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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
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Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports
in the series.
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Volume VIII Boost Guidance Equations

Volume IX General Perturbations Theory

Volume X Dynamic Programming

Volume XI Guidance Equations for Orbital Operations
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Volume XIII Numerical Optimization Methods
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Volume XVII Guidance System Performance Analysis

The work was conducted under the direction of C. D. Baker, J. W. Winch,
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1.0 STATEMENT OF THE PROBLEM

The basic problem to which this monograph will be addressed is the gen-
eralization of precise information regarding the trajectory of an observed
vehicle and the coefficients of the math model employed in the prediction
from a set of observations (different quantities, or the same type of meas-
urement at different times) made of the vehicle. However, to completely
define the nature of the problem to be discussed, it is necessary to outline
the assumptions which are implicit in the analysis, First, the observations
are assumed to have been contaminated with noise (errors) resulting from ran-
dom errors in the ipstruments and recording devices utilized for the measure-
ments. Thus, if o™ denotes the true value of any measured quantity and €
the corresponding error, then the observable (X) is

X
(’(‘. = D(‘ e 6‘
Next, the number of linearly independent measurements is assumed to be greater
than the number of the parameters being estimated, This assumption precludes
the situations where no solution exists or where the solution is unique and
leaves the general problem of obtaining "best" estimates from the over—deter—
mined system of equations, Finally, it is assumed that in the absense of the
contaminating noise, a unique solution would result which would relate the
observables at the various measurement times.

The rigorous problem implicit in this set of assumptions is highly non-
linear., This nonlinearity is produced by the fact that most of the observa-
bles (for example, range, range-rate,..) and the components of the instantan-
eous position and velocity vectors (the estimated parameters) are both very
complex functions of time; as a matter of fact, no analytic solution exists
which relates this set of parameters as a function of time. Thus, the means
employed to generate the desired estimate (commonly referred to as the method
of differential corrections) will be iterative in nature. The first step in
the process will be to define a nominal trajectory by some set of parameter
(To, Vo) which represents the observations within some allowable error.

This definition avoids most of the mechanization problems by assuming that

all of the nonlinear effects can be included in the reference trajectory with
sufficient accuracy to allow subsequent computations to be precise. The
second step is the approximation of the dynamics and the observation processes
utilizing only the linear terms of the Taylor series as in Reference 1l.1.

That is:

§P (t) = @(t,t,)8P (1)

where P denotes the ordered vector of parameters being estimated; where
¢ (t, t,) is on n by n matrix of partial derivatives
S§A(t) = H(t)EP() + E(b)



of the parameters at time t with respect to the same set of parameters at
time t,; where H(t) is the matrix of partial derivatives of the observables
with respect to the parameters being estimated at the epoch of the observa-
tion; and where € (t) is the vector of errors in the true observables,

Finally estimates of the parameters at some selected epoch (T) will be
generated. These estimates will be selected such that some measure of
ngoodness" in the estimator is maximized when the available information
regarding the statistics of the errors is provided.

The discussions of this monograph will be ordered to answer questions
which arise regarding each of the steps in this process and will relate in
detail the nature of the problem. To accomplish this objective, large amounts
of the open literature have been reviewed, Though this material is generally
referenced throughout the text to provide additional information on topics
being discussed, some of the more pertinent references will be quoted in the
following paragraphs to aid in establishing the nature of the discussions.

The initial investigations will be directed to the task of generating a
reliable first approximation to the true trajectory. This step will be per-
formed by utilizing the material presented in a previous monograph (Ref. 1.3)
and classical work, principally of Laplace and Gauss., In this material, the
true trajectory is approximated by a nearly equivalent conie section to obtain
the position and velocity vectors which, if the force field were central,
would yield the subset of the observables used to define the conic section.
The solution is discussed in detail and precautionary steps which will assume
more reliable solutions are presented. Thus, if no previous estimate of the
trajectory or data from the vehicles guidance system at burnout are available,
an accurate initial estimate can be generated.

The discussions will then turn to the development of the "optimum" esti-
mates of the deviation vector 8P(t). Particular attention will center on the
development of simple measures of the degree of optimality in the estimator
and the generation of the estimation equations and estimation error for these
measures. These discussions will parallel much of the material presented in
the open literature, though some of the steps are different to facilitate
comprehension of the simplest physical process. The classical least squares,
weighted least squares, and minimum variance estimators will be derived; then
attention will turn to modern estimation in a recursive mode. The concepts
of Kalman as presented in Reference 0.1 (subsequently adopted by Schmidt in
Reference 0.2) and Battin (Reference 0.3) will be reviewed carefully since
estimation in this mode is capable of correcting for some of the approxima~-
tions made in developing the estimator itself. This latter observation is the
result of the fact that the true trajectory (i.e., nonlinear) can be approxi-
mated by a series of discontinuous arcs, each of which obeys the linear model
of the dynamics, to a better degree than a single arc satisfying the same
linear model.

The filter concepts outlined in the previous paragraph are based on intu-
itive measures of "optimality." Further, they are tailored to problems where
the statistics involved are CGaussian, where the dynamics can be adequately
approximated by the linear model, and where the optimum estimator is a linear



function of the deviations in the observables, Thus, the problem of estimation
is reintroduced in a more complete analysis to explain the exact nature of

the material which it follows, and to demonstrate the mechanism whereby some

of the simplifications just enumerated can be eliminated. In the process, the
problem is demonstrated to be equivalent to that presented by Middleton in
Reference 0.4, This material, while requiring a reasonable knowledge of
statistical concepts, ties the general estimation problem into a verified
analytic framework which is capable of demonstrating the effects of the avail-
ability of all data pertaining to the process.

Having thoroughly explored the general problem of estimation, attention
turns to the development of material required to yield an estimate of the
trajectory. To be specific, the matrices relating the dynamics at various
times relative to the nominal trajectory (the State Transition Matrix denoted
by ¢(t, t,) and the matrix presenting the error data for the observables are
derived. The first of these developments progresses from the basic formula-
tion of the transition matrix (for example, Reference 0.5) to the generation
of an analytic form for the case of conic motion (for example, References
0.6, 0.7, 0.8, 0.9). This development presents several alternate representa-
tions of the desired matrix and discusses the weaknesses in them, The second
development is an extension of the material presented in a previous monograph
(Reference 1.1) which shows the functions involved in the process and refers
to error data available in the literature for construction of the weighting
matrix,

The monograph concludes with a set of recommendations for the applica-
tion of this material and one possible mechanization which will be selected to
utilize the maximum amount of information in the data and to minimize the
computational problems.



2.0 STATE OF THE ART

2.1 INITIAL ESTIMATES OF THE ORBIT

Since the computational rationale proposed for determining precise
values of the instantaneous elements for the space trajectory is built upon
the concept of differential corrections, care must be exercised to assure
that the initial estimates of the nominal trajectory are sufficiently precise
to allow all of the partial derivatives to be evaluated accurately and to
assure that the estimation error lies within the neighborhood about the
true trajectory which is small enough for the process to converge. The
purpose of this discussion will be to develop several such techniques and
to discuss the sources of error. To be specific, the methods of Laplace
and Gauss as well as methods involving the use of range and range-rate data
will be presented in detail. The utilization of position and velocity
information obtained directly from an integrating accelerometer (Reference
1.1) will not be discussed at this time since this information can be
be utilized only for those cases in which the trajectory is to be estimated
from the epoch of injection to any other reference epoch (any other possibility
requires updating burnout conditions to the epoch of problem initiation) and
since the data thus provided need no further transformation (i.e., they can
be utilized directly if transmitted to the ground or fed to the on-board
computer).

2.1.1 Data Provided Include Range, Azimuth and Flevation at Two Epochs

For the case in which the ground-based radar utilized for tracking the
satellite provides range, azimuth and elevation (or an equivalent set of data)
as a function of time, the logic employed to obtain an estimate of the tra-
jectory can be relatively simple. First, the station's position at the two
epochs is computed (Reference 1.2) from

—- Re A A /ﬂf A
rr = » HNUX*LT|, + 17 U3 Z
éﬁjmﬁ # co7?/ Vﬁpzm % tRe 07 (1.1)
e

where R, Rp equatorial and polar radii of the reference ellipsoid

for the earth

H

I

altitude of the station relative to the reference ellipsoid

L

Geodetic latitude of the station

Ul’ U2, U3 = 3 components of the unit vector from the station outward
along the direction inclined by the angle L to the equa-
torial plane




|

N ONN .

U, E, N = the up, east, north unit vectors
N . A
U s L o aenl o1 X Lo o ol X
f = o / o -acnd cod K 1o) ?
A ~acn [ 0 cod L o o s 11z

o = right ascension of the station
= G.H.A. plus longitude
Then, the §osition of the satellite relative to the station is computed in
thegﬁ,'@,A directions and transformed by substituting for U, E, N in terms
of X, ¥, Z.
- - . 2 - o) . A (102)
P = pcorlypacn AL PRl e ANt p den LU
At this point, the position vectors are defined as
(1.3)

7 = ,;_f/o
and the velocity information is-derived by employing Lambert's Theorem
(Reference 1.3).

2.1.2 Data Provided Include Only Azimuth and Elevation (or Equivalent Data)
at Three Epochs

For the case in which only angular data are available, a complete reformu-
lation of the problem is necessary. However, as in most of the problems
discussed in this monograph, there is no unique means of reducing the data.

The discussions of subsequent paragraphs will present two such schemes: the
methods of Laplace and Gauss.

These techniques were derived primarily for the case in which the orbit
being determined was central relative to a body other than that utilized
for the observations (the sun). Thus, when each technique has been prepared
for the case for which it was originally intended, it will be extended to
the case of primary interest - geccentric motion.

2.1.2.1 Laplace's Method

The discussions of Reference 1.3 showed that six arbitrary constants



were required to uniquely determine the motion of a body in a central force
field. Thus, if the true force field is approximated by that produced by
the dominant mass (or in the case of motion relative to the earth, by that
produced by neglecting those terms arising from the nonspherical shape

of the earth), a conic trajectory can be found utilizing three sets of
observations composed of angular data (azimuth-elevation, right ascension-

declination, etc.).

Consider the vector diagram and the corresponding equations below:

F+R =pp
?*R?: 3/0'/?‘ -f,o,a"
> > 7 ﬁ LA . A A -~
r +/R = 3 7‘? 2 PP r‘Z/o/a *ppL 7 P (l.h)
A ey e A N A Q
TL (L - L)R PP 2P 7 R
r3 3 3

where,'o\ and R at the three epochs are known or observable and where the
units of time have been selected so that the gravitational constant is one
[ i.e., T= Yix (t-to) ). Now if the three observations are acquired over
a sufficiently small interval of time, the geometry of the problem can be
approximated by expanding 2 in a Taylor series as follows:

A had —~—~ 17 n 3
P = : r2 T 4
2 T n!l  d¢” ,T[, (1.5)

2N

2B FTE s TS Al

This series will be terminated at the third term so that the three observa-
tions will completely define an initial estimate of R and R. Further, the
second time point will be utilized for time reference so that the maximum
value of 1 is kept small (to assure the maximum accuracy in equation (1.5)).

Assume that three values of 2 are utilized in conjunction with the series
expansion (1.5) to yield values for 2 and 2 . Now crossing Z' into 2 and
dotting into Equation (1.4) yields

-ﬁ) (1.6)

In like manner, cross g into,g\. and dot Equation (1.4)



s

(% - 7B A2 R )= 24 [ 4 /5\]

-2 [éxé,gj

(1.7)

]

D .

Now the procedure is to iterate Equation (1.6) and the law of cosines

- N N
/s = /o - R
or

2. (1.8)
/"_/027“22_22/0%7?

to solve for the correct value of |r| at T,. This value of r can then be

utilized in Equation (1.7) to solve for A,; T, can be found from
’27‘/?0:;;,2;*%2
The nature of the simultaneous solution of Equations (1.6) and (1.8)

is explored in some detail in Reference 1l.4. This material develops an

iteration procedure based on a single angular varisble. The result of this

procedure is an iteration process which can rely on graphical techniques for

initial estimates of the parameter being estimated.

If the central body is the earth rather than the sun, differences in the
formulation arise due to the fact that the acceleration of the observer is
incorrect. For this case

# - AR

H

dt?
- z
= rw?r

and Equation (1.6), which was solved iteratively with the law of cosines,
becomes

A A . A ) A (1-63)
Ly rw?)(2xB-2) = aldxi-Z]
Similarly, Equation (1.7), which was solved for 2, , becomes
e A AW
(% »«arn) - -2 2ed k] .72

The largest source of error in the process is the truncation of Equa-
tion (1.5) at the third term. This step means that the values of ¥y and Vo



which are obtained from the process will not represent the conic providing
the three observations to the best degree. Thus, it is generally desirable
to differentially correct thesevectors before assuming that a solution is
known. This process is readily accomplished utilizing the material pre-
sented in Section 2.4 of this monograph since

R . (1.9)
DX = (L, t,) AX,
and
where A7 = a vector of observed minus computed residuals at the three

epochs (71, T2, T13)

a2
]

the matrix relating errors in the observables to small errors
in the position and velocity

AX = a vector of position and velocity deviations (d¥, d¥)

Thus, the vector of errors at the epoch 72 (Afo) can be estimated as

—_— -l (1.11a)
4%, = [He] ag
and the previously computed values of ?O and \—/"o corrected
7:, - T o+ a7 (1.11b)
(1.11c)

Vo =V, + Ay,

This second estimate of FO, Vo can now be utilized to generate a new error
vector ( Ay) so that the process can continue until convergence is achieved.

2.1.2.2 Gauss's Method

In Laplace's method, the approximations mad/e\ to facilitate the solution
were in the truncation of the Taylor series for #. Gauss approached the
problem by making an approximation in the dynamics rather than in the geometry.
The method proceeds as follows: Since the motion is assumed planar, any
of the three radii can be expressed as some linear function of the other
two, i.e.,




—N - _ - —
2 =00 +C3n (i #k 73)

(1.12)
Thus
faXfJ = C,V;XG ?
S - o
2. X5 S
¢, =
r, XG A

D

—

But the area of the triangle of sides T; and rs is
A =[£ )rj] 1/2 base x altitude
1/2 r; (r; sinx)
1/2 |5 < 7

nnn

so that an alternate form of the solution for Cj is

c .y A] (1.13)

T sl
Similarly
,-2x% _ [5 4 (1.14)
X 5 (7, 7s]

These two scalar constants must now be related to the dynamics so that they
can be determined. As a first step, consider the relation

r=p-R 5 4 7

=
or its equivalent

. L N (1.15)
PeRe= (B ~R)?C5(5 - R)
or

Y - A s
ClA R/ PCip = CR R PR

This equation yields three linearly independent ecalar relations in the
unknowns ¢,,C3,p (427,30 .



At this point the dynamics of the problem are introduced in the form

- - — (1.16)
r=fn *gv,

where ?5, V, will be taken to be the position and velocity of the observed
body at the second of the three observation epochs. However, it is incon-
venient to introduce the exact functional forms for f and g as presented
in Reference 1.3 since this procedure would require knowledge of the para-
meters being estimated. Rather, series representations for these functions
will be employed. reference 1.4 gives the form of these series through
terms of the order T? (higher order terms would introduce parameters of
the motion for which no estimate exists at this point in the solution) as

£z - 72 o~ -7'./‘3 (1'173)

3i= T/~ Y% o 77) (1.170)

o= T (1.17¢)
where

= va (G-t,)

= Ve (13- 48)

7.-3 = Vv ([Z -t/)

Now the following cross products can be formed by employing Equations (1.16)

— . ¥ — —
fZXG:i;fz X,'z
— — — — — —
T = gn Xh= " gizXh

€, =—2_ (1.18a)
57 ~fhg,

Co = — ~F1

? £9y ~%3 9 (1.18v)
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But, since series expressions have been employed in each of the f and

g, the various factors in these expressions can be developed in series in
powers of T. This step is accomplished as follows:

%5,=(1 -1 72) [-5(1- fe s 7))
=Tt TPt oo T 2T

fo,=7 ~ Voo 72 - /2 7%

I3
where second-order terms in G’have been dropped. Thus,

£9s ~h = (T4 75) Ve o (71743727, 237,72 + 7)
(7 +7%) - %r(z * %)’

T, =% T (1~ Yo o 77 )

and

C - 7;(/‘(/46‘7-2)
7

7 [”/‘r( T,f)] (1.19a)
TZ(i%rTZ) 72

T/~ Ye = T2)

C.= ~ 1[/*1/60"(7-2—7'2)]
AR A 2z (1.19b)
Fa
Finally, dotting Equation (1.15) by ﬁl x ps  yields
R[4 4] = o[BEg]-AAxd e Rdrg]cm

where the unknowns in Equations (1.19a), (1.19b), and (1.20) are /A and 0~
(i.e., 1/r3). As was the case with the approach of Laplace, a solution to
the problem is possible by iterating Equation (1.20) with the law of cosines.
The velocity is then determined from Equation (1.16). As before, the solution
can be differentially corrected to compensate for assumptions made in the
development of the first estimate of the solution.

In contrast to the method of laplace, however, the method of Gauss is
readily applicable to the task of determining geocentric orbits. Only a

11



change in notation is required.

7 -

T

2.1.2.3 Modified Gauss and Laplace Methods

The formulations presented in the previous sections discuss the nature
of the solution required to yield values of the position and velocity vectors
at some epoch for the case where components of a unit vector from the observer
toward the tracked body are given at three times. The procedures followed
in these cases where either the dynamics or the geometry was approximated
were detailed, and the nature or source of the errors was discussed.

There are variations of these two techniques, however, which have been
developed and mechanized. Several of these are discussed in References
1.4 and 1.5. While some of these formulations have definite merit, they
generally add nothing to the knowledge of the processes being employed and
can thus be deleted in the presentation of different techniques of analysis.

2.1.3 Range and Range-Rate Data

For geocentric satellites where there is an opportunity to accurately
measure the range and range-rate (Doppler) of the vehicle with respect to
the observer, an alternate logic is required. One version of the required
mechanization will be developed in the following paragraphs to facilitate
comparison with the previous material.

Consider once again the equation
F-FeR
or its scalar equivalent

f‘? =77 r 272 R f./??' (1.21)

and the first derivative with respect to time
PP PrP R+ P Renp (1.22)

But, the dynamics of this problem can be expressed as a function of time
utilizing the f, g series (as was the case before) by expanding about the
second of three observations as:

F=fF *j}a.
7=fn *57

12



Thus,

TF = g7, 7% (g *gr)* 55V,
TR <fRER +3 %R

TR FfE.R *9 7R

PP AR s 2097+ g7n?

FR =F%R+37 -

Substitution of these approximations into the equations for range and

range-rate yields

- 2 - - - P~ - - -— 1.2
/92__{,-02,2[’,3.,; *jz%zfz(fls'efjf,ﬁ);‘,?~ ( 3)
and
2 .A
pop = HIE LT r(f3+o9f)+jjl/ rfry- A’v;/; v
*£7 Rfj/‘ B R (1.24)
which can, in turn, be written as
(1.25)
P2-RR = alR + b7 7 +Cvi+n-Pri-§
pp-RR = d52r ef 5 rhZei-5+ 5T (1.26)
where

13



a = % d = ff

b =219 e =f§+9f
< 3% ho= 48

P =2fR 5 = FRFFR
o] :237?‘ 7 =j,‘q‘+j,(;

Thus, since the only unknowns are'the components of ?o, 70 (the coefficients
are approximately known functions of time), three sets of these equations
(three epochs) will yield a solution.

This solution process is simplified for some cases of geocentric satellite
motion, where the three observations are acquired over a relatively small
time period, since several approximations can be made to simplify the pro-
blem. First, it is noted that since the time interval on either side of
the second observation is small, the position vector for the observer (R (v))
can be approximated by R (ty). Secondly, it is noted that the scalar pro-
duct T ' % is small at each of the three epochs for most of the problems of
interest, since the two vectors are nearly normal. Finally, because the
time interval is small. and because T - R is small, the scalar product can
be approximated by the term g7 - R (one of the terms of T - R). For this
case, a reasonable approximation of the components of ro and Yo can be
obtained by rewriting the solution in the form

2 - RE ] £ 244 g9 2y, o]l [ = ]
B -RZ 2 2h3:. 95 2 23, ° o' 7o
B2 -R; £2 249 9% 2 23 © vE
ae-RR || ££  fatgt 5.4 £ 9 9 To-Ro
~Z- -.z'kz 1A ftj'z 72 ‘325; 2 jg 3 _; &
L@P, 3 -:1_ _f.’fs £349:79,% 39 5 5'3 9 1| 75 R, ]

or

y:[M] % (1.27)

14



Thus, the parameters denoted by X can be evaluated by inverting the matrix
M as

X - [M]ﬁ? (1.28)

The components of ?5, 7; are then obtained in a straight forward manner.

As was the case with the methods of Gauss and Laplace, a differential
correctlons process is required to adjust for errors in the representation
of T and Vv as functions of the time from the reference epoch and in the
assumptions made to obtain the first approximation of Ty, ¥,.

The case in which range or range-rate data alone are acquired at six
epochs can, of course, also yield values of ro, v0 These applications are
special cases, however, of the material presented in the preceding paragraphs,
and will therefore not receive special attention.

2.1.A Precautionary Numerical Operations

Regardless of the approach taken in developing the initial estimate of
the position and velocity vectors, ‘the quality of the solution will be
dependent on the quality of the data utilized and the time interval between
the observations (the sensitivity of the solution to errors in the observables
will increase as the time interval decreases). Thus, it is essential to
assure that as many of the errors as possible have been adjusted. In particular,

. the affects of refraction

the affects of signal propagation time etc.
inclusion in the observations and instrument biases
recording errors

. etec.

wmEw -

mist be determined and compensated for. However, these steps in themselves
will not assure a good estimate since the sensors utilized for the observa-
tions are not perfect.

Therefore, normal practice utilizes a preliminary smoothing of the data
acquired over three intervals of time to produce three estimates of the
true observables in the sense of least squares (or weighted least squares).
This smoothing can be accomplished by fitting the data to a line (if the
intervals are small) but is normally accomplished by employing a parabola.
The process is mechanized as follows; (assuming that the data in one interval
obey the equation)

i = bet‘: fCt"z
(1.29)

15



where vy = ith observed value of one component éf the observation
vector in the interval A< t < B

a, b, ¢ coefficients of parabola utilized for the purposes of

smoothing the data

A matrix equation is now prepared

n

\,
No O
N

(1.30)

and the least-squares estimate of the coefficients are generated (Section
2.2)
a

stz (777 ] 7y
3

When this process has been performed for each component of observation vector
in the interval A <« t € B, a smoothed estimate of the vector is prepared at
an epoch in the interval (normally, t = (B - A)/2). At this point, the
process is repeated for the other two intervals of time., As a final output
then, there are three sets of smoothed estimates of the observables which,
when utilized, will produce generally superior values of ro, Vo

16



2.2 ORBIT IMPROVEMENT
2.2.1 Introduction

The basic process for determining the position and velocity deviations
from an estimated trajectory involves the measurement of any position, vel-
ocity or time dependent set of parameters and the construction of the linear

system of equations relating the observables to the parameters being esti-
mated at the time of measurement.

SA(t) = H(t) Sx(¢) (2.1)

[In this notation, A (t) is the m-vector of observed minus computed
values of the observables; H (t) is an m by n (n is normally 6) matrix of partial
derivatives of the observations with respect to the state which was developed
in Reference 1.1; and §X (t) is the n-vector of state deviations. These
equations normally do not completely determine the state since the observables
collected at any one epoch generally number less than the number of components
in the vector §X (t). Thus, data collected at different epochs are referenced
to some standard epoch through the use of the state transition matrix (Section
2.4) as

SX(t)= @ (t,t,) 8X (k)
So

SAUE) = H(t) ¢ (t,t,)8x(¢,) (2.2)

and the task becomes one of generating an estimate of X (Q).

The estimation of §X (ty,) for the special case of an evenly determined
set of data can, of course, be performed by simply inverting the set of equa-
tions. For example, if

da, H(f,)m(tu to) 5;,
= {284 = H{L)e (t 'L) 5%
oA E2 2 W; 2 to ;Z (2.3)
6(1&, H(‘(:,’)(P(té)io) 3)55
= 35)((7‘_0)

where $a; denote scalar quantities and where the ti are not necessarily
unique. Then,

§X(to)= B S8A
or

SX(8) = @(¢,4,)B 754 (2.4)

11



However, since errors exist in the instrument utilized to perform the
measurements, and in the mathematical model utilized to compute both the H (t)
matrix and the computed values of the observables (used directly to define the
observed minus computed residuals), the true and computed values of the state
deviation vector § X (to,) will differ. Consequently, it will be necessary to
distinguish between the three types of deviations employed in this analysis
(actual, measured, computed). This distinction will be accomplished by
adopting the notation

~

8A = SA + «

where (~ ) denotes measured and where™ is the vector of errors in the
observed data; and the notation

A A
§xn= 8X(¢,) = §x(¢4,) + €y
where (A‘) denotes computed and where € is the vector of errors in the com-
puted state deviation vector.

Thus for un evenly determined set of data

o ’~
§%n = ¢ (ty,2.)87 55 (2.5)
and the error in computing &X is
€ = (4, 8)8 7'
This equation can be used to compute the covariance matrix of the estimation

errors E from the covariance matrix of the measurement errors R. Adopting
the notation

Y e

E 5_€ €T
to mean the expected value of the matrix € €' , the notation

Rz XXT
to denote the errors in the observables and using the material of Appendix A
allows the matrix of estimation errors to be written

Ew=0(2,,8,)(B"R7B)™ gﬁT(i,,,t,,) (2.6)

since

(B —/)7 = B7)

2.2.2 Data Filtering Technigues

In the introduction to this material, equations were derived for comput-
ing the position and velocity perturbations when precisely six navigation sight-
ings were made., Further, equations were derived that related errors in the
observations to errors in the computed position and velocity deviations for
this case. On evaluation of these error equations, it is found that errors

18



in the observables of relatively small magnitudes can produce errors in the
computed position perturbations that are completely unacceptable. The
question then arises as to how additional sighting might be used to obtain
a better estimate. Several methods of accomplishing this objective will be
considered.

However, before considering this material it will be noted that any or
all of the various estimation processes can be employed. The choice, should
however, depend on the amount of information known about the errors in the
observables. Thus, attempts will be made to demonstrate the accuracy (estima-
tion error) of each approach and to explain the differences in precision

obtained in terms of the assumptions made in deriving the estimator. In all
cases, however, the assumption of second order statistical distributions is

implicit (the discussions repeatedly employ Appendix A). Thus, information
pertaining to higher moments is not employed and the "goodness" of the estimator
should be suspect for non-Gaussian errors.

2.2.2.1 Least Squares Estimation

The method of least squares is perhaps the oldest and most easily under-
stood of the general techniques for smoothing over-determined sets of data.
For this reason, it will be considered first. The logic behind this filter
is that the squares of the deviations in the observed minus computed observables
from the estimated straight line (in m-dimensional space) defined by the
equations

SA = B §X (2.7)

should be as small as possible. Alternatively, the moment of the deviations
above the estimated line will equal the moment of the deviations below the
line. This statement of the problem is equivalent to computing the line
such that a comparison function equal to the summation of the squares of the
differences in the observed and computed values of the values of §A is

as small as possible, i.e.,

o
T — el p e; are not defined.
<

But, the sum of the squares of the measurement residuals L, can be written
as

Lxm myf (2.8)
L= g7¢ = efrefrel s .., ef
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or, by direct substitution, as
o A

L= (84 ~ B85 (84 - 65%)

Thus, the variation in this scalar comparison function can be related to a
variation in the estimate as follows

AL=~08Y, B7(8A —B88%)-(5A~B58X,) Bask (2.9)

~

- [(87$K - 578 81 Ya 8x.) - (87§ -5786Y,) 85X, )

a L

L will have an extreme value if AL = O for any value of ASX_O. This will be
the case if

(876A — B788%,) = O (2.10)
or solving for 8/}(0 s

X, = (878)" 875 (2.11)

6%, =(8B) BSA . .

The errors in the computed estimate of the state vector can now be
related to errors in the measurement of B&A

B

5AX, = §X

Ao _J,fé 3 §A = 8A + X

and

]

SA

B 8X,
Using Equation (2.11),

€=5&,—-6>&

(B'B)"'BT(8A + &) - §X,

=(B78)"B7 (BSs + ) ~ X,

20



Then

€ =(878)78% | (2.12)

Equation (2.12) can then be used to relate the covariance matrix of the

estimation error to the covariance matrix of the measurement errors as
follows:

£ =_Eg7v= [(876)-/5’7J oty [(5’73)“’@7JT

Therefore,

£ = (B°8)"'B"RB(878) (2.13a)
sX= (876)" 57 §A

4 (2.13b)

2.2.2.2 Weighted Least Squares Estimation

The least squares estimate neglected information regarding the distri-
bution of the measurement errors. Thus, if this information is known, a
better estimate of the m~dimensional line utilized to fit the data can be
obtained. This estimate is generated by modifying the comparison function
in such a manner that moments for the errors which correspond to the higher
quality observations are weighted higher. That is, the comparison function,
L, of the previous analysis becomes

2 2 2 2 (2.14)
L —_QL + & + e3 + Qn
T A~ A ~————— -=-- - 4+ — A
A, A2, X3 Ap Fn
or
L=¢e v e (2.15)
where
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_ A
e = §A - B4X, (2.16)

r 1
xS 0 ---- O
O NN l
| X, X, |
= i ~N
v l fD - |
1 ' ~ !
‘ : ~_ 0 (2.17)
A
LO O———Oa‘n d

In this equation the square of the measurement residual is weighted by a
factor that is inversely porportional to the expected mean square value of
the measurement error. Therefore, if the expected mean square measurement
residual for a particular measurement is large, the contribution of the
term to the comparison function will be small.

The weighted least squares (WLS) estimate of the state deviation vector
can now be generated as in the case of the simple least squares problem.
First, the comparison function is expressed in terms of the parameters of

the problem

(2.18)

~ N T !

L = (§A-58%) U (54 -88X,) .

Then the first variation of the comparison function, L, with respect to
the estimate of the state vector is formed

A~ - ~ A ~~ A
alL == pAEX]BTUT(6A -B6X,) ~(6A-BEXYU™BaEKs .

Again, this equation can be written as
*

AL = - [(BTU"cSZ - 8U'88X,) A ?5,]-[(3’0"55 ~- BV B6X,)a 52,]

since

(w7 =(uv)'= U™
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But, since both of the terms of this equation are scalars, the transpose
of the bracketed term is equal to itself. This fact indicates that the loss
function will have a stationary value when the estimate is chosen so that

BUTSA~-8U "5 5, = o

Or, solving this equation for 8/)\(,, , the WIS estimate becomes
8% = (8708073755 (2.19)

The method of deriving the equations that are required to relate the
measurement errors to the errors in the computed estimate is identical to
that used for the least squares case. The estimation error is defined as

A

£ :5L*5L5

therefore, from Equation 2.19

€ =808 "B U(B s, »X)~ & (2.20)

o s

However, since

SA=(8A+2)= (Bs), + x )

Equation (2.20) reduces to

€= (8UTB)BTU

The covariance matrix of the estimation error is thus
T

£=E7- [(5usy sV G (5708 8w

N

If o’ is definéd to be R, then these equations may be summarized as

£= [(574/19)"3"1/ "] R [(B’u"B)"BTU"] ’ (2.21)

5_11: {BT(/_IB)—BTU-IQ (2.22)
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Now, for the special case in which the measurement errors are uncorrelated;

i.e.,

7
£-[(avm) BT |V (870 BBV
But, since U is a diagonal matrix,

vT=
W) =uv'

and the covariance matrix of the estimation error becomes

E=(BTv"B)"BT(UTUIV B [(371/'4?)"]T

which reduces to

£ = (B7U'B)!

(2.21a)

It is of further interst to note if the variances of the measurement

errors are equal, then U can be written as

U=621 oand /7'= é—;zl—

where 0-Z2 is the variance of each of the measurements.

then becomes

§k= (5:8718)" L, 871 64
N

§Y, = (878)7'87 §A

24
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This equation indicates that for the case in which the variances of the
measurement errors are equal the weighted least squares estimate will reduce
to the least squares estimate.

2.2.2.3 Minimum Variance Estimation

In developing the estimation equations for both the least squares
and the weighted least squares filters, a loss function was utilized which
was simply related to the moments of the errors. The estimation equation
was then formulated to minimize this loss function. In neither case was
the statistical information pertaining to correlations in the components
of the error vector ( & ) utilized. Thus, at this point a different approach
to the problem will be formulated. To be specific, that estimate (defined
as optimum) of the state deviation vector which is a linear function of the
measurements, which minimizes each element of the estimation error covariance
matrix and which corresponds to the constraint that the estimation error is
not influenced by the quantity being estimated will be developed. That is,
the form of the estimate is to be

~ (2.23)

8% = 8Xo # €, , §A=8A+2 , and 6A=B6X,
Thus, by direct substitution,

8% 1 €o= Q64 2| = q[BSK +f (2.24)
so that the error in the estimate is

§o=[05 -I]sgo QK (2.25)

This equation indicates that if the error in the estimate is to be independent
of the quantity being estimated, 6§ X,, it is necessary that

RB8-7T = O (2.26)
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The estimation error then becomes

or defining

£-Ce2& ond gao’sR (2.27)
£ =QRQ7

The problem now is to determine Q such that it will minimize E subject
to the constraint that

05‘] =0

This step can be accomplished by adjoining the constraint equation to E using
matrix Lagrange multipliers as follows. Since

RB8-7 =0 , B -T =0
(2.28)
AT =0

QBA ~A=N"8797-

where N\ 1is an arbitrary n by n matrix multiplier that is not a function of
Q. Thus

F=E+(Q8-I)\H [(QB'I)A]T

(2.29)
ZQROT FQBA # ANBTOT - - N,

T

Now, recalling that R™ = R, the first variation of F (= 4F) becomes

5p={5q[,?QTf 82 ]} +{60 [Rarr BA]}T

26



But the §Q are arbitrary. Therefore, each element of E will have an
extreme value if

RQT+rBA =0 (2.30)

or
Q@7 =~ R'BA . (2.31)
Thus, premultiplying by BT yields

B80T = ~B7R 8.

But,

8797 = 1 ;
thus,

A==(8"RR™! (2.32)
so that

OT: ﬁ_g(g 7R*—/5)"/ ; (20333)
and

@ =(87R78)7BTR (2.33b)

since both R and (87R' 8) are symmetric. Thus, the minimum variance
estimation equation is

A

SXo= (5 TR“’B)"'BT,?”JZ (2.34)

It is interesting to note that when the errors in the measurements are
uncorrelated (i.e., R = U), the minimum variance and weighted least squares
estimates are identical.
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Equations (2.27), (2.33a), and (2.33b) can be used to express the
errors in the estimate as follows:

E=QRG" = (8RB BEBRD
=WRB(BRB)(BR B

therefore, in summary

£ = (8R78)" (2.35)
5X = (87R78)"BR™ 5A (2.36)

In the development of these equations, Q was constrained to make E
invariant with respect to the characteristics of §X, . Thus, these
equations should be used to estimate &X, when the statistical characteristics
of 8§X, are unknown. However, when the statistical characteristics of 8§Xo
are known, that is, if the covariance matrix of § X, is known, this con-
straint should be removed. When this is done, the resulting estimation
equation can be determined as follows. From Equation (2.25),

‘P —I] 8K, &%, [05 I] +cpo(oup
[ '-I] s a7 &7 +Qo’(\?{[@g 'I]T
Now, defining

AN AN A~~~
7

S 8Ys= V=V, XA = 0, and ASX =0

and rewriting the estimation error yields
£ = Q[BV@T/'/?JQT~QEV_V6"Q7{_[/ (2.37)

The variation in E that is produced by a variation in Q is thus

4t = {se[(8ve7+ £)07-5V]} +{ s0[(ave7+#) 07-81]}

28



Again, if Af 1is to be zero for the case where § @ 1is arbitrary
(BVB7+R)Q™- 8V =0 (2.38)

that is, E will have an extreme value if

R'=(8VBT+R) 5y . (2.392)

Thus

Q= VB (PVE +r)” (2.39b)

since R = RT and V = VT,
The optimum estimate is now found by substitution into Equation (2.23)

A - ey (2.40)
86X, = VB (BVB'+R)™ 8A

The error in the estimate is determined using Equations (2.37) and (2.39b)
as

£ =VBTC77 “QBV‘VB'_O?,LV )

Thus summarizing,

(2.41a)
E=V-VB(BVBT+R) 5
A 7 ~ (2.41b)
8Xe = VB (BVET+ )™ §A

Equations (2.41) can be put into a form that makes comparison with
Equations (2.35)and (2.36) much simpler since from Equation (2.39)

Q@ =VE (BVB™+R)™!

