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1.0 STATEMENT OF THE PROBLEM

The analysis of deterministic systems common in studies of trajectories
and control frequently requires that a particular measure of performances
(time of operation, propellant expended, etc.) be extremized on some path
satisfying all of the imposed boundary conditions. The fundamental problem
to which this monograph is thus addressed can be stated as: "determine an
arc from the family of all admissible arcs (piecewise smooth) which join
the points (X, 7, ) and (%, 7z ) (where Z=y(x) and where all values
of x and Z Ilie in a given region, G) ané/whgéh extremizes the integral
(or functional)

1(z)=§ f(x, 2,700z,

where f is a real continuous function of =x,/; and Ji' ? ." This monograph
is intended to provide the theory Sufficiengfto accomplish the formulation
and solution of such problems,

The discussions presented in the text progress from the fundamental
lemma to the Fuler lagrange equations, to the transversality condition, to
the incorporation of constraint equations, to other necessary conditions
for extrema, to the problems of Bolza, Mayer and lagrange, and finally to
the bounded and unbounded control problems.

Tn addition to providing the basis for formulating this class of
problems, the monograph is intended to serve as a necessary introduction
to subsequent discussions of the optimization problem., These other
monographs will present the formulation of problems in stochastic control,
of problems involving inequality constraints on the state variables, and of
singular arc problems. Still another monograph will discuss numerical
optimization techniques.



2.1

2.1.1

2.0 STATE OF THE ART IN OPTIMIZATION

MAXIMUM AND MINIMUM OF FUNCTIONALS EMPLOYING ORDINARY CALCULUS

This section presents a brief review of the results dealing
with the extremization (maximization and minimization) of functions
and certain types of functionals by means of ordinary calculus.

This review was prepared as an introductory exposition for the pur-
pose of providing a background to the Calculus of Variations. The
information given in this chapter is not intended to be complete and
assumes a degree of familiarity with ordinary calculus.

Maximization and Minimization of Functions

This exposition is concerned with the problem of finding, for a
given continuous function Fz)= f(x,,.- -, %, in a given closed
region, G , a point Xxz2(%,%Z,,...,%,) :’Ln G at which f(x) attains
its extremum (maximum or minimum) with respect to all points of G
in a neighborhood of X . This problem is known to have a solution
due to Welerstrass theorem stating that "every continuous function
in a closed region G possess a largest and a smallest value in the
interior or on the boundary of G ." The solution to this problem
may be found if the function f(z) is differentiable in G and if an
extreme (maximum or minimum) value is attained at an interior point
X. Indeed, if Z yields an extremum for f(z) (i.e., f(Z)<f(x)
for allx# z if Z minimuzes £; F(z) = f(x) for all z# x if Z
maximizes ¥ ), then by expanding f(x)=F(Z+€)= f(X,+€ %, +€,,...,
%,+€,) 1in a Taylor series around the point Z , it is seen that for
X to extremize £ 1t is necessary that the first order partial
derivatives of f(x) with respect to each variable %; ,/=42,...
», vanish, 1.e., ¥ is determined from the relation

afo) e
ox, 0= Z, (2.1.1)

This necessary condition is not sufficient, as can be seen from
the existence of points of inflection or saddle points in the follow-
ing examples:

fixy= 2" at x=0

f(z,yy zyat X=0,7:0.
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2.1.2

Sufficient conditions for more general type problems will be pre-
sented in Section 2.5.

Another maximum or minimum situation which is handled by ordin-
ary calculus is the problem of extremizing

=z, ... ,2,) (2.1.2)

subject to the constraints

g,(2)=0 SR 2, mn (2.1.3)

In this situation the necessary conditions for an extremum are
obtained by means of the so-called Lagrange multipliers. This
method consists first of introducing #2 new parameters, ) ,

Azy- .3 N, and constructing a new function

F(xy,N=/)+Xg () +h, 2, (5} +- - - + My Zom (x). (2.1.4)

Next, by using a heuristic approach, the following equivalency
relation may be deduced from constraint (2.1.3)

Minimum A(x) = Minimum [£¢z) + 0] = Minimum f(x2)

Thus, the problem of extremizing f(x) under the restrictions

(2)=05 .- - 2, () =0 is equivalent to the problem of
extgemizing V= =,[“% i, Np 24 . Finally, since the independent
Fzl

variables of F are z,,. .. ,%, } A 3 Ay 0o 3N, » it follows

from Equation (2.1.1) that the solution to the constrained problem
expressed in Equations (2.1.2) and (2,1.3) is given by

oF oF .
EZ;=O’521=0’ (=l i,n A=y, ”;
(2.1.5)
”
FOx) =ty + 2 Kz, (0).

These (# +») equations will yield Z; and the undetermined constant
multipliers a 4

Elementary Extremum Problems

The problem to be considered here is that of extremizing an
integral of the form



¢ !
I(y)=[ Flz, g4, . a’zéjf(z,)')a&p (2.1.6)

subject to some restrictions of the form

4
‘Zl(y)=_/f1(z:/)a/¢=€41’€=/:2:--->"7- (2.1.7)

Such problems are solvable by means of ordinary calculus as the
following theorems show.

Theorem 2.1.1. A necessary and sufficient condition for Y=Y x)

to yield a minimum or a maximum of 7(y) (as defined in Equation
(2.1.6))1is that Y(x) yields a minimum or a maximum respectively, to
f(z,¥) . That is, if Y= JV(»n is the extremizing arc for z(y),
then

min _, jmin
I(z, 7)={or I(x,Y) if and only if #(%, v):<or flx,Y) (2.1.8)
max ' max

Proof., Consider the case of minimization and suppose Y(z) minimizes
I(y) (the maximum version may be treated analogously). Next,
consider

I[Y(;:)]a—I[ngJ acs £ x<5+8¢4,570.

Then,
s+8
Oéi(l%‘_ﬂi’) =6Lf [F(z, Yoo)-Flx, Vo) de
S

Now taking the limit as § =0 , it follows that

0<f (s, V%) -F(s,7)

for all points S (where Y*(x) 1is some arbitrary admissible function).
Hence, the arc Y = Y(x) minimizes f(z, ) .

The converse follows immediately.

Corollary. f necessary condition for minimizing or maximizing

I(y)=ff(z,y)wp




is that

VA (A

In regard to the more general problem given in Equations (2.1.6)
and (2.1.7) the following results hold:

Theorem 2,1.2. Suppose Y=Y (x) minimizes I(y) subject to the
conditions Jy (¥) = Cy given in Equations (2.1.6) and (2.1.7).

Then, there exist multipliers A,,... , A, such that for a
a<x ¢4, Y(x) minimizes

Flz, Yy2)=Ff(x,Y) 7‘1{; Yy (Z, Y) (2.1.10)

The following corollary is a result of theorem 2.1.2:

Corollary. A necessary condition for minimizing
b b
f()’)sz(z,y)a’z J;(V)=f g, (%, 0)dx=Cy
a
£=/,2,...,m1is that “
—g—g=0, [=/,2,. . .,/7, (2.1.11)

for each f and all values a £x £ 4 .
[



2.2

2.2.1

THE FIRST NECESSARY CONDITION WITH FIXED END POINTS

Statement and Formulation of the Fundamental problem

The fundamental problem of the classical calculus of variations
may be formulated as follows: Let there be given in region G of
real variables (%, 4, 4,,..., y” = (%, ¥) and a real contin-

wous function £ (x, FYAREE ,iﬂ,gljgz,...,gn)‘f(z)’Z).

Now consider the collection of all piecewise-smooth (a piecewise-
smooth function is a function whose first derivative is piecewise
continuous) admissible curves Y= ¥ (x) 1lying in the given region G

which join the points (%,, Y )= (2,4, s4z2s- > & ) and
( ) (752:%2, ,%ﬁ,, ,%e” )5 and for which
the integral (or functional)
Z2
) =j f(x, v, v)dx (2.2.1)
has an extremum [where Y'= =(¢/, y’ .. / ), denotes differ-

entiations with respect to x]. It. is thus seen in the statement of
the fundamental problem that,in contrast to the ordinary calculus,
the calculus of varlations is concerned with maximizing or minimizing
functionals rather than ordinary functions.

This problem is sometimes restated in a less rigorous manner as
that of finding an arc Y= Y(z) which extremizes the functional
I(y) in Equation (2.2.1) subject to the boundary conditions.

