_,l_ ,

V

where the x i are not statistically independent. The question at hand is thus
"how can the density function f(X I ... _) be obtained from the more general

form f(X I ... _), n > m" or "what is th'_ marginal density function f(XI...Z_)."

First it is noted that the defi_&tion of a marginal density is

2_. 2f(x-,..._h,) - _" F(Z,...Z_) dz:4 • • • dZ,
m÷l

where I 3 -_[( r.- _)rO=*iJ( Z -,_, ).7

z,,) = ....
-I

_-_ --K = vector composed of Xl, ..., x n

Because of problems of functional complexity, consider the transforma-

tion y =x -___ and complete the square in the exponent of the terms involving

n n

L=I j-l

n _g

n £$c' n n

i:l g_'f_ Z"I J'-'l

I_gl 2 I n
n n _j

d*l "*1
#X J_K
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/_g I n 2

(z-Wg')cz-_) = ,,- (f_÷7-_ r r")
i-O

";-_ _- _,. .,:, 3._o-_.
j,U

But the second term can be written as

/(_O._i) 2t KA

so that the exponent becomes

/ n 2 . ' k'Z_k'i_

Now again transforming variables,

t ,_ d.K;

_K

the exponent becomes

r(7- = .0"

_':1 j;_#X

But the function Z is involved in such a manner that it can now be conveniently

integrated out of the density function since

e(_..._o_--_c_,..._,_,,, _,,... _o_,
- _ _ L_

J=l dr. _J"

k2_) _.KX -+K ,K

The question is now what is _ij and can it be constructed in a simple

manner from _iJ or 0_i3. Consider the matrix product

[_')I[_,j]=[d
or

n

C o-- o-_= S,.j
m=l

Now consider the definition of _ij and the same produce.
;

...,._ n ,._, ¢ ¢- ) _:).Z%.r = z %.(r - =
m_l _zl ft.. £K

•_R #It

Assume the sum is

229



n ,m a"_; h Km

where J # K. Thus

E _y ¢" =_-.-

_K

or

3¢K
This relation requires that the matrix s£j be the matrix formed by inverting

the matrix constructed from o-ij by deleting the row and column containing
O_Y_ .

Two further observations are also possible. First, the resultant density

function is that of a multi-variate normal distribution; and second, since

_KK is the ratio of the cofactor of _KK divided by the determinant _ij'

- "I .I- =
This process can be continued indefinately to construct the marginal

density function for any set of variables of interest. As an example, the

marginal covariances for position (or velocity) errors can be constructed from

the total covariance matrix for both position and velocity errors as follows:

_15 ° ° •

.I

Since the result of this process is a normal distribution, a 3-dimensional

surface which contains the variables ( A_ or A_) to a specified probability

level can be generated by

le Performing a coordinate transformation to produce a set of uncorre-

lated error axes (diagonalization of the eovariance matrix discussed

in Appendix C).
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2. Integrating the resultant distribution (Appendix C) to evaluate the

radius of the equivalent sphere.

3. Using the radius of the equivalent sphere as a constraint on the

values, which can be attained by the variables measured along the

three principal axes, generate the 3-D ellipsoid.

4. Transforming the coordinate system to construct the error ellipsoid
in the desired coordinate system.
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APPEt_DIX C

DIAGONALIZATION OF REAL SIq,S_ETRIC

MATRICES AND THE DEVELOPME_r OF PROBABILITY ELLISOIDS

Previous appendices have proved that deviations resulting from any linear

combination of Gaussian errors will be elements of a multivariate, normal dis-

tribution. Since this is the case, the probability that a given value of a

variable lies in a given region can be found by integrating the joint proba-

bility density function and the variance, covariance matrix which is real and

synmetric can be diagonalized by an orthogonal transformation to display the

eigen values on the principal diagonal. To accomplish these objectives (in

reverse order), consider the mathematical representation of the density func-

tion of an error vector:

]
where: 0-/j is the inverse of 6_ij and is also symmetric.