= (BRB+V) (B R BV )VB(BVETFR)”

29



= (8RB + V) NBR'BVE +BTRVR)(BVBT+R)”
0 =(8R™B+v)(BR)NBYBT+R)BVET + R)™',
Thus

Q=(8"R"8B +rv)'BTR (2.42)

The estimation equation can then be written as

§%= (B7R"8+v-)""87%" 54 (2:43)

Using Equation (2.41a) and (2.42), the error in the estimate can then be
written in the form

£ = I/ - QBV
= V-(Bk&+v)IBTRTBY
= (BTR™'B+v™)T(BTRTB+V )V (B R B tv) B R 8V

£=(8RGrv) [87RBV +I-8TRBV]
thus

£ =(BRE+V)! (2.44a)

N
$Xo= (8778 +v~')"'87R7'§A
- (2-44b)

While Equations (2.41) and (2.44) differ considerably in form, they are
equivalent and will yield the same results. Notice that-:Equations (2.44)
differ from the corresponding Equations (2.35 and (2.36) only through the
presence of the additive term V‘l; i.e., if V7t = 0, the equations become
identical.

Before leaving this discussion, it is worthy of note to demonstrate
that the process employed in this technique to derive an optimum estimate
of §Xx (i.e., the minimization of a matrix) is equivalent to one which a
scalar loss function is constructed. One such loss function could be the
summation of the eigen-values of the covariance matrix (see Appendix C).
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Consider the scalar
L = AFA

where A is an arbitrary vector whose dimensionality is n and where E is
the n by n matrix of estimation errors. Since A is arbitrary, it can be
independent of the parameters of interest so that

Al = ATAEA

Thus, if asL= O ,Af must also be zero provided E is free of constraints.
Thus, a sufficient condition for any scalar measure of a matrix to be
minimum is for AE =

It is also worthy to note that no explicit assumption has been made
regarding the distribution of the errors. True, only second order statistics
are utilized so that the estimate will not be optimum in a larger sense (use
all of the information available) unless the errors are Gaussian. However,
this estimate can be generated. A minimum variance unbiased measure of the
performance degradation will be discussed in Section 2.3.

Finally, it is noted that the minimum variance estimate generated in
this manner is unbiased since the conditional expectation of the estimate,
SXO 3 is 5&0 .

2.2.2.5, Tterative Form of the Minimum Variance Estimator

The equation that was derived in the previous section for computing
the mv estimate was

2.
5){_(3,9 3) 3 _/SA (2.45)

This equation is useful when all of the measurements are to be processed

at one time. Quite often, however, it is desirable to process the data

that is currently available to formulate an initial estimate, and then to
compute new estimates as additional data becomes available. This desirability
arises from several distinct factors. First, the numerical operations
themselves would be considerably simplified if only the most recent observation
was being processed. (The amount of data can become staggeringly large.)
Second, the trajectory is, in fact, nonlinear so that errors of assumed
linearity in the transition matrix and in the observation problem combine

to make translation to the fixed reference epoch very inaccurate as the time
from this epoch becomes large (this fault can be avoided if the reference
trajectory is re-defined by adding the reference position and velocity to

the computed deviations and restarting the estimation process). For these
reasons, an iterative (or repetitive) form of the minimum variance estimator
will be developed.
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The matrices contained in Equation (2.3.5) can be partitioned into
sub-matrices as follows

- 54, ]
_Bi_ _bA.
B = = gz— ] 6& = - _ST_A’:!. -
_Bs :
e | 84 |

1 ] \ )
o =[o7 a7 i) | ]
[z o'o!, :oT
bl — - + -
O:RZIOI | O
e b — - — =
_— | |
= _O_lo_lf" SR A
|
[ !
P
1 | ! i
: b |
Pl {
'l I
0,0'0, }R.._

where it is noted that the subscripts in these equations now refer to sets
of quantities. Thus, 8A, , refers to the first set of measurements,

and §4,, means the nth set of measurements. This notation contrasts with
previous usage (Equations (2.2)and (2.3)) where the subscripts referred to
individual measurements. It is, of course, understood that the matrices

B and R are partitioned so that the sub-matrices are conformable. This
division guarantees that the required multiplications can be performed. A
further assumption has been made concerning the R matrix in that the different
sets of measurements are assumed to be uncorrelated. Correlation between
the individual measurements of any measurement set is, of course, permitted.
Under these assumptions, the inverse of R can be written as
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-R]‘Ioio' |0
R T
}
- o]
3:5’1_0_'__1__
R =lo,018', .. lo
| !
ot I
-1 L _l - — _l__r
o!'ol ol IR

as can be seen by considering the relation

RR™ =7
Now, the matrix product B37%7is

- 1 ] ] -

B7R" = (8787 BIR ETR .. 18R ] j

and the product 37R7Z will then be
ETR-Iﬁ -':8/7/?,_/5, '/"1927-/?;/521‘ . + 3,,7-?,;13,, .

or

A A

B'RB = Z" 8’ #7 5. (2.46)
; .
Lzt

The matrix product 87”73 becomes a function of the number of sub-
matrices contained in the product. Therefore, let this product be defined
as follows:

Jn = 5%"@:2 B8/ RE; . (2.47)
L=

The matrix J, can be written as

Jn =2 BIR8 +8]RA, (2.48)

y2

and in iterative form as

33



I):_T,)_/#B,;’-R';’Bn (2.49)

Similarly, the matrix 87 R76A can be written as

BRVEA = BTRSA, + BIR] EA,r . .. 85 R} 6A, (2.50)

Now defining

~ 7 —~
ES BRISA=2 GRSA, (2.51)

4=

~

the iterative form of & will be,

Enzg,,_, + B,JTR,;’ J’Z,’ . (2-52)

Equations (2.45), (2.49), and (2.51) can be used to express the estimate
of the state vector that is obtained by processing all of the data up to
and including the nth set as follows:

A(”) _];, {n (2-53)

and the estimate obtained from processing all data up to and including the
(n-1) set is

§%,7" = J1E, (2.54)

The superscripts have been added to 5}0 to indicate the quantity of
measurement data used in making the estimate. But, substltutlon of Equatlons
(2.49) and (2.52) into Equation (2.53) yields the estimate of 6X

5"(") (Joes +8]878)7(E, +8]R) (fé,,) (2.55)

from which
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- n) 7 e
(Toey B R B,) §X¢ =&, * 8, R} §4, (2.56)

But, from Equation (2.54),

§ﬂ-/ = py 5)(("-/)

(2.57)
Thus, Equation (2.56) can be written as
oo+ 85 Ry 8,) §X0) = 7, 639 +8] R 54,
= Jn SXE L BTRIB SXOV (2.53)
—3,,7'?/;/5/; 5}.&”‘0 * B8, R 5/'5'7
which reduces to
(T, # B3R 8y) 88 =(Th., + 8] R75)8K™ (2.59)

o~ ~
+B7 R (88~ B,8X, "),

Finally, multiplying both sides of Equation (2.59) by the inverse of (J,_,*
8,,/? 8, ) yields

8’_)?2”: X 4 (In-s +BTRT 8r)78, e,,"(&?_?,, -8, 52“,”"’) ,(2.60)

where from Equation (2.49)

In = Jpey +BIR 8, (2.61)

Equations (2.60) and (2.61) are the iterative equations that are required
to compute the minimum variance estimate

In a similar manner, the recursive form of the covariance matrix for
the estimation errors can be developed.

Consider the non-recursive form
E = (877807
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Comparison of this equation with Equation (2.47) shows that the covariance
matrix of the error in the nth estimate is related to J, as follows: £,~ J,”
Thus, this substitution into Equations (2.60) and (2.61) yields:

~ Appe . _ _ - ~ N n-
SXS™ = X6+ 8T8 B,) BT AT (8A, 8 5XS7T),
£n = ( 52;3 * é%TAz;Cé%~)v

. /\(c\ -
where : SX, ’“:"arbim,-j ano £5 =0

At this ?oint it is interesting to note that the conditional expec-
tation of 82;” is biased by the memory of all previous estimates. Further,
if the time intervals between data points are approximately equal, and if
the errors in the observables are comparable, the bias will increase as
the number of data points increases. This fact may appear to be the result
of an error, since the form of this estimate is a direct consequence of
Equation (2.44). However, it is noted in the way of an explanation that
the solution is biased only in a local sense. The result of the complete
reduction problem will still be unbiased, since the initial conditions for
the problem were unbiased; i.e., the matrix £,” was the null matrix rather
than some initial estimate of this gquantity.

Now noting that

/\(n) _

o)
§Xy = @(to,t,)8K%Y

85" @(6,2,.)88%7)
Oty ts,) = @' (Lo ,t,) @(b0,t,.,)
B, = Hy @(tn,t,)
allows the first of these equations (2.60) to be rewritten as

S8 = Pltn,ty,) SRS+ P(tnrte) T8I R (SR K, Wt 0.,) 565)

N~

But
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O(tn,2.) T, 8]

[#ta,t) 57 07k, éo)] H

Tn'(t0) H,

-1
[0t s80) Toes ) B 0 ) + TR Hy | 1

"

and the estimator reduces to

3L = @180 ) S8 [ @tn ) ES (brm) s t.)

aln-i)

L= —~
" H,,’e,;'ﬂ,,J Hy R (6, ~Hn ®(tnstn-) 63,7,

n-i n-i

= 5% 4 C?"[sxn —H,,S?‘"J]

A(N)
where S X:\: = estimate of 8X at the epoch t, based on all
information processed through t__; -1 sets)

qQ, = [J,,‘f:) t HTRH, ]-IH,,T,?,,"

J;‘(f,) = estimate of J at the epoch t, based on information
processed through t,_y

= (/(fthnﬁ) -j,,(:,,—l)qﬂv—(én; énq)

The second equation for estimation error then becomes

TP =ty R Hy o+ TED
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O (bost, )T @ (t0,8,) = @7(4,, ¢) /’Inr’?;#n Plln,t,)

+ gp(é °y éﬂ-/)J;(—?) ¢T(£°) én-l)

or

T

7 —/ ” =~
Ha RalHy + @(t,,8,.,) T @7, 4,.,)
Ho Ry Hy + T

1]

Thus, in summary

T 2 @lbntn,) TEP@(kn, tnl,)

n-—i
R T
I+ Dlensty) ST On[ o Pt 51..)

(n) LA )
T 2 Hu R H, T

_7; = 0 3 5)_(0 = arb/ffa.r_y

This set of equations allows an estimate of the state to be generated for )
the epoch t; from a priori estimate of the state at this epoch [ @(En,tn-1)8%, ]
and the observed minus computed residuals available at tp. Further, since
the initial conditions for Jé") and §X, are specified, the process can

be initiated at any time. However, the question exists as to how information
which might be available at t, for JO\O) could be utilized. It might be
argued that such a process is simply a continuation of some previous analysis
and that the initial conditions could be substituted directly. However, this
argument is not satisfying; and, therefore, a more rigorous proof will be
constructed.
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2.2.2.5 Schmidt-Kalman Filter Via Minimum Variance

The development of the Schmidt-Kalman (Reference 0.1l) estimation equa-
tions is very similar to the development of the minimum variance equatlons,
but differs in the respect that an initial estimate of Jézo, ZSXO is assumed
to be available for the purpose of biasing the estimator in a total sense
toward a'priori estimate. The optimum estlmate is thus assumed to be g lin-
ear function of both the afpriori estimate __Xo and the measurements & A and
is formulated to minimize the elements of the estimation error covariance
matrix subject to the constraint that the estimation error is not a function

of 8§ X,.

The derivation of the filter equations will then require the following
definitions:

5x' a'priori estimate of J§ X,

—0
! — . s s .
e error in a'priori estimate of & X,
' /W?;
E = e} € covariance matrix of a'priori estimation errors

And, as was stated, the form of the optimum estimate is assumed to be

AN A, ~
X, = P&X, +Q §A (2.64)

where P and Q are chosen to fullfill the conditions discussed previously.
But,

A A ) —~
630 E 6!0*_80 ) 6£a E 65. fgo ’S_.E 8— f'z)
and &A= B8X,, So that 5A=088X, +%

Thus, substitution of these definitions into equation (2.64) yields

8Xo # 8y = PEX, +PE, + §BEX * QA )

and the error in the estimate is obtained as

2(P+QB-T)&X, » Pe) + oo . (2.65)

It can be seen from equation (2.65) that if the error in the estimate is
to be independent of § X, then

P r98 -T)=0 (2.66)
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This constraint allows P to be determined as a function of Q

P=T7T-Q83 (2.67)
and allows the form of the estimation equation (2.64) to be written as

8% = 8X. + @ (5a -65X) (2.68)

Therefore, it remains to select Q so as to minimize the elements of the
covariance matrix of g,. This task can be accomplished using equations
(2.65) and (2.67), as follows:

&= (7-98)e, + Q@ a

A (S _ ANAY (2.69)
e, el = (1-98 ¢ ¢e," (1-08)+ @ X797
~ A~

“(1-98) &, 0797 + & X¢;7(1-98)7 .

Now, defining
aa’ = R

I L Mﬁ_/ /‘\7’\/\/7_ /\//\/\g_\./: _
eLXT T U then agly = (oot ) = (Cox’) = U’
allows the covariance of the estimation error to be written as

E=Q[BEB” +£ -8U~0787]47
- Q[[)’[’-[/r] _[5/37-0]07'*5/

The first variation of E with respect to Q is now required as the first
step in obtaining the relationship for the optimum linear estimate.

§E = {sa[(ef’ﬁfm -30—//’8")0’—(5f'~ﬂ’)]}
+{50[3£’3’w? -8y~ UBT)Q7- (Bf'-UT)]}T

But, §Q is arbitrary; thus, the elements of E will have an extreme value
if

(2.70)

(BE'B+R-BU~UBT)Q™~(BF'-¢/7) =0

or, solving for Q

Q=[£8"-v][BE8™+ R -By -BT] (2.71)

40



In most applications, the measurement errors and the errors in the
alpriori estimate of the state are uncorrelated

U =0 and J7=0

Thus, Q becomes
Q=£'87[66'87+R] (2.72)

The covariance matrix of the estimation error for this case can be determined
from equations (2.70) and (2.72) as

E=£"+Q[BEB™+R]Q™- QBL-F'B7pT (2.73)
=ErEET [@FBQA’] N [Bf’&k] QT—QBE’J\BQT
E = £'-QBE’ .
Therefore,

E=E-£'B[BEBT+R)BE’ (2.74)

where

é}p:: §32 *f?[féz -8 é%é ]

6 = £'87[6687R]

These filter equations, (2.74), can be written in a different form, as
follows:

@ =B [BEB+R]

(BB rE)(BRTB+E)EB(BEG+R)™
=(B'R7B+E')T(BTRBE'BT+BTRR)(BEBTR)

= (B8R B+E) ' BRIBEB+RNBE BT+ )
or

- 2,
Q= (8RB +E~)" 8757, (2.75)

41



Thus, the equation for E can be rewritten using equations (2.73) and (2.75) as

E =f'-Qa8f

T R TR e

=(BR™B+E ) [W’u ~-B'RPBE]

£ =(BRTB+E)

or

(2.76)

Thus, using equations (2.75) and (2.76), the set of equations analogous to
(2.74) can be written as

£ = (BT/?_IB 7‘_[/~/)-/

A
8%

q

(2.77)

83: f@[g_\é—B&:\_Xo/J

(B’R-IB 7,_E/__/)—/B-rﬁ--/

Note that (2.77) requires the inversion of a matrix of the dimensionality of
the state vector as opposed to the dimensionality of the observation vector,
as was the case with equation (2.74). Also note that the estimation error
for this case does not involve subtraction. The first of these differences
is a definite disadvantage due to the fact that there is an increased chance
for numerical error due to loss of significance wheninverting. However, the
second difference is an advantage since it avoids the problems associated
with assuring positive eigen-values which might result as E approaches the
null matrix in the other formulation.

Also, note that this form of the estimation equation is exactly the same
as that obtained by transforming the minimum variance estimator to the recur-
sive mode., Improvement in the estimate can, however, be expected, since
provision has been made to begin the process with values of Jo’ and SXo,
other than those employed in the minimum variance case.

Finally, note that the estimators (2.74) and (2.77) are both biased.
However, in contract to the recursive minimum variance estimates, this bias
exists on the overall and local senses. This fact graphically displays the
effect of a'priori information in the data reduction problem since the solu-
tion is weighted in the direction of the available data.

When the statistical properties of § X,are known; i.e.,

.6_X¢7 g_xo =V S_Xagz =W _Q_o 5_.Xor =w’

AN AN

NN -~
X, 4" =5 Xsx =STand &4 U 0_<é_"o’=uf(2'78)
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this additional information can be used to improve the estimate of &§X,. The
equations required to utilize this information can be obtained by simply
removing the constraint equation (2.66). Vhen this step is performed, the
covariance matrix of the estimation error will be found from equation (<.65)
to be

E=(PtRB-I)V(P+Q&8~ZI) + PE'PT + QRGT
#{(P+Q8-I)WPT +(P+48 ~I) 5Q7 ++NG7 } (2.79)
+{(P7‘08—[)WPT+ PNGT (P+05—])5477}T

Equation (2.79) can be written in the form

E=PABT +PCTQT - PF - FPT+9697+9CPT-00-0¢T+y  (2.80)

where
A= VtE +W+W
G = BVB +R +85 +(83)
- - (2.81)
C=BV+BW+ ST+
O=8YV+s7
F=Vtw7

The variation of E with respect to both P and Q can be written, using
equation (2.80), as follows:

5 - {sP[AFTrC7-F1} +{sr AP Tv o™ A1}

(2.82)
+{89[sq7+ crT-0] }+{50[6 07+ cPT-0]}

But, since SP and &Q are arbitrary, equation (2.82) indicates that
SE will be zero if

APT +C7QT = f (2.83)

CPT +6Q7 =p (2.84)
Equation (2.83) can be multiplied by A=l to yield

PT A A™CTYT = =i (2.85)
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and this result can be rewritten as

CPT +CA "/CTOr - CAE (2.86)
Now, subtracting equation (2.86) from (2.84) yields
[ ]o0- cars
Therefore,
=
Q=[6-cA™c™] [O -cA”F] (2.87)
or
T -
&:[D_CA-I/:J [G_CA-/CT.] / (2.88)
since [G -cacT]' [6’-C(AT)“/CTJ=[G -eave” | .
Equation (2.83) now implies that
PTsaA"]F-C07] |
Thus,
- (2.89)
P:[F’—QC]A-‘IJ, S/nce A:AT.
In summary, the equations required to formulate the estimate are
N AN o~
8Xo =P X, *+ Q84
where -
P=[F-QC]A
& =[o-car) [6-ca'cT]™
A=V+E rWrw (2.90)
G =B8VBT+R+85+BS)"
C =BV +8BW +ST+U7
D=8V + 357
F= v+ w?
V=38  R=ga’ w=sx, e S:§Xea” Useid”
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A number of alternate forms for P and Q exist and should be investigated to
determine the form most suitable for a particular application. One such
variation can be obtained from equation (2.84) by post-multiplying by cT G-1,

CGCP+C7Q7 =C'G¢™p (2.91)

and subtracting from (2.83). This process yields

[A ~c’5"c] PT = F-CTGp

from which

p7=[a-c’67c])” [F-c767n] (2.92)
or

p:[ﬁ-c”s‘o]T[A ~c’6‘c]") (2.93)

since A = AT and G = GT,

The corresponding expression for Q can be obtained using equations
(2.84) as follows

9" =6"[D-cP7]
Thus,

?=[07-0c" )6

This derivation of the Kalman estimator employed a minimum variance con-
cept to arrive at the optimum estimate, If the statistics are Russian, this
procedure will yield the optimum estimate in a larger sense (see Section 2.3)
since the higher moments are zero.

However, if the statistics are non-Gaussian, the resultant estimator (a
biased minimum variance estimator) will not be optimum (again in the larger
sense) since it neglects all knowledge of any higher order moments in the
distributions of the errors. Thus future discussions will provide a reformu-
lation of this problem from the standpoint of a much more general concept of
loss and optimum estimate selection. This discussion (presented in Section
2.3) will develop the specific case for Gaussian errors and will show that the

resultant estimation is, in general, superior to any other which can be
formulated,
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2.3 STATISTICAL ESTIMATION THEORY

2.3.1 Introduction

The discussions presented in section 2.2 lead to the simple development
of a series of computational algorithms which defined an estimate of the state
deviation vector in terms of a series of observations and the initial condi-
tions. However, implicit in this material were the assumptions that

1) the dynamical model was linear
2) the observation model was linear

3) the optimum estimate of the state deviation was a linear function
of the observed minus computed values of the observables

4) only second-order statistics were necessary.

Further, the "loss" functions employed to develop optimum estimates of
the state deviation vector, while similar, were intuitive, thus giving rise
to questions regarding the uniqueness of the estimates generated, For these
reasons, it is now desirable to re-examine the estimation problem to demon-
strate the manner in which these assumptions can be relaxed and to show that
all of these estimators are special cases of a more general family of estima-
tors., Specific attention will be focused on:

1) the criteria to be utilized in determining the optimality of the
estimate

2) the statistical properties of the variables, and

3) the form of the function relating the observables and the quantities
being estimated.

In general, the particular problems of interest are representative of a class
of problems which is the subject of the general theory of parameters estimation
as set forth in statistical decision theory. Therefore, the fundamental con-
cepts of the theory of parameter estimation form a basis for an adequately
unified approach to fulfill the present requirements., It should be noted that
the simple derivation of filtering methods employs some of the basic concepts
of the theory of parameter estimation explicitly, while others are almost
always implicitly involved. However, when these concepts are not consistently
employed on an explicit basis, their applicability and usefulness are not
fully realized or exploited. In the subsequent sections on estimation, the
basic concepts of the general theory of parameter estimation are presented
for the primary purpose of formulating a more unified approach to determining
filtering methods than the simple approaches outlined previously. The dis-
cussions do not present an exhaustive treatment of the subject, nor is one
jntended; rather, primary emphasis is placed upon the basic concepts which
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have general applicability and particular usefulness to the present problems,
Nonetheless, adequately complete discussions of the concepts are presented so

that extensions can be formulated and applied to those problems which require
them,

It should be emphasized at the outset that the problem of state estima-
tion in space navigation and guidance is completely equivalent to the problem
of transmission and reception of information in a noisy communication channel.
All of the methods utilized for solving the latter problem are totally and
directly applicable to the former one. Further, since extensive application
of the general theory of parameter estimation has been made to the general
problem of communications in the presence of noise, leading to a general
theory of statistical communications, the same approach to state estimation
will yield a general theory of statistical navigation and guidance, Should
questions arise during the discussions, it is likely that answers can be
found in References such as 0.4.

In the discussions, it is assumed that the reader is generally familiar
with the fundamentals of probability theory., To be specific, knowledge is
assumed of: (1) continuous joint probability distribution and density func-
tions; (2) marginal and conditional probability density functions; and (3)
conditional expectations, Though an extensive knowledge of statistics is not
required. This level of familiarity must be assumed since to do otherwise
would require the development of all of the statistical concepts to be
employed. Thus, should the terminology be unfamiliar, the reader is referred
to any of a number of excellent references (References 0.4, 3.1, 3.2, etc.).

The discussions begin (section 2,3.2) with basic notation and definitions,
which are of particular concern to the present subject, and which are not
necessarily emphasized in the fundamentals of probability theory. This
material is followed (section 2.3.3) with a description of the basic problem
to be considered in mathematical form and a discussion of some physical inter-
pretations.

In section 2.3.4, the rudiments of parameter estimation are discussed,
and a basic description of the problem is given which emphasizes the under-
lying concepts. These discussions define estimators, estimation error and
basic properties of estimators. Properties of a "good" estimator are then
discussed to form a basic concept of estimation. Next, more general criteria
for estimation are defined in terms of loss functions and associated risk.
Properties of estimators which are based on estimator risk follow these dis-
cussions. Finally, sufficiency of an estimator is discussed, a sufficient
statistic is defined, and a test for sufficient statistics is given.

The determination of particular estimators is discussed in section <.3.5
with primary attention given to useful methods for determining estimators.
The determination of minimum variance unbiased estimators by means of suffi-
cient statistics and complete probability density functions is discussed, and
the method of least~squares estimation is shown to yield minimum variance esti-
mators under the condition of statisticsl independence of the sample. Attention
then turns to the development of a lower bound for estimator variance and the
determination of Bayes estimators. The general solution (in terms of the
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Bayes estimator) for the case of squared error loss is shown to be the con-
ditional expectation. (More general loss functions are also considered.)
Following this material, Bayes risk is discussed and a comparison of a Bayes
estimator and a minimum variance estimator is given to illustrate the differ-
ence in the results, Finally, minimum risk estimation is discussed to
emphasize the use of sufficient statistics in minimizing risk for the general
class of convex loss functions., (Maximum likelihood estimation is discussed
and shown to be equivalent to Bayes estimation with a simple loss function,)

These discussions conclude (section 2,3.6) with the application of Bayes
estimation to the case of many degrees of freedom. The first result is the
formulation of the technique to develop the optimum estimator for the general
vector case and for general statistical distributions. The second result is
the extension of this material to the general linear case, where the statis-
tics are Gaussian., This extension develops a proof that (under these assump-
tions) the Kalman estimator is the optimum estimator. This fact could not
be developed from the material presented in section 2.2.

2.3.2 Basic Definitions

It is the purpose of the following sections to develop a basic under-
standing of the general problem of parameter estimation. This effort must
necessarily begin with the following basic definitions of the essential
elements of the problem.

2.3.2.1 Random Processes

A random process is defined herein as any phenomenon for which repeated
observations, under a given set of conditions, do not yield identical results,
In general, random processes are characterized by variations in outcomes for
repeated equivalent trails. These variations in outcomes or observations are
considered as the'randomness" of the process, which is equivalent to uncertain-
ty in the outcome of the process. As a contrary example, consider a process
whose behavior is completely described by a known system of differential
equations. Theoretically, it is possible to completely determine the
behavior of such a process if a sufficient finite set of initial conditions
are known., Thus, it would be possible to completely specify the future
behavior of such a process if an adequate set of observations are made at
some time. Such a process is said to possess deterministic regularity. How-
ever, until such time that all physical laws are explicitly established for
the microscopic and infinitesimal domains, the concept of random physical
processes must be admitted, accepted, and dealt with,

Alternatively, a random process could be defined as one which does not
possess deterministic regularity, and subsequent outcomes cannot be predicted
with certainty from a set of observations of the process. However, a random
process can possess definite properties of behavior which make possible a
description on a statistical basis. Such random processes are said to
possess statistical regularity. In such cases, even though particular out-
comes of the process cannot be specified, it is possible to specify the rela-
tive frequency or probability of occurrence of outcomes for the process, That
is, let y denote the outcome of a random process, then the process is



described by specifying the probability that y will lie in some arbitrary
interval, The common notation is as follows:

b
Pla<y<b) = L7y (3.1)

In this notation P(a < y < b) is referred to as the probability distribution
function which is the probability that y lies in the interval a < p»< b, and
f(y) is the probability density function of y.

Thus, random processes are explicitly described by speeifying their
probability density functions, In Section 2.3.3 a detailed mathematical
description is given for random processes of particular interest in the pres-
ent discussions.

For the sake of notational convenience, "pdf" will be used to denote
"probability density function" in the text, and "f(y)" will denote the pdf of
Y in equations. However, it should be noted that if x and y are two differ-
ent random processes the pdf of x, f(x), is not equal to the pdf of y, f(y),
even for y = x.

2.3.2.2 Parameters

If a random process possesses statistical regularity, then it can be
described by specifying all of its statistical properties, which is equivalent
to specifying the pdf of the process, The "parameters" of a random process
are defined as the smallest set of elements which specify the statistical
properties of the process or its pdf. In general, all statistical averages,
or moments, of a random process are required to specify it., However, for
many processes of interest, all moments are not required, and a smaller set
of parameters suffices to specify the process.

For example, in the case of a Gaussian distributed random process, it is
only necessary to specify the mean and variance of the process, since the pdf
of the process, f(y), is specified by these two parameters; i.e., if y is the
outcome of a Gaussian distributed random process, then

f(y) = V—_ﬁexp [‘ j‘z(ﬂ‘ﬂ)z] (3.2)

where s and o2 (the mean and variance of y, respectively) represent the two
parameters which specify the pdf of a Gaussian random process.

In general, the set of n parameters which specifies the statistical proper-
ties of the pdf of a random process will be denoted by © = (81, €5, ..., 6,).
The pdf of a random process will be shown as a function of the parameter set
@ in terms of the conditional pdf, given ©; i.e., f(y/8). For the Gaussian

pdf 6 = (61, 65) = (u, oR) and £(y/6) = £(y/u, o?).
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2.3.2,3 Random Samples

A random sample is defined as a collection of observations or outcomes
of a random process. Specifically, a random sample of size m is a set which
contains as elements the results of m observations of a random process. A
random sample will be denoted by Y = (y1, ¥2, «ees ¥m). It is important to
note that a random sample has a joint pdf which essentially specifies the
probability of the simultaneous occurrences of the m observations. That is,

P[a,-ﬁg,sb,)- az<°‘/z£bzi"'J Qpy < Yy < b,.,] =

b 61 b
//- .- -/f( .. ) (303)
2, a4, 2m 2G2S T m] O Tz Y

For convenience, the following notation will be used to denote the probability
of simultaneous occurrences of a random sample of m observations.

Plowr)] = {Cy)f(v)dy (3.4)

Where D(Y) is any m dimensional domain of interest, P[D(Y)] is the probability
that the random sample will lie in D(Y), £(Y) is the joint pdf of the random
sample Y, dY is an m dimensional infinitesimal, and it is understood that the
integral must be performed over the domain D(Y).

In general, the m observations of a random sample can be statistically
independent or dependent. The random sample is defined to be independent if

[(y/@) = f(j//‘g) '/(72/9)' T f(ym/e)
- g’;’/’— £(9:/8) (3.5)

where £(y;/6) is the pdf, given the parameters ©, for a single observation of
the random process. Otherwise the random sample is statistically dependent.

As a particular example of f(y/®), consider m independent observations
of a Gaussian random process. For this case,

F(Y/8) = F(Y/u,0%)
£07/0) = (fram o - 26 & (4 -4

2.3.2.4 Random Variables

(3.6)

A random variable is defined as a real-valued function of F(y) which
exists and is defined for each outcome of a random process. Of course, the
outcomes for many random processes are actually random variables; i.e.,

F(y) =y. Such random processes are considered to be quantitative or numeri-
cal processes, e.g., random voltages, pressures, errors, etc. On the other

hand, random processes exist which are non-numerical, such as the tossing of
a coin where the outcome is either a heads or tails. However, it is possible
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to define a random variable for this random process by assigning numbers to

the outcomes or by defining the random variable to the number of heads in m
tosses of a coin, etec.

The importance of the concept of a random variable lies in the fact that
many of the arithmetic, algebraic and analytical operations which are defined
for real-valued functions are meaningful for random variables, whereas they
are not for the outcomes of all random processes, Thus, additions, subtrac-
tions, multiplications, transformations, etc., are applicable to random
variables.

In general, if y possesses statistical regularity, then the random vari-
able F(y) possesses statistical regularity. Thus, F(y) is generally specified
by a pdf which is derived from that of y. The derivation of f [F(y)] from
f(y) is, in general, not a simple transformation, except in the simple case
of F(y) = ay for which f [F(y)|= a - f(y), where a is a constant. However,
the expected values of random variables are usually required, and the pdf of
F(y) is not required since the expected value of any random variable F(y) can
be determined from pdf of y as follows:

£[F4)] _=/:'(.‘1J F(y)dy

where E denotes "expected value," The conditional expectation of F(y), given
8, is defined as

E[F(j)/g];_a[,c(j) f(g/e)dj .
2.3.2,5 Statistic

A statistic is a known function of a random sample of observations of a
random process whose outcomes are random variables, It follows that a sta-
tistic is a random variable; however, a random variable is not necessarily a
statistic. For example, in the case of a Gaussian random variable y with
unknown mean value 4 , the function y - &4 is a random variable; however, it
is not a statistic since u is not known. On the other hand, y - c, where ¢
is a known constant, is a statistic.

The important difference is that a statistic is defined as a known func-
tion of a random variable sample set Y which does not contain any unknown
elements. Thus, a particular sample Y specifies the statistic. Of course,
statistics are not unique since many known functions of a random variable
sample can be defined, In general, the set of statistics defined for the
random variable sample set Y will be denoted by

T(Y) =[T2(¥), T2(¥), T3(Y) .... ],

A statistic represents a transformation of the sample set Y from the
space of random variable observations to the space of statistics. The trans-
formation is not unique for a given statistic. For example, a statistic can
be the simple linear sum of random variable observations in which case many
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different sample sets transform into the same point in the statistic space
(i.e., various sample sets can yield the same numerical value of the statistic ),

The conditional expectation of T(Y), given 6, is determined from the
conditional joint pdf of Y, i.e.,

E[ 7¢vye] = JT(V)F(v/e)dY
Y
where the integral is m dimensional and must be performed over all y in Y,

2.3.2,6 Complete Probability Density Functions

In the consideration of parameter estimation, a question often arises
concerning the uniqueness of the expectation of a random variable., This
question can be resolved in terms of the property of completeness of pdf's.

A random process, y, is specified by its pdf, £(y/6), which is a function of
©. For any interval of ©, A< © < B, f(y/0) defines a family of pdf's. The
following definition defines a complete family of pdf's.

DEFINITION: let f£(y/@) > O for any interval of a < ¥y < b and zero
otherwise and let F(y) be a random variable defined on the interval a< y < b
and independent of 6.

Now, if

£lreq)] = o (A<6<8)

if, and only if, F(y) =0 for a <y < b, then f(y/6) is defined to be a com-
plete family of pdf's. Conversely, if there exists some F(y) which is not
identically zero in a < y < b for which E [F(y)) =0 for all A « ¢ < B, then
£(y/e) is not a complete family of pdf's.

It should be noted that a pdf can be complete with respect to certain
parameters. For example, consider the Gaussian pdf, f(y/« , &'2), to wit,

F(4/04,0%) = g op | - 5o (7-2)% ]

If the mean value « is known, then any random variable F(y) which is defined
as an odd function about # has zero expected value and, hence, f(y/«, <) is
not complete with respect to o2 for known «#. On the other hand, if & is
unknown, then f(y/« , 0<) is complete with respect to both & and 02 since
the only F(y) which has zero expected value for all « and ¢ 2 is given by
F(y) 2 0. Of course, f(y/«, ¢<) is complete for known o¢~< if « is unknown.