Yexy=l , Yixg)=1J, (2.2.2)

The functional (1 ) in Equation (2.2.1) is defined by a function
Y(») and is denoted by 7 /Y (x)/, [i.e.,
from a certain class of admissible functions,there corresponds a
value or a number 7/ Y (x )]j Further, the variation (3 y ) of the
argument ¥ ( x ) of a i‘unct:.onal[ (Y) is the difference of two func-
tions: 8Y=Y(x) - Y* (x), where it is assumed that the argument
Y( x) runs through a certain class of functions fi.e., the variation
8 Y is analogous to the differential dx= x - X *"in ordinary func-
tions £ (x)/. Thus, the first variation of the functional (8I) is
defined by

O8I = 1[Yn+8Y]-1][Y0)] = a% Iy + SSY]J_O (2.2.3)




Before proceeding with the discussion, relative, strong, and
weak extrema will be introduced and defined to facilitate their use
in the various sections of this monograph.

An extremum which is attained in the whole region G under
consideration is called an absolute extremum. Otherwise, it is a
relative extremum.

The extremal continuous vector function _V=)7 (x ) constitutes
a strong extremum if the continuous curve Y=Y (%) in a neighborhood
of y=Y(x) satisfies the norm condition that

Hym -5 x)]| = /[y -5 %+ . [y - 7,,@)]2 <€ (2.2.4)

holds fora¢ » < .8 /where £>0 characterizes the neighborhood of the
extremal Y=Y (xz)/. If the extremal curve Y=Y ( x) is plecewise-
smooth and if,in addition to satisfying Equation (2.2.h), it satis-
fies the additional norm condition

Iy -V £€ (2.2.5)
for a¢z<_# ,then the extremal is said to be a weak extremal. Exten-
sions to a weaker extremal may be obtained by considering higher

order derivatives of Y{( z) and its neighboring extremals Y (x).

The Fundamental Lemma of Variational Calculus

If 7z and 7, (72, ) are fixed constants and G ( z) is a particular
continuous “function for z, £ z £ z, and if

J %{z)@(z) d <0

for every choice of the continuously differentiable function 2 (z)
for which

Vz)=y(z,) =0
then

G(x)=0 identically in X, 4xX £,

Proof. The proof of this basic lemma rests upon demonstration of
th% existence of at least one suitable function / ( x) for which

S Gy dz # O when G (x)#0 throughout the interval
X,<xX<Xz2 . So, assume G (% )#0 ; then, there is a partic-
war ¥( %, < 2'4%Z, ) for which G ( ¥)# 0 and for simplicity
assume G (x) >0 .” Since G (x) is continuous, there must be an
interval surrounding x'(say, z/¢x#Z%,) in which G (2)>0
everywhere. But the hypothesig /™ P G dz =0 cannot
then hold for every choice of / (x). For example, consider the



2.202,

choice

Zeléx

f0= (z-z,')z(,z—z})z z¢x ¢z,
0 Z ¢ 2€2,

G(x)
L % x t"‘ Zy
which satisfies the assumed constraints. But, for this choice of

y(x)
%
/Z/mG(z) dx =f (z-2)"(2-2,)" G (z) >0

which contradicts the hypothesis. A similar contradiction is reached
if G(z') is assumed to be <0 , The lemma is hereby proved.

NOTES.(a) In some applications of the basic lemma, a more restric-
tive form will be required It is required, for example, that an
integral of the form / %z Yo G (x) dx. vanishes for every continuously
twice—differentiablé 4?(,z) for which Z(2,)=f/(%,) = .

To prove the necessity of G(x)=0, again supposeG( x) >0
in z/< 2’¢%; but choose /(X ) to equal (% -2 )7 (z, -z)’
in x" X 42: and zero elsewhere.

(b) Thus, the basic lemma can be extended to all cases where 77(x.
is required to possess continuous derivatives up to and including
any given order.

(¢) IfD is a domain of thez'% -plane, the vanishing of the
double integral

{ff(z,é() Gz, ¢)dz dy

for every continuously differentiable ) that vanishes on the
boundary C of D necessititates the 1dent1c£|. vanishing of G( z, 7)
(Gis assumed continuous in p ). The proof of this extension is,
in essence, the same as the proof given above. Further, the lemma
is still valid ify ( Z’ﬁf) possess continuous partial derivatives of
any given order,

The First Necessary Condition

The classical method for solving problems of the calculus of
variations resembles the approach used in ordinary calculus for
solving elementary extremum problems. As a first step toward
obtaining solutions to the problem, it is noted that any necessary
condition for a weak relative extremum is also a necessary condition




2.,2.2.1

for a strong relative extremum and &’ fortiori, an absolute extremum.
Hence, in order to derive the first necessary conditions, the weak
relative extremum will be examined.

Euler-Lagrange Equations
Let there be given a piecewise-smooth vector arc Y= Y(z) =

(7, % @B 5, (D) which yields a weak relative

extremum for I(¥)in Equation (2.2.1) joining the fixed boundary
points(x, , %) and (Zz, Yz). Next, choose the arbitrary vector
function /{z)z(f/(z),. o ( z)) to satisfy the boundary conditions

@(z,yﬁ.(zz):o NEANAY SN & (2.2.6)

and consider neighboring arcs defined by the equation
Y=Y (%) +€ - px) (2.2.7)

where / £/ is sufficiently small so that Y= Y(z) f&'-lf‘(z)

lies_in a weak neighborhood (a neighborhood of weak extremals) of
Y=¥(z) . (Conditions (2.2.6) guarantee that the end point
conditions (2.2.2) are satisfied.) Therefore, the functional I( Y)
defined in Equation (2.2.1) has an extremum for Y when £:=0 .

Now, since Y= Y(z) , I(V+E&Y)= T (€) , (i.e., 7 is a function

of &€ alone), it follows that oZ/we/ =0 on the extremizing arc.
Or €0
, 2t 3f(z, ), Y) (2,1, V) e
0=7'€) = 2l () f———ﬁ(x)fdzl
)g=o z:f g a%. Z 37(L,, [ £=0
*zf{ af o (2.2.8)*
SR o
;’j =7 370- 9;{4- ‘
where /' =f(z 7, }7) . Integrating now by parts yields

7 Xp 1%t [ 0% o
SO ne[l o) a_cjéa’z/z -/ 2 a—ﬁ.dz]a’z.

x, 7

But, 7(;’):0» at %z, and 7, , thus Equation (2.2.8) reduces to

Ze s~ OF ¥ af '
J f: 2 .'"/ 2 d’”}ﬁ (x) d% <0 (2.2.8a)
Z, l[{‘ z' i‘

Now, since the vector function//( x) was arbitrary (satisfying con-
ditions (2.2.6) only), it can be specified as



v (z)ffy[ﬂ/‘-(é)—(.}]dé y £ L2, . (2.2.9)
where %

F _r* af Zz .
M) =5 - i, I =zz/‘?-" (7)o (2.2.10)
£ 7

/ xl

Under this substitution, Equation (2.2.8a) becomes

n
fzz ‘_L; M, (x) [M‘-a)-C‘-] dx =0

or
[ £ [mx-c ] dx -0 (2.2.11)

It follows, therefore, from Equation (2.2.11) that
M; (x) = C;
which, in turn, yields by means of Equation (2.2.10)

a/‘(za,;,’ y') _/z af‘(j,;’, YDy <C; i1 2,.. L (2.2.12)
‘ Z ¢

Equations (2.2.12) are the Fuler-Lagrange equations (or the first
necessary condition) for the extrema of functionals of the form
(2.2.1). This significant result is contained in the following
theorem.

Theorem 2.,2,1. If a piecewise-smooth curve Y=Y (x) lies in a
given region and provides a weak relative extremum for the functional
r(y) in (2.2.1), then there exists constants C; for which Y= Y(x)
satisfies the Euler-Lagrange Equations (2.2.12).

As an immediate consequence of theorem 1, the following (most
commonly used) result governing the extremal arcs can be stated.

Theorem 2.2,2, Wherever 572z) is continuous in the inverval
[x, z,] these extremizing functions Y(x) also satisfy the
Euler-Lagrange equations in the form (commonly used

oF _d [ \.p e )2 . m
oy, 0% ag;) 2T LEy sy (2.2.13)

10



%(;_é 4 aﬂ) "—E,Zé=0 (2.2.14)

Moreover, the so-called Weierstrass-Erdmann corner conditions

af af - :

9%' /z; = ;}/L_’z; 3 L=/, 2, ... -, 7 (2.2.15&)
[ 52 oF 5 A - df

{*-% 7 a4/ )”. {f‘g ¢ Zf"/* (2.2.15b)

hold at any corner point (a point where ¥'1is discontinuous) %, of
y ( Z) .