Now, consider a general symmetric matrix M (M can be _ij, etc.) and
the set of equations

(_ -Az)x -o (1)

where M is an (M, M) s_Tmnetric matrix; I the corresponding identity matrix;

A is a vector of scalar parameters; and X is an (m, l) column matrix. Let

_l, I\2, ..., _ n be the eigen values of the matrix M and let the corresponding

eigen vectors be denoted by X_l, X_2, ..., X_n. That is to say, the Z_ and

X _ satisfy the equations

a corresponding set of equations is represented by

(2)

Thus, from _,q_tions (2) and (3)

(3)
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If the first of these last equations is multiplied by X_
of X_ ) and the second XT the result is:

(the transpose

(5)

but Equation (5) can be transposed as

which, since M is symmetric, reduce to

(6)

Subtracting Equation (7) from Equation (4) now gives

(7)

Hence, for _ /_A

O
(8)

--o (9)

This last equation is expressed by the statement "the column vectors X_

and X_ are orthogonal if A_ _ Ag for _# _ . Since Equations (2) and (3) do

not determine the values of X_ and X/_ uniquely, that is, the equations are

still satisfied if Xm and Xp are multiplied by arbitrary scalar constants,

it is possible to select those arbitrary scalars so as to normalize the vec-
tors. That is

_I X_ = / (lO)

Equations (9) and (lO) can be expressed by the single equation

-2"

where the Kronecker delta (6 _B ) is defined by

8_e = I for _<--

and (12)

6_= O for _= ;9
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Substituting into Equation (5) from Equation (ll) now yields

(13)

The relationships expressed by Equations (ll) and (13) can be exhibited

in the more conventional matrix form by deferring a compound matrix of eigen

vectors

(_)

in terms of Equation (ll) becomes

X_X = I

From Equation (15),

XT= _,

where X-' is the inverse of the matrix

is an orthogonal matrix•

X •

(15)

(16)

This last equation states that

Equation (13) may be written in terms of this compound matrix as

(17)

i:,oo1o: (i_)

Equation (17) indicates that the matrix M is transformed to diagonal form by

means of the matrix of its eigen vectors. Moreover, from Equations (15), (16),

and (17)

Equation (19) expresses the symmetric matrix M in terms of its eigen values

and eigen vectors.

The model matrix ( _ ) can thus be computed. The steps required in this

process are:

1. the characteristic equation is found by expanding the determinant of

_iJ --_[I] and equating the result to zero

2. the roots to the characteristic equation are found (_l, "'" _ 6)

3. the column vectors{_]are found by equating the result of the following
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matrix multiplications to zero

there will be _ zj_n vectors _. because there are n values of _j

these vectors are linearly zndependent if the Aj are distinct

A. construct the matrix E by ordering the column vectors

Consider now the quadratic form

and

where X is an arbitrary column matrix of M elements and M is a symmetric matrix

as previously discussed. If the scalar q is assigned a fixed value and if the

vector X is considered to be a variable of M components, Equation (20) describes

a "surface" inM-dimensional "space." Now, performing the coordinate trans-
formation

transforms the quadratic form q to

_, _ yT _ 7,__>, : ),T ay (22)

Thus, defining the M-vectors Y by

y _ Y_ (23)

and performing the indicated matrix multiplications of Equation (22) yields q

as

Now, denoting the value assigned to q as K2 requires that YI, Y2, •.., Yn be

chosen to satisfy the equation

J-...,
(25)

For the case in which Y1 = Y2 =

/<

•"Yi-I = Yi+l =Yn=O or

(26)
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Hence, K/_ is the ith semi-principal axis of the surface represented by

Equation (25).

Now, getting back to the task at hand, since the correlations in the

covariance matrix can be eliminated with a coordinate transformation, the

exponent of the density function contains the term
I?

g=/

But, this is the form for the square of the radius of an n-d_ensional h_-ger-

sphere (if considering only the cases for thich the summation is constant).

Thus, a further transformation suggests itself in the evaluation of the prob-

ability that a given random sample from the statistically described distribu-

tions will fall within the specified radius. This transformation results from

the fact that

P = "'" '

-/< -i

(This equation is the integral of f(x) dx after transforming coordinates) is,

in fact, the integral over the volume of hypersphere. This being the case,

the integral can be written as

k

where f(r)dr is the spherically symmetric volume element of n-dimensions

_n/z rn
- volume of hypersphere

p = gamma function

n = dimensionality of hypersphere

n = 1 f(r)dr = 2dr (29a)

= 2 = 2Hr dr (29b)

= 3 = _r 2 dr (29c)

= _ = 2 _2 _ dr (29d)

= 5 = _ _2 r_ dr (29e)
3

= 6 = _3 r 5 dr (29f)

Thus, the probabilities that the resultant error will be within a given

"distance" of the center of the hypersphere can be computed as follows:
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where erf(K) denotes the error function.

Numerical data are tabulated for these six cases as a function of the

radius, K, in Table C.1.
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APPENDIX D

FLATTE_D PL4NET )_ASUR_ENT

Section 2.5.2.1.1 discussed the measurement of the angle subtended by

a planet. The analysis was based on a perfectly spherical model of a planet.