The use of completeness can be demonstrated by considering f(y/«, 0-2)
for -4 =1, Let F(y) = y2; then E [F(y)] = E(y°) = wu<_+ 1. The property
of completeness determines that there is no other F(y) # y2 such that
E(F(y)] = «% + 1. For if E[F(y)]) = E(y?), then E[F(y) - y3] = 0. But
since £(y/u , 1) is complete, F(y) - y° must be identically zero for all y;
i.e., F(y) = y°. Thus, since f(y/u , 1) is complete, the E[F(y)]is uniquely
determined. '
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2.3.,3 A Mathematical Description of Random Processes

In order to promote an understanding of parameter estimation with respect
to the particular problems of interest, a mathematical description is discussed
in this section which describes, in general form, the set of random processes
to be considered.

2.,3.3.1 A General Form

For present purposes random processes will be defined in general form as
follows

# = Fla)r g (3.7)
where

Yy = mx 1l Observation vector

@ = nx 1l Parameter vector

F = mx 1 Transformation vector

e = mx 1 Noise vector

Equation (3.7) defines a random process as a general non-linear function of
the parameter vector ©. The general linear case is defined by F(8) = AQ;
i.e.,

4 = Ag /¢ (3.8)

where
A = mxn Transformation matrix

The foregoing terms have the following properties.

e Is always random

e Is either random or non-random
F Is always non-random

A Is always non-random

T Is always random

Thus, for present purposes, a random process is defined as the linear sum
of two processes F(©) and e. The process g is always a random process., How-
ever, since F is always non-random, the process F(8) is randon if, and only
if, @ is random., It is extremely important to note that for non-random @,
the process F(©) possesses deterministic regularity. Furthermore, the process
F(8) possesses conditional deterministic regularity, given ©; i.e., for a par-
ticular @, F(©) is deterministically regular. Of course, y is always random
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since ¢ is always random.

A more detailed discussion of the general form of random processes is
given in subsequent sections. However, at present it is advisable to discuss
some physical interpretations of the random process as defined herein.

2.3.3.¢ Some Physical Interpretations

In the general form of a random process, the vector © represents the
essential unknowns which are to be determined. For example, in the linear
case, & represents the "state" vector which is commonly used to denote the
position and velocity deviations of a spacecraft from a reference trajectory.
However, in the present definition @ is quite general and can represent other
parameters such as the coefficients of a polynomial fit to data (as in the
case of least-squares curve fitting) or the bias arising from a random pro-
cess, etc,

The vector F(@) represents some observable or measurable physical
phenomena which is dependent on ©. In general, F represents a set of known
non-random functions of @, In the case where 6 represents spacecraft position
and velocity deviations from a reference trajectory, F(8) usually represents
deviations of space measurements from the reference. In this case, F(9)
usually becomes AG where A is the matrix of first partial derivatives of space
measurements with respect to spacecraft position and velocity. It should be
noted that, in general, F is not necessarily constant; e.g., F can vary as a
non-random function of time, For example, © can denote trajectory injection
deviations which are propogated into subsequent values of trajectory devia-
tions as a function of time. In such case, F(8) is a function of a time-
dependent transition matrix,

The vector e represents errors in measurements of F(8) or, equivalently,
the uncertainty in observations., If the errors in measurements were not
present, then,theoretically, the parameters 8 could be determined directly
from the inverse of y = F(8); i.e., for ¢ = 0, © = F~1(y) where F~1 exists
and y is an adequate set, However, in the general case, e is present and @
cannot be determined from Efl without the risk of large errors in the results,
€.8., in the linear case where y = AOQ + g, A‘ly =0+ a1 e and the error in
taking @ = A‘ly is A-1 e which could be large depending on the nature of I
and e.

The vector y is a random variable vector which represents the random
process in general, A particular value of y represents a particular observa-
tion of the random process. The totality of observations comprises a random
sample set Y which contains all observations of the random process. The vector
¥ and the set Y can be interpreted in two equivalent forms. In general, the
totality of observations can be taken in a time sequence of simultaneous
observations of the elements of y, 1In this case, Y contains the set of par-
ticular observations of y, i.e., Y = (¥, Tyos eeees xm). However, the vector
¥ can represent the totality of observations with the elements of Y as sub-
vectors of y, in which case Y and y are the same set. The particular inter-
pretation of y is selected on the basis of convenience for a particular
problem,
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2.3.3.3 An Ensemble of Non-Stationary Random Processes

In the general form of a random process, as defined in equation (3.7),
the term F(8) is dependent on © and can vary as a function of time. Thus, the
general form of random processes actually defines an ensemble of non-station-
ary random processes, Each particular value of © defines a particular member
of the ensemble of random processes defined. Since F(8) can vary with time
for any ©, the ensemble members are non-stationary; however, if F(©) is inde-
pendent of time, i.e., constant for all particular 6, then each member of the
ensemble is stationary, assuming that the random process e is stationary.

Two important aspects of the ensemble of random processes should be
strongly emphasized: First, it is important to note that when a set of obser-
vations are made of a random process, a particular member of an ensemble is
observed and determining @ is equivalent to determining which member of the
ensemble has been observed, That is, during a sequence of observations, ©
is a constant which, of course, is unknown. The object of making observations
is to determine ©, if possible. It should be noted that for each ensemble
member, the deterministic regularity resulting from F(@) is reflected as
statistical regularity in the observations y = F(@) + e.

_ Second, it is also important to note that although € is an unknown to be
‘determined, certain information is often available concerning the behavior of
©. Indeed, © is often a random variable with known pdf. In such cases, it
is p0331ble to determine the probability of occurrence of particular members
of the ensemble, In general, members of the ensemble occur with various
probabilities and certain members can occur with zero probability. If @ is a
random variable, then the ensemble of random processes is specified by the
joint pdf of ©. Generally, © exists over some parameter space, (0., and the
pdf of © determines the probability of occurrence of a particular @ in the
parameter space {1,

2.3.4 Rudiments of Parameter Estimation

2.3.4.1 A Basic Description of Parameter Estimation

The problem of parameter estimation can be described most succinctly in
the following manner:

1) A random process exists which is a function of or characterized by a
set of parameters.

2) The parameters are not explicitly known nor can they be directly
observed,

3) Knowledge of the parameters is required to perform some particular
task.

L) Observations of the random process can be made which yield a set of
sample data,

5) The set of sample data provides the only means for determining the
required parameters.
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The foregoing is equivalent to the method of inductive inference, which
is referred to as statistical inference when random processes are involved,
That is, from a particular set of observations, conclusions are drawn which
concern some general aspects of the process under observation. The method is
depicted in Figure 2.3.1. It is a basic theorem of formal logic that the
method of inductive inference is intrinsically uncertain., It is not possible
to make generalizations with certainty on the basis of a set of particular
observations. The situation is apparent when random processes are involved,
Nonetheless, useful inferences can be made if the procedures involved are
judiciously formulated, This is the general concern of the theory of statis-
tical inference and the particular concern of statistical decision theory.

In the general theory of statistical inference, the basic problem which
is considered, is that of making a decision under existing conditions of
uncertainty. Two types of uncertainty are recognized: randomness and the
lack of knowledge concerning the state of nature, It is required to make a
decision concerning the state of nature, and it is desirable to make the
"best decision possible" under the circumstances., In effect, the decision is
an estimation of the state of nature; thus, if the state of nature is deter-
mined by a set of parameters, the decision problem of the parameter estimation.

The foregoing situation is completely equivalent to the problem of deter-
mining the set of parameters © of the random process y = F(8) + e. The
uncertainty due to randomness is equivalent to the errors in measurements or
observations, denoted by e, and the uncertainty due to the unknown state of
nature is equivalent to that of the unknown parameters 8, Of course, "best
decision possible" is equivalent to "best parameter estimation possible."
Thus, the problem of parameter estimation becomes that of determining esti-
mations of © from a set of observation data which are "best" with respect to
some appllcable criteria, Some comments concerning the general philosophy
are in order,

At the outset (before observations are taken) there exists uncertainty
about the parameters 8. However, some knowledge of © can exist a'priori since
the pdf of @ is frequently known; i.e., the probability of occurrence of a
particular © can be known a'priori. Thus, in general, complete uncertainty
concerning 6 does not exist at the outset. Nonetheless, in each particular
case, it is required to know @ with less uncertainty on greater certainty (as
contrasted with absolute certalnty) than exists atpriori, The statistical
regularity of the process, which is characterized by the parameter @, is
present in the observations of the process; hence, the observations must con-
tain intrinsic information concerning the parameters ©. Thus, the object of
parameter estimation becomes that of extracting information concerning € from
the observations thereby decreasing the a'posteriori (after observations)
uncertainty of © or, equivalently, increasing the a'posteriori knowledge of 6.
It is interesting to note that the problem is identically equivalent to the
problem of information transmission and reception in the presence of noise,
which is considered in the general theory of statistical communication. Indeed,
the problem is one of extracting information concerning @ from the observations
Y in the presence of measurement or observation error 6.
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In general, it is not possible to determine the parameters © with abso-
lute certainty (unless an infinite number of observations are maae, which is
generally not practical); thus, some residual or a'posteriori uncertainty must
be expected., The concept of "best parameter estimation possible" is equival=-
ent to the minimization of a'posteriori uncertainty or the extraction of
maximum information from the observations.

In general, parameter estimations are derived from operations which are
performed on the set of observations or random sample data. These operations
are defined as estimators and are denoted herein by & . The general procedure
of parameter estimation is depicted in Figure 3.2. In the following section,
estimators & are discussed in further detail.

2.3.4.2 Estimator

In general, an estimator & is a known function of statistics (see Section
2.3.2.5) which provides an estimation of a parameter ©., Of course, an estima-
tor is a random variable; in fact, estimators are a subclass of the class of
statistics. (That is, an estimator is a statistic but a statistic is not
necessarily an estimator.) In many cases the difference can be trivial; how-
ever, in the consideration of parameter estimation, it is extremely important
to consider all possible known functions of random samples, i.e., statistics.
The ambiguity can be resolved by considering a statistic as an admissible
estimator if its conditional expectation, given @, contains @ explicitly.

That is, if E(T/@) = © + b(®), then the statistic T is an admissible estimator
5 for 6, where b(@) is some function of ©, which is referred to as estimator
"bias.," It follows that

£(8e) =6 + 56(6)

Thus, in general, admissible estimators can contain a "bias" term b(8) which
is a function of 6., However, all admissible estimators are not necessarily
desirable since estimator bias, b(®), whereas admissible, is not necessarily
desirable in particular cases,

It should be noted that the term "estimator" denotes a function, whereas
"estimation" or "estimate" generally denotes a particular value of an esti-
mator as a function of a particular random sample.

There are two major objectives in the problem of parameter estimation.
The first of these objectives is to determine parameter estimators & with
minimum uncertainty; and the second is to appraise the estimator's uncertainty
in terms of its magnitude and behavior as a function of significant factors;
e.g., sample size, random process characteristics, etc, Estimator uncertainty
is usually measured by estimator error, which is discussed below.

2.3.4.3 Estimator Error

In general, parameter estimations are inductive inferences and as such
are always subject to uncertainty, The primary objective of parameter esti-
mation analyses is to determine estimators with minimum acceptable uncer-
tainty. In order to approach this problem on a mathematical basis, it is
necessary to express estimation uncertainty in explicit mathematical form.
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Thus, with each estimator there is associated an estimator error, denoted by
€ , which is defined as the linear difference of a parameters and its esti-
mation, to wit,

€ = -6 (3.9)

The problem of parameter estimation can be considered as equivalent to an
analysis of estimator error. Thus, at the outset, several general properties
of should be noted. First, estimator error is a function of the sample data
set and the parameter ©; i.e.,

€,0) = 8[1(¥)] -0 (3.10)

Second, since € is a function of random variables, it is a random variable and
must be analyzed on a statistical basis, i.e., € is specified by determining
its pdf, f(e ). Third, since € is a function of Y and @, f(€ ) is a function
of £(Y) and £(0), to wit,

F€) = GLFY), £(O)] (3.11)

Fourth, the particular form of f( € ) is dependent on the particular estimator

§[T(Y) ] .

In the analysis of parameter estimators, primary emphasis is placed upon
the statistical behavior of estimator error. This behavior is dependent upon
the characteristics of the random process (especially as a function of the
parameters being estimated) and the particular form of the estimator as a
function of the sample data., The ultimate objective in parameter estimation
is to determine parameter estimators which yield acceptable behavior of the
estimator error. Of course, suitable statistical properties of estimator
error must be used as the object of analysis. The most significant properties
are the first moment, first central moment, and second moment, which are
usually referred to as the mean value, the variance and the mean squared value
of estimator error, respectively. These quantities are defined below:

(1) Mean value of € = €
E = E(€)
=£/€ £(€) de
E(3) - E(®)

= g -0
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(2) Variance of € = V(€)
v(e) =E(€- &)
= [(e- &) 1(€)a
¢

(3) Mean-Squared Value of € = €

& = E(e%)

/ c? £(€) de

(3

The mean value of € is commonly referred to as estimator bias and if

€ =0, then ¢ is considered unbiased. The most significant aspect of esti-
mation error is the effect of € on V(€ ) and €2, This effect is stated below.

1l

If for all ©, the conditional expectation of € , given ©, is zero, then
the mean-squared value of € is equal to V(€) and the estimator variance,
V(6 ). This can be shown in the following manner @ denotes expectation with
respect to © and § g denotes the conditional expectation E(& /92/:

€ = EjE(e/0)

E(€/0) = -Se— G
Thus, if E(€/6) = O for all 6, then € =0 and € = V(e ). That €2 = V(&) for
E(€/0) = 0 is shown below:

€% = £, £(€%/0)

£(e¥8) = £[(s-06)/e]
= £[(8 =8, + &,-0)/6]
- E{[(6-& Fr2(5-8,)(5 -0)+(5-0) )/}
- v(&/0) +£ {67 _}9/5;,; 5L +2(86,-66 f/efe/——é"j )]/e}
=V (8/8) +t6* + &5 - 2959%"%{
=V(5/8) + ©2-268, + 52
= V(8/8) * (35 -6)°
E(e¥/8) = \v(8/6) + EZ(€/8)

(3.12)
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The second term is the square of E(€/6) and is always positive, thus,

€?
= V) (3.13)

with equality if E(€/8) = 0 for all o. Therefore, the following is true:
If E(€/8) =0 for all 6, then &2 = V(¢ ) = v(§ ).

it should be noted that E(€/8) = 0 for all @ is a sufficient condition for
€2 =V(€) =V(6). 1In general, the condition is also necessary if the pdf
of © is non-zero from all €. On the other hand, if pdf of © is zero for some
interval of @, then E(€/8) can be non-zero for the same interval of @, and
€2 =Vv(€) =V(6) . This is true because if £(©) = 0 for some interval of @,
then those © in this interval occur with zero probability and contribute
nothing to the exvectation with respect to 8. It should also be noted that
if € =0, then¢€2 =vy(¢); however, it does not follow that € 2 = v(s),
since for § ='© it is not required that E(€/8) = 0,

2.3.4.4 Basic Properties of Good Estimators

The primary motivation for the concept of a "good" estimator is derived
from a consideration of the basic properties of estimator error discussed pre-~
viously. Consider three different estimators 815 8§, and &4 for a parameter
©. Let the estimator errors for the three estimators be dehoted by €., €

arlli g€ 33 respectively, and assume that they have the following propertles for
a *

E(€,/6) = ©
E(€,/8) = ©
E(€3/O) = €3

V(€)) < V(E,) < V(Ey)

The pdf's of 61, 6, and 83 are deplcted below in Figure 2.3,3,
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Figure 2.3.3: Illustration of Estimator pdf's

Inspection of the pdf's of 61, 52 and &, leads to the conclusion that
b 1 is the "best™" estimator of the three since .}L‘b has the minimum variance of
the three and is unbiased., This conclusion is further substantiated by con-
sidering the mean-squared values of € 1, €2 and €,, From equation (4.3)
and the specified properties for €3, €, and €4 il is seen that
c2 cZ =2
€ s < €, < € 3
Thus, it would again be concluded that &3 is the best estimator of &j, 6o

and 63, since its estimation error has the minimum mean-squared value of the
three considered.

In the foregoing situation, there is no problem selecting the best esti-
mator of the three considered. However, in the general case some difficulty
can arise. Consider a fourth estimator &, whose variance ig less than that
of 6, but which has a non-zero mean valuej i.e., E(€,/0) = €, # 0, Of the
four estimators &, is the one with minimum va.ria.nce;l‘however, it is not
necessarily the oné with minimum mean-squared error._ That is, although

——

V(€,) < V(€1), it is not necessarily true that Ei < €% since €4% O.

Thus, in the set of all possible estimators for © the one which has
minimm variance does not necessarily have minimum mean-squared-error. How-
ever, if the estimator with minimum variance also has zero mean value for all
© then the minimum variance estimator is also the one with minimum mean-squared-
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error in the subset, But, the minimum variance estimator in this subset is

not necessarily the minimum mean-squared—-error estimator of the total set of
estimators.

It is apparent that, in general, some question exists concerning the
selection of a "best" estimator. The final answer is usually dependent upon
the particular problem being considered. Nonetheless, from the foregoing
considerations some properties of "good" estimators can be formulated which
actually classify or define sets of estimators as follows.

2.3.4.4.1 Unbiased Estimators

An estimator is defined as an "unbiased" estimator of © if

£(8/8) = & for allE.

It follows that an unbiased estimator has zero mean-value of estimator error,

1.e”

f(é/@) =0 forall &.
230 ho.2 Minimum-Variance Estimators

An estimator is defined as a "minimum-variance" estimator of @ if it has
the smallest variance of all estimators of 8, for all @,

2.3.4.4.3 Minimum-Variance Unbiased Estimators

An estimator is defined as a "minimum-variance unbiased" estimator if it
has the smallest variance of all unbiased estimators of 6, for all eo.

.34y Minimum Mean-Squared-Error Estimators

An estimator is defined as a "minimum mean-squared-error" estimator of ©
if it has the smallest mean-squared estimator error of all estimators of e,
for all @,

2.3.4.5 loss Functions and Risk

In the previous section, basic criteria for good estimators were based
upon estimator bias and variance, and mean-squared value of estimator error.
Although these criteria are generally acceptable, there always exists the
problem of selection between a minimum-variance and a minimum mean-squared
error estimator when they are different. Furthermore, these criteria lack
generality in terms of total performance or behavior of an estimator. A more
general form of estimator performance criteria is formulated from the follow-
ing considerations.

In the general situation of parameter estimation, there exists more pen-
ality or "loss" which is associated with an incorrect estimation. If this was
not true, then nothing essential could be gained by the efforts of determining
and using good estimators. The loss can be measured in terms of a non-negative
function of estimator error which is a monotonically increasing function of
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estimator error magnitude. Any function of estimator error with these two
fundamental properties is referred to as a loss function which will be denoted
byl(€). Thus, a class of loss function is defined by

I(€) = O for € =0
L(€,) = L(§) for €,= €
e >UE)  for 6|74
L(€) = L(-€)

It is not necessary to restrict loss functions to the class with these
properties, although the class has general applicability. A class of loss
functions can be defined more generally as non-negative, monotonically non-
decreasing with a unique coincident minimum with estimator error magnitude.
Such loss functions allow a cost of measurement to be included and are mini-
mum, rather than zero, for € = 0. Also, constant loss is allowed for an
interval of estimation error € .

0f course, negative loss would be considered as a gain; however, this is
not allowed for non-zero estimator error and for zero error the loss is sim-
ply zero or some minimum., Obviously, there are no unique loss functions of
estimator error; thus, a particular loss function should be selected on the
basis of a particular problem. IB should be noted that "squared-error" is an
acceptable loss function, i.e.,€” = L(e). Others can be as easily defined.

The loss function L(€) measures the loss incurred in making an erroré€
in an estimation of © where it is assumed that some appropriate L(€) can be
defined for each problem of interest. Of course, L(€) is a random variable
dependent on estimator error € = 6 - @, Thus, L(€ ) = L(6§, ©) is a function
of 6 and © and measures the loss incurred in estimating © with 8 . The aver-
age value of L(6, 6) is the loss to be expected in using the estimator & for
6. Expected loss is generally referred to as the 'risk" taken, i.e., the
risk is expected to be lost on the average. The risk in estimating 6 by & is
e function of both © and & and will be denoted by R(§, ©). It follows that

R(5,0) = [L[8(v),0]F(v/8) oY
Y

Risk or average loss provides a rather general criterion of estimator
performance, Of course, risk is always % function of the particular loss
function, which includes squared-error €<; therefore, risk includes mean-
squared error € 2 as a particular case. In general, it is desirable to mini-
mize the risk involved in estimating € by & . Thus, for a particular loss
L(6, ©) it is desirable to select an estimator 6 which minimizes the expected
loss or risk in estimating ©. This leads to a class of estimators referred
to as minimum risk estimators which are defined as follows.

2.3.4.5.1 Minimum Risk Estimators

An estimator is defined as a "minimum risk" estimator for the loss func-
tion L(§, ©) if the expected loss or risk R(§, ©) is a minimum for all e.
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There is no argument concerning the desirability of minimum risk esti-
mators; however, difficulty frequently arises in finding such estimators.
It is usually possible to find an estimator which has minimum risk for certain
@ but which does not have minimum risk for other 6. A single minimum risk
estimator does not exist., Such situations are untenable since €& is unknown
beforehand, Thus, two alternate approaches are taken in minimizing risk.
One approach is that of finding an estimator which minimizes the maximum risk.
The other approach is that of finding the estimator which minimizes the
expected value of risk over all €. This leads to the following two classes
of estimators:

Minimum-Maximum Risk Estimators (Minimax)

An estimator is defined as a "minimax" estimator if the minimum risk is
a minimum,

Minimum Expected Risk Estimators (Bayes)

An estimator is defined as a "Bayes" estimator if the expected risk over
all @ is a minimum,

The use of minimum expected risk was first introduced by Bayes and,
therefore, such estimators are referred to as Bayes estimators. The expected
risk is the expected value of R(6, ©) with respect to ©, i.e.,

Eg [R5, 0)] = R[5 (V)]
= J, R(6, ©) £(0) do
where £(©) is the pdf of ©. From the equation for R(§, ©) it follows that

Rls(n] ff/.[sm 6] (v/0)£(0) dyd6

Thus, a Bayes estlmator is one which minimizes R [5(Yﬂ

A general preference from minimax or Bayes estimators cannot be given and
could vary from one problem to another, However, there is an obvious disad-
vantage with minimax estimators in that the © of maximum risk (referred as the
least favorable ©) for which the estimator § minimizes risk can occur with
very small probability; thus, on the average, the minimax estimator can per-
form very poorly. This disadvantage is overcome in the Bayes estimator.
Thus, the Bayes estimator is generally more desirable, That is, the Bayes
estimator makes use of the a'priori knowledge of & available in the pdf of ©
to arrive at an estimator of minimum average risk. Bayes estimation will be
discussed in further detail in Section Z2.3.5.<.

2.3.4.5.2 Estimator Properties Based on Risk
Two properties of estimators are based upon estimator risk., These are
estimator "efficiency" and "consistency." Estimator efficiency is a relative

measure of estimator risk while estimator consistence is a property of rick as
sample size increases, These two properties are discussed below,
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Estimator Efficiency (Relative)

Consider two estimators 63 and 8, with associated risks R(6;, ©) and
R(6,, ©) with respect to a loss function L(§, ©). The relative efficiency,
r(81,82) of 8§, to &, is the inverse ratio of their risks, i.e.,

R
fl<6:182) — M)

R(5,0)
If r(61,82) > 1, then 6 1 is considered a better estimator than 6, and vice
versa. However, it should be noted that r(Sl, 62) is a function of @; there-

fore, r(8y, 63) can vary for different ©. That is, 81 can be better than § ,
for certain © and the opposite true for other values of @.

Estimator Consistency

One fundamental property of a good estimator is that as sample size increases
the risk should decrease and in the limit the risk should approach zero as
sample size m increases indefinitely; i.e.,

Lin Ry (8,020 foran 6

- OO

An alternate statement of estimator consistency is
Lim [o- )
Lim Pros | 6 445,,,<9+A =/ for al

for a arbitrarily small. This statement is referred to as simple consistency.
If the loss function is squared error, L(€ ) = €<, then R (8, ©) =€2, and
the estimator, 6, is termed squared-error consistent if n

Lim Gf,, =0 for all @

m-®
Since €2 = V(8 ) + (6 - §)2, squared-error consistency implies that both the
variance and bias of § approach zero for indefinitely large sample size.
Estimator consistencies, in the previous context, concern behavior for indef-
initely large samples. However, estimator consistence for finite sample size
is equally important. This fact leads to the definition of a uniformly
consistent estimator as one for which the risk decreases uniformly for
increases in sample size, i.e., if R 1(6, ©) < Ry(§, ©), for all @, then §
is uniformly consistent.

2.3.4,6 Sufficient Statistics

In general, an estimator & is a random variable which is used to deter-
mine estimations of a particular 6 from a random sample, The underlying
principle is that the statistical regularity of a random process, which is
characterized by the parameter 6, is demonstrated in a random sample of the
process; thus, information concerning @ resides in the random sample. The
purpose of the estimator is to extract this available information from the
random sample. It should be apparent from the foregoing sections that various
criteria do not directly measure the degree of utilization of the information
available in the random sample. Of course, it is desirable that all of the
available information is utilized by the estimator for ©. It could be strong-
ly argued that estimators which fulfill certain of the criteria discussed
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must utilize all available information; however, such arguments are largely
hueristic, and some question remains. Fortunately, this question can be
satisfactorily resolved by considering sufficient statistics.

The basic argument is that in order to obtain information about © sample
data must be taken from a process which is characterized by ©. Sample data
taken from a process which is independent of © are useless in determining 6.
Thus, if the pdf of a random sample is a function of @, then the random sample
is useful in determining ©; further, an additional random sample whose pdf is
independent of © provides no additional information for determining 6. By
the same argument, if the conditional pdf of a set of data Yy, given a set of
data Y3, is not a function of @, then the data Y, provides no additional infor-
mation of ©., That is, the data Y, given the data Y3, provides no additional
information about © if f(Y7/Yp) is independent of @. This leads to the
following definition for a sufficient statistic,
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Definition: (Sufficient Statistic)

Let Y be a random sample from a process with pdf dependent on &, and
let T be a statistic of Y (a known function of Y). Let T be any other
statistic of Y which is independent of Tg. If, for each T, the conditional
pdf of T, given Ty, is independent of ©, then Tg is a sufficient statistic
for ©.

Thus, it follows by the definition of a sufficient statistic, that the
information available from the sufficient statistic cannot be increased
by a statistic whose conditional pdf, given the sufficient statistic, is
independent of 6. That is, since 3/36f(7T/7Ts)= O, no additional information
is obtained from T, given Tg.

The final conclusion is that estimators which utilize all available
information in a random sample should be functions of sufficient statistics.
(This is the reason for expressing estimators as a function of statistics
in previous sections.) Indeed, estimators are desired which are actually
sufficient statistics. It becomes apparent that if sufficient statistics
can be determined, then they should contain the desired estimators. Fortunately,
it is not too difficult to determine sufficient statistics by making use of
the following theorem.

If Ty is a sufficient statistic of the random sample Y, then the joint
pdf of Y can be factored as follows:

£ (Y,8)= h(T,,8)k(Y)

where K(Y) is independent of 6. The theorem can be proved by the method

of contradiction in the following manner. From the set of sample data Y of
m elements, construct the set T(Y) of m independent statistics. Let each
member of the statistics set have a single-valued inverse(i.e., Y = T-1 (Y))
and let J be the Jacobian of T~1 (Y). Now let f£(T) = joint pdf of T and
£(Y) = joint pdf of the set Y; then £(T) = £ [T-1 (Y)] J.

Assume that Ts is not a sufficient statistic and that £(Y) = h(Tg, ©)
K(Y). Let T; be any other statistic in the set T. It follows that

f(T;) =f Fnar <[ £[r o) gar

(T-T%) (T-75)

FIT,T) = FIT I TdT
s [Tff[rurs)] [ ]
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and T
1(](', )

¢ £(T5)
Now, if
F(¥,6) = h(T5,8) A(¥)

then,

F(Y) =fef{y,a) dé
=A’(>’)é/)(7",)9)a’6
= K(Y) H(TJJG)

| it follows that,

J
| ) = 2 H(T,0)K(T)JdT
SH(T;,0)K(T)JIT

T'(T"-'Tg)

_ M, )T JKy)dT
| H(%5,8)d [ K(Y)dt
T S , T-(Te )

K
r(1T) = 2K
. § K(y)dt
' (%)

Therefore, f (T;/Tg) is independent of ©. This observation contradicts

the assumption that Tg is not a sufficient statistic. Therefore, Tg is a
sufficient statistic if £ (¥) = h (Tg, ©) K(Y). Thus, it is often possible
to determine sufficient statistics by inspection from the joint pdf of the
random sample set Y.

69



2.3.5 Determination of Estimators

In the previous section, various criteria are discussed which can be
used as measures of good estimators. These criteria can be generally classified
as minimum variance and minimum risk. In this section, particular attention
is given to methods of determining estimators of minimum variance and risk.

2.3.5.1 Minimum Variance Estimators
2.3.5.1.1 Via Sufficient Statistics and Complete pdf's

In Section 2.3.4.6 it was concluded that, in order to utilize all
available information in a random sample, an estimator should be a function
of a sufficient statistic. As a corollary, it should follow that estimators
which are functions of sufficient statistics possess certain criteria of
good estimators. Indeed, it can be shown that, generally, an unbiased
estimator which is a function of a sufficient statistic possesses smaller
variance than an unbiased estimator which is not a function of a sufficient
statistic. That is, let Tg be a sufficient statistic for © and let 8-
be an unbiased estimator of 6 which is not a function of a sufficient
statistic. Then, it can be shown that there exists some function of Tg,

8§ (Tg), which is an unbiased estimator of © and which possesses smaller
variance than the estimator §y. Therefore, in order to determine minimum
variance unbiased estimators, it is only necessary to consider estimators
which are functions of sufficient statistics. This is shown in the proof
of the following theorem.

THEOREM - Let Y be a random sample from a process with pdf dependent on 6
and let Tg be a sufficient statistic for ©. Let another statistic T be
an unbiased estimator of ©; i.e., E(T) = 6. Then

(a) E(T/T5) is independent of © and is a statistiec.
() E[E(1/15)} =6
(¢) v [E(T/14)] < V(T).

Before presenting the proof for this theorem, a few comments concerning
its meaning are in order. Part (a) states that the conditional expectational
of T, given T_, is a statistic for 6. Part (b) states that this statistic
is also an unbiased estimator for 9, and Part (c) states that the variance
for this estimator is smaller than that of T. Thus, for the criterion of
minimum variance, the latier estimator is superior to the first. The proofs
are as follows. Part (a): That E(T/Tg) is independent of & follows directly
from the definition of a sufficient statistic. That is, if Ty is a sufficient
statistic, then, by definition, the conditional pdf of T, given Ty, is
independent of 6. Moreover, f(T/Ts)is a function of the random sample Y
and the conditional expectational E(T/Tg) is a known function of Y; thus, it
is a statistic. Part (b): Since T is an unbiased estimator of ©; i.e.,
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E(T) = 6, it follows that
E(T) = [TF(T;0)dT =&
T

= J[THT T 0)dT TS
s 7

Now, since Ts is a sufficient statistic
FC7,75;0) =F£(T/T5) h(7s;0)

where h (Tg; ©) is the marginal pdf of Tg. Thus,

£(7) = [ TG A (Ts; 0T T
wT

/s

=/ [[;(7/73)0/7} h(T;8)d7s

-[|en) |n(ns0) 9%

Therefore, the conditional expectation of T, given T_, is an unbiased
estimator of © if T is an unbiased estimator of ©. Part (c):

To prove
this part, let8 denote the unbiased estimator of © which is E(T/Ts); i.e.,
8§ = E(T/Tg).

V(T) = E[(T-62] = £[(T-5) f(a—e)]?'

= £ [(5-0] +E [(7-8)* )+ 2£ [(7- 6)(5 - )]

It can be shown that the last term is zero, to wit,
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£[(r-8)(s-6)] =//(r- 5)(§-8)F(T,T,58) urd7;
7 T

=/[/(r—s)f(r/r,)ar](s-a)/,(z,;m a7
LT

However, the term in brackets is zero since § = E(T/Ts), thus E [ (T - 8)
(§ -6)] =0 and

V(T)

Ef(s-0)] +£[(7- 5)?]

V(T) V(§) f[[(/‘—é)z]

2]

Since T $.6, the second term is always positive, and it follows that

v(T) > v(s)

This theorem establishes the following: The set S of unbiased estimators
can be divided into two subsets, S, and S,, which contain, respectively,
estimators which are functions of sufficient statistics and those which are
not. Estimators which are minimum variance unbiased estimators are found
in S., only. Of course, there can exist several estimators in S, and a
prob}em exists concerning the determination of the estimator with minimum
variance in S;. However, if the pdf of the sufficient statistic is complete
(see Section 2.3.2.6), then the unbiased estimator is unique, and the set
51 contains a single' element which is the minimum variance unbiased
estimator. This can be seen from part (b) of the previous theorem (where
E(T/Tg) is shown to be an unbiased estimator of ©). The expectation of
E(T/Ts) with respect to Tg is

5[5(7/5)] =ff(7/5) ACT38) 75 = 6

If the pdf of T_, h (Ts; ©), is a complete pdf, then E(T/Tg) is the unique
unbiased estimagor of O, which is a function of the sufficient statistic

Ts- And, by part (c) above, E(T/Tg) is the unique minimum variance unbiased
estimator of ©.

The foregoing will be illustrated with the following case. Let the
random process of Section 2.3.3 be the particular case of y = 6 + e, where
e is Gaussian with zero mean and variance 1. Let an independent random
sample of size m be taken for estimating 6. Thus, the joint pdf of Y becomes
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FCOY) = (ZU)-E@W[MZ-’ g(ji~9)2]

-
= (21r) zm[-;’(c g;-276 +m62)]

where T is a statistie, i.e.,

m
7 = Z 342
<=1

Now T can be shown to be sufficient since £(Y) = h(TS, 6) k(Y) (see Section
2.3.2.5); to wit,

FCY) = (Zn)"??w»qo[,t (7~ _2@9)9] e ["El i g‘:z)

It immediately follows that T is a sufficient statistic T for 6. The pdf
of Tg is also complete, since it is Gaussian with mean value mo and variance
m. Therefore, i} follows that the unbiased estimator of ©, which is a
function of Tg:=2 9z , is the minimum variance unbiased estimator of

©. Of course, “'§:/m7s; is this estimator since E(6 ) = © and is a
function of Tg.