Proof. First note that the continuity of 71(1,) in some interval
implies the continuity of&{/’%y and(%@%@x)in the same interval.

Therefore, the functions f and -f af ax have
first order continuous deriva {3ves in the interva.l (z, z ). This,
in turn, implies that the Euler-Lagrange Equations (2.2.12) may be
differentiated to obtain the desired Equations (2.2.13).

Next, note that the differentiation of the left-hand side of
Equation (2.2.14) explicitly leads to

75 nag] -i’—f[-z A iy
{a{z( 3/’)} o

Hence, Equation (2.2.14) is valid

The Weierstrass-Erdmann corner conditions (2.2.15) follow from
the fact that f’ of oy and [* 9f Jx are continuous
z,

at every point 50 that the quantities in Equation (2.2.15) are also
continuous. This completes the proof of the theorem.

The Euler-Lagrange Equations (2.2.13) constitute the most fund-
amental and useful result of variational calculus. The more restric-
ted E-L equations [Eq (2.2.12)] are seldom used since they apply to
extremal functions Y(wwhose second derivatives need not exist, Every
integral curve (extremal) of equation (2.2.13) is either smooth or
composed of broken extremal parts: extremals satisfying the
Weierst rass -Erdmann corner conditions (2.2.15).

2.2,2.2 First Tnteprals and Degenerate Solutions of E-L Equations

Two corollaries follow as immediate consequences of Equations

11



2.2,2.3

(2.2.13) and (2.2,14). These are:

Corollary 1. If the integrand function 7 does not contain any of
the components ¢, , but does contain ! , i.e., if F=F(z ¥’)
then the E-L equations have a first integral:

- C

gﬁ’ (2
Further, if /EZF(Z y? , then in view of Equation (2.2.14) a weak
extremum arc Y (z) satisfies the equation

yoy)-5 4 2L _
£, Sk 9;/4‘“C
These deductions have special significance for the case 7=/
in which the extremals are defined by a single equation.

[2/,2/. C e ,n

Corollary 2. If Y(x) is twice differentiable, the E-L Equations
(2.2.13) and (2.2.1&; are second order differential equations;
Equation (2.2.13) implied Equation (2.2.14)

Proof. The first assertion is proved by explicitly differentiating
the E-L equations. Next, by differentiating Equation (2.2.14)
there results

f%/ %"[;Ti'c% %‘_)] =0 (2.2.16)

so0 that the second assertion of the corollary follows as well.

NOTE: Equation (2.2.16) allows the following assertion: If a twice
differentiable function y/x) satisfies Equation (2.2.14) in some
interval and if it also satisfies all but the K-th of the E-L equa-

tions (2.2.13), then if 4,/ (%) #¢© in the interval, /(x) must
satisfy the K-th E-L equitions as well.

The system of 4 second order E-L equations, requires Z2» arbitrary
constants for their complete solution. They are provided by the 2y
boundary conditions(2.2.2)

Parametric Representation: £'=f(¢,X,X)

The results of 2.2.2.1 and 2,2.,2.2 are directly applicable to
problems involving parametric representation (i.e., problems where
the time t is the independent variable ). Indeed, such a representa-
tion of both the integrand # and the extremal arc is essential in
treating dynamical problems. Therefore, the previous analyses will
be extended to the problem of extremizing the functional

z
]—[;() =fé'z/(t,XJ)(') dt 5/ ?(f,Z,---,Z,,')Z,- "SZ')G/é
z, g

where Y==fﬁi and with the boundary conditions

ot

12



This problem is identical to that presented in Equations (2.2.1)
and (2.2.2) except for a change in variables: Here t replacesx
and X replaces Y . Thus, the corresponding E-L equations are:

of d s of ) ) %*
— == (== = R 2.2,13

or, “dE T, ) 1 et A ( )
Example 1, The Brachistochrone Problem. Find a

curve joining two given points A and

B so that a particle moving under
gravity along this curve starting at

A reaches B in the shortest time.
(Friction and resistance of the medium
are neglected.)

Solution. Place point A at the origin
of the coordinate system as shown in
Figure 1: the X-axis being horizon-
tal and ¢ -axis, vertical directed
A e downwards. The velocity of the parti-

cle vzd_aé_s :/’W so that
# =L =@'z dx
224 VE2¢

s

Therefore, the time needed to reach point B( Zz,fz) is

, Z: Jrrg?*
o] ) T A, 4070, g (%) 4

but (2.2.13%) yields

/7;7“ 4

—_——

_ 7 -C or (/* ’2);C,
g gy e

13



2,2.3

2,2.3.1

At this point, if the substitution o'= cot & is made

/ ~ C, -
7 /fﬂ‘é - Craim 4 = So( 1= 00 22)

' ¢
L - (?,= ZC,AZ;; Gl A ﬂC,M'Zfﬂ:ZC,(/‘mzé>ﬁ

= C/(t’ﬂu‘z—g-é) *Cz-"—'%(zeé ‘Wzé) fcz

Hence, the parametric equation of the curve is

2C, = 2 (2t -aw 2¢), 4= (1= co0 2¢)

Now, by observing that C, =0 for 7=0 when z=0 , and by modifying
the parameter by setting 2#=7 ) a family of cycloids (in the usual
form) is obtained.

S Ty T S )
G
where /z is a radius of the rolling circle, which may be deter-

mined from the cycloid passing through the point B (%, , f;c) . The
Brachistochrone is, therefore, a cycloid.

Functionals Involving Higher Order Derivatives

Attention will now turn to the analysis of extremals of func-
tionals where integrands contain second and higher derivatives, For
simplicity, the one-dimensional case will be considered first, Exten-
sion to higher dimensional cases wlll then follow,

The One-Dependent Variable Case

The objective is to investigate the extremal of the functional

f[%(z)]:/”zzp(z, ;/,%’%’...j/‘ﬁ ¥ (2.2.17)

It is assumed that /° possesses (s .2 ) partial derivatives with
respect to all its arguments and the extremal &= 4 (2) possesses
Zn derivatives satisfying the following prescribed boundary
conditions.

At g (R4 s g () =g 0 @21

(=12
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Let 4= X (2) be a neighboring comparison curve to the
extremal f: ;/' (z) and consider the expression

4(%,8=7(%) re[4*(2)-Z(0)] = 7 (2)7€87
where
;{(Z,o)’—‘ﬁ—(ﬂ) and %(Z, /) = y&{ X(x).

Since only the values of the family of curves g:y(z,e) are
considered in (¢ &) s I( ) then becomes a function of € alone:
I=7(¢)Hence, the extremum of I is achieved from

or= I,(£)£l=o = gc-/g [I{%(z,a)}ﬁ]:o=0 ,

i.e.,

5]':% Zl/'[Z;;{(Z)E),%’(X,f)J.._);l(h)(z,ﬁ)]dtd‘/‘a
— zz af‘ a/) ; - af‘ , i
- —_a +——/dﬂ too. """'—m)a tm d/Z’O
z,/ of 7 o 4 o4 7

Integrating by parts, the second term on the right hand side (once),
the third term (twice), etc., and the last term (7-/ times), the
following expressions are obtained:

Sy Sy de=] 1, %j"‘ AT

z/-tz );/” 8%”0’1 "[é;,, 3#:&?"-/(/{{{ {);’J 8%;[1;‘/7»2 ;;zg;};idﬁ,

1,,“!2',4
l/ 72:», 5;/”’a/p= [{;w 5?(( )]z, - [d,, [{f'"’} 5%""2’] Fo. ..
+ (‘/)”Jzzo’gz'—”,' {’[;m 2570'25

Now remembering that theend points (z,, 4 ) and (z,, 5/

z) are fixed
so that the variations vanish at these points: ‘Sf = ?'=., .=8y(”"’=0,81 =0
reduces to

% J? Y
af:j[@ —d%z;,, ¢ 55 g ) FZm fym 8y 42 =0

with arbitrary 55( . Finally using the fundamental lemma of the
calculus of variation (Section 2.2.1) the E-L equation follows

L -2 Z 4 D" o fyom =0

% 7z /}, -,4-0,2: 7,1 el O JZ” f”’) (2.2.19)

15



2.2.3.2

This is the differential equation (of order 2, ) for integral curves
(solutions) which are the desired extremals. The 2x arbitrary
constants are determined from the 2» boundary conditions given in
Equation (2.2.18).