The following is a derivation of the measurement of the angle subtended by

a flattened planet. The subtended angle is expressed as a function of the

equatorial and polar radii, the relative attitude of the planet with respect

to the observer, and the distance from the planet center to the observer.

Although Section 2.5.2.1.1 presented the variation in the measured angle due

to distance and diameter uncertainties, it must be remembered that these

analyses were only for a spherical planet, though in most cases the results

are acceptable. If an "exact" analysis is desired, the results of this

appendix can be extended to find the variations in the angle measurement due

to uncertainties in the distance and the planet radii. The general expression

for the subtended angle _ill be found, and its variation _lth respect to

the relative attitude will be derived. Other variations can be found in a

completely analogous manner.

The geometry of the analysis is shown below:

J

(_o_Yo)

The previous sketch shows the intersection of the plane of the measurement

and the ellipsoid model of the flattened planet. Since the exact shape of

the planet is not known and the most accurately known parameters of the size

are the equatorial and polar radii, the best results are obtained if the

measurement plane is selected to be that which is determined by either of

the two radii. Thus, the planar case may byanalyzed for purposes of determing

flattening effects on the measurement.
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If the planar analysis is pursued, the slopes of L 1 and L 2 can be

found from the negative reciprocal slope of the gradient at P(X1, X2) and

P(X2, Y2 ) . Since

X_ _z

then

: _X + _

so the slope of A/ =
_2

_ _b2_%/ and the slope of/2 = --_ _2

The equations of L 1 and L 2 can now be written as

×, z c. e .y,
@ -/

_2 b 2

These equations must be combined with the restricting equation of the ellipse.

A quadratic equation results, the solutions of which are

X I
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_2

b2

The slopes of L1 and L 2 can now be written explicitly in terms of a, b,
and @.

Slope of _z-

V z '6z" 1b'c.._ - Za,_._-_ ,,a.,.:,_2@ ,'-b' (._,. _

0"_ zz I

---- V 7 .m

-7

An exact solution of A could be found by taking the difference in the

arctangents of the above slopes. Since the partial derivative of A with

respect to @ is desired, the algebra will be significantly simplified if an

approximation to b2/a 2 is made. Since the flattening of the planets is not
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very severe (particularly of the earth), the following is a good approximation

_2
-- = /-2F-., "r* _ /
0.,z

where f is the flattening (_ 1/298 for the earth). Now the slopes of

L1 and L2 can be written as

- <2

Slope of Ll: Lc_2..._--_9 ¢-6 _ e

Slope of L 2:-

and A can be written as A = arctan (U2) - arctan (UI). At this point the
uncertainty in A can be found bytaking partial derlvatives with respect to

_A a_ _ and _A . The first
the uncertain parameters; i.e., _ __a ' _b _a

three quantities have been derived for the spherical planet in Section 2.5.2.1.1.

For this reason, they will not be pursued here. Instead, _AA

aA _A
If more accurate results are desired for -- , and

is exactly analogous. _Z. ' _a

The chain rule is employed in order to determine _AA .
d8

will be determined.

d_A_A the method

_b

BA / bC/ / _ u,

The result is
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The preceding equation gives the uncertainty in the measurement of the angle

subtended by a flattened planet due to the uncertainty in the relative attitude

uncertainty of the observer. It is noted that the analysis s_mplifies if

the planet is assumed to be an oblate spheroid. In this case, the flattening
effect can be neglected if the choice of the measurement plane is the one

determined by the equatorial radius. This can be seen if the variations in

the measurement angle due to planet attitude are examined.

Due to the fact that part of the planet that would no_lly be used

for an angle measurement may not be experiencing sunlight, some modification
must be made to the conventional measurement. Unless suitable sensors that

can detect the dark horizon are used, the measurement will resort to some

estimation of the center of the planet, and the angle to be measured becomes

the angle between one line of tangency and the estimated center point of the

planet. Of course, the estimation of the center point introduces st_ll

another inaccuracy into the measurement. The expression for the measurement
angle becomes

A* = @ - arctan (U1)

The variation of A* _ue to olanet attitude uncer%ainty becomes

aA _ / _U,

This must be ad@ed to the uncertainty of the estimated center point of the

planet. The total model uncertainty for the measurement of the angle between

the center point and the planet edge becomes
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Z_A_ _A_ _A _ _A _ _A _

where the first three ter_Ls may be deten_ined from the results of the

spherical planet in Section 2.5.2.1.1 (using A*----A/E), and Z_Ocp
the uncertainty angle of the centerpoint of the planet.

is

A similar expression results for the measurement of the total angle

subtended by the planet:

_A

The uncertainty in planet center does not enter into this expression since

it is not used.
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