2.3.5.1.2 Minimum Variance Via Least Squares

The method of least squares is one of the most common methods of
estimation providing linear estimations of parameters for a linear system
(by minimizing the sum of residuals). If the random sample set is independent
then the linear least squares estimations become linear minimum variance
estimators. This can be shown as follows:

2

Let 4 = A 9 + e where an estimator & for 9 is desired, given y. The
least squares estimator &g minimizes the scalar product of the residual
vectorV =y - 4 § 1ss i-e.,

) T - T -
bY (¥ V)= é%“ (%"A—él.s) (?'A‘S}.s)—o

-L8

where the superscript T denotes transpose. Alternately,
T :
A (g -A £LS) =0
7 T
AAS, = A 4

Thus, the least squares estimator is
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S5 =(AA)"Ay ~ 94

where

The expected value of &g is

E(8,)= 9Ag rpe(e)
(AA)"ATAG * @£ (e)

SEGOREA

]

£(8.5)

Thus, if the error vector e is unbiased, then the least squares estimator
& 15 s an unblased estimator of 6. The covariance matrix of éI_S is
given by

CW(5,__;) = (égs - ‘—S—/_.s)(515 - 51.5)7
(85-85)= (94 -9 -6 2)
9(e -¢€)

Thus,

v (8,,)= Qe (e)q

If the random sample is independent, then COV (e) = 021 where 02 is the
variance of the vector e. In this case, COV ( & 15) = o2 @l = o2 (ATa)1,
Consider another estimator § My which has minimum variance and is not the
least squares estimator §1g; i.e., let

- =C;

CAB »cCe

where CA = I and C is the linear minimum variance estimator for ©. Thus,
cov ( 8 ymy) =o=2 CCT. Now consider the difference of Q and C as follows:
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€-9)(c-¢)7

CCT-0Cc-CQ7+9g7

CCT=(AA)ATCT-CA(AB) ™+ pa(ATA)™
CCT-(RA)" ~(AA)" +(AA)"

CC?’_‘ (A7A)"/

Thus,

CC7 = (AA)" #(c-)(c-¢)T

and

cov(§,,)= 03CC7= 02(AA) . o2(Cc-Q)(C-9)7

CoV(s, ) * of(c-9)(c-¢)7

"

Now, in order to minimize the variance of § My» which is the trace of COV
(8 yy)» it is necessary to take C = Q, therefore,

ég?u" s

Thus, if the random sample is independent, the least squares estimator is
a minimum variance estimator; also, if the vector e 1s unbiased, then the
least squares estimator is a minimum variance unbiased estimator.

2.3.5.1.3 A Lower Bound for Estimator Variance
In the previous sections it was tacitly assumed that unbiased estimators
are desirable, which is not necessarily a valid assumption; therefore, it is

informative to investigate the effect of estimator bias on a general basis,
if possible. This investigation is possible through an inequality
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of estimator variance as a function of estimator bias. Let § be an estimator
for 6 which has the bias b(6); i.e.,

E(8) =6 +b(0)

If 6 (Y) is a random variable of an independent random sample Y, then it
can be shown that

[/+3 6@9)_]2
mE[ 2 tog Fig/e)]°

where £(y4/6) is the pdf of the random process and m is the number of elements
in Y. The estimator variance inequality follows from taking the partial
derivative of E(8 ) with respect to 0, to wit,

E(S) =6 + b(O)

vié,8) 2

:/scy)f(Y/e)dy
Yy
2 £(8) 3
:;‘2;—- =/ 4 Y b(@Q

2 ;39/5()’)[()//9)0')’
Y
= E(8)~ [50) 5 F(y/@) oy
Y

assuming that the interchange of order is permissible. Since, for the
random sample, Y,

Aye) = [T £(y/e)
it follows that
a%f(Y/a) = s(Y) F(Yp)

where
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Z";%, dog £Csife) = Y 4:0Y) |

L=t

Thus,

/# a% 6(8) =y/s(>')5(v) F(y/e)dy

=£(85)

However,

£fa;N] = e[ & Car(a/e) ]
= [s% #ly/e)dy,
Je
= 329(/) =0
Thus, E(8, S) is the covariance of § (¥) and S(Y); it follows that
1t 2 b(e) = cov [80Y) S(V)]

Using the inequality of covariance, i.e.,

{cov [s(V),so’)]}zg vsm] v [sm]

it follows that

V(&) = @@2
v[.s(y)}
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But, V [ S(Y)] is simply the sum of variances for each s;(¥); thus,
v[s0)])=me[afY)
2
v[s0)] = me| & g Feyre)]

Therefore,

For constant estimator bias, independent of 6, the estimator variance
bound becomes

mE [éelgf(;/e)]z

v(é,8)=z

Tt is generally desirable to achieve the lower bound for estimator variance.
It is important to note that since the variance bound was derived from the
covariance of & (Y) and S(Y), the lower bound occurs for & (¥), (& (Y) is
some linear function of S(Y) ).

At this point, it is illustrative to check the minimum variance unbiased

estimator derived in Section 2.3.5.1.1. The pdf for y was
fys6) = L picy-)f
Yazm
hence,

Loy Fy/o) = [7’40‘7(2”) —5’(5—9)2]
Solepy/)= g0

£]3 tfty/e)| =£(y-0)°
= V(y) =/
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Thus,

/
Vis) = 5 -

Of course, this is the variance of
,
§=mZ i
¢z

for £(4/6) with variance 1. It is easy to show that if the variance of
is o< instead of 1, then the estimator variance bound becomes

> 0%
v(s) z o

And the lower bound is again achieved by the minimum variance unbiased
estimator

7

£=1

5=

L
m
2.3.5.2 Minimum Expected Risk Estimators - Bayes
2.3.5.2.1 Bayes Function - A'Posteriori Risk

The Bayes estimator, § for ©, is the estimator which minimizes the

expected value of risk for some loss function. (See Section 2.3.4.5.) That
is, a Bayes estimator minimizes R [ 8 (Y)] where

?[S(Y)] :e/y/l [S()’)J 8]f(}79) £8)dy e

- VA [ efz [501),6] #(w0) 1) o) oy

Of course, the estimator which minimizes the inner integral is the Bayes
estimator. The inner integral can be reduced further in the following
manner. The produce £(Y/6) £(6) is the joint pdf of Y and ©; i.e., £(Y, ©)
= f (Y/6) £(6). The marginal pdf of Y, f(y), is given by

1Y) = [F(n0)08
&
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The conditional pdf of 6, given Y, £(6/Y) becomes

£(Y,8) _ £(v/0) £(6)
y) )

Thus, the expected risk R {S(Y)] can be written as

P[s(Y)] =/ /z[sw),e]f(a/y)de £(Y)dY
y )

f(ery) =

- fa[s)snay
y

where B [6(Y)] is referred to as the Bayes function or the a’posteriori
risk. This function is given by

B [5()')] :/L[é(y), o] £(6/v) 46
4

Thus, a Bayes estimator minimizes the Bayes function or the a'posteriori
risk. That is, a Bayes estimator minimizes the risk in estimating © given

a particular sample set Y. The minimized average risk is the expected value
of B [ 8(Y)] over all Y.

The procedure for determining a Bayes estimator is, generally, that
of finding the estimator 8 (Y) which minimizes the integrand of B [8 (Y)]
for all O, i.e., the Bayes estimator minimizes the product L {6 (1), 6]
£(0/Y) for all 8. Of course, a Bayes estimator is dependent on the pdf's
of the random process and the parameter ©; hence, a Bayes estimator utilizes
the a priori knowledge of 6. Moreover, a particular Bayes estimator is
dependent on the particular loss function used. The determination of a
particular Bayes estimator is illustrated in the following example.

EXAMPLE - Bayes Estimator

Consider a scalar random process similar to that considered in Section
(2.3.5.1.1); i.e.,

lj: e+e

where e is Gaussian with zero mean and variance of unity. Thus,

FCyre) = ZF’” e 3 (y-6)*
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Further, let 6 be Gaussian with zero mean and variance (r?, i.e.,

/ o
£(6) = g7 & 2°°

Now, let an independent random sample Y of m elements be used to estimate
6. The following results are obtained for £(Y/6), £(Y) and £(8/Y).

i
2

e [-35 (g - o]
:(zn)'?m[‘z’(é jf’”g, i *”’92)]

(o) =(2m)

where
= "o |- 2-/(5 ~26 +mo?)]
c =(2,,)~'/z , 5:‘5 Zg ond 7:25‘7‘.
thus,
£03,6) = £ (v/8) #(6) = %m},xf{-z’[s -26 T +(m+ 0—12)92]}
- -f‘:m% (-2 s]ewi-5 | éz”e‘”f%]}

"
iy
3
i; *
i
N
||
W
[
x|~
N
S
|
NI~
—~
x
~—
—
©
}
!
—l
N
)

Also,
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:%W{*é —-,E} {.‘a‘ [9"7(]}
i - Z ow{4ls-71} 6
L 2
wom - 582 (w40l ]

Considering the loss function as squared error, i.e., L(§, ) =

(8 -6)2, B [8 (Y)] becomes

L
2

8[s(y)= [(5-6)*4(6/v)d8
é

- %ﬁ{&—e)zw{—éﬂ)[@ -g ]} do .

Expanding and integrating,

zsr / T\
B[s(y)] = &°- £ (%)
Using the calculus of variations,

28 _ o 2T -
35—25 ZK —0 .

Thus, the Bayes estimator 6z is

™Ma

7 _
53-’<‘m+-é-:2£ J4

9

This estimator is seen to be a function of the sufficient statistic T.
Further, the Bayes estimator is seen to be different from the minimum
variance unbiased estimator derived in Section 2.3.5.1.1. The two estimators
are listed for comparison.

1
-

™

'™

: /Hno~2
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V-Z
/unrz

i)

Y. Z Yi Bayes

1

S

o - a‘Q minimum variance unbiased

It is seen that the two estimators can be significantly different for
small samples, though for indefinitely large samples they are approximately
equal. Strictly speaking, if moe2> > 4 , then &, =< S, . In general,

8
m 02
8y = —
8 emez N
Thus,
855< 8&m
For the case where m o~2 = 1, 85 = 2 8 .. It should not be surprising

that the Bayes estimator tends to be smaller than the minimum variance
unbiased estimator since use has been made of the pdf of © in deriving the
Bayes estimator.

It should be noted that the Bayes estimator is a minimum mean-squared
error estimator since a squared error loss function was used. It is also

noted that the Bayes estimator is biased since the conditional expectational
of 5 is not o, i,e.,

m o2 )
£(55/6) ‘(/fmmz
Finally, it should be noted that for ;-*— 3 , i.e., a nearly uniform
distribution for 6, 8§ B = § y regardless of the sample size m.

2.3.5.2.2 Minimum Mean-Squared-Error

In the previous section a Bayes estimator was derived for a particular
case by minimizing the a’posteriori risk for a squared-error loss function.
This procedure determined the minimum mean-squared error estimator. It
would be desirable to determine the Bayes estimator in a more general form.
Fortunately, it is possible to determine a more general solution to the
minimum mean-squared-error estimator which precludes some of the detailed
steps involved in the method used previously.

Con31der the Bayes function for the squared-error loss function

L( 5(Y), = [6 (Y) - 0]2, to wit,
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a[ 5] ;/[s(y) -6]°#(6/y)d®

Expanding the integrand, B [ & (Y)] becomes
Vi [5(\/)] =/[s%(v)~25(v)6 + %] f(e/y)d6
é

8[8(M)]= 8°¥) / F6/Y)d6 -25(Y) /e F(8)Y) 48 7%9 2 £()y) do
o e e

Now, differentiating with respect to § (Y) and equating the result to zero
yields

M = 6()’%{(9/)/)0’9 -/5’f(5/y)d9 =0
&

28(Y) 5

Thus, the minimum mean-squared error estimator is given by

f6 Fe/v) /&

e

1

s(Y) = é e £(6/v) S8

£(6/Y) 8

9

However, the right-hand member is precisely the conditional expectation of
o, given Y; i.e.,

J(Y) = 5(9/)/) i

This form for the Bayes estimator makes it rather convenient to determine
the Bayes estimator from the conditional pdf of 6, given ¥, if its mean
value can be recognized.

Consider the particular case of the previous section wherein
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£(6/y) - /:::’ W{‘ 7 (K)[6 - 7:-]2}

/ /
L) = ey o) ”“’”{‘zm[e‘ “e/”] }

where

0\2

VI8/Y) =K = T o2

£(8/Y) = _af Zn:: 4i -

]+ Mo

Thus, £(6/Y) is Gaussian with conditional variance V(6/Y) and conditional
mean E(6/Y). Of course, E(6/Y) is the Bayes estimator as derived previously.

It is informative to consider the Bayes estimator on a geometrical basis.
For the case considered above, L [ 8 (Y), 6] and £(6/Y) are shown in Figure
2.3.4(a), and their product, which is the integrand of B [§ (Y) ], is
shown in Figure 2.3.4 (b). For this case it is seen that the Bayes estimator

p%a7e§ the minimm of L [ § (¥), ©] in coincidence with the maximum of
f{e/Y).

In general, the Bayes estimator minimizes the area under the product
of L [ 8 (Y), 6] and £(6/Y), since B [ 6 (¥)] is a minimum. It is seen that
for squared-error loss the minimum area occurs for the minimum of the loss
function being to coincidence with the conditional expectation of 6, given
Y, or the mean of f(6/Y). However, this occurrence does not necessarily
have to be coincident with the maximum of £(8/Y), as it does in the Gaussian
case.
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_1Gw,e) = [s-e]

(a) Squared-error loss and the Gaussian pdf

LS0)-0]%F(6ry)
A

£(6/Y)

(b) Integrand of Bayes a'posteriori risk
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2.3.5.2.3 Bayes Estimator for Convex Loss Functions

In the previous section, it was shown that the conditional expectation
of 6, given Y, is the Bayes estimator for the squared-error loss function.
Of course, other loss functions are possible. Thus, some question arises
concerning the Bayes estimator for some arbitrary loss function. It could
be conjectured that the Bayes estimator for squared-error loss should
possess desirable properties for loss functions similar to the squared-
error loss function. Indeed, it can be shown that the squared-error loss
function is a single member of a set of loss functions which has the same
Bayes estimator.

Consider the set of loss functions which are defined as follows:
Le) =L, fore =0
L(€2) = L(el) for e,.- €,
L(€2) >L (€,) for )€.] > le, )
I(e) = L (-€)
The loss functions are continuous symmetrical convex functions with symmetry

about their minimums L . Let the conditional pdf £(6/Y) be factorable into
a function of Y, f1 (\Y), and a symmetrical function of © and Y such that

£6/Y) = £,(W) £, [0 - g(V)]

where

[0 -90)] =% [9t - €]

Now the a’posteriori risk becomes

B[s(Y)] = [r(8-0)f, 0 fle-g)]de

Taking the partial of B [ 8 (Y) ] with respect to 8§ (Y) yields
38[s(v)] L
28(Y) {(Y)é,g[e -9(1)] [5(5-6)] de

Since L(6 - ) is an even function of § , its derivatives is an odd function;
thus, it is possible to set the first partial of B L8 (v)1] identically
to zero by setting 8 (Y) = g(Y), i.e.,
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éz[e —j(ﬂ]{% L[q(7) —9]} d6 z0

Therefore, the extremum of B [ 8 (Y¥) ] occurs for

5(v) =9(v)

IfrB [8 (Y)) has a unique extreme, then, of course, § (Y) = g(Y) is the
Bayes estimator. Thus, if £, [ 6 - g(Y) ] is unimodal, i.e., has a single
maximum value at © = g(Y), then & (Y% = g(Y) is the Bayes estimator for, all
convex functions L(6 - ©) defined above. Of course, for f(6/Y) as defined,
g(Y) = E(6/Y).

2.3.5.2.4 Determination of Bayes Risk

i Bayes estimator minimizes the a’posteriori risk B [8 (¥) 1, given
a random sample Y. This, in turn, minimizes the expected risk R [ 8§ (Y)] over
all Y. The minimum expected risk for a Bayes estimator is referred to as
the Bayes risk. The Bayes risk can be determined from the expected value of
the a’posteriori risk as a function of the Bayes estimator, to wit,

Rg =/ @(85)#(v)dY
¥

where ﬁB is_the Bayes risk and 8 p is a Bayes estimator for some loss function.
Of course, Rp is dependent on the loss function.

This equation provides the general means of determining the Bayes risk;
however, there are two cases of particular interest. The first case is that
for constant a'posteriori risk; i.e., quite often B (6p) is independent of
tlzes re)mdom sample Y. In this case, the expected value of B( 8p) is simply
B ; i.e.

B/ ’

Rg = [ 6(8)F(V)dY
y

B (85) [F(Iay
y

Rg = B (84)

Thus, for a'posteriori risk (independent of Y) the Bayes risk is simply the
a'posteriori risk B(83g).

The second case is that of a squared-error loss function. In this
case, the Bayes risk can be expressed in terms of the conditional variance
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of 6, given Y. That is,

Ra =//[5e (v)-6]* £le/v) ’(v)de oy
y &

However, for squared-error loss, the Bayes estimator is E(6/Y) (see Section
2.3.5.2.2), and the a’posteriori risk B [ 65 (Y)] is the variance of 6, given
Y; to wit,

£lam]=/e-c(ef V)] #te1v) 46

8[s507)] = v(ery)

It follows that
Ry =y/V(9/v) Y)Y

If V(6/Y) is independent of Y, then, as in the first case,

Rg = V(6/y) = B[& (V)]
where V(6/Y) is independent of Y.
Consider the case previously discussed wherein Y = 6 + e with © and e

Gaussian with zero mean values and variances o€ and 1, respectively. The
conditional pdf of @, given Y, is

m L\ S ..
f(e/y) = (—;—:_z)ze;p{‘é'-(m+ &L‘,_)[G - LZ'—/ Je ]2}
mi

For squared-error loss, the Bayes estimator 8p is E(6/Y), to wit,
2 |
S, = F Gé/Y = L .
s = E(o/V) = T 2 g

The conditional pdf £(6/Y) is Gaussian with mean E(/Y) and variance ¢%/(/+me-2)
which is the conditional variance of ©, given Y. The a’posteriori
risk becomes

88, (N)] = v(erv) - H—f;zm—z
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Tt is seen that B [ 83(Y) ] is independent of Y, therefore, the Bayes risk
for squared-error loss is

— o2
Rg = V(6/¥) =
/+mo2

Tt is seen that

and

EZ(U@*/) < ‘E;(”°)

Therefore, for the problem considered, the Bayes estimator is uniformly
consistent. (See Section 2.3.4.5.)

2.3.5.3 A Comparison of Minimum Variance and Bayes Estimators

In the previous sections, two general classes of estimators are dis-
cussed. These two classes are: (1) minimum variance and (2) minimum expected
risk or Bayes. The class of minimum variance estimator contains the set of
minimum variance unbiased estimators while the class of Bayes estimators
contains the set of minimum mean-squared-error estimators. In general,
these two sets can be disjoint since a minimum mean-squared-error estimator
is not necessarily a minimum variance unbiased estimatcor. That is, biased
estimators can exist which possess smaller variance than a minimum variance
unbiased estimator. The situation can be clearly stated in the following
manner.

In Section 2.3.4.3 it was shown that the mean squared-error for an
estimator generally exceeds its variance, i.e.,

£(€Y8) =V(5/8) *EX(€/8)
thus
€3(s) = Vv(§)

with equality if E(8 /6 = 6 for all ©. In Section 2.3.5.1.3 it was shown
that a lower bound exists for the variance of an estimator; i.e.,
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Immediately, a question arises concerning the effect of estimator bias.

It is seen that the lower bound for estimator variance can be smaller
for a biased estimator than for an unbiased estimator. That is, for an
unbiased estimator, the numerator in the variance bound is unity. However,
for a biased estimator, the numerator in the variance bound can be either
greater or less than unity for positive or negative bias, respectively.
This follows since the denominator of the variance bound is unaltered by a
particular estimator and is primarily dependent on the pdf f(Y/6) of the
random process and the sample size m.

Thus, if it is possible to achieve the variance lower bound with each
of two estimators 6., and &, which have negative and zero bias, respectively,
then the biased estimator & 1 will possess smaller variance than the unbiased
estimator §,. Therefore, although the mean squared-error of 61 is greater
than its variance, it is still possible that the mean squared error of &
is less than that of &5, which is unbiased. That is, let E( & l/Q)= Ko
and E( & 5/6) = 6, then

) KZ
& -
(6/6) = >
/
V(s
(5/8) = >

where

0 |35 tog stypel]

If &, has negative bias K < 1 and if &, and 8, both achieve their lower
variafice bounds, then

vis,) > v(§,)
Also,
€¥s,) = VvI(S,)

e3(s,) > v(s)
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From the foregoing it is entirely possible that

€%(s,) > €2(8,)

Indeed, this can occur, as can be seen in the particular case considered
in the previous sections wherein

79/9) = g 2w |~ 4(5-6)°]
f(8)

i V_;z'_/?'z‘“w[— 29:2]
D=

s —/7‘/770‘2[:, g"

where 85 = Bayes estimator and &, = minimum variance unbiased estimator.
It is easily shown that

m a2
/Fma-®
V-4

i

£(8,/%)

[}

where

m -2 /
- 0*2 = 7 </
/M /R ar

Therefore, the Bayes estimator has negative bias. The variance bounds are

It was shown in Section 2.3.5.1.3 that 5m achieves its lower bound. But
since 6 is unbiased, it follows that
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€4s,) =V(sy) = =

m

On the other hand, the Bayes risk for §p is its mean squared error, i.e.,

—_— —_— & /
€35.) =R, = & =
&z) = Rs Izt

/ .
72
(See Section 2.3.5.2.4.)

It follows that
€23(8) < €%(SM)

Thus, the Bayes estimator which has negative bias has smaller mean squared
error than the minimum varisnce unbiased estimator 8 - Therefore, the
variance of &y must be smaller than that for § . Indeed, § g also
achieves its variance lower bound. This can be shown as follows.

V(5,/6) - E{[SB —5(56/9)]2/6}
=£{[7’n K‘f/ g - /(9]2/9}
,;,’-(—: f{[{iﬁz -ma]z/e}

"

- 5225 {[(Zj g;)z—zme‘g 4. fngzJ /e}
= %ZZ [E(:/: gb-)z -2”)2927‘/772(92]
- —VK;ZZ [M(Hmez)— ngz}
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KZ
m

Thus, the Bayes estimator achieves its variance lower bound.

V(85/6) =

The foregoing clearly demonstrates that a biased estimator can possess
both variance and mean squared error which are less than those for a minimum
variance unbiased estimator!

The foregoing does not categorically settle the question of selecting
a good estimator. If mean squared error is an indisputable criterion, then
the Bayes estimator is preferential. On the other hand, if a situation exists
where bias is highly deleterious, then a minimum variance unbiased estimator
would be dictated. However, consideration should also be given todher
criteria of evaluation; i.e., consistency, relative efficiency and the effect
of sample size.

For the case considered above, both estimators are uniformly squared-
error consistent, i.e., the mean squared-error decreases uniformly with sample
size m. The relative efficiency, using mean squared-error is

/
7 [+ m 2 /
(85 ,6,,) = ” - - ) Fr —1
(5) ”) _0\2 m 2 ma\,z
/+mo2

The relative efficiency demonstrates the Sffect of sample size m. Of
course, if sample size is large, such that m ¢“>> 1 then there is a small
difference in efficiency. However, for small sample size and/or small o2
such that m 02 <1, then a significant difference results.

The foregoing demonstrates the improved performance for small sample
size for the Bayes estimator over the minimum variance unbiased estimator.
This improvement is derived from the use of the a’priori information. in
terms of the pdf of © in the Bayes estimator (this information tends to
bias the estimations of © toward its average value) which was zero in the
case considered. The improved performance tends to overcome the lack of
fidelity in statistical regularity demonstrated in small samples. That is,
the statistical regularity of a random process is not faithfully demonstrated
in small samples. The utilization of any available information can improve
performance significantly. On the other hand, if a large number of samples
are available, the statistical regularity is more reliably demonstrated
and the use of additional information not as effective or critical.
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2.3.5.4, Minimum Risk Estimation

In general, risk is the expected loss in estimating a parameter © by
an estimator. It is apparent that risk is a measure of estimator performance,
which provides a general criterion of minimization in determining estimators.
A particular case of interest is that of squared—error loss wherein risk
becomes mean squared-error and an estimator of minimum risk is a minimum
mean squared-error estimator. Of course, minimum risk estimators for loss
functions other than squared error are equally important, and general
properties of minimum risk estimators are of considerable interest. There
are two general properties of minimum risk estimators which are of particular
significance. These properties are: (1) generallty of loss function and
(2) dependence on sufficient statistics. That is, for a general class of
convex loss functions, a minimum risk estimator must be a function of
sufficient statistic. These properties are established below.

2.3.5.4.1 Convex Loss Functions

A convex function is illustrated in Figure 2.3.5 and can be described
in the following manner. Let 1(x) be a line which intersects L(x) at x =

A

A and B.

\<::,/'L (¢)
\;
£ (x)
\\
\
A C g X
Figure 2.3.5

If, for all A and B, L(x) < 1(x) for A< x<B and if, for A = B = C, L(x) >1(x)
for x, except x = C where L(x) = 1(x) then L(x) is a convex function.
Alternatively, through any point on a continuous convex function L(x) there
passes a line 1 (x) which lies everywhere below L(x). The line 1,(x) is
referred to as a "supporting" line for L(x).
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An important property of a convex function of a random variable is
that its expectation generally exceeds its value at the expectation of the
random variable; i.e., if L(x) is a convex function and x is a random variable
then

] =z [£00)]

This can be shown as follows: Let ls(x) be a supporting line of L(x) at
the point E(x). Thus

L(X) = £s(X)

and

E[L(X)]) 2 ELs(X)

However, since 1,(x) is linear in x E [1s(x) ] = 15 [ BE(x)] thus,

E[L(x)] 2 45 [E(x)]

Moreover, since 14(x) supports L(x) at E(x), L [ E(x)] = 15 [ E(x)] thus,

Eleeo] = L[Em)] .

As a particular case consider x as estimation error € and L(€) as
squared error loss; i.e.,

L(€)=¢€?
It follows that
ElL@])=£63) =z (£ ©]

This result agrees with that of Section 2.3.4.3 wherein it was determined
that

E(€2)=Vv(e) + £3(e)

on

E(€2) = F4(€)
with equality for V(€ ) = O which implies a constant €.

The preceding inequality of convex function expectation is fundamental
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to showing the necessity of sufficient statistics for minimum risk estimators,
which is considered below.

2.3.5.4.2 Minimum Risk Via Sufficient Statistics

In Section 2.3.5.1.1 it was shown that if T and Ts are an unbiased
estimator and a sufficient statistic for ©, respectively, then E [ E(T/Ts)]
is an unbiased estimator for 6; and the variance of E(T/Ts) is less than
the variance of T. These results can be generalized in two respects. First,
any function of 6, U(6), can be considered; and, second, variance can be
replaced by risk for convex loss functions. These results will be proved in
the following theorem, which is an extremely important extension of the
theorem of Section 2.3.5.1.1 concerning sufficient statistics and minimum
variance estimators. In effect, this theorem demonstrates the fundamental
importance of sufficient statistics in determining estimators.

THEOREM: Let Y be a random sample from a process with pdf dependent on e,

and let Ts be a sufficient statistic for 6. Let T be another statistic

which is an unbiased estimator for any function of ©, U(6); i.e., E(T) = U(9).
Then

(a) E(T/Ts)is independent of © and is a statistic
(0) E[E(T/Ts)] = U(e)
(e¢) R(T, 8) =2 R(&s, 9)
where the risk is for convex loss functions and 8, = E(T/Ts).

Before proving this theorem, two comments are in order. First, it
should be noted that biased estimators for © are included since an unbiased
estimator of U(6) includes a biased estimator of 6; i.e., the case U(8) = k@
where k # 1 is included. Second, §, is an unbiased estimator of U(8), or a
biased estimator of 6, and 8,5 is an estimator which has less risk than T
for all convex loss functions.

The proofs of parts (a) and (b) of the theorem are direct extensions

of the proofs given in Section 2.3.5.1.1. Part (a) is an obvious extension
and part (b) follows.
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E(T) = w(e)
=/Tf(759)o’7'

a
=[/T/‘f(73 75 8)d 747
5
=/f7f(7/c)/; (75,8)d7d7
7T

={[£(7/7_,)]/> (7s;6) o7

- £[£07/7)] = weo)

Part (c) follows from the property of expectation of convex functions as
shown in the previous section. Let L( &, ©) be a convex loss function with
respect to the unbiased estimator & for U(6); i.e., for fixed &, L(S , ©)
is a convex function of §. Taking the conditional expectation of L( 8, @),
given Ts, it follows that

Elerer/T] 2 L[E(r775),0]
2 L (65 JQ)
Taking the expectation over all Ts it is found that

E[e(r,80] = £[L(&5,6)]

Therefore,

R(7,8) =2 R(8,6)

The foregoing is extremely impecrtant since it establishes that minimum
risk estimators are functions of sufficient statistics and, thus, only
sufficient statistics need be considered in determining minimum risk estimators.
Furthermore, if the pdf of Ts is complete, then the unbiased estimator &
of U(Q) which is a function of Ts is unique and the estimator of minimum

98



risk for the class of convex loss functions. These results represent
extremely important extensions of the significance of sufficient statistics
in determining estimators.

2.3.5.5 Maximum Likelihood Estimators

In general, maximum likelihood estimators are determined by maximizing
a pdf. This method of estimation does not explicitly seek to satisfy criteria
of estimation, rather, the method is based upon the premise of the most
probable occurrence being observed most frequently. In effect, it is
assumed that a random sample is always one of high relative probability.
Nonetheless, the method is often equivalent to other methods of determining
estimators, and similar results are often obtained. The method is discussed
herein to show its significant similarities and differences with other
methods.

2.3.5.5.1 Principle of Maximum ILikelihood

The principle of maximum likelihood is predicated upon a "most likely
occurrence" of a set of variables. In general, a pdf is a relative measure
of the probability of occurrence of its variable. The particular set of
variables for which the pdf is a maximum can be considered as a maximum
likelihood set. Any pdf associated with a set of variables is considered
to be a likelihood function for the set of variables; e.g., the pdf's
£(6/Y) and £(Y/0) are likelihood functions for the variables © and Y. If
the likelihood function possesses a maximum value, then the particular set
of variables for which the maximum value occurs is the set of most likely
occurrence or maximum likelihood. This set of variables is referred to
as the "mode" of the likelihood function or pdf of the set of varisbles.

The principle of maximum likelihood leads to the following method of
estimation, which is based on maximizing a pdf as a function of a set of
parameters O.

2.3.5.5.2 Maximum-Likelihood Estimator

Let the likelihood function for a random sample Y be some pdf for Y
as a function of a set of parameters ©. If the likelihood function has
a maximum value for © (6 is some function, § (¥), of the random sample, Y),
then § (Y) is the maximum-likelihood estimator of 6. Thus, the maximum-
likelihood estimator for © is the one for which the random sample Y occurs
with maximum likelihood.

The method of maximum-likelihood estimation is depicted in Figure

2.3.6.
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max of

(/o)

It is easily seen that a maximum likelihood estimator will, in general,
be different from a Bayes estimator. However, for a simple loss function
the methods yield equivalent results, as shown below.
2.3.5.5.3 Bayes Estimator for a Simple Loss Function

A simple loss function is defined as one which has zero loss for zero
estimation errors and constant loss for all non-zerc estimation error;
to wit,

LLsw,e] =o s(yv)=8

= k>0 s(Y) x 6

The Bayes function is

BLs(v)] = § L08,0] flervde
e
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Hence, B [ §(Y) ) is minimized by maximizing £(6/Y) at § = 6. The integrand
of B [ 8(Y)] is depicted in Figure 2.3.7. Of course, this is exactly
the maximum-likelihood estimator for f£(8/Y).

K Simple  loss  Funetion

max of

f(e7Y)

° mode of ‘fs/ y
f(ery)

Thus, it can be stated that the Bayes estimator for a simple loss
function is a maximum-likelihood estimator. However, it should not be
concluded that maximum-likelihood estimators are Bayes estimators. The
difference lies in the likelihood function which is maximized by the
maximum-likelihood estimator and the loss function used. That is, the Bayes
estimator for a simple loss function maximizes f(6/Y) which is also a
maximum-likelihood estimator. However, a maximum likelihood estimator can
also maximize the conditional pdf f£(Y/6), which is not a Bayes estimator.
It should be noted that a Bayes estimator for simple loss can be the same
as that for squared-error loss. That is, if the maximum value or mode of
£(6/Y) occurs for E(8/Y), then the Bayes estimator is the same for both
simple loss and squared-error loss functions. Therefore, if the mode and
E(8/Y) of £(6/Y) are coincident, the maximum likelihood estimator for
£(6/Y) is the Bayes estimator for squared-error loss, also. However, this
is only true if E(6/Y) is equal to the mode of f£(8/Y).

Consider the particular case of Section 2.3.5.2.1 wherein £(6/Y) was
Gaussian with

_ 0.2 m
E(e/y) = Prymtt ?;/ 9% .
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The maximum of £(6/Y) occurs at E(6/Y), therefore, the Bayes estimator is
the same for both simple and squared-error loss. It is easily shown that
the maximum likelihood estimator for both f£(6/Y) and f(Y, &) are E(o, Y);
however, if the likelihood function f(Y/6) is used, then the meximum likeli-
hood estimator is the same as the minimum variance unbiased estimator,

Ym Z gitie,mb determined in Section 2.3.5.2.1.

In general, if the likelihood function is dependent on the a priori
pdf for O, then the maximum likelihood estimator is the same as the Bayes
estimator for a simple loss function, and both estimators utilize the
a’priori information available concerning ©. If, on the other hand, the
likelihood function is independent of the pdf for 6, the a’priori infor-
mation concerning © is not utilized. However, it should not be concluded
that Bayes estimators can generally be derived by the method of maximum
likelihood.

2.3.6 Application of Bayes Estimation

2.3.6.1 Introduction

The discussions of the previous sections have established the criteria
of value in defining estimators and measures of the "goodness! which results.
This section is intended to conclude the discussion of estimation by
applying the most general of the previocusly developed estimators (Bayes)
to the general non-linear estimation problems. This application will,
however, fall short of providing computational algorithms which can be
utilized in analyses since the pdf's for the variables involved and the
functional relationships between them must be specified. Thus, the special
case of the general linear system of equations and Gaussian statistics will
be developed.

2.3.6.2 Non-Linear Case

The general case of interest is defined by the following vector
equation: (See Section 2.3.3.)

y=F@+e

The parameter vector © contains n elements, and an estimator for each
element is required. Thus, an estimator is denoted by the vector § .
Estimation error is likewise a vector defined by

€=(8-2) .

A loss function for the estimation error vector e 1is defined as a scalar
function of some positive definite measure of the modulus of € ; e.g.,
sum-squared-error, SSE, is a particular loss function which is defined by
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or

L(E)=€7E

where T denotes transpose.

A _more general loss function is defined in terms of the squared modulus

L(€)= €E"BTBE

= €T Me

where B is some linear transformation and M is a real symmetrical matrix.
In this case, L(€ ) is a generalized quadratic loss function which is a
positive semi-definite function with L(€ ) =0 1f and only if, € =0
for B# 0. Of course, for M= 1, L(¢ ) = SSE = ¢ T¢ .

In general, L(¢ ) is a function of 8§ and 9; i.e., L(€ ) = L(8&, ©).
For generalized quadratic loss, L(5, O) becomes

L(s8) =(5-8)M(6~e)
=8TMS~25"MG +ETMS .

Note. This form exists because each of the terms involved is a scalar.
The Bayes estimator R for generalized quadratic 1oss is the vector

of estimators which m:m:unlze the expected risk or the a'posteriori risk,
as discussed in Section 2.3.5.2. The Bayes function for this loss is

8[s(y)] =/94(§,9)/(2/;t)49

=/(§7M_5 -28"Me +8"M8 ) F(8/4)d9 .