Example: Find the extremal of
Ity) =j'(/ff”z)d2$ with ¢ (0)*0 , 4'@)=~/ , 4()=/ PAONE

4
%so

The Euler equation is o7 ( 2.,7)= O or
22 \" ¥ dz

The general solution is %s 63%3 7‘C2 22 +C, % +C,

From the boundary conditions C,=/y C=Cp:C =0 .
Hence, the extremal curve is %= Zz .
The Two and Higher Dependent Variable Cases

In the same manner, if the functional [I] has the form

I[%(z),Z(x)]f/ZZ?[(Z, y,%; : --f(mj ) 2:,'7'32(”)¢%

then varying only %( z) while keeping Z (z) fixed, reveals that any
pair of functions y(z) and 2(z) that yleld an extremum for
I[ylz), 2(z)] nmust satisfy the Euler equation

Jd nd”?
oGy e S f -0 -
Similarly, by varying 2z(z) while keeping 3{(,&) fixed,
d nd”
-= 7, -/) — Fomy =0
£ > YY), v £y m (2.2.20)

Consequently, the functions Z(xz) and %(z) should satisfy the system
of two equations (2.2.19) - (2.2.20).

An identical line of argument applies in the discussion of
extrema of similar functionals depending on an arbitrary number of
functions

- rx ” . n;,,
I[%,yz,...,%n]_fZf(z,g,.,.,%c Dl ey g5 s
" ’ (€
;{mjyml"'lfm ))J/{

Varying any function g (z) , and keeping the remaining ones fixed,
the Euler equations are

16
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2.2.4, Relations to Dynamics of Particles — Hamilton Principle, Canonical
Forms

The material of the ensuing section is based upon an assumed
knowledge of basic concepts of particle dynamics. The aim here is
to provide a glimpse of the role played by the calculus of varia-
tions in a small segment of dynamics as well as demonstrating their
relationships.

2.,2.4.1 Hamilton's Principle

One of the most important principles in mechanics, commonly
known as Hamilton's principle, is varlational in nature. Consider
the Kinetic energy [7] of a massm

T lm(20 2] %)

and the potential energy [Y] of the particle in a conservative field
of force.

V= V(Z/;"')Z%)

so that the equations of motion of a particle are given by

N T
MZC. = az‘ ) L= /) 2)3 (2.2.22)

Thus, if Lagrange's function ﬂi] is formed
it is seen that

_Qé' = MX.“ ) _9_1'_ - - __!

BX‘- 9/\’4 3XL'
Equation (2.2.22), therefore, becomes

d s 9L )= oL

dt QXQ ax,
which are the Euler equations for the integral

£
[=j zL (X,X) i (2.2.24)

¢

4

y 242,38 (2.2.23)

and which is independent of the choice of coordinates. This
result suggests the following:

17



Hamilton's Principle - In a conservative force field, a
particle moves so as to extremize the integral

L4
I=f L ot
z,

An equivalent expression of Hamilton's Principle is the
"Principle of "least Action." Since it has been assumed that the
potential energy does not depend explicitly on time (i.e.,v= V(Z,,,z
X,)) the total energy is a constant. Hence o

L=T-v~2T-E, £ = T+V=constant

and extremizing the integral

I=f£"£dt

¢,
is equivalent to extremizing the integral

%2
z, =f 2Td¢ (2.2.25)
¢,
subject to the constraint that the energy is constant along the path.
The integral I, , is usually referred to on the "action" integral;
hence, the name "Principle of Least Action."

In most cases, the motion of the particle is such as to
minimize the action. For this reason, Hamilton's Principle and the
"Least Action Principle" are usually referred to as minimum
principles, However, it can be shown that the action 1s a definite
minimum only if the interval of integration [%,, ¢,] is
sufficiently small. For large intervals, the action may be only
stationary., This point 1s best 1llustrated by an example., Consider
the gravitational field in the Xy ~plane with the x -axis as ground
and the g -axis directed upward. (The potential per unit mass is
VB;! .)" Assume a bullet is shot vertically from the origin with
an initial speed ¥, at an angle A with respect to the horizontal.
Then £: % \{,z and the integral (2.2,25) is

(2.2.26)

to 7 e R
1,={,ﬁ5’33)<x +y) dt

18



Now employing Euler Equation (2.2.23) reveals that the trajectories
are of the form

- ¥4
£-y= 2152
The particular values

£ E .
== ¢p0?A , a==aww 2A

7 7

yield the following family of trajectories

'S x Zare A szz,asz + 1.-/'3

The family has as its envelope the
L F R
7 ? 23 -

A particle shot upward from the orligin cannot cross this envelope,

but a point (2, , ) under the envelope may be reached by two

paths with inclinations A, and Az s respectively, say A, >A; .

The path determined by A, yields a relative minimum to the integral

(2.2.26), while the other does not. In fact, if the point 2 1is

sufflciently close to the envelope, there are paths below the line
which give the integral a smaller value than either of these

two trgaectories. These results indicate that the principle of least

action 1s applicable, as a minimum principle, only to arcs that are

sufficiently small. The least action principle is, none the less, a

very important principle in mechanies.

As an illustration of Hamilton's principle, consider a particle
of unit mass acted upon by a central force which is inversely propor-
tional to the square of the distance from the center. Assuming planar
motion and using polar coordinates with the pole at the center of
force, the following is valid:

re (it nt 6, e

Now employing the Euler equation

oL _Jd IL
go “dt 88 8/2 dt ar

it follows first that the energy £=7+rv 1s again constant. However,
for this problem, a second constant also exists. This fact can be
shown by examining the first of the two equations of motion.

oL

5—9 = %0 =constant, or,2g = 4

19
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Next, since/i=9'de
Uy de\R 2].2 1[/daz _z] A
T"z[(d@ */‘_/9 = [(Z3)+ #*] 727

Assuming that # #0 , then from the relations 7 rv=£

o \2 h%
z2[s &2 zf_ 4 3 2_ 2
a [{cia.) +/1_] Z;m +Cnr ; a’= 2
which when integrated, has a solution of the form

K
/+€ coo(6-7)

where X, e, and Y are constants. The path is accordingly a coniec.

g /7 becomes

=

2.2.L.2 Hamiltonians in Mechanlcs. Canonical Forms

For "Natural Systems" (i.e., those system for which the
Lagrangian does not contain linear functions of the velocity)
the Hamiltonian is equal to the total energy of the system and the
constraints on the system are independent of time. Consider such a

system:
1/ = 2, . 3L
=) X T L= TV (2.2.27)
&=/ 2X;
in place of the Lagranglan L. In this case, the momenta
L . :
7Z=a,-(‘A(X,X) s L=/, Ry .,/ (2.2.28)

are used instead of the variables x, . Denoting the solutions of
Equations (2.2.28) by

Z.L' = QL- (% X), (2.2.29)

and substituting this result into Equation (2.2.27), then

H(x, p) = Lﬁ/ QLA-L(xQ)

as a formula for the Hamiltonian ~ in terms of the '"canonical varia-
bles” (,z:‘. R PL ).

Tt is not difficult to see that under the transformation (2.2.29)

oH 2L H .

aX.=Tax, 0 am T Ko st ln
Using these relations, the E-L Equations (2.2.23) reduce to the
following "canonical form"

L _2H 5 = _

Z"ae , ., _21‘ N 6"/’2,. . .,/?. (2.2.30)
These equations are fundamental in mechanics.
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2.2-5

It is of interest to note that Equations (2.2.30) are equivalent
to the E-L equations corresponding to extremizing the integral

/ [Z 2 0 -H(X,P)] ot (2.2.31)

Accordingly, an alternative form of Hamilton's principle can be
stated as follows:

A trajectory

/

X (¢), p(t), & 2648, (=32, .. ,n, (2.2.32)

in a conservative field of force is a stationary (extremal) curve
of the integral (2.2.31) where /# (X, p) is the associated Hamiltonian.
Along this stationary curve, # is a constant".

The term tstationary" is used instead of "extremal" since it is

clear that the integral (2.2.31) has no maximizing or minimizing
arcs when 2, andwg. are free variables.