The Bayes estimator g g can be found by differentiating B [5 (1)] with
respect to § and equating to zero, to wit,
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3[5 (;z) z —?—i/ M§-25 ME fama)f(e/;)do

(2Mm8& -2M8)f(8/4) @

@

=2/ (8- 8)F(e/g)9®

9 7
;gg[é(g)] =2M [ééf(é/g)a'a 'éef\-é’/})cﬁ]

The resulting expression can be made identically zero for all n if

s[ 58 /4)a¢ [e7(e/g)a®

S :9/9{(2/4)0/9

since

JFleg)ae =/
(4

Thus, it is seen that for a generalized quadratic loss function the Bayes
estimator &R is the conditional expectation of ©, given y; i.e.,

E 2[.@ f(e/g)d® =£ (8/4)

This result is equivalent to that determined in Section (2.3.5.2.2) for the
explicit case of a single parameter 6.

The Bayes risk Rg for & p is the expected value of B(&p) over ally,
z E#{E[L(éé )9)/%]}

For generalized quadratic loss, the Bayes risk becomes

i.e.,
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&0
il

7 T
e [ [(85r18,-2850m8 *eha)f (erg) o]

1]

£, [9/2’/\1_9 F(6/4)d6 - 87 M S, ]
£ {e[(_a’/v_e)/;] - 8,15
% =g {elemeyy]} -5, (5m 5,)

I

n

If B(&p) is independent of y, then
Ry < B(85) = £[L(55,8)/4]
Rp = E[(€7Me)/g]-87 Mg,

It should be emphasized at this time that the results given above are
not restricted to the linear case since the explicit form of the process
does not enter into the determination of the Bayes estimator as the con-
ditional expectation of &, given y. However, it should be noted that the
form of the process, as determined by F(8), definitely enters into the
determination of the E(Q/z); and, therefore, the Bayes estimator is dependent
on the form of the process. That is, the conditional expection of ©, given
¥, is the Bayes estimator for a generalized quadratic loss function for any
functional relationship of © and y. On the other hand, the specific form
of the Bayes estimator is dependent on the form of F(8). Further, the
Bayes estimator can be a non-linear function of the observation vector y.
Moreover, the Bayes estimator for a particular case is dependent on the
statistics involved; i.e., the pdf's £f(@), and f(e). Thus, it can be
concluded that for a generalized quadratic loss function the conditional
expectation of 8, given y, is the Bayes estimation which will minimize the
expected risk. In a particular case, the specific form of the Bayes estimator
is determined by the form of the process, F(8), and the statistical nature
of 6 and e as reflected in their pdf's.

The determination of a Bayes estimator for the general case can be
formulated by determining the conditional pdf, £(&/y), and its conditional
expectation. This procedure will be outlined for the case that the
statistical nature of 6 and e must be known; i.e., the pdf's £(8) and
f(e ) are assumed available.
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First, the conditional pdf of y, given 6, is determined by considering
F(Q) as a constant in the process y = F(8) + . Thus, £(y/8) is derived
from f( e ) by including the additional term F(O) in the expected value of
&.

Second, the joint pdf of y and 9, f(g/g) is formed. For the most
common situation of statistically independent ¢ and e, f(y/9) f£(8).

Third, the marginal pdf of y, f(y), is determined by integrating f(y, ©)
over all §, to wit,

(4) -—éf(g/eﬂ(e)do

Fourth, the conditional pdf of 8, given y, is formed by the standard
form for conditional pdf's, to wit,

f(-@/j) _ £(4»8) . Hyle)- (o)
£(4) F(y)

Fifth, the conditional expectation of 9, given y, is determined from
£(8, y)- Once f(8/y) is determined, it is often possible to recognize the
%(9/y) by inspection; and, hence, the Bayes is directly determined. Other-
wise, the general approach is to determine the conditional expectation by
integrating, to wit,

5= E£(8/3)= [81(814)d®
6

The degree of difficulty in determining a Bayes estimator is
directly related to the nature and degree of complexity of the functional
form of P(S) which significantly affects the determination of f(y). Moreover,
the form of the pdf's f(e) and f(Q) affect the determination of a Bayes
estimator; and often the task can be somewhat difficult. However, the approach
provides a general method of determining the optimum estimator using minimum
expected risk as primary estimation criterion for generalized quadratic loss.

In general, it is to be expected that the Bayes estimator will be a
non-linear function of y, even in the case for a linear form of F(8) = A,
depending on the statistical nature of 6 and e. However, quite often it is
highly desirable to utilize a linear estimator; and under such a constraint,
the resulting estimator will not be a Bayes estimator though it is possible
to determine the linear estimator which will minimize the expected risk.
Such estimators would be sub-optimal in the sense that the Bayes estimator
would possess uniformly smaller risk. The use of sub-optimal linear estimators
must be considered on the basis of particular problems if the utilization
of a non-linear estimator presents a difficult situation in terms of data
processing an estimator mechanization in other respects.
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On the other hand, the Bayes estimator can be a linear function of X
and in such cases, no particular problem arises. This is particularly true
for linear systems with Gaussian statistics. This case is of general interest
and is discussed in detail below.
2.3.6.3 Tdinear Case, Gaussien Statistics

The general linear case is defined by F(Q) = A6, i.e., y = 40 + e,
where A is a known matrix independent of G. However, A can be time dependent
or, generally, non-stationary. For the case of Gaussian statistics, it can
be shown that the Bayes estimator is a linear function of y. This particular
case is of general interest and is derived in detail herein.

The pdf's for © and e are assumed to be n and m dimensional multi-
variate Gaussian pdf's with the following specification:
£(Q)=m,
V@)= E(g-m)(¢-m)
Ele)= m,
y
Vie) = E(e-m, ) (e -m,)

viere, of course, V(©) and V(e) are the covariance matrices of § and e,
respectively.

Further, the pdf's £(y/6), f(y, @), £(y) and £(8/y), where 6 and
e are assumed as statistically independent are:

m % _l T/
Fly/6)=c"[Vie) cxp[zx Vierx)
where /
c = —
2
Z=$—AQ-@8=_‘Q_-AQ *Av_r_ro-m’=(z—l_p#)“A(9-m‘)
|V(e)|= determinant of V(e)

Fig30)=1(4/8) - £(6)
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Rather than integrating f(y, ©) over all @ to obtain f(y), it is easier
to use the fact that y is the linear sum of two independent Gaussian random
variables, hence,

E(¥)= @’= Am_ +m

-9 e
T

Vig) =E(5{-m¥)(g - 27;,)
=AVOIAT+ V(e)

It follows that

Now

Hence

where

and

- % / L
Fg) = CTIVEy) “exp [y 2, Y Vi) Cy-my)]

Fly,0) _ Flu/0) - £(O)
£ly) £y

F(8/y) =

Iwg)l”y . [_i
veelveer)* “PLz

IME c”[ Qe y)]

Q, y) — (W-AY Vel (W-AV) +V Vi) ¥ - W VW

i

w
v

$- "%
9 -

The term 2(6, y) specifies the conditional Gaussian pdf £(o/y), and its
general form is

(@, y) =[6-E(Q,¥)] viery) [0 ~£(0,4)]
=(9-8,) V16/y)©-84)
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where V(6/y) is the conditional covariance matrix of &, given y. Thus, in
order to determine the Bayes estimator, it is only necessary to determine
the reduced quadratic form for Q(6, y).

Expanding Q(8, y) in terms of w and v, it is found that

Ld IR T - TT. v, -
Q(a,y)= V' [vieraVien]v-2vaViev rw' [vie) - vy | w
= (V- kW) Vo) (V-K W)

where K and V-3 (6/y) must be determined. It should be noted that the term
K essentially determines the Bayes estimator since

(\_/-KZ_V)=[Q-@9 -K(g -my)]
=[Q-E(9/¥)]
(v-kw) =[g- 8]

Thus, the Bayes estimator is

§5=E(Q/¥)
§B = my + K(_(‘-’!)g).

The term K can be determined by expending the second expression for

Qee,y)* v’ v"(a/%,) V-2V V6l KW +w’/c’v4(e/%) KW
and by eguating terms in the two greii’ s

&

Viery) =[Vie) + AT vieyA]

v‘?e/g)K = A"V(e)
T -1 _ -/ B -/
K V(G/#)K— V (e) V(La()

109



Thus, it is found that two solutions exist for K. The second equation yields
K, =V(B/y) A"V (e)

Substituting the second equation into the third, it is seen that
KA = Vo) [Vie) -viy)]
= I-Ve)Viy

Taking the transpose and substituting V(e) = V(y) - AV (¢) AT, it is found
that

A= T-[ Viy) - AVO)AT]V )
= AVO) ATV (y)

Thus, roJ
Ky= V(@©) AV Ty)

The two solutions for K generally imply two Bayes estimators for the case
being considered; however, it will be shown later that the Bayes estimator
is unique and that X; and Ky represent two equivalent forms of the same
estimator.

Several comments concerning the Bayes estimator for this case are in
order. It is seen that the Bayes estimator for this case is a linear function
of y; thus, &5 is a linear estimator.

The matrix K is a "gain" matrix which, in effect, specifies the
weights in estimating 6 that are given to the deviations in the observed
y from its mean value mg. If the mean value gg is actually observed, then
the Bayes estimate for B is the mean value of &; i.e., for y =m,, 5 = M.
On the other hand, if the observed y is identically zero, then the Bayes
estimate for @ weights the mean value of y by the gain matrix K to form the
estimate of 8; i.e., for y =C

5

-B=7!J9 ‘Km#

110



In general, the deviations of observed y from m, are weighted by K to
form the Bayes estimate 6§ g as shown. It is easily shown that Spisa
biased estimator, to wit,

E(83/0)=m, +K [ECy/0) - m,]
=m9*K[A9 +m,-m¥]
E(8,/8)=my+KA[0-m,]
Of course, if KA = I, then E(& 'Q) ©; and § p would be unbiased. It is
1nterest1ng to note that if v(e) = which 1mp11es a constant e = mg, then

v-1(y) = (av(e) AT)-1l and XA = V(G)AT (av(e)aT)-1a = I, where 4~l exists.
However, in this case

8=y + VIOIA [AV(G)AT]-‘ [%_m#] =y + A'(y-m,)

or

8o™ My 10 +A e~ A, =6

This is to be expected since, if e is a known constant, then & can be
determined exactly.

In general, V(e) # O, and an error ¢ p exists in the Bayes estimate.
The Bayes error egp is

€5=5,"0

= _njng(g-mj)‘

=My -8 1‘/((5—_/_?_73)
€g =(I-KA)(O - 5)tK(E~ Me)

The conditional expectation of ¢ given @, is thus

B,

111



E(€5/0)=(ro- )t K[E(4/6)~ 2y ]
(1p-0)ik[agt me- 12, ]
=(my -2) +KA(8 - 7,)

E(€g16) = (T-KA)E- 115) -

The total expectation of ¢ p is zero; i.e.,

E(€5) = £[£(85/9)]
= [1-m][ 2 -£(8))
= [J KA ](ﬁ’e‘ma)
(€5) = ©

The covariance matrices for §p and ¢ g can be readily derived and one found
to be equal, to wit,

W(es/e)- £1[ 5,-6(5518) ][ 85 -£(4, /g)]—;e}
V(€g/8) = f{[@a ‘f(f-a/g)][ﬁg ‘E(ﬁe/g)]T/ 9}

where

5,-£(5506)= K[he-Amg- g~ 1y]
-Kx[e- 2]
and, likewise,
€p-F(€,/0) =K [e-2e] .

Thus, 6p - E(5p/0) = €5 - E(€p/0), and it follows that V(&) = V(€ p).
The covariance matrices forép EGB can be determined in explicit form
by using the conditional expectatlon of €¢p, glven y, to wit,
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V(€g) = ;2'5 [(es€3)/4] }
= efve, /) }
Now,
V(€g/1) = E[(85-2)(85-2)74% ]
- E{[Q -£(o/y) )@ - & e/g)]T/g}
= V(6/9)
Viegly) = (V7o) tATV @A)’
Thus,

V(Eg) = £ V(€57Y)
V(€g) = (V(&) fATV"(e)A)"’ ]

Thus, the covariance matrices for Spand €p are actually independent

of X and are essentially dependent on the 1n§r1nsic aspects of the problem;
i.e., the covariance matrices of the parameters, ©; the measurement errors,
e; and the transformation, A, of parameters © into observables, y.

The Bayes risk can now be determined as follows: first, the generalized
quadratic loss function is constructed

L(€) =€"me
=(8; ~0)M(5,-8)
L(€) =[§-£(§/g)]7/\7[2-f(2/§)] :
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Next, the Bayes risk is defined

Re = £fe[L(2)/5]} .

Finally, the weighting matrix (M) must be selected. Consider the special
case (of particular interest) where the risk desired is the sum-squared-error
loss; i.e., M=T1 and L(€) = 5;?51 = 35E. For this case, Rg is the minimum
mean-sum-squared error, MMSSE. The SSE can be expressed as

7 T
SSE =€5E5 =(55-6,) (85 -6)
7 _ 7 >

N

The Bayes risk becomes

Ry = MMSSE = f{[[(éz €5)/ €] } .

However, it is seen from the equations for L( € ) that the MVYSSE can be
determined from the trace of the covariance matrix for £q5 i.e.,

Ry = MMSSF
TRACE [V(€)]
TRACE [ v™(e) +ATV"’(e)A]"

7]

From the foregoing it is seen that the Bayes risk and the covariances
of the Bayes estimator and its error are not explicitly dependent on K.
However, this does not mean that the minimum expected risk is obtained
independent of K. Rather, the Bayes estimator as a function of K achieves
the minimum expected risk, which is explicitly dependent on V(6), V(e) and
A only. That is, the trace of V(€ B) represents a minimum-mean sum squared
error which is intrinsic to the problem, and the Bayes estimator achieves
the MMSSE. Thus, for the linear case since K has two solutions, there exist
two equivalent forms for the Bayes estimator.

The equivalence of K1 and K, can be shown in the following manner. By
inspection, it is seen that K] can be derived from K5 by a series of
elementary transformations (i.e., row and column operations of interchange,
multiplications by scalar and additions); i.e., K, = PK,Q where P and Q
must be non-singular square matrices of proper order. Since
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K, = V(6/Y) ATV ()
ke =UBATVT(Y)

P and Q can be selected by inspection as
P=Vv(e)v'(ery)
~/
o= Wev(y) -
Since P and Q are non-singular, Kj = P-1K2Q'l. Thus, it is established
that X; and K2 are equivalent matrices; i.e., one can be derived from the

other by a set of elementary transformations. In particular, it can be

seen that K, and K) transform directly by two identity matrices P and Q;
i.e., let

P =Vle/pviery) = I
= I .

Then,

v(esy) V(6/9) Ke I

V(6/4) [v"(e) +tATV ”(e)] V@) ATV(y) I

= v(6r%) [A’v ~(4) +ATV(€)AV() A*v"(g)] T

K

-V e/9) ATV [A STV 9) #v@V (9| T

K = Kz [ (W)= ve@)vty) ¢ VLe) v"(g)] I
= K[ T-UE@Vy) V(e) vz
K/ = Kz LT
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Thus, K1 and K, are identically equivalent. Moreover, consider the two
non-singular linear transformations represented by the square matrices

K74 and KoA. These transformations represent a mapping of parameter space
into estimator space, since

35 = K%

where, without loss of generality, the mean values of G and e are assumed
zero. Hence, for y = A8 + e

6p = KiG + Ke.

2.3.6.3.1 Limiting Cases for Bayes Estimation in the Linear Case

In general, the Bayes estimator utilizes the available information
concerning both the parameter to be estimated and the uncertainty involved
in the observations of a process. In determining the B yes estimator, the
pdf's of © and e are generally required which represents the a’priori
information utilized in the Bayes estimator. It is informative to consider
the Bayes estimator for limiting cases where the a’‘priori information is
unavailable. In such cases, it can be shown that the Bayes estimator
becomes equivalent to other estimators, such as least squares and minimum
variance.

Two types of limiting cases will be considered which will be referred
to as parameter and observation uncertainty limiting. These limiting cases
can be representing by null matrices for V(e), V-1(e), V(6) and V-1(8), to
wit,

Lim V(e) = O MINIMUM OBSERVATION UNCERTAINTY

Lim V-1(e) = 0 MALIMUM OBSERVATION UNCERTAINTY
Lim V(8) = 0 MINIMUM PARAMETER UNCERTAINTY
Lim v-1(6) = 0 MAXIMUM PARAMETER UNCERTAINTY

That is, in the 1limit a null covariance matrix represents a constant,
whereas a null inverse covariance matrix represents a uniformly distributed
random variable. For these limiting cases, the following results are
obtained.

For the case of minimum observation uncertainty, it is found that the

parameters are determined exactly with zero risk. This is seen by considering
the limit of & p for the limit of V(e), to wit,
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Lim 56

V(e)-0

L /m
U(e)»o

s

1

‘ -
Do 1‘u‘(ée)”—,»o K( g 3)

= Mo *Lim K(AB+E ~Alp~1e)
we) o

- b lim KA(E-Mg)tlim K(€-Me)
e AR ( & ) »0 &

= Mo * Lim [v(e)A’lﬂg;) A6~ MQ)] t1/m (VAW )A,», (2-t)

Vie)—0

n

T,, - ! AT L 0
o195 (9 )-8 1, (VA )

Mg+ VA (AVBIAT) A8 -115) + ©
- Mot V(e)ATATTVie) ATACE - M)

= Mo * Z(&-276)

%

For the case of maximum observation uncertainty, it is found that the
observations are ignored and the Bayes estimator is the mean value of the

parameters; and the Bayes risk is the sum of the variances of the parameters,
to wit,

Lim $.:Metlim K(4-M.)
Lim 85 Mo tlm H(1~Ly

= Mo +Lim W(OIV)ATVR) (4-Mg)
vie)0

L/m 68 = /je + 0
u‘(’e) -0

Lim Fo = Lim TRACE V(6/Y)
ve-o Vie)-o

= TRACE Lim V(O/Y)
Vig)—0
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i

TRACE Lim (V&) +A V@A)

Viey—-o

= TRACE V/(9)
Lim R: El(e-116)T(8-110)
vz’e;"-,o é [- 9]

For the case of minimum parameter uncertainty, it is again found that
the observations are ignored and the Bayes is again the mean value of the

parameters; however, the Bayes risk is zero since the parameters are con-
stants equal to their mean values, to wit,

'm = M *L/’l’l K( -[—?y)
Lo B8 7 7o T im0 d

< Mg+ Lim V(OATVY) (4-214)

v(6) 0
= Mo *+0©
Lim §'B = MQ
we) 0 ,
70, =
Lim Rg= TRACE Lim (VB +ATVE) A)
we) »0 V()0

~1
rRacE Lim V@ ]
(e) 9

L/"‘l P-B = 0
v(e) 0

For the case of maximum parameter uncertainty, it is found that the
Bayes estimator reduced in form to the methods of minimum variance, weighted
least-squares and least-squares dependent on the characteristics of the
observation errors. Without loss of generality, the mean values of & and
e will be taken as zero to show the direct equivalence of the Bayes estimator

for maximum parameter uncertainty and the estimators derived in Section 2.2.2,
to wit,
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Fa0te = g Ky

IR COMACT:!

= f“’l(’;)-*o (WT+ ATV @ A)TATY 4
L B (ATVA) ATV e 4
L e = TRACE (ATVIE) 4)”

If the observation errors are statistically independent and stationary,
i.e., V(e) = 042 I, then the Bayes estimator for maximum parameter uncertainty
is the same as the least-squares egtimator as deflved in Section 2.2.2.1.

The Bayes risk for this case is 0‘2 TRACE (ATa)~L.

If the observation errors are statistically independent and non-
stationary; i.e., V(e) is a diagonal matrix, then the Bayes estimator for
maximum parameter uncertainty is the same as the weighted-least-squares
estimator as derived in Section 2.2.2.2.

If the observation errors are generally statistically dependent and
non-stationary, then the Bayes estimator for maximum parameter uncertainty
is the same as the minimum-variance estimator as derived in Section 2.2.2.3.

From the results presented here, it follows that the estimators derived
in Section 2.2.2 are minimum-mean-sum-squared-error estimators if the observa-
tion errors are Gaussian and if the parameters are uniformly distributed
over the parameter space, which represents no a’priori information
available concerning the parameters.

2.3.6.3.2 Single Parameter Estimation

The Bayes estimator given in the previous section is a generalization
of the linear case considered in Section 2.3.5.2.1 for which y = 6 + e where
© and e were Gaussian with zero mean values and variances 0 and 1, respectively.
This previous example can, however, be considered as a special case of single
parameter estimation. In order to demonstrate some of the general character-
istics of Bayes estimation, this example will be considered on a more general
basis. For single parameter estimation, the set of observations can be
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written as

g'*a_le*g

where 1 is the unity column vector of order m whose components are each
unity; i.e., 1. The components of e are considered as the errors of
observations, i.e., e; in the error in the observation Vi* The parameter
6 is Gaussian with mean value 4, and variance ¢ <. The error vector is
also Gaussian with mean value vector.4, and covariance matrix V(e) as
follows:

v(e) =£[_( e - Ee)(g ‘é_(e)T]

The Bayes estimator &; for 6 is given by

8 S A +K (4~ L)

where
Hy = (alug t+ He)
K = avien)l'vie)

v(e/y) = [—0/—;2 + aQTV-/(e)_{.]

The Bayes risk for sum-squared-error loss is minimum-mean-squared-error,
MMSE, since_only a single parameter exists. Moreover, V(6/Y) is a scalar,
and MMSE = Rr = TRACE V(6/Y) becomes

Ry = MMSE = TRACE V(6/Y) = v(8/Y)
[T+ a2 v ie1]

The Bayes estimator can thus be written in the following form:

8g = 4o ~aV(0/Y)(1TV(O4,)+ a VeI (1 v (@@y)
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Consider the case of independent observations with equal mean values
and variances for the observation errors; i.e., V(e) = Iand 4 =
(ax( + A/ ). 1. Substituting and noting that lTl = m, 1t is found’that

v(e/y) = r— ra?1" (= )1]

9

L,

- 5 lrl -/
= ——'2 * Q 2
O Oe

62 + Ma?67 )"
- 0\92 G-e-l‘

6s Oc )
V(G/y)_ (G'ez *Maz%a

and

1vte) = I° — T

a2
/ g
o= L

The Bayes estimator is thus

S5 = g -2 V(O/Y) (= = z) 1, +a v(e/y)( ) "

e

= My ‘K(i-r-_z)(a/ue*rue) *Kgrj

m
8 =ty ~MIK(Q U+ tiy) + K‘Z-_; 4;
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11}

/
vhere k= q V(8/Y) (?2)
e
a 6y
052 + Ma?gy?

/
>
a2,
a? o
The corresponding Bayes risk is

Re

]

MrMSE

0~2
_QK
Q

-6
az[M+ of
atog

For/(g = .l/e =0 and0e? = a = 1, 6B and }-iB reduce to the results obtained
previously, to wit,

Rg = (m+ &)

For the more general case, the following comments are in order which
illustrate some general characteristics of Bayes estimation. It is seen
that the Bayes risk, or MMSE, is Sroportional to 0 _2 and inversely pro-
portional to a2. However, as 0 ¢<~ becomes large wi%hout limit, the Bayes
risk approaches a definite limit, i.e.,

Lim Ry = 65

2
0‘9-—'0

The reason for this limit is found in the limit of X and 65 as crez > <0, i.e.,
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Lm K =0

2
d‘e — 0o
and

0o

Thus, it is seen that as ¢ 2 becomes indefinitely large, the observations
are essentially ignored ang the Bayes estimate of 6 is taken as the mean
value of 6. The risk in this case 1s<7’O which is simply the uncertainty
in © as measured by g~.

The results given above can be readily extended to the case of non-
stationary observations where, in the variance and mean value of observation,
error varies. In this case V(e) # 0‘62 I and the Bayes estimator must be
modified accordingly. Consider the case of independent observations with
the mean value and variance of the error in each observation being A 5
and 0" In this case

620 00 o

0 670 00
V)= lo o o o

O 0 oO° o

O 0 o0 0 03

and
-2
§ 0 0 o
-2

V‘Ze)=06~z.oo

O o .o

© 0 0 bm

The term V(8/Y) becomes

Yery) = (—fazf Ol.z)-’

L= <
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Also,

LV ey = 17v7e) (’l PP *ﬂe)

i / £ AL
= Q — t
”9?:7— 6 Z o7
~ /‘/ fa/”g
T 4
,ZV(Q)/E_? "LZ:;( 6‘22 )

and

The Bayes estimator becomes

§g = Mp 1 V(e/y)[_J ’V"(e)g - ITV"(eM_(j]
) S (wra M
2 Uy ta V(a/y)[i (%2)_2: (_eF_G’)]
£=/ L L= i
3 (sa - 4 ‘a/"e)
2
5[3 =ty 7Q ezl 9%
/ .
—, ta?
5L (o)

In this case it is seen that in the Bayes estimator for © each observation
yi is "unblased" by substracting &« ; + a, from y; and the resulting unbiased
observation is weighted inversely proportional to the variance of the error
in the observation. The unbiased, weighted observations are then summed
and again weighed, multiplied by aV(6/Y) and added to the mean value of ©,

179, to obtain an estimate of 6. In this manner, the observations which
have error of large variance are essentially de-emphasized in the estimation
of 8. The Bayes estimator can thus be considered as a selective filter of
observation data.
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2.3.6.3.3 Recursive Bayes Estimators

For reasons outlined in Section 2.2.2.4 and 2.2.2.5, it is frequently
desired that a new estimate of the parameters be generated from a previous
estimate and information acquired since this lost estimate. It might be
argued that this step can be performed simply by utilizing the last estimate
of the parameters and the covariance matrix of the estimation errors as the
a'priori information or initial conditions for the continued process. This
argument 1s predicated on the observation that an optimum estimate must be
locally optimum to be optimum in the large. However, to demonstrate that
this situation does in fact result in the optimum estimate it is essential
that the risk for the estimate still be minimum. The following paragraphs
were prepared in way of proof.

Let the random sample Y of m observations be grouped in terms of subsets
of m observations each, i.e.,

Vi (4%, "J-fz',‘)"')gl)

where

Each subset ys of observations is related to the parameter vector ¢ as
follows:

g:/‘]/Q f.%.

The total observations can be written as a function of the parameter vector
in partitioned form. In this manner the system y = ie + ¢ becomes

C7 A, g,
9| % d
I _:_‘ 1o ¢ —e;- ]
L& fj A -/
= A =
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It becomes apparent that a Bayes estimator for 9 can be determined for
any particular subset or collection of subsets of observations. The objective
of this effort, however, is to show that the Bayes estimatorjig for the first
K subieis of observations, Y, = (Xl’ Yo eevee R yK) is an explicit function
of giB’ only. That is, the Bayes estimator can be determined in a "single-
step" recursive form. This objective is readily accomplished for the case
of observations which are statistically dependent within subsets but which
are statistically independent between subsets. In this case the covariance
matrix of the observation errors becomes a partitioned diagonal matrix; i.e.,

ve, o o o o
o V@, 0 o o
ve) = O . o0 o

o .
O O o W
o O 0 0 i/(e)(

where V(e). is the covariance matrix for the observation error of the jth
subset of 8bservations.

The Bayes estimator & p for the total set of observations Y is
35 =1t 1(Vle) +4TVI) AY'AVIO) (g - 12,)
Adding -Mg and premultiplying by (v=1(e) + AT v=Y(e) &) it is found that
(Vlo) +aVle) A)(8,-125)=AVIe) (4-11,)
Substituting for A and V(e), the previous equation becomes

Vi _ 4
(vto Z-Z.,: AT A )85 -170) = 7 ATe) (g7 ~22))
= A=/

In a similar manner, it is found that

4 k _ A 1.
o (s2-21) = A0 (321

where
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v B 3 ar it
(&r7) =(Vée) +Z;/.\/- A AJ-)
ol:

ands is the B%yes eitlmator for the first K subsets of observations.

of cogrse, -é‘B = &p- Similarly,
k-1
_ k-
Vil (8, =)= 2o 4Yl0 (g, -07g.) -
J =/

By adding Ay vil( e) (g -Myx) to the right hand member,
Vie/y) (&5 =21e) = V¥tory (857-190) # A Y®) (4 -1, )
Similarly,
Vk(a/y)—v""(e/y) * Al te)
= k (4 Ak

By substituting VE~1(6/Y) in terms of vk (6/Y) it follows that

VHory) (84 = 1) VHErY) (857 110)  ALD [~ 11y, ~40(5 " 12)

Premultiplying by the inverse of VK(@/Y) it is determined that

k
8y =35, +[V® + 2 (A )] vle) [y -285" te] -
J=!

From the foregeing it is seen that the Bayes estimator can be determined
as a "single-step" recursive process in which the observations are processed
sequentially provided the errors in the observables are not sequentlally
correlated. In this manner, if the Bayes estimate SB and VK (6/Y) are
known and an additional set of observations yk+1 are available, fir which
Axirs Vgep(e), and M, are known, then the Bayes estimate &5 can be
determined recursivel: § gts follows:

kt/ _ 5 7 -t
V&¥ory) =V ©/Y) FAL (@A,
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Pats é: ,,_(vk.c/(o/y))‘/,q u/«/( )(gk*, k,,..,;)

=3 -

where

/= -
Fars ';‘tku Nek VYA

The initial gonditions for VK(O/Y) and 6 g K are v °(6/Y) = v-1(0) and

s Mg since Spis given by

o
—B =
7

&5 Mot (V1 ATV CIA ) AVl (g,-114,)
5] = 82+ (w(e/y) tA Vte)A,) ‘ATved (g, ~L1g,)

These initial conditions follow from the fact that (V(6/Y)~l is the covariance
matrix of O, given y. For the case of no observations, V(6/Y) = V(8) and

the Bayes estimate is simply Mg.
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2.4, THE STATE TRANSITION MATRIX

The navigational filters described in sections 2.2 and 2.3 required
knowledge of the relationships between the state at various epochs so as
to allow all observations to be referred to a given epoch or so as to
allow for the generation of an a’priori estimate of the state at the epoch
of the observation. Thus, this matrix is an explicit part of the navigational
logic and will be discussed as such. It is noted before initiating these
discussions, however, that there are many other applications for this matrix
which will be explored in future monographs of this series (Midcourse
Guidance).

Consider the following nonlinear system of equations (which define the
motion of the vehicle being considered)

d —— ..ﬂ B .l

g (F)=FE )+ Z({t) (4.1)
where X is the "state" vector for the system (commonly, F,'V; T ) and
where 7 denotes the control applied to the system. Now consider a neighboring

trajectory defined by the same system of equations and the vector displacement
from a "nominal" solution

8(t) =%-%, . (4.2)

Combining these two notations, the time rate of change of the displacement is
obtained as

5@=[Fz,0-1(%,2)] +[20)-4¢) (4.3)

but since g(t) is assumed to be small, ¥ (X, t) can be represented by a
linear combination of two functicns, i.e.,

- - A s (h-l#)
f(l,l‘) =£(l;t) +/3(x,zf) .

Now, the vector difference Eg(;?,ﬁ)-ffi;,iﬂ can be expanded in a
Taylor series as

L(2,8)-4(%,) - &

Similarly, the vector function 5'(2, t) can be obtained from a Taylor
series in terms of the state along the nominal trajectory

B(%,8)= 4(%,,¢) - 258 (1.6)

*L“n

8*. (4.5)

129



Thus, the differential equations for the system become

. 97? a/g - (14’-78.)
§= |5 + £ & T(X . t)r AU (¢
Rl e~ A cAOR ()]

7 =

A(L)5+ F(2) .

o&b

(L.7v)

i

But, the trajectory for the motion under consideration itself is
expressible (analytically and/or numerically) as a unique function of the
position and velocity at some epoch, and as a function of the accelerations
experienced relative to a nominal path (differences in the gravitational
accelerations and in any applied thrusts). This set of relationships is
represented by

F:?(E+3E,2#SE,82,Q (4.82)
- s - i -~ (L|..8b)
F=v(7ssr 5 +8%,82 4t).
Thus, by a Taylor's expansion
F=F +_ 8F + _x 2, +Cf(da
n a,; L] 9,; -] ( )
and
o~ = 9-;? - F - r -~
Fot s D SE + ’L 2f + CF (83) (4.10)
2F, ar,

where £ ( &) is a set of linear functions which additively (due to the
small assumed magnitude of the deviations) represent the effects of the
differences in the perturbing forces, and where B and C are 3 x 6 matrices.
These linear equations can, in turn, be expressed as

- . or  ?F
r = . 2F o .
= 4§ = - = & + F(s)
A& 2r ar (4.11a)
F-T = =
or 2/,
= ¢(f,?fo)3,, » A(t,¢,)F(82) (4.11b)
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showing that, to the first order, the dynamics of the problem can be repre-
sented by the two matrices ¢ (t, to) and A(t, to).

Now, comparing the two equations for 6 and B;[_equations (4.7) and
(4.11)_/, it becomes apparent that the fundamental solution matrix / the
state transition matrix, the matrix denoted by ¢ (t, to)_7 is the solution

to the homogeneous equation obtained for F = 0. In order to define the

nature of the term A (t,_‘to) ¥ (84 ) it is, however, necessary to
consider the solution to & (t).

Let € (t) denote the homogeneous part of the solution for & (t).
Then

E(t) =A() E(2)
But

E) = p(¢,2,) € (L)
Thus,

. (4.12)
¢ (ff éo) = A(t) p( ¢, Z‘O)

At this point, introduce the system of differential equations adjoint to
this family

: (4.13)
At b)) = A (8,2,) A(%)
and note that

a%[A(z‘,t,) a(t)] =A(4,4,) E(t).

Performing the substitution yields

d . - S
A @e)s@)= At 4)5+ 0 (44)8 (4.14)
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which, upon integration, can be written as

At d) 8(¢) =A(4,¢t) 8(¢,)

t -
A7) F(T)d
*{ (7,) F(7) d7 (4.15a)
= 8(4) + [T AT 4) F(T) I7
to (4.15b)
-1
Multiplying by A (t, t,) now reduces this result to
8(¢)=A"(¢,4) 8(1)
. ¢ - L.16
A1) [ A (T, 8) F(2) d7 (ho0)
fo
Finally, comparing_the form of this equation to that given earlier
/ equation (4.11)_/ for $(t), it is apparent that
-1
¢(f, f°)=_/\_(z‘,z,‘o) (4.17)
and that
(4.18)

A(4,L,) £(83) = (¢, f,)fff('z', f,);'('z') dr
%

The preceding material clearly establishes the mathematical nature of
the state transition matrix and, at the same time, introduces the adjoint
equations as one means which might be employed to compute this matrix. The
sections which follow will explore these avenues in some detail for the
purpose of providing the state transition matrix as required in the naviga-
tional filter.
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2.4.1 Generating The State Transition Matrix

2.4,.1.1 By Direct Integration

The introductory paragraphs to this section of the report showed that
the state transition matrix obeys the differential equation (4,.12)

P(t,4)= A @ (¢, ¢)

and the boundary conditions

P (819 é;) =T

Thus, the desired matrix can be obtained directly by numerical integration of
each element of the array. This procedure is completely adequate for most
applications in which the task is concerned only with the reduction of
observed sightings (fixed values of to).

However, there are applications (midcourse corrections, for example) in
which the state transition matrix relating the state of the present epoch
and a fixed future epoch (e.g., the epoch of rendezvous) is desired. For
these applications, it i1s unnecessarily complex to require that the preceding
integration be reperformed at each epoch (i.e., a new t_ at each epoch).
Rather, it is convenient to generate the desired solutions as follows:

g(t) = @(¢, Z,) go (4.19a)

8(T)=9(T,¢)8, . (4.19b)
Thus,

B(T)=@(r,¢)07(t,t,) 8 (2). (1.20)

This technique requires that two integrations and an inversion be accomplished.
First, the transition matrix relating the arbitrary epoch (t,) and the fixed
end time (T) is generated. / This integration need be performed only once,
providing that & (t) never leaves the_neighborhood of the nominal trajectory
about which the partials are evaluated;7 Secondly, the transition matrix
relating the arbitrary epoch (t,) and the epoch of the present state must be
generated from the previous transition matrix, the differential equation, and
the change in the time. Finally, the latter matrix must be inverted.