Variational Problems Involving Multiple Integrals

The mathematical theory for variational problems associated
with extremizing multiple integrals is not as simple as that for the
problems described previously. It is,however, a relatively simple
matter to obtain the E-L equations associated with the solution
which the extremum must satisfy. The procedure will be illustrated
in a formal way for a double integral problem in X¥Z -space. The
integral to be extremized for this class of problem is

7= ff/’(Z,;(, Z, 2, )c/zc? 70_2,1: y 5555 % (2.2.33)
for a class of surfaces
Z=Z(z:,%) s (25 %) in A (2.2.34)

having the same boundary values. Proceeding as before, by consider-
ing the first variation §7I of the integral (77 along an extremizing
surface, then

— of of af B
81 Sf[E b5 5}—627]0';: dy =0 (2.2.35)

for all variations Z that vanish on the boundary of A. By Green's
formula, Equation (2 2.35) reduces to

§7= j[[ -2 4 —;?f;]&z dxdy =0 (2.2.36)
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In view of Note (c¢) of Section 2.2.1, this is possible only if

2-2E) i) e

Hence, "an extremizing surface having continuous second partial
derivatlves must satisfy the Euler Equation (2.2.37)."

One of the best known multiple integrals of this type is the
Dirichlet integral

ff[( ) (az)ja’za/%

In this minimlzation case, Eq (2.2.37) ylelds

2%z F*=z -0
927 T 2 "

whose solution is a harmonic function, This fact suggests

the following variational principle, commonly known as Dirichlet's
principle: "A harmonic function minimizes the Dirichlet integral
in the class of functions having the same boundary values."

No further studies involving the extremization of multiplse
integrals (such as the second variation for example) will be reported
at this time since the efforts are quite involved and
since the generalization of the Euler-Lagrange problem has not as
yet been discussed,
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2.3 THE FIRST NECESSARY CONDITION WITH FREE END POINT. THE TRANSVERSALITY
CONDITION

2.3.1 Introduction and Formulation of the Problem

In the analyses presented in Sections 2.1 and 2.2, it was assumed that

the end points (z = . v, )= o
of the fﬁnctiongll s 4.) (z, s Fr s ) ;(//;) and (Z;,Y)= (X, )%2/ :ﬂzz) ),((2,,)

Xz
I=z/ Flz,y, v')dz

were held fixed. This discussion is intended to relax this assumption and
allow the end points to move freely along lines and curves, The inclusion
of such extremal curves (assuming their existence) will in turn enlarge the
class of admissible and comparison curves (curves in a small neighborhood

of the extremizing one) having the same end points as the extremizing curve.
In view of this extension, if Y= 7{1) yields an extremum for a problem
with variable end points, then the same curves yield an extremum with respect
to a more restricted class of curves having the same end points as the curve
Y=Y (x) . Hence, the Euler-Lagrange Equations are still valid for the

free end points problem: ' -

of  d /3 \_ .
5;‘. Jz éz)-o, =/, 2,...,n

The general solution of E-L equations involve 2n arbitrary constants,
In the fixed end point problem, these 2n constants were provided by the
conditions:

L(%)= s 4 (XY=, 367/ %, - n
In the movable end-points case, some or all of these conditions are not
satisfied. Therefore, additional conditions to determine the arbitrary

constants in E-L equations are needed. These conditions are derived from
the fundamental necessary condition that the first varlation vanishes:

ST = %[](}77#6/?)]&/0 =0
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The conditions will be derived first for the one dimensional case (n = 1)
for the purposes of simplicity. The generalization to any arbitrary dimen-
sions will follow.

2.3.2 The One Dependent Variable Case

In the one dependent variable case, the complete solution to E-L equations
involves two arbitrary constants: a, b say; (i{ %(Z @, ,&-)

Consider next the integral T =1/ x, 4)] eva]uated along
such an integral curve. When thus evaluated the functional (I) becomes
a function of five variables: (%),a, &, and z, so

that the variation of that func ional coincides with the differential
of such a functiony i.e.,

51-—[(%;#6{) dI(% a, 4, z,,zz)“ L gy + 2 Gar.. .+ 2L

For simplicity, assume first that only the end point z-= 2z, is free
while Z= Z, is kept fixed; i.e., the point (Z, , ¥z ) moves to
(2,rA2,, ) or (7:2f3¢2, 2 5 842) WHiGh is the usual
desisrnatlon :Ln t e calcu]us of variations. In this case, I = I(;{(z), a % )

e
and hence,

Zp+82, Z
51:] /‘(z’%fé\yg ;,’fs(y’)o/x —zfz 7[‘(74,?:?”) dx (2.3.1)

Zl

:/Zzﬂfiz f(zi, ;+5% , ;{’fay’)/pﬁ

Zz

;fz‘[f(z}/ #8gy 't 5;/')—/‘(1, &5 f’)]ﬂllf

Now using the mean value theorem,

J

Z3

-xz-r-Sz

f(zi,%faf ) ¥ féf)a/z £l 82,

x=%2 +0 5!2
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But 7/ 4is assumed piece wise continuous, Thus,

7[’/ —/(Zy ;/)/ + €,

zz*gaz'z 1512
where (,—~0O a8 5;42*0 and 5%{ >0 . Consequently,
Lyt 8%z

7[‘(Z,ﬂfdy,;{'v‘-é’%’)di:f(Z,?,?’)»/XZ 5142 +£2 BX.,_

Zz

Now turning attention to the second expression in Eq. (2.3.1), the
utilization of Taylor series ylelds

/Zz[f(l,yfé\;(, 5{’+J‘%’) —-f(z, Q,%')]OIZ
=gzz[§§- ,5(,%)5;{%33;,(z,%,f’)ﬁy’]o’z’u‘ﬁ

/

where A is an infinitesimal of higher order than § and ;S;é( .
eld

But J,-zz 3"' Sy’ dx can be integrated by parts to
Z,

fl’z[a; J}/-/- ;?]Jy dz = 3’ f/ +/zz[;;0/d% 37)]{% %
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Now noting that the values of the functional are taken along extremals, i.e.

3
3y JZ ( 3’ ) o and that the end point(z, s %) is
fixed, (i.e., Sil =O) reduces this second term of Eq. (2.3.1) to
z:7%,

Xz21 of rla
) Sy ldx=2 64|
,j[f +? 7]% ay’ 71'11

4

Before proceeding any further, it is considered necessary to note that

872 # a’%? gince & %y is an increment of s at X=X, whereas
‘/%z is the change of the Y coordinate of an extremal produced at
the point Z=Z, , see sketch). The relations between 8¢, and

d 7:. are therefore

6%2 z(df —é/’dt)

x= iz

%
' Za+8%,
Consequently,f fdz = f/ cl':&‘z so that
2z,
j [/'(z ;(fé‘;(,;/ ;‘é\y)"/‘(l,;( 7)0/): ? /(d;{zy(zz)dxz)

sxz

where all approximate equations (symbolized by =~ ) hold true to within
infinitesimals of second or higher order in 0'252 or d?z .
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Finally, it follows that Eq. (2.3.1) reduces to

8I=F(x,4, ﬁ)/ dz2+—(z,y ,)/ (c/;z f(z;.)d"z)

x:xz

=(f-y’ dz,+ 2L .
8 ),

X=X,
But the fundamental necessary condition 61 =0 implies that
the following end-point condition must exist.
({‘ y’ af)/ dz, + of / d;( =0 (2.3.2)
v’ 7 4
z:zz 7 2,
or for the case where d %z and d}/z are independent
3/’)
-, 2 - 2,3.3 a
l’=12
o =0 (2.3.3 b)
3;{'
Z=xz

These equations are generally referred to as the "transversality condition"
associated with the free point (,zz s ¥z ) .