The first two of the three steps outlined are relatively simple. However,
the third involves a considerable amount of effort if normal matrix inversion
techniques are emploved. Thus, it is instructive to present a means of
developing the inverse in an analytic manner from the transition matrix
itself. This procedure, if employed, will avoid roundoff and loss of
significance problems inherent in numerical techniques, in addition to
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drastically simplifying the mechanization logic.

Consider a linear system (expressed in cartesian coordinates) described
by the following equation

f=A(t) é(¢) (4.21)

where & (t) is an even-ordered state vector composed of a set of output
variables and their derivatives; and A(t) is'a coefficient array for the

system composed of square, symmetric, even-ordered subarrays of the following
form

(o) 1 A
AR)=___" (4 .22a)

This form for A(t) is representative of motion in conservative force fields.
To be specific

.272b
Ay =T (4 )
3.A-5T .Qn
A,,=2§=i,I—-—r——;— (4.22¢)

ar r r

for motion in the vicinity of

|
% | Y
- - - (4.23)
§(t)=@(t, ) 8(t,)= —————— &(¢).

4&1 : ¢Q2

If equations (4.22) and (4.23) are substituted back into equation (4.21), the
following identity results

% % 0 I Q/ ’fz
= oz J

27 (h.24)

% %4 |57 ©°| L% %
and upon expansion, equation (4.24) yields

(f.’u = 402) (LI--258-)
e = Yez (L .25b)
(bzl = %gr_% (4.25¢)
. - 3g (4.25d)
¢22 3_540/2 ‘
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Equations (4.25) may now be operated on to produce an equivalent set of
differential equations. This operation is performed as follows:

T . _ T
% Z"@/ %/
T -
v r 22 _ . r?
2% =% 3,—%—% a;%
T . ?g‘_
%3 ¢9/"QZ ar 43
. T r
8 Y= % B
or
d T (L.26a)
07(%/7% -4, %,)=0 2
(4.26b)
%6 -B B=C .
Similarly
%; @l_gzr %/ =C2 (4.27)
T r )
P22 B2 ~H2 %2 =Cs (4.28)
a4’ %2‘@7@2 =G, (4.29)

Finally, the results of the integration can be restated in matrix
notation as

T T
e  ~ D % P2 €z G
“2 " - (4.30)
.
- %2 %T %, sz <, C4

and the constant arrays resulting from these integrations may now be
evaluated by substituting the initial conditions

2, (0)=a, (0) - ERooL

2,(0)= 2, (0)=0 .
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This step produces

=0 (4.31a)
Cp=I (4.31b)
C3=0 (4.31c)
Cq=1 (4.31d)

and reduces equation (4.30) to the identity matrix. But, the only matrix
which can be utilized to reduce an arbitrary square matrix to I is its inverse.
Thus,

2l %
ACANE I . (4.32)

@, Q/ *

Equation (4.32) is important for general linear systems in that it
provides an analytic means of constructing the inverse transition matrix
directly from the elements of the kncwn transition matrix by rearransement
of terms and the change of a few sisrs. In conclusion, it is noted that the
true meaning of the terms Ayp and Ay, / equation (4.12)_/ was never employed,
and only symmetry is required. Thus, there is an immediate generalizationm
providing that an arbitrary svstem can be described by equation (4.22). (Tn
general, this formulation is possible onlyv in terms of inertial coordinates.)

2.4.1.2 By Integration of the Adjoint Equations

The differential equation for the adjoint matrix was shown to be

Al )= ‘A(t""‘o) Al¢) (4.33)
with boundary conditions

A(y,t,)=I

Further, the inverse of the adjoint matrix was shown to be the transition
matrix. Thus, the adjoint eauation can be integrated and the result inverted
by employing the analytic inverse property developed in the previous
paragraphs to yield the transition matrix.

This technique offers little in the problem where cbserved sightings
are being sequentially reduced (fixed to, variable T). However, if the
problem also involves the generation of midcourse guidance commands (fixed T,
variable ty) so that both ¢ (t, ty) and ¢ (T, t) are required, an
adaptation of the adjoint technique is equally as suited to the problem as
the more straightforward approach.
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Define the time to go as

t?a = J-¢ (4.34)
so that
d?°=—a%
and
; d&(t) d¢, _ = (4.35)
= =-8(7-¢
5 (¢) Wy, (T-¢,).

Now, substituting into

$(¢) = ACE) 5(2)
yields

}
o

5(T-¢

= - - 5(T- (4.36)
o) = AT -4 §(T %,).

But,

5(t) = @(1,¢) 3(1) = @(¢,T)§(T).

Thus,

45(7‘—%0, T) =-,4(7‘-z;°)¢(r-zo,r) (4.37)

and the system of adjoint equations is

JO\.(T-L‘",T) =A(T—¢f°,7) A(T-¢,), (4.38)

But at the epoch t

-1
ut at P g0 = 0, Y (T, T) and thus ¢ (T, T) or A (T, T) is the
identity matrix ©

.A.(T, T) =T .

137



Therefore, the adjoint equation expressed in terms of the time-to-go can be
integrated from tgo = 0 (backward in real time) to the epoch in question to
yield ¢ (t, T).

Note is made before leaving that this process involves successively
small values of tgo. Thus, it is either necessary to store these successive
values of A (t;, T) or to construct these successive matrices as follows:

3(¢)= @(¢,T) 5(T)
g(t1)=¢(t¢':t) 5<t)

Thus, § (¢;) = @ (¢ ,¢) @(t,T)8 )
E (p(é") T) 5(7-)

2.5, .2 The State Transition Matrix For Conic Motion

The preceding paragraphs have presented several means of determining
the state transition matrix for the true motion. However, the amount of
effort required is considerably in excess of the amount normallv spent in
preliminary analyvsis, or in those cases where only moderate precision is
desired. For this reason, an approximate logic for constructing this matrix
will be developed based on the two-body solution of the equations of motion.
This development is justified since the deviations from the true and conic
trajectories will agree to a higher degree than the trajectories themselves
(i.e., the error introduced by neglecting the variations in the perturbing
forces is small compared to the magnitude of the variation in the state of
the system produced by erroneous initial conditions).

The development of the matrices of partial derivatives to relate the
first order variations (from the nominal conic trajectory) in the state at
two arbitrary epochs will be accomplished in four steps:

Circular orbits (rotating and inertial coordinates)

. Elliptic and hyperbolic orbits (rotating coordinates)
Elliptic and hyperbolic orbits (inertial coordinates)
Approximate method of including the effects of trajectory
perturbation

Fmw o

As will be apparent, the material of these discussions is related and
sometimes overlaps. However, as will also be noted, there are computational
problems associated with some of the functions, and significant differences
in the coordinate systems employed in the analyses. which combine to suit a
given formulation to a given task to a higher degree than is possible with
any single step.
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2.4.2.1 Circular Motion (Rotatineg and Inertial Coordinates)

Consider the perturbation equation

iy

F =1 +AF
and its second derivative with respect to time

F=F+aF

under the substitution of central force field dynamics.

T S s
h*Ar = - PR r
o F
(A -
. r
rra(22T)
ro (4.39)
L A A’F)W -
= - pr /-3( oy (}5 +Ar')
o L o J
/4 [ ~ V74
= - Ar -3(r, -Ar r] =t
’BJ (o ) o '5.’ o
Thus,
Lo ,” o A VA
8= -2 [ar- 3(33) 7
o
= —/3 [I -3 ,3 f;—f] AT (4.40)
%
where I (the identity matrix) and /I}o ?OT are 3 by 3 matrices.

s _ 2 RN
Now assuming that the eccentricity is small (i.e., 6= w= 7]-—3 z < - > 2
produces the equation

aF(t)=-w? [ 1-3 ) 7] aF ) (1-41)

139



But, as has been shown, this equation possesses the solution
AF AT
- = ¢, ¢ -
el

Thus, an explicit solution for ¢ (t, to) can be obtained (for circular
motion) by noting (from the previous equation) that A T can be expressed as

AF(¢)= F(t,4) X + K (¢,4,) Y +F(t4)2

by substituting this representation back into the differential equation (4.41),
First, however, a simplifying assumption will be made in that the coordinates
selected will be centered at the nominal position and rotating with the
satellite so that

=k(t)
= F(0) X $(0)

= Z2xX

=~ Ny X3

and
= W
—wx

MY =R
il

0O

At this point, the derivatives of AT (t) are formed and substitution
into the differential equation will be accomplished.
2 A . ~0 s a A
Ar=FX +rFZ+KY+ R Y+FZ + K2

LA

5
+E, 2

=(F-whk)i +(FR+wF)?
AF=(F-0R)2+(FrwE)V k2

tE-wR)wV~(F toF) w? (4.42)
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Now

3 00
38 = |lo oo
o 0 o0

and

+20* O O
_wz(_[_g;gf{)- o w® O

o 0 -w? (L.43)

So, equating the components of equations (4.42) and (4.43) yields
Fim2wh -w*E = 2w%F

B +2wF - o2 F=-w?F,

2
Fs = -w?F,
or
F-3w?F-2wF, =0 (h.Lka)
R +2eF =0 (& .4Lb)
F'-?; f w2 F:, -0 , (4 .he)

These three second order scalar equations define the time dependent
coefficients of A T.

Note that the third of these equations is uncoupled from the first two,
and thus may be integrated directly. The solution is:

F(t) = S wowt + Tamwt. (h.45a)
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But

(4 .45b)

(4.45¢)

Now, integrating the second equation
F(t)=-2w F(t) +£(0) +2wF (0)

and substituting into the first allows the following solution to be developed:
’%'3w25-20(-2w5+5(o) +2wF(0))=0
F+aw?F = 20F;(0) +4e? F,(0) (4 .46a)

Ft) = S coowt +Tism et

2 .
+Z) FR)+4Ec0)

where

E(t)=K(0), ¢=0
Flt)=F(0) , ¢=0 .

Thus,
s = -2 £, (0)-3F (0 (4 .1,6b)
w
F, (0)
T/ = w__ (L .46¢c)
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and

or

Thus,

E(¢) = F(O) [4-3600.&)[' ]
i 2 2
+ Fp (0) [Z) - ; Coa Cc)t] (L .47)
. !
£ o
+ F, (O) [w aom wt] .

Substituting this latter equation into the first integral of ?é yields

Fa(t)=-2w [F,'(O) (4-3co0 i) + 2 -F'Lo)(/-coowt)
w

N F, (O)

sz‘.:l +F2(0) +2w E(0) AF

Fe(t)= F(0) [~6w (- coowt)]

+£€0) [~ (8-9 coowt)]

(4.48)
-2500) [4in ot]
F(t)=~ F(0) [6wt -64())1&;2‘.]
: 4
- F,(0) [3t - th]
@
2F (0)
t= coowt +C (4.49)

F, (0) [6(th-wt)]

h

+ F,(0) [(‘LJMM wt -3wt)]

+/-f(0)[ 3£ Coo wt] tC .
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Finally, employing the boundary conditions

F(¢)=£(0) 4 £=0

yields
. 2
E(O)Z*C:— FzCO)
or :
F (0)
c= Koy - £
Thus,

Fae) = £00) [6 (aim wt - ct)]

+/-}(O)[;—'J(4wwt—3wt)] (4.50)

: 2
+E(0)[a—) (coowt-/)]ui,(o)

1]

The extension of this analysis to the case in which inertial rather
than rotating coordinates are utilized is obtained simply by noting that the
first derivatives of & can be expressed as

AF=AZ +BY +C2 (4.51)
where

A=F, )
B=F

] for rotating
C=F

coordinates

X=(¢t)
Z=F(0)xF,(0)
§;=.§ X;2 y
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A=F:','GJF2 ]
. inertial
B:Fk +F
1 > coordinates
C=F
5L9,2=70,Zx%, £ ) x $(0), J

In this latter case, of course, the initial conditions for the functions F

.+ F; become 1
F,(0) = AT (0) - 2(0) (4.522)
R(0) = AF(0) - ¥(0) (4.52b)
FO) = AF(0) - 2(0) (1.52¢)
F(0) = AT(0)-AR (O)yrw F,(0) (4.52d)

(4.52e)

£, (0) = AF(0) - P(0) -~ F(O)
- : 3 (4.52F)
K, 0) = AF(0) -£(0)

The results of this process are presented in Tables 2.4.1 and 2.4.2 for
the cases of rotating and inertial coordinates, respectively.
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2.4.2.2 Elliptic and Hyperbolic Motion (Rotating Coordinates)

2.4.2.2.1 Elliptic Motion. The complete description of the moticn in an
elliptic orbit is obtained from the following set of equations:

r = a(/-ewsE) = radial distance

a = ru@Ru-rvad)™ = semimajor axis

P = (rv wi b’)z ! = semiparameter

e = (/- ﬁ?)&z = eccentricity

(t—tp) = (E-esnE)n” = time from periapse

n = u2q e = mean motion

(p-w) = oz é;é:) = true anomaly

@ = angle in the plane of motion measured from the ascending

node

w = argument of periapse

i = o1 (o1l o ,5> = inclination

1% = w-rl"( zi/i> = longitude ;‘elative to
the ascending node

B = agimuth

Thus, by straightforward differentiation, the column vector representing
the change in the elements can be constructed for a given set of errors
occurring in the initial position and velocity vectors. Now, since the
modified constants of the motion (a + Aa, etc) are known, the implied
variations in the position and velocity vectors at all subsequent times can
be obtained by solving the six simultaneous equations for these quantities
in terms of the known errors in the elements. This process, like the first,
is direct though slightly involved.

The transition matrix, i.e., the matrix of partials relating errors in

the state vector at any epoch to errors in the state at a given epoch, is
readily constructed from these two matrices by direct substitution; that is,

8C =10 (t,T) 3,

5 - (4.53)
=49y (t,,T) 6C
=19y 0, 8%,
= ¢ (tz,t,) g" . (h.Sh)
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Thus, the analysis will turn to the development of the two matrices denoted

e, and o,

2.4.2.2.1.1 AT, av = f( aa, Ae . ..o ). Expansion of
those equations required to define the components of AT and AV in terms
of variations in the elements will be presented on the following pages.

These expansions and the associated substitutions are presented in detail to
facilitate a rapid understanding of the process, to demonstrate the manner
in which computational difficulties can arise, and to establish the means of
inverting the process to define the changes in the elements as a function of
the changes in the position and velocity.

Consider first the radial distance
r=a(/-ecwkE) . (4.55)
Thus,

dr=-£a’a+ae am E dE - a e E de

But, t rather than E is the independent variable of the analysis. Thus
Kepler's equation must be differentiated.

ty=t-L(E-eanE)
n

/ r -
dtp = —— —dE+—’4:'42.5.‘0‘@3.—i (t-2p) da ,
”n a n V4 a
Now, substitution yields
r 3 e )
d,_-_-[__— —a'-M,de]da
a 2 r
2
e
+[—a.¢oo£ . 2 MZE] de

(4.56)

2
e
+[_£L_

ME‘J dtp .

Now, consider the displacement in the circumferential direction (i.e., per-
pendicular to r but in the plane of motion).

¢7 =@ +w

rdp = rdo +rdw (4.57)
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where

a(/-ez) -r
re

coo B =
or

. A 2
~aun 8 08 =— [(/-e®) o - 2ae de -ar]

pP-r
,-2 cz

[r‘dc re dr] .

Substituting for dr in terms of dE reduces this equation to

VR 22 ' E
Fdg=— {_[(r a) 2 € ge + L22ZLZT dE]Z
4 6 re ro .

Now, substituting for dE yields

3 P M
¢ 2 r J/1-e® da
2_ 2 _2 .
(r-a) —a“ e pa mnkE
+ |- * (4.58)
[ 2n O(r e?) r J-e ] de

[P ] o

The next step in the analysis is the construction of the errors in the
planar components of the velocity vector. The rotating axes for this
application will be selected along, and perpendicular to, the direction of
the velocity itself. Consider the energy equation

2 2 2l

vt = —/— -

r a (4.59)

_ ! 2 u Dl
9 ‘ZV[ r2 dr*Fda]
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substituting for dr

ra a*t 2 r r?
R _ 2
"‘[*‘ 2 & £ -— ae,asz]a’e
r r r
2w« na®e
+[ — E] d¢p
or
v 3 w4 .
dy=|—~ —_— —
v [ Za +2 . eMme]da.
Ala a .2 :
-f-[(r———zv)(woé'-;em E)]dc (L.60)
Lla \ a
+ ([T )V&
[( rzv) . eﬂME:I dtp,

Finally, consideration of *the angular momentum will provide the infor-
mation necessary to construct the variation in the velocity perpendicular
to the nominal direction

r*v? coo*y = wall-e?)

LLp 2_wp
ro+

4 —’_ d dv “Zﬂpt‘a/nb' ady (4.61)
(/-e?) ae
=2.,ap[ c da—_.de]
2p J2)
so that

v [dr dv ae da]
= —— — _— + — de -

vdr 3’[ v + v 2 Zal .
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Substitution of previously derived expressions and the identity anEfany =
f7-ez / & now reduces this final equation to

3 VaMm e
= |-— — J/-peR -——
de [ 2 r2 /-e (/ rvz):l da
a V(ooB 7 Ve
y | -—- == -
[ r lomy (/ rv‘)+tm T(/-cz)]de (4.62)

+ [—Vn (-—f_‘—)z\/l_—_e—i(/-:-t—;)] dfp .

The development of the variation in the out-of-plane angle and the
azimuth (or the corresponding position and velocitv perpendicular to the
plane of motion) will be accomplished in a slightly different manner
(Ref. L.1). Since the dimensionality of this subset of variations is two,
and since these variations are independent of the in-plane variations, this

set and the inverse set / i.e., a¢ , AQ =f(aB,A ¢ _/ will be derived
simultaneously in the following paragraphs.

Consider the sketch

latitude

W
il

Azimuth

X

Now, employing the law of cosines for the spherical triangle involving the
colatitudes and J¢

coo (90 -L—-a’L) = coo(90-L) cood¥

+uin (90-L) awm d¥ coo(90-48)
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which is approximately

el * Cool JL = gl - ool i B dy

or

L =~ e 8¢, (4.63)

But, from spherical trigonometry

cool = ¢Cool aw S

so that

it

coo e L 2
di = - L'Cfozd oG ‘"‘”‘T“T‘éé oL
QA L L L

(4.6L)

Coo L eso0 8 s — 2wl 2w 38
e e &

Iy

The error in the node (4J<- ) is obtained by considering the projection
of the erroneous trajectory on the reference plane, i.e.

cool(8+d8) (4.65)

coo(V +dV -da)= "

which is approximately

too0 8 - 8 dé

g { F CO0L L

ooV —anV(dy-dn) =

(oo B -8 dA8)

~ (/- Cotide)
77 XA
or
o YV (dy ~da)= '6 JE * (m‘? a_#“a’z;
el A ¢
But
) ot (90
e (dv) = (90:8)  in ap

< (90-L-AL)
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SO

Coo 8
dv = o0 L d¢ . (L,.66)
Thus,
2 _
on = - ——m——— dA’M dt'v‘-—co—oﬁ ady
vV s i Ll qmw TV oo L
or

lan 8 ctoo 4 ol aool.]
=~ * 7
da [ tan V e [ Zan UV o
. . -2
*.[ Coo 8 . a#t.‘“vl—&%ﬂ) ‘1<y¢
too L Zanw V 40 ¢ .

(L.67)

These variations can be written in the form
[”ﬂ_[“" ] ] (1.68)
d. 2z agy ¥

Thus, solving for the column vector (J8 ,d¥ ) is possible by computing
the inverse matrix

Aln [azz -4,2] xa

~Qg @y Al
The results of this process are
d8= [anL sin?8]dn

2l ool s S
+[—coo,d( > - ]dL‘
oo L 2w L

(4.69)

and

dy =[cooL eoo,d] adn

+[::U——2 (e % &/2,4-/)] Ai (4.70)

These results are summarized in Table 2.4.3.
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2.4.2.2.1.2 ( apa, pe... Ae )= ( AT, AV). The de-
rivatives required to construct the linear equations representing the inverse
of those presented in Table 2,4.3 were, for the most part, presented in the pre-
ceding section. Thus, the development of this section will be much simplified.

The first variation of interest will be in the semima jor axis. This
equation was presented intact as:

(4.71)
A Y2

The variation in eccentricity is from the equation defining the

variation in the flight path angle, simply by substituting to eliminate da
from the equation. That is,

oe = P |ga + TAN > d N -0V -ogr
ae | 2a v r

or, upon substituting for da

— - - 2 -
ade _a_'_/;‘[(/ _a%)czy;_; +(/ f.Tv)% TANa‘dm]

(L.72)

=£ 005 £ oy + 22 COSEFdv+X SING (Vo o) ,
ra2 Va

The development of the change in the epoch of periapse passage initiates
with Kepler's equation in the form (presented previously)

dtp = —3M da-+5/N£' de - Y ofFf
7La_ Na .

This time, however, it is necessary to substitute for dE in terms of dr
dv . . . . Thus,

Y = a(/-ecosE)
oE = _/ a’v-—)"a’a_+a.005£de}
Qe SINE a
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or

dip= |[~3 M + r? da + |SINE - Y COSE de
2 na radesivE ra nae SINE

+ |- dr .
na?e sSINE

Now, eliminating da and de from the equation by substitution, and combining
terms yields

dtp = -3Ma + SINE (f_ COS £ + _/) ar
nre Ar Y e
- 7 (4.73)
+|-3MVa + 2SINE [P COSE + /) oav
N A AV r e i
+| eSIN?E - rVi—eZ cosE |(vdr)
nva ez Anvae ’
The final equation required is obtained by noting that
yﬁ = &8 +w
so that
cos (g-w) = a(/-e?)-r
evr
or
odW= _/ A ca + [~Ra - P-Tr\ de
SINE | ear 'S e?r
(h.74)
+(=/ —~P-Y\ dr|+dd
er evr?
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Now, once again substituting for da and de yields

dw = [/ r 2a,2')__ r _.(Z.a, L P-T\@a-X)P | ar
SIM 6 La,er Y2 er? r elr /) aer?
[~ =
P 2 va?t 2a | P-Y\ 2(a-Y)P avVv
P L (B - (2% 45
La.er —“ Y e<r ryva e |
+ | -/ra + P-Y P TAN T \|dX\, + dg@
L \ e¢r ea

which reduces to the following

dw = SIMNO dr + 2SN dV - |/+005SE |(Vdo)
er ev % Ve (4,.75)
4 (ragd)

-

The results of this analysis are summarized in Table 2.4.4. Note that
in contrast to all previous equations, the equations for dt, and dw contain
terms of with factors (1/e). This fact displays the physical problem
associated with the indeterminancy of the line of apsides. This approach,
nonetheless, completely describes the propagation of the differentials around
the orbit, as can be seen by examining the limits of the terms contained in
the product matrix (matrix of Table 2.4.3 times the matrix of Table 2.4..0)

and comparing the results with the terms of the matrix presented in Table
2.4.1.

2.4,.2.2.2 Hyperbolic Motion. The equations presented in Tables 2.4.3 and
2.4 .4 can be applied to the case of hyperbolic motion when the following
substitutions are made.

E =-iF

sin E=1 sinh F

cos E = cosh F

v} :/—{L:(— = L/Z__— = I'.nh
as’ dlh

a, =-a

\//-e = l‘_ e~/

Ehi gesults of this set of substitutions are presented in Tables 2.4.5 and
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2.4.2.2.3 Elliptic and Hyperbolic Motion (Inertial Coordinates)

2.4.2.2.3.1 Transition Matrices and Coordinate Transformation.The propagation
equations developed previously (with the exception of the case of circular
motion) were built around the transition matrix relating errors occurring in
a rotating. local coordinate system. However, there are sound reasons for
studying this propagation in other frames of reference (e. g., in an inertial
frame as in the case with an IMU, in systems which exhibit the principal
values of the error ellipsoids of position and velocity on the coordinate
axis, and for the purposes of propagation studies in patched conic tra-
jectories). For this reason, several systems of primary interest will be
introduced, and the mechanism through which these effects can be introduced
will be presented.

For the purposes of generality, a composite transformation matrix will
be established which will transform the errors represented in the local
system into those expressed in an arbitrary inertial system. In the process,
the transformation necessary to establish the relationship between the ro-
tating system and any other frame of reference will be apparent.

1

’-y
| M
\ N Y
' ¥
X
L :
P
L
No
A A
/ /\R.'/S\:-Q
;‘< /fX%':W
V-5 -¢cos &
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Referring to the sketch, if the following shorthand notation is adopted
T, (@)

Ty ()

CCW ROTATION ABOUT X

I

CW ROTATION ABOUT Y
T, (ex ) = CCW ROTATION ABOUT Z

the vectors X, Y, Z, ).(, i, and Z can be readily expressed in terms of the
known vectors R, S, W, v and vA ¥ .

(x ) R R
< Yr = 72(—11.) 7,}(—-&) 72[—(9+w)] S = T S
Z W w
_ -/
s =~
R v
XS = 7(-9+r) qvar
w w
L
)
X 1%
y ¢ o= 72[-JL)73<(-i)7§[—90—(9+w)+ar'] va o
z w
J
\V4
= 7m¥dvaw
w

Now, combining the transformations and utilizing subscripts I and R to denote
inertial and rotating, respectively, the transformation becomes:

{é\r} 7 0 S
s r = * .
I o 7 $¥( o

Sv
évr

I
19
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Similarly, if other frames of reference are desired, the transformation can -
be readily constructed by performing a series of rotations (in an inverse
manner) from the inertial frame to any other frame.

2.4.2.2.3.2 Transition Matrices from Universal Variables (Inertial Coordinates).

The equations of conic motion in terms of the so-called universal variables
of Dr. S. Herrick will be utilized to develop another means of defining the
partial derivatives of the components of position and velocity at any given
time (on the conic section) relative to the components of position and
velocity at some other arbitrary epoch. This task will be performed to
avoid limiting cases and to simplify the development when interest is
centered with inertial coordinates. The development will utilize a formu-
lation valid for a non-rotating coordinate system and will be based on the
development presented in the discussion of the two-body problem (Ref. 1.3).
The required expressions for this analysis are:

Y - fh+ a3, (4.762)
S - ffor 53, (4.76b)

where

noon
SEEEN

NS
c

[NV h:=p b
|
\
L
<
01

-~ AN ~ A
r = inertial position vector = XX + YY + ZZ
§ = normalized velocity vector =?//,7= (Xf(\*; y?+22)\//7
%* is the X unit vector. (This notation is adopted to avoid
confusion with a variable to be defined subsequently)
\
¢ =a (/-co5x) = a(/-eo5hX)
A /A ELLIPT/C %, HYPEREOL/IC
= -S/IN X - 2 -S/NV.
(/{ < (X >/ ) >M07’/ON (CI_)’ (X SNAX) AO7/0N
s a2 (sivx) = (-a)2(sINAX)
A
x =a'’x =(-a)’ x
/ J
a = - yoC
D, = Yo * 3,
CL = /4 Yp oC
X = £-£o  (ELIPTIC pmOTION ) = F~Fp (HYPERBOLIC NMOT/ONM)
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The first step in obtaining the de51red partial derivatives involves
dlfferentlatlon of the equations for T and § with respect to the components
of rO and 5 This task will be drastically simplified if full advantage is
taken of the similar form of these derivatives at the outset. Thus, a short-
hand notation will be adopted in that u and v (1 and v) can assume the values
of s, y, and z (%, ¥, and ).

3_1.1 = + U, of +() .3_5_
ARG 17 °3v, (4.77a)
.77o)
U g8, fUF 40 2% (.77
av 5 (717 Oavo'fuav
BU = oy + Uy f + 0,22 (4.77¢)
2% 2o 3% (4.77d)
3_(...! 8., + Uobf Aﬂ
- j uv v + Uo

where 9% 9% 2%

Sy =0 u#Fv

=/ u=v

Thus, the problem has reduced 1tsel£ to one of obtaining the derivatives
of f, g, £, and g with respect to ¥ and s. This task will in turn be 31mp11-
fied if a set of intermediate parameters is selected, since the x . . . Z
do not appear explicitly in the equations for f . . . g. The set to be
utilized is suggested by the equation for the magnitude of r in this set of
variables.

r=r +0,8 (140, o()c
SF (7, 2 ;)

Having selected the intermediate variables, the next task is the
differentiation of f, g, f, and g.

For f
”

5¢ _ -ro 2pré (4.78a)
37, *

SF — - 38 (4.78b)
90, r 30,

df — 1 a8 (4.78¢)
on 7o oa
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For g 94 - 3 _ a(//\
ar, 3% arn (4.79a)
2g - ar _ 20
3,  3bo 20, (1.79b)
8 -3¥ _ 23U
da dA o (4.79¢)
For f ; Q
¥ - R SRl (4.80a)
° (rr)®
A A
° (rr)?
. A A >r (1&0800)
g.fz = ~(rro) 5% + Sy
(rr,)?
¥~ 3¢ A ar
and for g SZ - —r 5+ C 5~
fa /"Z
(4.81a)
) 28, Ror
S% = =7 Do < Do
29 28 ,p2r .81
_bz;( - -r a_ +C = (l& C)
r2

N
Now, attention turns to the derivatives of /(3, /§, U, T , etc., with
respect to rg, Dy, o .

FOI'/C\ A A
ac -3 4 o 3X
— QL L= = § =—
o ro 3 ) (4.82a)
o8 _ g 2%
20, ~ " 20, (4.82b)
A AT ASD A
2¢c _ ok - 0a _ 523X 4, cq
J0h a*(/ co1 ¥) Y Py (4.82c)
A A O
~ dU 3, o) oL
—_— -2 - o4 —_— :C._
For U 7, (/ r) 57, r (4.83a)
20 _ 7 ok
a0, - ¢ o5 (4.83b)
A o ! AND A
3—‘0"( =Ca—;f'—?(Y‘MX)Q/23—2 :Ca—:+%UQ (4.83c)



For § 35 _coux oL

3fc = PYA

A A

93 34

-_— = o —_

3D KQD.,

28 YA )

Sz =X satzeinrak
For T

B_I:O

370

dT 0

Do

DT _ 1 %y = L

o 2a2t = a7
and for r

A A

éf_/fpoﬂ fCoa._c- 1‘-0(6

o0 o an

_3_’:_-—§+D 3_5\ +C aé\

20, °30, 7 ° 30,

>r 2% 2l A
3; :Do fco-a——“ fF,CEI;‘

(4.84a)

(4.8LDb)

(4.84¢c)

(4.85a)

(L,.85Db)

(4.85¢c)

(L .86a)

(4 .86b)

(14.86¢)

A
The final set of partials required is now recognized to be that of X
with respect tor , D and o . This set requires the equation for time

2
(analogous to Kepler'S equation) be differentiated as follows:

Va t-37'=/”0/i+oo€+(/fo<r,)(’/\

A
for oX
aro A A a(//\
=2 2X 2¢c Gr+exr,) 2=
O—Xm+QaGf'DaQGf”‘ ( °) 3r,
A 37
— N
SXtARV TS
o/
~ A
ro T

167

(4.87a)



PaN
3 p) 2 3c 4 ¢, 2Y
for 22 o= %= +C +D,25 o
30, ¢ 20, °20, 3 Do
Pal
2t _ _C
an,” T
A
foriﬁ
o% / Y 28 30 . A
207-’3;(*003—0(*009—“7‘(10
Pay A a/\
= U(fofgcoa)fDo(Co)f-a_o%(r)
A A
oY -/ Qa A oyl - K
O

(4.87b)

(4.8¢c)

Now, substituting back into the previous expressions and collecting

terms, the derivatives required to compute the partials of f, g,
with respect to the intermediate parameters are:

A
For C

A
For U

A
For S

Y (S
I it il
by
~

s
&N ™
*
L2
Q
W
I

168

f and g

(4.88a)
(4.88b)

(4 .88¢)

(4.89a)
(4.89b)

(4.89¢)

(4.90a)
(4.90b)

(4.90c)



For r

_a_/:z - Z'S— b "_‘§.2 /\—r
A 1+ 05 (=22 X 3)4Co )*“C—Jff
or =§+D,(-co—:z é),cc (~ 32)__’_.
5D» r A\TFI)=FT
%:DDSdV'COCA %raa_=_/”°(

(-]

Finally, the required partials

DO, and X are:

of f, g, £, and g with respect to

For f
A A2
2f - C 4 S
on n* e
of . 3¢
200 7
of = - L ¢
Sa =7
For g
°5_ 5S¢
o7, r
95 . &f
o Do r
/ [7’ 36],._ E\l/
29 = Sa - =
Fy 2 r=
For f . A
of S
Sh:;;?[r2+n(ruwz+/;ﬁu
of ! ra A
= =5 + cog X rc
20, rjro[sj X ]
af = I K5
LS /"I;;S.x f"?ro/c:(
For g 29 - 1 [, 02, A
By ,_3[)’5 'I‘C’;f]
35 . €2
30 r_;[rSf-j]
- A
99 - FCx * Cry
S r2
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(4.91a)

(4.91b)

(4.91c)

0?2

(4.92a)

(4.92b)

(4.92¢)

(4.93a)

(4.93b)

(4.93¢c)

(4.94ha)

(4.94b)

(h.94c)

(4.95a)

(4.95b)

(4.95¢)



Thus, the only remaining steps at this point are to provide the
derivatives of the intermediate set of parameters with respect to the
components of T agg EB, to construct the derivatives of f, g, f, and g with
respect to FB and s,, and to relate the results to the parameters T and V.
The first step is accomplished by referring to the definitions of ry, Dy, and

3 2 3 2
To =Z: Xl 50 =Z SL

l::/ i=1

O, X dr,
—_ = —_—= 0
aXl_ Yo aSi
Do _-‘To -.5‘0
aié = s; 200 _ .
a i 2 S; L
«=35'5-2
Yo

= - A

d X Y, 3 2 5S¢
The second step is accomplished through the medium of the chain rule, i.e.,

2F _ 2f ove , 2f 90,  0f 2
2 X; 2 Yo o X 0D0s OX; 2o d X

etc., and the third and final step is emploved to remove the normalization
factor applied to the components of the veloritv. Since

3 =V
N/,
LA
the desired matrix is
:f :_/_ 2 v
| T -l
aF | | ° WA 2% | R
- | -t
D5 | oS —
av N7 2% : > 5, A
L.
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2.L.2.3 Approximate Method of Including the Effects of Traiectorv Perturbations

If the traijectorv itself is being generated with precision (i.e., all
perturbative forces are being integrated in such a marner that their net
effect is accurately known), two simple means exist for compensating for the
deletion of the effects of the variations in the perturbing accelerations
in the computation of the transition matrix alone the true trajectorv. The
first and most accurate of the two schemes is obtained by considering the
true trajectory to be composed of a series of conic arcs, one terminal
(i.e., T, V) of which matches the true trajectory at the epoch correspondineg
to the terminal selected. Under this assumption, the total transition matrix
relating the vpresent epoch and some arbitrary initial epoch is obtained by
forming the product of the most recent transition matrix /relating t _and
tn1s @ (tg, to) = I/, and that formed usine the present values of T and ¥
and a propagation time equal to the step size of the numerical inteeration.
That is,

/é(th)to) = ﬁ(fn)tn-/)¢({—'n_.,) {-,)

This method does not involve integration but is, nornetheless, subject to
error accumulation due to the fact that loss of significance can result in
the series of required matrix multiplications. Thus, improved accuracy may
result if larger steps are taken for the purpose of incrementing p (t, t)
[i.e., increment @ (t, t_) each nth integration step/. Tt is important to
note, however, that the limiting assumption inherent in the equations of
motion will never admit great precision in this approach. Thus, extremely
involved logic to determine the proper propagation time appears unwarranted.