For example, assume that the end point (x%,, 72) is moving along the
curve 4= @ (x) . Then dKz ’(zz)d and the

transversality condition (2.3.2) becomes

[Frp-g) Z] dz,=0
NEET% hzz
or, since dx, varies arbitrarily
[[.}. ¢,y) ] :‘:0 (2o3cl+)
f xx
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If the left boundary point (x ,) 1s now held free while (z’,z v Yy ) is
kept fixed, identical arguments lead to the following transversality
condition:

of
(F- o’ 3. l dx, + dy, =0 (2.3.5)
y 3? Z=Z ay X2, 72
And, if the end point @,, 5{) moves along a curve 7- Y(x) , then

condltlon (2.3.5) reduces to

[fe(¥™ ?)afzz =0 (2.3.6)

Revising the analyses which led to Eq. (2.3.2) to include the more
general case in which both end points (Zu#) and (z, s ¥2) are
free, produces the following general transversality condition:

[(f*y’ a/‘) dx + -— d%] (2.3.7)

Thus, if the two end point l,, and ( y4.)are independent of one
another, then both Egs. (2.3.2 and (2.3. 5 hold. And if the end points
(% » g)  and (¥%z,4,) both lie on the curves y= ¥ ¢x) and = Pcx),

respectively, then c&dition (2.3.7) reduces to condltlons (2.3.6)and (2. 3 L). .

The transversality conditions obtained above provide the boundary condi-
tions that the extremal must satisfy and along with E-L equations, they
constitute the complete solution of the variational problem considered here.

Example 1: Consider the functional
I I F(2,0)/ 1+ 4% dx

with #(z.) % whlle (ZZ’KZ) moves along o= P(Zz)

The transversality condition (2.3.4) is given by

- P )’
[Flz,9)/134°% +(@-y) 7%7_%% =0

or X=X,
F{z ,j{)(/ # 7 Q(_L implying therefore that ,'/""‘/

Sy E
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since F(Z, ) #0 . This means that the transversality condition
in this particular case reduces to the orthogonal condition.

Example 2: Consider the problem of extremizing I:f’l V7tu'2 dx

[}
with 5{(0): O and ¢, = Zz . The solutions to the
E-L equations are the circles (x —a.)2 # and the
boundary condition (0) =0 ﬁ a =J- . Thus, since

Example 1 proved that the transversality condition reduces to orthogonality
condition, it follows that a= s =.4 , FHence, (z- J) o 2-.25 so that an
extremum may occur only along the paths ;{ =t flox-2% .

2.3.3 The Two and More Dependent Variable Cases

The concern here will be with the extremizations of functionals of the

form I(f;z) =/zzf(z)f: Z, }’; zl) dz,

where one or both of the boundary points A(Z%,, 4., ) and 8( %2, 42 z,)
are free, To simplify matters, it will be assumed that the right end point
B is free while the left boundary point A 1is held fixed., Then, as

in the previous section, it is evident that an extremum may be attained only
along the integrals of E-L equations:

f af
_—'—( » 7z dz 72-')=0

The general solution to E-L equations in this case, involve four arbitrary
constants, two of which may be found from the boundary condition imposed on
the fixed pointA(Z,, g,, 2, ) . The remaining two constants will be deter-
mined (as shown previouslv) from the fundamental condition: 8L =0

where

I=‘—I(‘Kz, }’z )7‘2)
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For this case, the variation in the function (AI ) is:

Zs 48Xz

Al = f(z,,,&;(,zfé‘z ?IJI;ZfJZ')JXJ /'(x,,q, ,’q,z)dz
x,

jzz[f(Z,ﬁfS;(,ZfSE,;{/fay,2f5‘2) )0(,73,#’ z,i, 2 )]JX

Zz+bZz
ff f(z,},fé‘;(,afé‘a,/fc?;/,ZfJ‘?)dx

Xz

Ve

And,as before, the application of the mean value theorem and Taylor's
expansion theorem to the first of these integrals,yields:

1 = f/ szf/9[§y+—5z+7f%,§zjdz

z;z

Now, integrating the last two terms (those involving the derivatives) by
parts, produces

61=] 4z ;[ s¢] Ja} /h{f—;ﬁ f;]y

l Xy

+[T;—:: o )] ]dz

but since the integral I was consldered along the extremals where the E-L
equations are valid

S1 =1 8z, [—~ 5] +[“, 5z

r4] ZZ X%,

Using now the fact that
dﬁ/ dyz y(z‘z)dz‘z,é.z] ~d12 '(Zz)dxz,
z:

z"zz
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and equating 41 to zero reduces this equation to the condition

, f , af if. .ﬁ_ )
[[—7 57 TF az ’xzxz e +[95('!=7<z I, *[92']d32'0(2'3-8)

This condition is called the "transversality" condition associated with the
boundary point 8(Z,, 72’ 22) .

If the variations d%, , d 7% and d2, are independent, then
condition (2.3.8) becomes

, 9F . of _ i ] a7 .3,
[f_y 57—2 §—z'x=xz—o, [ay’iz‘,,[az']“o (2.3.9)

If the boundary point B(X, » Yz ,2z) moves along a curve 4 = (z),

2= V(%) so that dy, = P(z,) dz, and dz, = Yiz,)dx,,
then the transversality condition (2.3.8) reduces to
~,) 2L ~z) 2F _ (2.3.10)
[£+(¥ 7)37' {(¥-2) 5 3oz, =0

However, this transversality condition for the problem of extremizing ,
I;-;/'zzf (%, g5 2, y/,z’) dx along with the equations ?/Z = (”sz) ,
2, = Yiz z) is not sufficient to evaluate all arbitrary constants in the

general solution of a system of Euler equations. The remaining required
conditions are produced by considering that the boundax;y point 8(z,, yz ,32)
can move on & surface Z, = p(zz,yz)' thus, dz =—‘fc{x + 2 4

) ) z JZZ L 7’!‘ 72 b

Wwhere the variations Jx, and d’z are arbitrary and independent. Now

employing the condition 3 =0 transforms Eq. (2.3.8) to

Ly 2 g 2L 2t BT gy [ M) gy2.3.00)
[f 7 7y’ ~Z 57 Yoz ?z';zl d'zz*[ 2y’ UETE 97‘1:,7 o

And, since 8z, and 5%2 are independent, relation (2.3.11) reduces to

_ 2t fav .\ 2f of o 3¢ 2.3.12
[f-¢ 3y’ * 5% *2) az"zzw ) a;('+93' J—g-x -0 (2:3.12)
&
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These two relations (Eq. (2.3.12)) together with Z, = (X, %z) , are
in general, adequate to evaluate the two remaining arbitrary constants of
the E-L equations.

Tdentical relations to those presented in Egs. (2.3.8) and (2.3.12)
for replacing(zz,g 2 3:) by (%,,4,,2,) will hold when the left
boundary point A(Y¥,, ¢,, 2,) is held free except that the point (xz,rz,zz)
will be replaced by the point (%,, 4y 2,)

The extension to the general case follows from the consideration of

I/ f(z,)’,}')dx ——j /‘(Z, Ly - ..,gn;gl’,...,y’;)dx

with the end point 8(Z,, xz) 8(752, Y 214223+ %,,z)
being free, using similar arguments to those given above. The following
general transversalitv condition is stated without proof

[F-2 42 ]dz H[E ] L =0 (2.3.13)
FEY (‘ =/ 2
As before, a simlilar relation holds at the left end point x= %, when

it i1s free.

Example 1; Examine the extrema of the functional

z
I’j z[y’zfz'z +272]o/x
0

where ¢ (o) =2(0) =0 and the point (Z,,4,, 2,)can move on the plane
X=Z 7.

The E-L equations are ,Z"'é/=0 ; 3(”".2’ O . Hence,
?(z’)-‘-‘C,amjz % +C, Mx-f-cj Coo X fC",MX.
and

Z(z) =C, Cooﬂ.z;é +Cz,¢ur;J)x+ Cg coox—nyu)n)x

32



But, since z(o)=£(0) =0 it follows that ¢, +C3=0,
n

C,-C'3=O d thus ¢, = C3 =0 .