A second, less accurate, approximation is obtained bv considerine onlv
the two terminals T_, ?6, t, and ¥, Vv, T. For this case, two estimates of
the transition matrix can be generated. The first is obtained simply bv
evaluating one of the conic matrices for the condition ?6 s Vb » T-ty, 1.e.,

5,(7) =8, (7,¢) & (&)

-
The second estimate is obtained by considering the trajectory from ?T’ Ve, T
in neeative time / i.e., ~ (T -~ t.)_/

() = B (t>7) & (7)

Thus,

S, (T) = %"(to,r) & ()
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These two estimates can now be combined by weighing them in some fashion.
For the case of equal weights

(T t) = 5[4 (1t + 4 (4.7)]

This second procedure is easily mechanized if the transition matrices
relate inertial errors, since the analytic inverse theorem can be applied to
avoid numerical problems in the process. In fact, this theorem can be
utilized even in those cases where rotating coordinates are employed when it
is noted that the rotating and inertial matrices are related as follows:

B, (t,t,) = 5 (t) Fr (t,¢,)

where S (t) is an orthogonal transformation. Thus,

4. (e = A (e t) STCE)

The accuracy of the second technique is somewhat unknown. From physical
reasoning of the case in which T-t is less than one period, it can be argued
that the inclusion of the second estimate will provide an improvement in the
accuracy. However, a measure of the improvement is difficult to construct
since the magnitude of the perturbative displacement (secular plus periodic;
resulting from the non-central forces of the problem) from the conic trajec-
tory varies from point to point along the trajectory, For the case where T-t,
is greater than one period, the same effects exist. In addition, errors are
introduced due to the fact that pure conic reference is being assumed for
inereasingly long intervals of time.

Another family of approximations can, of course, be generated by com-
bining the first two types.
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2.5 DATA WEIGHTING
2.5.1 General Theorv

The imniementation of the various estimators that are introduced in this
monoeranh reauires a knowledge of the covariance matrix of the observables.
This covariance matrix can be determined from the covariance matrices of in-
strument errors and navigation model errors. This section will present
the general exnression that relates these covariance matrices. The fol lowing
section (2.5.2) will give the detmiled exvressions for esch tyne of nawvigation
measurement. that will explicitly define this covariance relat ionship for
any combination of navigation measurement.

When a navigation observation is made, it will differ from a predeter-
mined nominal measurement because of several reasons. Fivrst., the vehirle
will be off the nominal trajectory by some amount in both position and
velocity. Second. the constants of the navigation model that were used to
calculate the nominal measurement are themselves in error, because of uncer-
tainties in the physical dimensions and uncertainties in celestial body
positions. Firally, the uncertainty of the instrument that is used for the
measurement will constribute to the difference in the measurement.

Since all of the sources of the deviations are small and the nominal
measurement is assumed to be known, the measurement may be expanded in a
Taylor Series about the nominal. value by including derivatives with respect
to all of the variables that influence the measurement. Furthermore, since
the contribution of each deviation source is very small, the higher order
terms may be neglected jn the Taylor Series. Letting gi be the measurement
of interest, the Taylor Series can now be expressed as

Fi 7 fa dg< X + 284 yp 28 aE; (5.1)
3X am = o€, ~

where qjo is the nominal value of the measurement

is the true state vector deviation

is a vector comnosed of the model uncertainties

is the instrument measurement error associated with g3

is the state vector

is the vector composed of the navigation model parameters
is the vector of measurement parameters

lmJZIk:%'élg
[

e

Eouatjon (5.1) can be recognized sas a more general form of the position
deviation equstion that was presented in a previous monograph, Reference 1.1.
It is recalled that a deviation in some observation from s. nominal value
could be related to the vosition deviation as follows:

52 = Hsr (5.2)
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where &g is an observation vector composed of the &ay's
8ay = ay - Qi,
§R = position deviation from nominal

A comparison of Equations (5.1) and (5.2) reveals that Equation (5.2)
corresponds to the second term of Equation (5.1), where the state vector
deviation is considered to be position deviation only. The significance of
all of terms in Eauation (5.1) should now be apparent. The first term is
merely a predetermined quantity that gives the value of the auantity under
perfect conditions, i.e., that value that would be measured 1f the vehicle
were exactly on the nominal trajectory, all positions and dimensions of
objects used for the observation were known exactly, and the instrument
used for the measurement were error free. The second term corresponds to
the deviations in the measurement that are due to perturbations of the
state vector about the mominal trajectory. The third term represents all
measurement deviations that are introduced by uncertajnties in the navigation
model. The number of elements in this vector depends on the number of uncer-
tainties in the model that have a direct first order effect on the measurement.
Finally, the last term in Eoquation (5.1) revpresents the error due to the
uncertainties in the instrument that is used for the ith measurement. In
cases where the navigation observeble and the measured gquantity are the same,
the veetor 2¢ will merely contain a "one" in the appropriate location.

¢
However, if the measured auantity and the navigation observable differ, as
in redar measurements where phase and freouency measurements are indirect
range and range-rate measurements, then the vector 3% must contain the
appropriate partial derivative to account for the uncertainty in the sensor.

If a series of navigation measurements is made. Eaquation (S.l) can be
extended to a vector eocuation.

Z=L*§fﬂ+3%w+?-§c/e (5-3)
£ oM € T

It should be noted that the model uncertainty term is now shown as the pro-

duct of & matrix, g%% , and a vector dM. This notation can be adopted because
model uncertainties, even though they all may not be used for a particular
observation, may be entered into a column vector. If a particular model
uncertainty is not used for an observation, then the % matrix will con-

tain zeroes in the appropriate locations. oM

The covariance matrix for g can be found by employing the expected
value theorem. (See Appendix A.) The result is

cov(g) = e{[8-£())[2-2(2)] } (5.4)
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Enustion (5.4) can be evaluated once the expected value of q is determined.
This step can be accomvlished by taking the expected value of Equation
(5.3), i.e.,

E()=£(8y +£ %g]rf[%dg]fg[;g‘c@} (5.5)

Since g, 1s a calculated nominal vector, its exvected value is aq+ Further,
the expected value of dX is dX because dX is the true deviation. The last
two terms in Equation T§.s) are zero, since dM and d€ are random variables
with zero mean (by choice of the nominal values of the varameters). It
should be noted that the result obtained from Eauation (5.5) after the
expected value is taken, is consistent with Equation (5.2) which assumes
the true values of the measurements and position deviation are known, i.e.,

£®) = F : g By (5.6)

or

5 = 2 -8, = %%d_g

Equation (5.4) can now be evaluated if the cuantity o - E (q) is expressed
as

- z °% d P) _o _9%%
& ~£(%) ﬁo*ﬂdzfjgdﬁrsgc& % 57‘(0'5(57)

-

vy o
1X 4o

or1 4 2% ofe
€&

The result is

cov (8) = £[Bal dr17 87+ BIM JETCTHC4€ g8 7r ¢ g deTc7 ] (5.8)

where 8 = °3
oM

c = %%
€
Before proceeding, it should be noted that cross correlations between the
vectors dM and d¢ usually do not exist, since components of these two
vectors are not affected by one another. This statement becomes evident
from an examination of the following chart that shows the nature of any
correlation that would exist i1f the vectors were not uncorrelated.

175



Affected Vector

a de
Influences of uncertainties in
the navigation model on the

au X accuracy of the instruments used

in the measurement.

Influence of instrument uncertain-
ties on the uncertainties of the
de navigation model. X

Influencing Vector

Since there is no cross correlation between dM and de¢ the exmected
value of any cross oroduct term in Equation (5.8) will be the null matrix.
Hence, the covariance of g, can be written as

(0]
v () =E[Bwajz’37]+f[3gg4_£*a]
0
*f[C/a,’é/ﬁ’B’] +E[cde dE€TCT) (5.9)

= £[BdM dmT87] +E[CdE g€7cT]

Now, the covariance matrix of the observables can be related to the covariance
matrices of the navigation model uncertainties and sensor uncertainties as
follows:

cov(g) = Blenr(207)]87 » Cleov(de) ] 7 (5.10)

The matrices B and C have been defined to be matrices of partial deriva-
tives. In the followineg section, 2.5.2, a detailed analvsis that will define
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the elements of the B and C matrices will be presented for each type of
navigation measurement and sensor developed in Reference 1.1l. The covariance
matrices for the navigation model and sensors can be constructed from the
various uncertainties that are encountered in the particular measurements
and sensors being used in the observations. Following the derivation of the
elements of the B and C matrices for a particular measurement, a sample
problem will be presented in Section 2.5.4 to demonstrate how the complete

B and C matrices are constructed from several measurements and how the
covariance matrices of the model and sensor uncertainties are determined.

2.5.2 Navigation Measurement Uncertainties

This section will develop the detailed expressions that represent the
B anc C matrices introduced earlier. The expressions for the navigation
model uncertainty will be presented in Section 2.5.2.1 and those for the
sensor uncertainties in Section 2.5.2.2. It should be noted that each
measurement (i.e., observable) defines but a row of these matrices; thus
simultaneous measurement of several quantities requires that successive rows
be added to both matrices.

2.5.2.1 Navigation Model Uncertainties

The following section will present the expressions for the navigation
observable uncertainties as related to the navigation model uncertainties.
The terms developed herein will be elements of the B matrix, i.e., they are
the partial derivatives of the navigation observables with respect to the
model uncertainties. The terminology was introduced in Reference 1.1.

2.5.2.1.1 Planet Diameter Measurement

The planet diameter measurement as discussed in a previous monograph
(Reference 1.1), assumed that the physical dimensions of the model were known
exactly, so the deviations from the nominal trajectory could be found by taking
first order variations of the angle measurement with respect to position
deviation in the radial direction. If consideration is to be given to
uncertainties in the model, the partial derivatives of the angle measured
with respect to planet position and planet diameter must be found and be
incorporated into the B matrix.

Consider the following planet .diameter measurement:
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If the planet were in a slightly different vposition than anticipated and
all else were exactly correct, then a first order change in the angle
measurement due to this plane position uncertainty could be shown as
follows:

Since the original relationship that desecribes the exact measurement is

M % = % ) (:"11)
Z

the variation of A with resvect to Z can be determined by straightforward
differentiation. The same technioue can be used tn find the first order
varistion of A with resvect to the uncertainty in the planet diameter.
The differentiation is shown below:

- o/- -2 _L
éwﬂ(%)dA 'E( 1) z74dz fzde (5.12)

Hence, the total model uncertainty in the measure. angle is

dA= —DO/Z + dD 1
22ere(4) z <0a(4) (5.13)

The quantity dz is the projection of the AZ vector in the raiilal direction.
So dz can be written as m- az , ond now
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. T2 -AZ
e (a) T TN (20

Equation (5.14) is the final expression for the measurement uncertasntv
due to the navigation model uncertainty in the planet diameter measurement.

The previous analysis also assumed & verfectly svherical vlanet.
However, significant difficulty is encountered if an analysis that considers
planet flattening is attempted. The difficulty stems from the need to
express in an analytical manner the general angle subtended by an ellipsoid
from a point in space. An aporoximate analysis of the flattened vplanet
measurement can be performed by defining an eauivalent sphere as shown in
the followineg sketch: -

center of equivalent circle

In this sketch, a circle is defined in the subtended angle that is formed

by the flattened planet. In order for this circle to be as close to the
flattened planet in its diameter measurement characteristics, it should

have its center as close as possible to the center of the planet. In

general, the two center points will not coincide. Therefore, the circle
centermist be defined to be at a voint such that a radius that is verpendicular
to a line of sight passes through the center point of the planet. An
uncertainty in the relative attitude between the observation point and the
planet would introduce an uncertainty in the diemeter of the enuivalent circle
to be used. Furthermore, the flattening will cause a different measurement
for every different plane that is defined by the lines of sight of the
measurement of the ellipsoid. Such an apvroximate analysis would be
acceptable if the eauivalent planet diameter uncertainties were known for
some vredetermined nominal model. Usually, however, a continuous mathemsatical
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relationship between the observable and the uncertainty is desired so that
a general case can be treated. The derivation of this relationship is ouite
lerngthy and hes been pl=aced n Avpendix D for completeness.

2.5.,2.1.2 The Angle Between the "Close" Bodies

The mndel and sensor uncertainties that influence the measurement of
the angle between two close bodies will now be considered. (There are
uncertainties due to the fact that the positions of the bodies are not
known exactly, and due to the fact that the sensor has a limited accuracy).
First, the uncertainties in the angle due to the uncertainties in the body
vositions will be considered. If each body vosition deviation wector is
resolved into comoonents in the 722, and 7, directions, and each is related
to 8 chenge in +he angle measurement. it is evident that the components
that are perpendicular to the lines-of-sight have a contribution to the
angle measuremeut. (Reference 1.1 defived 7 (y,) to be a unit vector
pervendicular to y(z) and in the olane determined by the angle measurement.)
Those that are varallel to the line-of-sight have no contribution. From
the followins sketch., the body position uncertainties, Ay and sz, can be
seen to have an influence dA on A, where

V/ .
da- 2242 2. Ay (5.15)

Body 2 ;A

Urcertainties due to body
vosition uncertainties

Since the sensor device measures the angle directly, the uncertainty in the
angle due to the sensor uncertainty is just the amount in the sensor.
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2.5.2.1.3 The Angle Between a "Close"” Body and a Star

The inaccuracies associated with the measurement of the angle between
a close celestial body and a star are the uncertainty in the position of
the celestial body, the uncertainty in the direction of the star, and the
uncertainty in the instrument making the measurement. However, only the
component of the body position uncertainty vector that is perpendicular to
line-of-sight to the body has a direct influence of the angle measurement.
, Therefore, the total model uncertainty in this measurement is

,’ .
AA= 2L 4oy
A y * AAJ?AR (5.16)

A

} where the parameters are defined by the following sketch:
| "Close" Body
|

Uncertainty in
Star Direction

Angle of
Uncertainty in
Planet Position

Off Nominal
Angle

2.5.2.1.4 Star Elevation Measurement

The inaccuracies associated with the star elevation measurement are
the planet diameter, planet position, and star direction. From a previous
monograph, Reference 1.1, the geometry of the star elevation measurement
is recalled to be:
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Thus, if an error in the planet diameter is considered, the corresponding
error in the elevation angle can be found by keeping all of the other para-
meters of the measurement fixed. The geometry for the diameter uncertainty
analysis is shown in the following sketch:
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Since changes in D do not change the magnitude of the angle (A + & ), then
it can be said that AA =-AQ . Hence, the uncertainty in the angle
A 1s the same as the uncertainty in ¥ . The relationship between the
uncertainty in ¥ and D can be found from the following relationship:

bt ¥ = —g— (5.17)
Now,

2¥ . /

'a% T Zecor X (5.18)

The uncertainty in the elevation angle due to the planet diameter uncertainty
can now be expressed as

(aA), = 3 CA“DX (5.19)

Another uncertainty that will influence the elevation angle measurement
is the uncertainty in the planet position. The following sketch shows the
geometry of this condition with 42 being the planet position uncertainty
vector and all other parameters fixed to their nominal values.

g
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Here, the vector AZ can be resolved into components in the z and £
directions. The component in the A2 direction will influence angle A, but
the component in the Z direction will not. Hence, the uncertainty in A
due to the uncertainty in the planet position is

P az
(AA)Z s = (5.20)

Any uncertainties in the star direction or the instrument have a
direct influence on the measurement and require no further analysis. The
total model uncertainty in the star elevation measurement is thus:

AA = (aA) +(an), +(ba4)

. 4D |, paz STAR (5.21)
Zco1d z +-(£LA>5zw?

2.5.2.1.5 Star Occulation Measurement

The model uncertainties that influence the star occultation measurement
include the planet position, the planet velocity, the vehicle velocity, the
point of tangency during occultation, and the star direction. The effect
of each uncertainty will be investigated independently in order that the
effective partial differential change can be found.

First, consider a change in the danet position with all other para-
meters being exact. The following sketch shows the geometry:
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During the change in time between the expected and actual occultation, the
vehicle moved a distance v ot . The planet, being slightly off the expected
position, moved a distance v, At . Now, an equation relating the components
in the # direction can be written as

LP-Vat=4az-L+L Vp -4t (5.22)
or

C-(V-VplAt=Az P (5.23)

Thus, the uncertainty in the occultation time that is due to the uncertainty
in the planet position can be written as

cap) <BEL 420
1-Lo’(\_/'¥2) (f!g) (5.24)

where
Ve = V- Ve

The following sketch shows the effect of an uncertainty in the planet
velocity on the occultation time:
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A completely analogous derivation can be performed for this case. Here
AVp 8t is the additional distance that the planet travels during the
time difference between the expected and the actual occultation.

The equation for the components in the 2 direction becomes:

L VALt =P Vg At +e-AV, At (5.25)

In order to determine the differential that 4}, introduces in at , the
occultation time deviation, it is necessary to find the deviation without

AVp . This requirement introduces a problem since there would be no time
deviation if all parameters were exactly correct during the occultation.
Yet,the partial differential change is desired, requiring that all parameters
other than those being considered be assumed known. The paradox can be
circumvented if a fictitious &t is assumed to exist. 8t is the result

of some parameter being off nominal. This parameter will not be specified
since the parameter being considered, AV, , has already been specified.
With AVp=0 , equation (5.25) becomes

£-V8t=0£ Vet (5.26)

N

where 8¢ is the fictitious time deviation. The influence of AY, on At

can now be determined by subtracting Equation (5.26) from Equation (5.25).
The result is

PV(AL-8¢) =P Vp(At-8t)+ P -AVp At (5.27)

The quantity (at-8t) can be considered to be the uncertainty in the
occultation time deviation (At) due to the uncertainty in the planet
velocity.

L-AVp At
(At), = _——P-V, (5.28)
P - -

Where
V.= V-Vp

The uncertainty in the vehicle velocity can be handled in a manner
similar to that of the planet velocity. The following sketch shows the
geometry:
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The equation for the components in the A direction becomes

£-YAt+p-AVBE= P-V, At (5.29)

For no inaccuracy in V, the previous expression becomes

e V8t =LV, 8t (5.30)

- —

where &t is again the fictitious time deviation discussed earlier. The
uncertainty in the time deviation due to the vehicle velocity uncertainty
can now be found as before by the difference between Equations ( 5.30) and
(5.29). Solving for the time difference ( 4t -8t ), the result is

£-AV At

(At) =(Dt-8¢)=
v _p,yz

. (5.31)

If the actual point of tangency differs from the nominal point of
tangency during the occultation time, a correction term for this effect
could be included in the time deviation equation. This is pointed out in
Reference 1.1. Since the point of tangency cannot be determined exactly,
there is an uncertainty in the time deviation due to this tangent point
uncertainty. The component of the time deviation, 8¢, due to the change
of the point of tangency is shown in Reference 1.1 to be
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L
(6¢), = == =1 (5.32)

If there are uncertainties involved with an exact determination of E, and

E, , then the difference vector, ( E,-E ), has a corresponding uncer—
tainty, AE . Associated with AE is a time uncertalnty ( ot ), . The
final expression for the deviation time uncertainty due to the +anvent
point uncertainty can be written immediately from Equation (5.32) as

AE
(At), = %%‘ (5.33)
— 8

The last model error to be considered for the star occultation measure-
ment is the uncertainty in the direction of the star used for the occultation.
The following sketch illustrates how such an uncertainty can influence the
occultation time deviation uncertainty:

Once again the fictitious time deviation ( 8t ) used earlier is employed
so that the partial differential change can be evaluated. Note should be
made of the fact that the vector between the two points of tangency is

yp ot , because all parameters other than star direction are assumed to be
known exactly. If the components of the vectors in the o direction are
written, the following expression is obtained.
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P-V 8t + [My]dex = £-V, At (5.34)

where AN, is a vector from the observer to the point of tangency. As

before, the expression that is obtained with no star direction uncertainty
is

LPVot=p-V, 8¢ (5.35)

The difference in Equations (5.35) and (5.34) gives the time uncertainty
due to the star direction uncertainty.

PV (At-8t) +IN,[ A= PV, (At-6¢) (5.36)
or P (V- V,)(8¢-At) =[N, Acx
Hence,
(at),  fafae (5.37)
A

Finally, the total uncertainty for the star occultation measurement is:

Ot = (At), + (At), + (&), + (At), + (DY),
JAZL LAV At LAVAL L LAE INg] A
(P-Ye ) (P- Ve) L% L Ve L%

2.5.2.1.6 Flevation-Azimuth Angle Measurement

The model inaccuracies associated with the elevation and azimuth angle
measurement are the inaccuracies in the planet position, landmark position,
and the reference attitude of the platform from which the measurement is
made. The following sketch illustrates the geometry for the case where the
planet position is uncertain by an amount 4% (%, is a unit vector in the X-Y
plane and is perpendicular to the projection of Z on the X-Y plane and % is
a unit vector in the elevation angle plane and is perpendicular to Z).
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This az can be resolved into components in the Zsy Zes and Z directions
( Z 1is a vector from the vehicle to the planet center). The component
in the z direction does not influence either of the two measurements,
because its change is not seen from the origin. The component in the /,
direction does have an influence on the measurement of A by an amount

n, -
(aA), - T 82 (5.38)

lélmf

Similarly, the component in the /e direction contributes to the measurement
of E.

Te -AZ
Af) = ————= (5.39)
(a€), B

A completely analogous derivation can be performed for the uncertainty in
the landmark position, Ap .

1N
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The results are

. Na - AP
Al - = — .
A N o

=
l

where £, /. and 7, are defined with respect to Z+2 instead of z

Le
|z +

D

(AE)P =

)

The uncertainty in the attitude of the platform is a function of the
hardware limitations and the accuracy of the star directions with which
the platform is aligned. These uncertainties can be expressed directly in
terms of A and E and will not be discussed any further here. In summary,

AA

(AA), + (AA), +AA

STAR

_Z-AZ % -AP

= +AA
| 2| cooE |Z+P/ eooE”’

STAR

AE = (AE), +(AE), +AE

STar

Ze 8% N - AP P AE
1 2 | 2+P/ sTae
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2.5.2.1.7 Tracking Station Measurement

in earth based tracking station has a position uncertainty that introduces
corresponding uncertainties in both the position and velocity observables
for the object that is being tracked. Since the station location is usually
expressed in terms of altitude, latitude, and longitude, the uncertainty
can best be described for present purposes in terms of the topodetic axis
system described in Reference 5.1, In this system, the uncertainty in the

altitude can be expressed in the 4 , or outward normal to spheroid
model direction. The uncertainty in latitude and longitude can similarly
be expressed in the X, or south and 7, or east directions respectively.

Using the geocentric spherical coordinates to specify the station location,
the uncertainty in the location can be written as

AR = R, A¢cc X, +R coo G AN 4o +tAH%,, (5.41)
where A, = geocentric radial distance to station
%ﬁ = geocentric latitude of station

Il

c geocentric longitude of station

Now, the effect of this station location error on the observation of
some object will be investigated. The position of the tracking station and
the vehicle are shown below in an inertial system such as the geoequatorial
system of 1950.0. VEEICLE

TRUE TRACKING
STATION LOCATION

IG Eso
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The position of the vehicle can be expressed in terms of the topodetic
system by specifying the range, azimuth and elevation, (fip» Awp 5 Erp ).
It is desired to find the partial differential changes in r,, , A, and
£,, that are caused by AR; . This step can be accomplished by expressing
the vehicle position in the true tracking station coordinate system and the
nominal tracking station coordinate system.

VEHICLE

TRUE TRACKING -
SPATION POSITICXN

NOMINAL TRACKING
X0 STATION POSITION

>

Although the topodetic systems that could be constructed at these two dis-
tinct points would not align with each other, they are considered to be
aligned in this analysis because the partial differential changes in range,
azimuth, and elevation are desired as functions of the original displacement.

The vectors of interest can now be expressed in one coordinate system
and the influence of AR. can now be found. This is done by defining the
unit vector %, and /4, as shown in the fol;owing sketch, and resolving

AR, into components in the directions of K, , 7 , and 7, .
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2, and 7 are defined in a manner that is similar to the azimuth and
elevation measurement. 7% is in the X-Y plane and is perpendicular to the
projection of @, on the X-Y plane. 7 is also perpendicular to R, , but
in the plane of the elevation angle measurement. When ag,  is resolved
into components previously mentioned, the differential influences can be
found as follows:

7. - AR,
= =2 —T A2a
B, = A=l (5.422)
AR,
A€, = L5 (5.42b)
AR = 4B--R, (5.42¢)

The uncertainty in the velocity observables, due to the tracking
station uncertainty, will now be considered. The geometry of the problem
is shown in the following sketch.
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Uncertain
Nominal
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GEso

As before, there are two aligned coordinate systems for the true and
uncertain tracking station. The notation specifies these systems as being
topodetic systems. Hence, they are fixed to the surface of the earth and
experience the corresponding motion associated with the surface. The inertial
reference is shown to be the geoequatorial system of 1950.0.
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The object of the analysis is to determine any uncertainties in the
velocity observables that are introduced by the tracking station location
uncertainty. The observables that are necessary for a tracking station
to determine velocity are the range, range-rate, elevation, elevation-rate,
azimuth, and azimuth-rate. From the previous analysis on observable angle
deviations, the true and uncertain observables can be related as follows:

Alro =A, tAAL,
Erlo = Ero *AE, (5.43)
R, =R, +AR,
Thus, the rates of these observables may be written as
Ao = Arb + DA,
(5.44)

E.:-o =Ero+ AE”O
B’ =R +AR,

v

The quantities AA, , AE, sand AR, may be considered the velocity
observable deviations that are introduced by the station location uncertainty
and may be determined from the time derivatives of Equations (5.42). Before
the time derivatives can be taken, however, the time derivatives of the
vectors 4, , /. 5 AR ,and R, must be calculated.

Since these vectors are expressed in a moving coordinate system, the
total derivatives are

an
%t 5 e
. 2 7
e e (97 (5.45)
. AR
AR,z ——+w x AR
.. 2AR
Ry =7 +wx R,
2

where Er the apparent rate of change seen by the moving observer in
the topodetic system.

e
it

the rotation of the moving coordinate system which is the
rotation of the earth in this case.
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But, the apparent rate of change of 4/, and /, can be easily found as

272, .
R
(5.46)
an
_-‘:
e O ?
where
A=A, 23
Q=A+£E,7

Further, the vector 4R; is always fixed in the topodetic axis system.
This corresponds to the fact that the true and uncertain stations are fixed
in position with respect to each other in terms of their own coordinate system.
Hence,
94K,
. 0 (5.47)
t .

QD

Finally, Q_Z\', can be expressed in orthogonal components as follows

, 1 [}
—P\l/mEro mAro p"z
1] 4
PVI = P\I/ coo Efro anAl = pvy (5.48)
. /
pv METD pvz
so that the vector %’ can be found as
37
/ Bvx
9k | e (5.49)
7t Vy
é/
Yz

where

R) =£(R;,ErgyAre RoErhro)
Q'I ={(Q\11,ErlosAlro'bQVI’ Ero’A"D)
=Ry Ely Ry E)
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Now that the terms in the total derivative expressions of BEquation
(5.45) have been defined, the differentiation of Equations (5.43) may be
performed. First, the uncertainty in the azimuth rate will be derived.
The expression of the azimuth deviation is

- 4 4% 5.50
LA, 2 ok, (5.50)
So
d '~ . o X4
Jt[m-AQ,] [ -AR][-R E(ainE)+ R coo E]

A R e (R cmk]
G AR (%8R [ze-AR) [-RUE ain£ + Ry o]
A R, cooE]”

and finally,

. [(A XZ%)*(Q XZ.)]'APr *'[Z’a'(@xégr)]
AA= —= n p
[R, cooE] (5.51)

[z 4R [-RL E ain £ +R, cook]
(R ecooF]

In a similar manner, the expression for AE can be found.

78R
AE R,
Lz aR) - 4RIR
AE =% o t TR (5.52)
v \"Z
- e 4R, v 7 AR Tz ARARY
R, [R,]

=[A+E7+ @] ¥ 7
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7 [wxAR T+ {[é@&*QJM_fg}-APT
R, .

[z 2R R, (5.53)

AE

1l

- 4£r'[2l
AR = 7
or
d ; " A
o glaReR] [BRR) &
R= , - ,
4 R, [’?v]z (5.54)

Using the expression for _A_l_?, and E\I/ developed earlier, AR becomes

,

/ 4
. (wxLRr)-R, + ARy (3 *w +Ry) 8RR %,
AR = R W— (5.55)

Equations (5.51, (5.53), and (5.55) are thus the final expressions for the
uncertainty in the velocity observables due to the uncertainty in the
tracking station location.

2.5.2.2 Sensor Uncertainties

In the previous section, 2.5.2.1, the measurement accuracies were
related to the navigation model dimension uncertainties. This section will
present the relationships that are necessary in order to convert sensor
uncertainties that are not originally expressed in terms of the navigation
observables to navigation observable uncertainties. Several measurements
are accomplished by indirectly measuring the phase or time delay of wave
forms electronically. The uncertainties of these measurements are expressed
in terms of the measured quantity. If such information is to be useful in
determining the covariance matrix of the observables, it must be converted
to a measurement uncertainty in terms of the navigation observables. It is
pointed out that many measurements are originally expressed in the corrected
form, e.g., sextant angle measurements, and thus the conversion factor is 1.
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The relationships derived in this section are those which are of use in deter—
mining the C matrix as discussed in the General Theory, Section 2.5.1.

2.5.2.2.1 Range Measurement Conversion

In a previous monograph, Reference 1.1, three basic methods of deter-
mining range were discussed. They were: (15 Pulse Time Dealy, (2) Fre-
quency Modulated Continuous Wave Radar, and (3) Multiple Frequency Con-
tinuous Wave Radar. The final expressions relating the navigation cobservable,
R, and the measured parameters are respectively:

f = .C%ﬁ') (Pulse Time Delay) (5.56a)

£ &
24, of (FM-CW) (5.56b)

g =

. Lap (Multiple Freq. CW)(5.56c)
$1(%,~ 1)

The three different techniques require three different types of
measurement for the same navigation observable., In the first case, a time
delay between the transmitted and reflected signal is measured. The accuracy
with which the time of the occuranceof the leading edge of a pulse can be

measured 1s discussed in Reference 1.1. For convenience, the result is
repeated here

A
At = [ L} (5.57)

z BE/NO

Hence, the accurdcy of the range measurement can be related to the accuracy
of the pulse measurement as

r 1%
AR = %At = %Im} (5.58)

If the known accuracy of the radar is given in terms of AR , then a conversion
is not necessary. However, if the accuracy parameters are given in terms

of signal-to-noise ratios, then this relationship must be used in order to
convert the accuracy to navigation observable terms.

The second method of measuring range (FM-CW Radar) consists of measuring

the beat frequency between the transmitted and reflected signal. The
accuracy with which this frequency can be determined is discussed in Reference
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1.1. The range accuracy can thus be determmined as

AR = & Af. (5.59)
25y OF

where Af, 1is the uncertainty of the beat frequency measurement.

The third method of range measurement, Multiple Frequency C-W Radar,
uses a phase measurement as the measured quantity. If the instrument uncertainty
is known in terms of the phase measurement accuracy, Fquation (5.56c) can be
used to determine the range accuracy as

- c )
AR ) a(ag) (5.60)

where A4(A¢)is the uncertainty with which the instrument can measure phase.
2.5.2.2.2 Range-Rate Measurement Conversion

Reference 1.1 gives the range-rate measurement as

Q‘F d
21,

(5.61)

The accuracy of the range-rate measurement, therefore, depends on the ability
to measure Doppler frequency. Since the accuracy for the Doppler frequency
is given in Reference 1.1, the accuracy of the range-rate measurement can

be found from Fquation (5.61) to be

C
AVR 2 H A ‘Fd (5.62)

where Af; is the uncertainty in the Doppler frequency measurement.
2.5.2.2.3 Angular Measurements

The uncertainties of most instruments that measure angles are usually
expressed in terms of the navigation observables originally. In such cases
the C matrix will contain 1's in the appropriate locations so that the un-
certainty in the navigation observable due to the instrument is identically
the uncertainty in the instrument. Reference 1.1 gives the accuracy to be
expected from the measurement of azimuth and elevation angles by radar devices.
Most other angle measuring devices have uncertainties that are intimately
related to the features of the device.
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2.5.3 Accuracy Data

In order to use the weighting theory that has previously been discussed,
it is necessary to have a knowledge of the uncertainties that are involved
in the navigation model and the sensors that are being used for the particular
observation. The purpose of this section is to provide sources of data that
enable the determination of these uncertainties. When feasible, the actual
data will be presented in the text. Many quantities, however, require extensive
tables and can only be referenced.

2.5.3.1 Planet Diameter Uncertainty

The diameters of the planets in our solar system have been measured
by many individuals. For convenience, the values adopted by R.M.L. Baker,
Jr. are included in this section. A compilation of other available sources
of planet diameter measurements is presented in Reference 5.4 along with
confidence levels.

Planet Equatorial Diameter Polar Diameter 1/f
(km) (km)
Mercury 4,660 + 30 ? ?
Venus 12,200 * 20 ? ?
Earth 6,378.150 + .050 6,356. + ? 298.30 + 0.05
Mars 6,830 + 10 6,784 + 24 150 + 50
Jupiter 142,750 £ 100 133,358 + 100 15.2 + 0.1
Saturn 121,000 + 100 109,138 + 90 10.2 + 7
Uranus 49,700 + 100 ? ?
Neptune 50,000 + 500 L9,146 + 500 58.5 + 7
Pluto 3,000 + 1,000 ? ?
Earth's Moon 1,738.57 + 0.07 1,738.21 + 0.07
1,738.58 + 0.07

Since the purpose of this section is to provide sources of data that
estimate the uncertainty in the navigation model, the detailed information
will not be discussed any further. Instead, the reader who is interested in
more data as determined by other individuals is referenced to Reference 5.3,
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5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15.
2.5.3.2 Planet Position and Velocity Uncertainty

The uncertainties associated with planet positions and velocities stem
from the fact that the astrodynamical constants of the solar system are
not known accurately. Realizing that the accuracy of these constants will
continually be improved, astronomers decided to "freeze" the values of the
astrodynamical constants in order that an Fphemeris could be written. This
enabled them to construct tables of the planets that matched previous
observations and predicted future observations. The uncertainties in the
constants prohibited the use of standard units in these catalogs, for the
values would have to be modified each time a constant became known more
accurately. Instead, a system of units that were independent of the uncertain
constants was employed. This gave rise to the use of the astronomical unit.
Although the astronomical unit is not known accurately in terms of conventional
length measurements, it still provides an excellent parameter to describe
the orbital behavior of the planets, because the relative motion of the bodies
in our solar system can be defined very precisely in terms of this unit.
Further, the Ephemeris is independent of the uncertainties of the astrodynamical
constants. For these reasons, the Ephemeris can contain an extremely precise
and self consistent set of data that describes the motion of the planets.

It should be noted that although the data in the Ephemeris is extremely
precise, the accuracy with which it agrees with reality may not be as good.
This observation results from the fact that the conversions to conventional
measurements require a knowledge of the constants which are usually not known
as accurately as the precision of the Ephemeris. In particular, the position
of a planet may be known to an uncertainty in the eighth plance in terms of
astronomical units, but the astronomical unit is only known to five places.
The uncertainty in position can now be defined in terms of conventional units.