The transversality condition Eq. (2.3.8) reduces in this case (due to the
independency of 4 Ye and d 2, and since dx, =0) to

X 3_’_/ .o
9}/'/ - 2’ !
F 22 5 X2,
2

i.e., 4, (%z) =0 and 2°( X, )=0. This fact yields

Thus, if Coo X, #0 , then Co= C =0 so that extremum may occur
only along the line %=0) Z =0 . On the other hand, if o, =0,

7 .
2= 7 *tZhrw,ntljt 2 ... and it follows that C, = ©  and that
Cy is an arbitrary constant. Therefore, the solution is

Z=Cyamwx , E- Cap ey 2
It 1s readily verified that this latter case satisfies Sr =0 for
arbitrary ¢ »

2.3.)4 Higher Derivative Considerations

The problem under consideration here is that of extremizing the functional

Zz
= Vi 7,7
IJ f(ﬂ:?)j’)f)d%)
]
where it is assumed that the values of the function and its derivative at
one boundary point is given: say %(z,) = % ’%:(z/) =;(/’ s

while the quantities A (¥) and y’( ¥) vary at the other end .point
(225%2’7,2’)' Once again, the curve e %(x) which extremizes I

satisfies the Euler equation:

dz
/} 'ddx (’07') Tdx*® (’07")’0

33



The general solution of this fourth-order differential equation involves

four arbitrary constants: ¢(xz) f}((z, C,yC2y Cgy Cuy ) . Two of
these constants may be obtained rom the given boundary values of g and 5{’

at the point = = %, which are fixed in advance: ,:(x,) =4
)= .The two remaining constants may be obtained from the
condltlon 8r =0 as follows: First note that

2Lz "'Sﬂg

N Y L Y S S A Y

z,

=/

Xz

S Gy r8g, grsy g 8g7) Flzag, g y)] o

zz b 4 8”2

/‘(Z,yfé';(,yngf, P 8;’) adx

Thus, by applying the mean value theorem, it follows that

Al = f(,z,y,y)] dX, +j [{' Sy#” Sy'+fy. .8y ]o’z *R,

where A is an infinitesimal of order higher than the maximum of the
absolute values /8X,/, /8%:/, /Sfé/’ and /6f )|+ Hence,

87 = f/ 83X, +_f [f J?/ff é'y f,,J';(]a/z

Integrating (by parts) the second term of the integrand once and the third
term twice and then recalling that

- ] = ) d ' —d—z—‘ =
yieldsgyx/, =0, 5?1!‘0,8.1’1(1 /%“d;(f},)*diz(;’/l)'OQ
I =[x +{;{ Sy +/},, 57'--* (fy")S%]
Now using the relations

9L e =é’l(z.a’) Iz, *[Sf]

X=Xz
and

= ¢"(%z) d2, +[57'Zd



produces

R e S A A
+[f7, '07; ([f)ir-xz 84, + f?/"‘z]:xz dy;

Consequently, the fundamental condition (the transversality condition) of
an extremum §7=0 takes the form

[f-g fv'— PR d(F ~)] dx,
+[/’ -4 )] 85(2 rf ]d?z' =

for the free end poin{(z:‘z s ;{z , ? . Similar results exist for the other
end point - z/ 2

(2.3.14)

As before, if dy, dy and d’ g are independent, then their coefficients
should vanish at the poi tz . However, if there is some relation

between them: say &, = {I(z;z) * and 42 ¥ (zz) then di, =¥ (22)9%,
and dy, = @(2;) d%z . Substituting these values into Eq. (2.3.14)
and noting that dxz is arbitrary, reduces Eq. 2.3.16
d .
- 4 - ” ” 7 ,'i ” e f”] ’” j=o 2. 01
{{‘ by by 2 (£ ) i Gy )lPidyr)=o 235)
Z'z‘

This condition along with the conditions o, =P(%z) » ?z = Y (xz)
are in general sufficient to determine the values of Zz, ?/2 and %é .

If Zz ) 7% Ka, are related through one equation ¢2(/%2, , Y s %2, ) -0

then two of the variations d X, , d dy,’ are arbitrary and the
remaining one is given by 21 92y Fz

r

¢ZZ dZZ 2 c{yz 2, d,zl =

or
d ’ =:¢ ’ - ¢ i ,' o
7z Zz dZz Fz 7 ¢7x. #
¢ L4

Substituting this equatiﬁﬁ into Eq. (2.3.14) and recalling that the coeffi-
cients of the independent varlation d x, and d must vanish,
yields two relations at the point Z =X, Whlcﬁ'l in general, together
with @ (Z2,42,4 ‘) allows the point (%7, 4, 72,) to be
evaluated,

If the end point A(X,.4.) is also variable, then the analogous conditions
may be obtained for this point.
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Example: Examine the extrema of the functional
2
_[=/"(/+g" )dzj, where ?(a)eo, 7’(0}:—/’ ?(I)zl
o
and y'(/) is a variable,
Solution: The E-L equation here is
O/-V
—‘,Z =0
I
so that the extremum is
= 2 3
;/-Co tCxrCax™ +Co X
Now, employing the boundary conditions y(o):OJ y'(o) =/ and

(/)=/ yield respectively ¢, =0 , C, =/ , and Cp»Cy=0
But, since ¢ %, = d;{z = 0 and d?t arbitrary, it follows
that the transversality condition (2.3.11) reduces to

f, =0 "(1) =0
L, 70 o gl
yielding the relation

2 C2 # 6C3 =0
Since 62 r~C‘3 =0 then Ce = C3 =0

Therefore, the extremum occurs along 7-.;;5 .

2.3.5 Functionals Depending on Boundary Conditions

This section considers the more general problem of extremizing the
functional

X2
]=,{ f(x,y(, y)dx + f((z,,y,,z,,yz) (2.3.16)
with the end points ( Z, A X2 subjected to the condi-
tions: y: 9&(15') ,%ax)ldJ ﬁ = ;;(?‘:f))
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The method of solution is the same as for the solution of problems pre-
sented earlier, but with more complicated boundary conditions, Indeed, the
extremum may occur only along the integral solutions of E-L equation:

o _ g .3L) =0

oy ox\ 2yl "
Since the curve = Z (z) yields an extremum for I in Eq. (2.3.16)
(the variable end-point problem), such a curve will also dc the same with
respect to a more restricted class of admissible curves, the end point of
which coincides with the end points of the curve ¢ =¢ (%) . Further,
along such curves the functional (2.3.16) differs’ from j""{'cz, 7,}')41

z

by, at most, a constant term having no influence on the’extremal properties
of the functional.

By considering ér by methods analogous to those presented in previous
sections, the variation is determined to be

; , 3f af e .. af
8 =[(f -y a;{;ﬂdzﬂ % 5”qz]=zz [(F-y ’7’)6/“5}’%;2,4 (2.3.17)
2é Fl 34 24
* ox dx,-f;?; d%n‘-a—x; de+§y—z‘d¢z=0

Now, if the boundary points (%, %) and ( 252 3 72) move along the curves

,=¢(Z,) ’ 5{2:3"(252) then d%’¢,(1,) dx, anddf2=yl{z2) 7‘2'

us § 7=0 reduces to

af Lt .a.i- 2-‘— ’
[f+ ;;7(¢'?')*av2 *372 y/illz ¢ %

—[frf}%-(?l—y’)f ‘;a—z'—f——g;% ¢Zm dx, =0

And since J% , and Sx, are independent, two equations result

o oy, 28 .
[’”@T(‘““,‘/ﬁ;};*fi ] =0 (2.3.18)

XXz
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and

28 _2f ,
[ff—— (¢ -y ax Sy soz]w =0 (2.3.19)

The generalization to a vector function Y is obvious. The transversality
condition (2.3.17) is

z

[ dd+(F- > a %)a’er' >4 d%] e (2.3.20)

PEY] &=t
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2.l VARIATIONAL PROBLEMS WITH CONSTRAINING CONDITIONS. FIXED AND FREE_END
POINTS CONSIDERATIONS

In the simpler variational problem considered earlier, the class of
admissible extremal curves was specified (apart from certain smoothness
requirements) by conditions imposed on the end points (either fixed or free)
of the extremal curves, However, many applications of the calculus of
variations lead to problems in which not only boundary conditions, but also
conditions of quite a different type known as subsidiary conditions
(synonymously, side conditions or constraints) are imposed on the extremal
curves,

This section is concerned with the problem of extremizing some functional
I(Y) under three types of subsidiary conditions; (1) Function Constraints,
(2) Differential Equations Constraints, (3) Integral Constraints. Each of
the three types will be treated in detail.

2.4.1 Function Constraints

This section considers the problem of extremizing

x
I=f F(x,vy) dx (2.4.1)
X,
such that the conditions
6.(z,y)=0 ,J'=I,2'...)m<n (2.4.2)

are satisfied. As in finding maxima or minima of functions with side con-
straints (see section 2.1) the method of solution here calls for some
function of the form of Lagrange multipliers.