A convenient way to visualize the relationship between the uncertainty
in the astronomical unit and the planet positions is to consider the Ephemeris
as a-catalog of the planets that differs from reality by some scale factor.
The scale factor does not change the apparent angular motion of the planets,
but does change their absolute positions and velocities. The uncertainty in
the value of the astronomical unit can be thought of as a change in the scale
of the solar system model. The accuracy of the model to reality depends on
the accuracy of the astronomical unit.

The predicted position of a planet for a navigation observation can be
obtained from the Ephemeris in terms of astronomical units. The uncertainty
in the astronomical unit can then be used in order to find the position
uncertainty. This estimate of the position uncertainty is about the best that
can be achieved with the Fphemeris. If the astronomical unit is someday
known much more accuretely, the method of computing the uncertainty from
the Fphemeris will be the same, although the uncertainty will be smaller.
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The uncertainty in the velocity of a planet is needed in the star
oceultation measurement. A very good approximation can be made by assuming
the orbit of the planet to be perfectly circular. Since the angular velocity
is known, the uncertainty in the radius of the orbit can be used to calculate
a very good estimate of the velocity uncertainty. Furthermore, the uncertainty
in the direction of the velocity vector for circular orbits is not affected
by variations in the radius. The reader interested in the exact expressions
of elliptical orbit velocity sensitivities is referred to Table 3 in Section
2.L of this monograph. Tt can be seen that the enumerated approximations are
very good for most practical cases, if the appropriate values for the eccentricity
are used. The following sketch illustrates the velocity uncertainty associated
with the orbital radins uncertainty of a circular orbit.

Vi

If the known mean angular velocity of the planet about the sun is w, the
tangential velocity of the planet is

Vo = Raw (5.63)
Now a small change in V that would be introduced by the uncertainties in the
angular velocity and the radial distance can be found as

AV = RAW + WAR (5.64)

where Aw is the uncertainty in the angular velocity of the planet
AR is the uncertainty in the radial distance of the circular orbit
The uncertainty in w will come from the limited precision that can be found

in the Fphemeris, and the uncertainty in AR is the result of the limited
accuracy of the astronomical unit. References 5.3, 5.5, 5.6, 5.7, 5.11, 5.12,
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5.13, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23 give some of the more
recent determinations of the astronomical unit. At present, there is some
discrepancy in the value for the astronomical unit calculated from radar
reflections and dynamical theory. The consistency of the various radar
measurements has been so good that astronomers interested in the best value
of the astronomical unit have been impressed. Although some discrepancies
have been explained, there are still differences between results of radar
reflections and astronomical methods that cannot be explained. If successive
results are obtained by the radar method under differing conditions and with
planets other than Venus, then the radar method figure will probably be
accepted as the standard figure.

2.5.3.3 Star Direction Uncertainty

The determination of the locations of stars in the celestial sphere
is part of the field of Astrometry. It is beyond the scope of this monograph
to discuss the error analysis in the star direction measurement. The reader
interested in such analysis is referred to Reference 5.24. An order of
magnitude estimate for the mean squared error in modern catalogs is

+ 0.008 to *+ 0.010 for right ascension (units - sec. of time)
and & 0.15 to + 0.20 for declination (units - sec. of arc)

The unit of measurement for right ascension is the second of time and that
of the declination is the second of arc. Since the earth rotates 15° in
one hour, the second of time corresponds to about 15 seconds of arc. Hence,
the accuracy of the right ascension is of the same order of magnitude as the
declination measurement.

2.5.3.4 Tracking Station Location Uncertainty

The tracking station location uncertainties for various tracking station
locations are given in Reference 5.2. There are several coordinate systems
that are used in order to specify the station location error. Reference 5.2
uses the X-down range, Y-off range, and Z-verticle system. The system used
in this monograph, however, is the topodetic coordinate system (feference 5.1).
This system was chosen because of itscompatibility with the radar range,
azimuth, elevation system and its compatibility with the uncertainties expressed
in terms of latitude, longitude and altitude. A suitable transformation can
be used to find the station uncertainty in terms of the topodetic system
if not originally expressed in these coordinates.

2.5.4 Sample Problem

For convenience, a sample problem will be presented in order that the
theory of Section 2.5 can be associated with a practical problem. The
problem will be simple in nature for the sake of clarity. The final result,
of course, is the covariance matrix of the observables.
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Consider the measurement of a planet diameter, the angle between a
planet and a star, and the angle between two planets.

Assuming that the flattening effect is negligible, the uncertainty in
the angle of the diameter measurement, A, is

D / m - Af
d8 = - = (5.65)
£2 coa (%) f cod (—g—) aD
Rewriting this equation in terms of wvector components yields

A A

B Dmy D my o7, / b (5.66)
= N 2 3 .
fori(8)  feo1(§) e (§) Feoi(§) 2‘;

where my, » m, are direction cosines of unit wvector m. Similarly, the
uncertainties in the planet-star and planet-planet measurement are
respectively:
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K (2 - 4€] (5.67)
dA=|= | 2-67

e AASTAE i

[ (£ - a4

dc = L L -
- A j ye) '—Aé (5-68)

Expressed in terms of vector components, Equations (5.67) and (5.68) yield

Aly
| 7 2 Ay .69
dA_e s 2 / ae, (5.69)
LAAS‘IAR_
VA
A4,
L 4y 4 Ox Oy OF | | A.h,
de =\~ 2 =42 .70
C/;AA 3 3 3 A9y .
A3y
-Ajz—

Generally speaking, the measurement of angles A, B, and C will be at
different epochs. But, if the covariance matrix of the observables is to be
meaningful, it must be related to the covariance matrix of the model uncertain-
ties when all components of the model uncertainty vector, dM, are related to
the same epoch. However, it is noted that each of the dM vectors utilized
(Equations 5.66, 5.69, 5.70) must be expressed in components of the particular
epoch of the measurement. (The same is true of the direction cosines of the
various unit vectors, £, n, m, and o.) Since it is desired to have one model
uncertainty vector and one model uncertainty covariance matrix, the components
that change are related to an epoch at which error data is available by a
transition matrix for the particular uncertainty being considered. For instance,
if all uncertainties in the position of the planet used in the diameter measure-
ment are to be related to epoch I and the planet diameter measurement is taken
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at epoch II, then
i 7
A1,
A fy
At
A4,
Aty
Af,

L

I

af,
A 1’3
Af,
Of,
Oty

| 4%

I

(5.71)

where {ém is the transition matrix for Af from Epoch II to epoch I.
Although the velocity uncertainty is of no concern in this error analysis,

it must be included for epoch transition calculations because of the coupling
to subsequent position errors.

If the planet-star measurement is taken at epoch III and the planet-
planet measurement at epoch IV, the following relations can be written:

ARy
Ay
Ae,
o é,
A &y
L€

DAy
A Ay
A4,
A Ay
A 4y
LAA';

[ ney]
A e,
Ae,
ne,
e,
|4 ¢
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A by
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A b,
L d
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Fquations (5.66), (5.69), and (5.70) can now be written as:

r -

O fy
Aty
om D M, DI / A,
dB=|— "B 4 Z_ o0 0 ——_ ¢ 1(5.75)
g3 g A
Lm(z) () Fren(£) e (B)] | o,
4%
ADJ
- hvA
A Cy .1
Aeﬂ
A e,
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dc

Now combining the notations yields
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In order to obtain a form that is compatible with the theory presented
in Section 2.5.1, these equations can be written symbolically as

d8
dAl =
dc

$ | 4 (5.81)
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It should be noted that many zeroes are introduced into the matrices
in this process at the expense of space for purposes of illustration of the
form of the problem. In an actual mechanization of this problem on a computer,
it is more desirable to perform the computations in parts in order to avoid
useless core storage of zeroes.

Now that the covariance matrix of the observables (E(dM dM™)) has

been "frozen" to a particular epoch, the results of Section 2.5.1 can be
applied to determine the covariance matrix of observables to be

() = 8¢ cov(er) BB (5.85) .

Note should be made that the previous results simplify if the three measure-
ments are taken close enough in time to be considered simultaneous. If dM
is known during the epoch of the three measurements, then

$ = I (the identity matrix)
and then

cov(g) = 8 v () £ (5.26)

where § and § have been defined previously.

Since the measurement made in this sample problem are angles, it is
not necessary to convert the measurements to navigation observables. Hence,
the covariance matrix of the instrument inaccuracies can be added to the
result of Equation (5.86) in order to obtain the total covariance due to
the model and instrument uncertainties.
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3.0 RECOMMENDED PROCEDURES

The discussions presented within the state-of-the-art review present
several variations of the means which may be employed to obtain initial esti-
mates of the orbit and subsequently improve these estimates through data
smoothing. Thus, it is desirable to suggest specific applications for this

material or conversely recommend combinations of these techniques for problems
of common interest.

The initial fix on the trajectory as was shown can be accomplished in
several distinctly different means depending on the data available, These
methods are summarized in Table 3.1,

However, as was discussed, there is a distinct chance for non-negligible
error in the initial orbit if raw data are employed in the process. Rather,
it was shown in Section 2.1.4 that a series of preliminary operations should
be performed to eliminate biases and random scatter in the data resulting
from errors in the observation process, the mathematical model, and the instru-
ment employed for the measurement.

The developments then turn to means of improving knowledge of the initial
orbit and including the affects of perturbing accelerations. In particular,
three types of estimators are developed:

least squares
weighted least squares
minimm variance (recursive and non-recursive)

are developed from simple concepts of "loss" or "optimality" of the fit.
Subsequent developments then addressed themselves to the task of explaining
the basic estimation problem, the mechanism in which the statisties of the
errors, non-linear estimation techniques and/or non-linear dynamies might be
introduced to the problem, and the equivalence of the estimators previously
developed under certain assumptions regarding the statistics of the data. It
was in this latter discussion where the concept of sufficient statistics was
introduced and there it was shown that, in general, the Bayes estimator was
superior to others which might be developed. It was also in this latter dis-
cussion that it was shown that the minimum variance biased estimator (MVB or
Kalman) was a Bayes estimator where the statistics are Gaussian and where the
loss function is simple,

Since the set of assumptions utilized in developing the MVB estimator
closely corresponds to the nature of most orbit determination problems, it is
recommended that the MVB estimator of the form developed in Sections 2.2.2.4
and 2,2.2,5 be applied, Care must be exercised, however, to confirm for any
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TABLE 3,1 APPLICABLE INITIAL FIX METHODS

Range Range-Rate Azimuth & Elevation
Range-Rate 6 epochs 3 epochs 2 epochs
employ Eq. (1.25) | employ Section employ Section Z2.1.1 in
without assuming | 2.1.3 in the conjunction with Lambert's
R(t) = R(0) form of Equation Theorem (Ref. 1.3)
(1.28) then dif-
ferentially cor-
rect Ty, Vo as in
Eq. (1.11)
Range-Rate 6 epochs 2 epochs
employ Eq. (1.26) | this combination of data
to solve for was not investigated - but
estimate of Ty, rather, it was assumed that
Vo then differen- | 3 measurements would be
tially correct taken and only azimuth and
[Eq. (1.1)/ to elevation data utilized
adjust for
approximations in
the formulation
Azimuth & employ Gauss's method
Elevation /Eq.(1.16), (1.19), and

1,20)/ or Laplace's method
[Fa. (1.6), (1.7), (1.8)/

then differentially correct
for errors as in Eq. (1.11),
Gauss'!s method 1s prefered
for low eccentricity orbits,
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given application that the use of this estimator is justified. If not, an
alogrithm must be developed from the Bayes formulation for that specific -
application. This test will not, in general, be easily performed; however,
should the statistics of the problem be sufficiently different from those used
in developing the MVB, the results could differ to a large degree. There is,
however, one means of applying the MVB so that the results will be approxi-
mately correct if the number of error sources is large. This means exists

due to the central limit theorem of statistics which states that the distribu-
tion of a function of random variables approaches Gaussian as the number of
variables increases., Thus, a Gaussian model can be constructed which will be
equivalent to the more precise process.

The mechanization of Kalman's form of the minimum variance estimator is
shown in Figure 3.1, This procedure is preferred above other MVB estimators
because of the fact that it provides for the utilization of initial data
regarding the state of the system and because it is recursive (to minimize
estimation problems and to provide a means of limiting the assumed duration
for linear expansion about the nominal trajectory). One source of trouble may
exist in that the procedure illustrated for updating the matrix J involves
differencing. If J ever approaches the null matrix, it is thus possible for
one of the eigen values of the updated matrix to be negative (due to roundoff,
loss of numerical significance, etc.). Thus, for these cases, J should be
updated in the manner specified in Equation (2.77).

Attention is drawn specifically to the decision function illustrated in
the lower right-hand corner of the previous figure. A simple test is made to
determine if the covariance matrix for the estimation errors is sufficiently
small to allow the estimated state to be added to the reference trajectory so
that future computations can employ a more precise reference. One such test
consists of comparing the summation of the terms along the diagonal of J (or
its diagonal equivalent, Appendix C) to a comparison function constructed to
define an acceptable region (6 dimensions) for errors in the radius and veloc-~
ity vectors. (For example,

7,>

Attention then turns to the development of the state transition matrix
for perturbed and conic motions. This material is intended to provide the
user with a series of tools which can be applied to achieve a level of accuracy
adequate for his needs, This objective is accomplished by approximating the
true trajectory (for the purposes of constructing the transition matrix only)
with a series of gonic arcs, as described in Section 2.4.2.3, and by employing
an analytic inverse property which is developed for this matrix.

- - —
F=LaL ol 4 A%
r-r V-

<{{>

The covariance matrix for the errors in the observables is constructed as
the final major step in the presentation. This development relates the affects
of navigation model uncertainties and sensor errors on the observables being
processed for the purpose of providing the navigational filter with data
required to weight the observed minus computed residuals. This step is accom-
plished by constructing the linear relationships between the errors in the
observables and the errors in the model itself for each of the navigational
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techniques discussed in Reference 1.1. These partial derivatives are then
utilized in conjunction with error data for constants of the model (assumed
to be normally distributed) to construct the desired covariance matrix. This
procedure, while not always precise (due to non-Gaussion errors, ete,) is
recommended for all cases in which more accurate data are not available.

The monograph concludes with a series of appendices which are designed
to provide a background in the most normally applied statistical procedures,
This material leads to the development of the concept of an error volume and
the assignment of a probability’ of enclosure within the volume, thus allowing
the covariance matrix for estimation errors (Sections 2.2 and 2.3) to be
interpreted geometrically. This fact is particularly useful in discussing
the results of a specific analysis,
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APPENDIX A

The Expected Value Theorem

Throughout the text of this monograph, linear functions of variables
(normally, the observed minus computed residuals, instrument errors, etc.)
have been formed, and the question has been tacitly posed, "If the original
variables themselves are normally distributed, what are the distributions of
the functions which are formed?" and answered, "The functions themselves are
normal." This appendix was prepared to substantiate this conclusion, and to
develop the mathematics describing the moments of the resulting functions.

Consider any element of a multi-dimensional vector function defined to
be a linear function of a set of normally distributed parameters (not
necessarily independent)

”m
=X @, X E=1...n (1)

Js=l

and form the moment generating function of this scalar

ft;a‘-
mit,. .. ¢,) = E€™ ") (2)

where E denotes the expected value. Now substituting for Uj yields

mit. .. t)=£leF4 T %) (3a)

where

A S (30)

J i

Thus, upon replacing the notation E by its mathematical equivalent
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m(t,...tn)—j‘.../ “(2a)% exp[J)__f,' 7 X (4)
-o0 #

-ZE b3 a-J(z x)(z z)]w'dz
ALY gt

where 4
0 is the inverse of the matrix of variances and covariances for

the m-vector X
g% is the element in the ith row and jth column of

W‘ is a product function
jel

Zk denotes the average value of the kth element of the m-vector X

Now, adopting the simplifying notation Y = X - X and completing the
square of the terms in the exponent, will allow integration. This process
will be perfored below. First note that

m i [ m
= e Yy
R Y R 3 Rl T3 47

Now note that the portion of exponent within the brackets will be a perfect
square if a term involving T is added. This term is recognized to be

n m

DI 7 7:7; (where O'U' is an element of the covariance matrix, i.e.,
=1 j:/

gy = T T which is required so that the product terms of 7,

.
and  y, will not be a function of either @ or 0~ .)

Performing the required addition, the exponent becomes
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At this point, if this form of the exponent is substituted into equation
(4) and if the final two terms (those not involving y) are factored outside
of the multiple integral, the result is

n 7-— _l_ n m _ ‘ '
mis. . 4y = BERRERGTT (T 0=
/. !
&S i m  Zee  (27)"2

(455 E)] .

since the density function being integrated represents a multivariate normal
distribution (with means of 57‘ = L0, T, (K=lym) and i~ L0 7 (£=17,m)
and with variance ), and since this function is’ integrated over the
entire region of definition.

The rth moment of the distribution for the variable Uy can now be
obtained by differentiating the moment generating function with respect to
t r times and evaluating the result for all t = 0. For the distribution
Just developed, this process yields

mit.. .t )=e’

= dm (¢,...¢,)| e dvy _ dv 2’5 _ oT zn: _ (7
.= = —| = =D Z—< =Y %Z a .
Iz, &=° d"kt .0 dtké w ot o, YRR
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(7}-[1{z}

The variances and covariance are obtained in the same manner when it is
ted that 0 =_«" -’ ‘
noted at ¢, ,a;j 4u~ 4%’

But
4(,,=d2m(é,...t,,)J oV v av v d%v
7] = ~ | te
di, dé 0 dt, dt, a4, d{,J
220 20
Ak
KL o,
z“=0
Thus
R
r, - dtv
ch& d§
o)
] n m
- v |2E 9L 9T 9
VNN o, dy di, Jt,

But since the summation is performed over all i and all j, this result reduces

to
n m
g = N
KL j= 0-"1' [ala a,lj]

Finally, this result is equivalent to

[o’]i = A [f}l AT (8)

226



Il

where [Oﬂ a real symmetric matrix of variances and covariances

7 = 0 *
i ks

Equations (7) and (8) are basic to most of the discussion of this mono-
graph and studies of error propagation in general. However, their application
requires knowledge that the process being analyzed approximates the assump-
tions made in this derivation to an acceptable degree. This assumption was

that all of the variables Xi were normally distributed (had no higher
moments ).

It is interesting to note that the general linear transformation

u =AX
conserves the moments such that
j? = AX
and r - — T . -
E((u-a)u-8)"]=Ac[(x-X)(x-X) ]A =AcA
Howeveir, in this cace, ni~_ i crder moments become extremely difficult to

compute. This fact is the underlying reason that most of the "simple"
estimation formulations and propagation techniques concern themselves with
only the first and second moments.
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APPENDIX B

COMPUTATION OF MARGINAL DENSITY FUNCTION

For problems in which the probability associated with a particular sub-
set of the variates of the multi-variate normal density function is desired,
it is necessary to modify the approach of the previous analysis. This
approach evolves from the fact that the desired probability is defined by
integrating the density function f(Xl eoe Xm) over the volume of the m~dimen-
sional volume element; i.e.,

Pllxl¢a , /zzltb.../xmﬂc)af{‘(x, v Zy) dX, oo dEp
v

where the xj are not statistically independent. The question at hand is thus
"how can the density function £(Xj ... Xm) be obtained from the more general
form £(%y ... X)), n > m" or "what is the marginal density function f(Xl...Xm)."

First it is noted that the definition of a marginal density is

£, . %) =[_.:.ff(x,...x,,)dz4 ... dz,

mel
where -3[(x- _Z)Ta"‘j( x-2)

f(x,... z,,):(zl;)'g JIrdl e

.. -1
oY= [%]
¥-¥ = vector composed of X)s eees X
Because of problems of functional complexity, consider the transforma-
tion y = x - X, and complete the square in the exponent of the terms involving

o oy BE o
& % yk + r? aT y‘ %I
£K 2K R

_ KK, 4 T na &
= (7k+2yk7 ‘).?/ T %) +‘§[_E‘ T4
LY ey,
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so that the exponent becomes

x s
x

= Ki £j
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K K
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Now again transforming variables,
= I = Ki
z =¢%(* Kk 4;E=/ o
K
FY e ol [0 K)o KK]
the exponent becomes
r g kk honN
T y=0 X+ .
A LT ¢y .

X K
But the function Z is involved in such a manner that it can now be conveniently
integrated out of the density function since
{(j"'ffn):_é f(jl"'jmin‘jm“‘ ;Kn)o’z
6 6 ¢
= _L)‘/zllrc;/l{ e"/Z[L.Z_,JZ T gy ]
a2n o~ KK 3K K

The question is now what is
manner from @id or

(] [%'] = [1]

n

Eo-cr =8

m=1

0\13, and can it be constructed in a simple
ije Consider the matrix product

or

iy

Now consider the definition of ¢ 1) and the same produce.

Assume the sum is
61;] n KLo_-Km
NL'”I <m 0' ]
o =2 . (r - =65
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n
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‘ ..
Yk v
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This relation requires that the matrix %1J be the matrix formed by inverting
thﬁxmatrix constructed from Gij by deleting the row and column containing
(o d .

Two further observations are also possible, First, the resultant density
function is that of a multi-variate normal distribution; and second, since
ofK is the ratio of the cofactor of ¢ divided by the determinant

130
| J/ / /1 [ ~¢
a_kk — a_tklozj/ - /ﬁj/ = /r / .

This process can be continued indefinately to construect the marginal
density function for any set of variables of interest. As an example, the
marginal covariances for position (or velocity) errors can be constructed from
the total covariance matrix for both position and velocity errors as follows:

[ @, -
0-;1 a-;z 0-;’ -
T Oz Ogy. .. G T2 O3
T = 6?] =l 6,
[02/]'" G G2 Gs- - [ y 21 :f Lo
* . %5 52 33

Since the result of this process is a noEmal distribution, a 3-dimensional
surface which contains the variables ( AT or A47V) to a specified probability
level can be generated by

1. Performing a coordinate transformation to produce a set of uncorre-
lated error axes (diagonalization of the covariance matrix discussed
in Appendix C).
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Integrating the resultant distribution (Appendix C) to evaluate the
radius of the equivalent sphere,

Using the radius of the equivalent sphere as a constraint on the
values, which can be attained by the variables measured along the
three principal axes, generate the 3-D ellipsoid.

Transforming the coordinate system to construct the error ellipsoid
in the desired coordinate system.
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APPENDIX C
DIAGONALIZATION OF REAL SYMMETRIC

MATRICES AND THE DEVELOPMENT OF PROBABILITY ELLISOIDS

Previous appendices have proved that deviations resulting from any linear
combination of Gaussian errors will be elements of a multivariate, normal dis-
tribution. Since this is the case, the probability that a given value of a
variable lies in a given region can be found by integrating the joint proba-
bility density function and the variance, covariance matrix which is real and
symmetric can be diagonalized by an orthogonal transformation to display the
eigen values on the principal diagonal. To accomplish these objectives (in
reverse order), consider the mathematical representation of the density func-
tion of an error vector:

K T .o
AR W e BEVARCET SN NG £ 4
FIX) = (2”) lT‘J’& /Z{ ).]
where: o-¢/ is the inverse of Sij and is also symmetric,

Now, consider a general symmetric matrix M (M can be Uij, etc.) and
the set of equations

(m ‘7\1))( -0 (1)

where M is an (M, M) symmetric matrix; I the corresponding identity matrix;

N is a vector of scalar parameters; and X is an (m, 1) column matrix. Let
Al,}\z, ""A~n be the eigen values of the matrix M and let the corresponding
eigen vectors be denoted by X3, X5, ..., Xn. That is to say, the A, and

X 4 satisfy the equations

(m‘/\d\I)xo('-'-'O Az 42, ...,n. (2)

7

a corresponding set of egquations is represented by

(m—)x/,]))(,d =0 B2, .. (3)

Thus, from Equations (2) and (3)
MX; =/\ﬂ¥5
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If the first of these last equations is multiplied by

of Xz ) and the second _ZE\ , the result is:

ra - T

Xim Xs = Ag X Xg

but Equation (5) can be transposed as

7 7 — 7
Xe 7% = N Xe Xox

which, since M is symmetriec, reduce to

-
Yo 7 X =/\,ex,<;/\,(

Subtrecting Equation (7) from Equation (4) now gives

(Ax=Ae)(XJX,) = ©

Hence, for A, + Ag

and Xg are orthogonal if Aq # Ap forat 2.
not determine the values of X, and Xz

X'@TXO‘:O

T
LY

(the transpose

(4)

(5)

(6)

(7)

(8)

(9)

This last equation is expressed by the statement "the column vectors Xy

Since Equations (2) and (3) do
uniquely, that is, the equations are

still satisfied if Xx and Xg are multiplied by arbitrary scalar constants,
it is possible to select those arbitrary scalars so as to normalize the vec—

tors.

Equations (9) and (10) can be expressed by the single equation

That is

X2 X =/

o Ao

Y7 For 0\/16:421“'J”'
6 X =/

X2 X, = .
& p<i édﬁ J m/g =/J2/--:) o

where the Kronecker delta (6« 8 ) is defined by

and

5d8 =) for Az g

(10)

(11)

(12)



Substituting into Equation (5) from Equation (11) now yields

- (13)
Xo( —"(A':)\A‘Sd,@ (d/ﬂ:52/-~-1’1)

The relationships expressed by Equations (11) and (13) can be exhibited
in the more conventional matrix form by deferring a compound matrix of eigen
vectors

K 2(X,%z, - -+, %n) (1)

in terms of Equation (11) becomes

'R =1 (15)
From Equation (15),
X7= X" (26)

where X' is the inverse of the matrix X. This last equation states that X
is an orthogonal matrix.

Equation (13) may be written in terms of this compound matrix as

Xmf = a (17)
where )‘: o . ..0
- o A o)
A= - 2
s 8up = (18)
o - ‘ An

Equation (17) indicates that the matrix M is transformed to diagonal form by
means of the matrix of its eigen vectors. Moreover, from Equations (15), (16),
and (17)

m=%XaZK" (19)

Equation (19) expresses the symmetric matrix M in terms of its eigen values
and eigen vectors,

The model matrix ( ¥ ) can thus be computed., The steps required in this
process are:

1., the characteristic equation is found by expanding the determinant of
~ij =--A[I] and equating the result to zero

2. the roots to the characteristic equation are found (A]J ses Aé)

3. the column vectorsﬂa}are found by equating the result of the following

234



matrix multiplications to zero

there will be n vectors {'Bi }because there are n values of A; and
these vectors are linearly independent if the A j are distinct

L. construct the matrix ¥ by ordering the column vectors

X = [{a}--. {"«;j}]

Consider now the quadratic form
g = x7mx (20)

where X is an arbitrary column matrix of M elements and M is a symmetric matrix
as previously discussed. If the scalar q is assigned a fixed value and if the
vector X 1s considered to be a variable of M components, Equation (20) describes

a "surface" in M-dimensional "space." Now, performing the coordinate trans-
formation

x=2Xy (21)
transforms the quadratic form q to
5=>’7X7M.Yy =y ay (22)
Thus, defining the M~vectors Y by
Y,
ye | % (23)
n

and performing the indicated matrix multiplications of Equation (22) yields q
as

i:/\l}’,z"')'z)’zz* et A NS (24)

Now, denoting the value assigned to q as K2 requires that Y, Y2, ..., y be
chosen to satisfy the equation

25)
2 2 _ (
ANVt A y2r oot Anlt = K2
For the case in which ¥j =Yy =...¥3 5 = Yigg =y =0or

),'z: K (26)
£

A
Y=t

A

Six
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Hence, K//A; 1s the ith semi-principal axis of the surface represented by
Equation (25).

Now, getting back to the task at hand, since the correlations in the
covariance matrix can be eliminated with a coordinate transformation, the
exponent of the density function contains the term

<
2
Z; .= Y9,
2,20 where w= iy,

But, this is the form for the square of the radius of an n-dimensional hyper-
sphere (if considering only the cases for thich the summation is constant).
Thus, a further transformation suggests itself in the evaluation of the prob-
ability that a given random sample from the statistically described distribu-
tions will fall within the specified radius. This transformation results from
the fact that

- K jéh) &, _1 2 27
PSR =0
K ~f(z) it

(This equation is the integral of f(x) dx after transforming coordinates) is,
in fact, the integral over the volume of hypersphere. This being the case,
the integral can be written as

k& /
Ko -41r2 28
P://(z'ﬁ/) e zf/(’”f"‘/” (=)

where f(r)dr is the spherically symmetric volume element of n-dimensions

n" rn
=-7:Zzz§27-= volume of hypersphere
r = gamma function
n = dimensionality of hypersphere
n =1 f(r)dr = Z2d4r (29a)
= 2 = 2/r dr (29Db)
= 3 = Lpre dr (29¢)
= 4 = 27% 0 dr (29d)
=5 = %nzrl‘dr (29€)
= 6 = 773 r? dr (291)

Thus, the probabilities that the resultant error will be within a given
ndistance" of the center of the hypersphere can be computed as follows:
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n=1 P = 2[erf(k)-.s]

=2 = !/ - Q‘KZ/Z

=3 = z[grf(K)—.SJ - Ke—zz/z [’/;Zr__']
-4 = /-e M (14 K% )

H]

=5 2[8/*[(}()—.5] -Ke‘Kz/Z[

- /-e"‘z/Z(thz/va Kﬁa)

=1
-
3N
w|%,
| N——

m
o
]

where erf(X) denotes the error function.

Numerical data are tabulated for these six cases as a function of the
radius, K, in Table C.1l.
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APPENDIX D
FLATTENED PLANET MBASUREMENT

Section 2.5.2.1.1 discussed the measurement of the angle subtended by
a planet. The analysis was based on a perfectly srpherical model of a planet.
The following is a derivation of the measurement of the angle subtended by
a flattened planet. The subtended angle is expressed as a function of the
equatorial and polar radii, the relative attitude of the planet with respect
to the observer, and the distance from the planet center to the observer.
Although Section 2.5.2.1.1 presented the variation in the measured angle due
to distance and diameter uncertainties, it must be remembered that these
analyses were only for a spherical planet, though in most cases the results
are acceptable. If an "exact" analysis is desired, the results of this
appendix can be extended to find the variations in the angle measurement due
to uncertainties in the distance and the planet radii. The general expression
for the subtended angle will be found, and its variation with respect to
the relative attitude will be derived. Other variations can be found in a
completely analogous manner.

The geometry of the analysis is shown below:

(X0, Ye)

(%Y

(x2,Y2)

/

The previous sketch shows the intersection of the plane of the measurement

and the ellipsoid model of the flattened planet. Since the exact shape of

the planet is not known and the most accurately known parameters of the size
are the equatorial and polar radii, the best results are obtained if the
measurement plane is selected to be that which is determined by either of

the two radii. Thus, the planar case may by analyzed for purposes of determing
flattening effects on the measurement.
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If the planar analysis is pursued, the slopes of

I, and L, can be
found from the negative reciprocal slope of the gradient at P(Xq, X5) and
P(X,, Y,). Since

2 2

X I,
£(x,4) = o * T /! =0 |
then
: 2 5 . 2Y 4
f: az ax'/' bzag
2 2
so the slope of ., = — f_ .i’_ and the slope of .42 = —-iﬁ
a? R,

The equations of Iy and L, can now be written as

X/zm@ . 2/2,401-9:/
a? 6%

a? b2

These equations must be combined with the restricting equation of the ellipse.
A quadratic equation results, the solutions of which are

2 . b2 . bz .
b wﬂg_aV’ 4‘9%—60125/9%29—_'24“29
—Z a? z
XI - ) bz 2
acnll + ——, wa=o
a?

2 . 2 . az
w* b\ coz®e *_Q_'_sz mzé’-'—z' w3 6
P4 b* z

Ji
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526019 B b2 bz D
———t a || 4ot — 023260 0enPo - — gin?
- Z a? z2
Xz - ] 62
sn’0 + — cot20
a?
a2, .
a‘en & a? . 2
E— ) cw2®e r — A¢um26’c0425>-f2— coa’p
- 4 bz 22
SZ B a_a

2 20 #0220

The slopes of Ij and L, can now be written explicitly in terms of a, b, 2
and 6.

. bz 62‘
b1 - Zasine || sn?o + e
Slope of 11 =-

. a?® . a?®
Qo O +tZbco2 b Vm""e f — el — —

6% z*
. o, bt b2
b2co216 + Za #en B 4"’"‘9*—25”"29 — —
Slope of L2=— 2'
az R az
aloen & ~Zbeoz @ o120 + — aenlo - —
b2 z2

An exact solution of A could be found by taking the difference in the
arctangents of the above slopes. Since the partial derivative of A with
respect to © is de81red the algebra will be significantly simplified if an
approximation to b /a is made. Since the flattening of the planets is not
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very severe (particularly of the earth), the following is a good approximation

b2 2
—_ :/—Zf—f u%’/
42

where £ is the flattening (£ = //298 for the earth). Now the slopes of
1; and Lp can be written as

Slope of Ll‘_[bzme - @ sine |[z2-p2
) lazmawé:me Vz2 - a* =«

b2 coa® +a g ® Jz7- 5%
a? ano-besro Vzz-a2

Slope of L=~ = U,

and A4 can be written as A = arctan (U2) - arctan (Uy). At this point the
uncertainty in A can be found by taking partial derivatives with respect to
the uncertain parameters; i.e., % >;~f , ?a_’*- and 2A ., The first

b a9
three quantities have been derived for the spherical planet in Section 2.5.2.1.1.
For this reason, they will not be pursued here. Instead, %2— will be determined.

JA
If more accurate results are desired for ;—2 , — , and 2A , the method
is exactly analogous. aa 2b
The chain rule is employed in order to determine —g—eﬁ

A / QW / d Y,

36 /tuE 06 /t4? 36

The result is
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% |_ (azma—bma sz—a’)2+(bzwz.9 tawno VZZ-62)

* [(a% 84528202 62516 - 01 Y77-B)-(b1046 - @ i YN0t b s o/z%-4)
[ (@%0in 6 46 co1 77257 )4 (62002 6 - 2 2cn6 YZP-52 )?

The preceding equation gives the uncertainty in the measurement of the angle
subtended by a flattened planet due to the uncertainty in the relative attitude
uncertainty of the observer. It is noted that the analysis simplifies if

the planet is assumed to be an oblate spheroid. In this case, the flattening
effect can be neglected if the choice of the measurement plane is the one
determined by the equatorial radius. This can be seen if the variations in
the measurement angle due to planet attitude are examined.

Due to the fact that part of the planet that would normally be used
for an angle measurement may not be experiencing sunlight, some modification
must be made to the conventional measurement. Unless suitable sensors that
can detect the dark horizon are used, the measurement will resort to some
estimation of the center of the planet, and the angle to be measured becomes
the angle between one line of tangency and the estimated center point of the
planet. Of course, the estimation of the center voint introduces still

another inaccuracy into the measurement. The expression for the measurement
angle becomes

A%* = @ - arctan (Up)
The variation of A* due to planet attitude uncertainty becomes
Y/

oA
26 /Fu? 26

This must be added to the uncertainty of the estimated center point of the
planet. The total model uncertainty for the measurement of the angle between
the center point and the planet edge becomes
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SA¥ JA¥ aA% A%
AA '—AZf—Aaf-—— + —
>7 da 5526 7 3540746,

where the first three terms may be determined from the results of the
spherical planet in Section 2.5.2.1.1 (using A% =A/2), and A6, is
the uncertainty angle of the centerpoint of the planet.

A similar expression results for the measurement of the total angle
subtended by the planet:

A A IA A
AA = —AZ +—AQ+—Ab+ —AD
92 da abA aeA

The uncertainty in planet center does not enter into this expression since
it is not used.
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