Consideration of the fundamental necessary condition for an extrema,
8I'=0 once again ylelds

x n
[ L[5 850 5 8yt]ox-0

% h %y.
] s (A
But, the second term in each bracket can be integrated by parts. Further,
if the two end points are fixed so that [§ VY] = O , then,
2=2,3%2
2T o /3

/ r/Z- 2L ]5 . dx=0 (2.4.3)

; et a;/(a%.) ph
Now, since & ,... ; 4, are subjected to condition Eq. (2.4.3), the
variations 8¢, are not arbitrary (i.,., the Fundamental Lemma of the

calculus of variations cannot be applied) and must satisfy the following
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relation (obtained from varying the constraining relations /-:'j =0 )

E” a[J 5y=0 s J'=/,2,...,M (2l+1+)

-_, aﬁ" é ekio
Multiplying each of these equations successively by )\ (x) and inte-
grating from X, to X, yields

Zz SF;
j A ()‘2, ?——J' 87‘a'z=0 ,J'=I,2,..,,/ﬂ.
Now addlng all m equations along with Eq. (2.4.3) produces

3/’
9}’4 )8% dx =0

xl
Fina]lv, adoptlncr the notation
fx=f+ 2 A;(x)F,
the :mtegra] aJssumes the form

j ["’* xa a,)]a dx =0 (2.4.5)

It is noted again that the fundamental lemma of the calculus of variations
cannot be applied for this problem since the

8¢. are not independent., To overcome this dependence, the m multipliers
N (x) sosses )\ (%) are chosen satisfying the m equations
¥ » (2.4.6)
of - _ 4 (200 ) O L y=h2y . ,m
9%/- dx

or

IF;
N (%) - =0 132ye . ym
9’J ¢§ 9%' dx 37) 2

These m equations (based on Eq. (2.4.4)) state that n-m from among the
variations Sf/d may be considered independent; for instance

8%"’ y oo .,8%".
Equations (2.4.6) constitute a system of linear equations with respect
to >\‘. (x) with non-vanishing Jacobian

JF,... ..\ Fm)

Tlgyr 2 ffm) #0
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Hence, the system Fq. (2.4.6) has a solution for X\, (%) ,..., /\m (x) .
With this choice of RJ- (%) , the fundamental necessary condition §I=0 in
Eq. (2.4.3) takes the form

g [t gy oLt _
M.f J.é:' 2y dx.(a{'i )]5% dz =0

Next, since for functionsg( Z) ,..., %(z) that make the functional[I] have
an extremum, this functional equation becomes an identity even if ) 2
Jem+lyme2,...., n are arbitrary. It follows, therefore, that the fundamental
lemma of the calculus of variations can be applied. Accordingly, setting all
but one of the §¢; =0 and applying the fundamental lemma, and repeating
this procedure (n-m) times yields:

=0 J'= m-///nvz)...,n. (2-1&-7)

ar¥* o af*) ’

3y dx\ 3y’
Y, dx 7y
Summarizing, the functions which make the functional [ 1] have a constrainted

extrema, and the multipliers, A, (%) ,ees, A, (x)satisfy Eq. (2.4.2),
(2.4.6) and (2.4.7). This important result is noted in the following theorem.

Theorem 2.4.1

A set of functions §(x) .- §,.(x) which ylelds an extremum to the
functional Eq. (2.4.1) with constraining conditions Eq. (2.4.2) satisfies
for suitably chosen multipliers »,(x> . - - »_,(x) , the E-L equations
for the functional

%2 m x2
¥ - - ¥
r¥=S7[Fs B\ 00 F-]a’x = [ dx (2.4.8)
x’ J'.I J J x'
The functions A () and ?— (x) are determined from the E-L equations:
J {
¥ o s af*y o .
951‘- -dx( ay}): ? 22,0 (2.4.9)
F‘/'(x,y)-'-‘o, ‘/'=/,2,...,rn.

The equation £ ¢y, f)=0 are assumed to be independent with non-vanishing
Jacobian, v

Example: Find the shortest distance between two points A(z,,y,) Z.,) and
B(Zszz’ 22) lying on a surface FA( Z, y, }):0.

Solution: The distance between two points on a surface is given by

2
I=zj m—f Jd» and the constraining equation is F{z,y, g) =0 .
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Xz
So, in view of theorem 2.4.1, form [ = f [.// ff’zi- Z'z-l- K(z)F(z’,f, z)]d;:
z,

where E-L equations are:

dF d !
N BN R
(%) 52 "7 (‘/, .,'y".z—*z.z_ o
F(Z, y, .Z) «0
This system of equations determines Z(X), Z (x) that may give a

constrained minimum of I, as well as the multiplier )\(x) .

Specifically, let the surface F( %, IEX. )= O be that of a sphere,
t.e.,F= 2% 2, 2%-2%:0 . Then, substitution yieldsxz-c,4 +¢ 2 =0
which is the ‘equation of a plane through the center of the sphere.

Similar results to those given in section 2.3 may be claimed here

if the end points are free rather than fixed, The only change to be made
involves replacing # with the auxiliary or (augmented) function £ ¥.

2.4.2 Differential Equation Constraints

In this section, the problem is to extremize the functional

I=fx2f(x, Y, v)dx (2.4.1)
zl

with the constraining relations being the differential equations
6(7‘:";)’7’0 ’ JE 2y eym (2.4.11)
In this case,as in the case given in Section (2.4.1), a similar principle

of undetermined multipliers may be proved stating that constrained extrema
of the functional I can occur only along those curves that extremizes I¥:

z M
22202, Y, y) ¢ LX) £ (2, %Y JJdx = (2.4.12)
z AT J J

[4

Z,
= [ F ¥ (%, v, v)dx
z,
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That is, the complete solution to the problem presented here is given by
the (mtn) system of equations

F* oF* .

7 dx aﬁ ) ’ €=h2, 00 (2,4.13)
and

FlZs gy os o ipire oo s :{3)’0 J SELZ M (2,1,11)
where m

F¥or ,J_g X (2 F (2.4.14)

The method of proof required is similar (except for minor changes) to the
method given in proving theorem 2.4.1 when a weaker assertion is made: The
curves along which the functional [I] attains constrained extrema are the
extremals of the functionallT#],” for suitably chosen X.(x) given in

Eq. (2.4.6) with f# given in Eq. (2.4.14).

2.4.3 Integral Constraints: The Iscoperimetric Problem

The Isoperimetric Problem is a variational problem having integral
constraints] i.e., it is concerned with finding extrema of a functional

22
I zf Fez, Y, y') dx (2.4.1)
with the Londitions
7‘2
J (z y, Y)dx L ; J'=//2.I'.-,m (2.1&.15)
(4

where LJ are constants,

By proper substitutions, isoperimetrie problems may be reduced to problems
of constrained extrema, considered in the preceeding section. Indeed, de-
fine

(Z) -/ Fdx ’ je02,0.0,m  (2.4.16)
S0 tha.t ZJ. (X')so , and ,Zj(zz)= I_J- . Next, observe that

dZ: ’ - .
7?‘*%’“‘"0‘”%}7 3 VERZ IR E R

Thus, the integral isoperimetric constraints Eq. (2.4.15) can be replaced
by the differential constraints

ZJ,-(Z)'F:,-(Z, 2 y'):O,J*/,Z,...,M (2.4.17)
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and the problem is, therefore, completely solved: The solution of the Tso-
perimetric Prob]em is obtained by extremizing

I* / [f+Z,‘>\(x)(Z F)]o’xf f*dz, (2.4.18)

where

%= ffZ‘)\ (x)(Z F)

The E-L equations are thus,

af* _drark :
ai‘. a’x 93 ) 0 L=102,...,n (2.4.19)
a{‘* ( ) -/-: //21"'J m
or 9{' 5:‘ o
( ) ( ) istaen (2.4.20)
3% d:l g J-’ J 2;/
&Qf"(hd(z)) =0 3 J= 132,04/

The last m equations imply that all N ; are constants. The first n
equations of Eq. (2.4.20) are the E-L equa’élons for the functional
Xz

7 *¥*s< f (ﬂf\ Fj)dx f X (2.4.21)

The followlng result has , therefore, been obtained: The extremum of the
furigtional T= J‘ Xz F(z)% ﬁ/’}g’x with constraining relations

£z, Y )a’z =L; sj=/...,m is obtained from extremizing I** of Eq. (2.4.21)
where) are constants,

Example: Find a curve of given length, L, which encloses & maximum area

with one fixed end point., Using parametric representation, the area
enclosed by the curve x= x(¢), ey’ (%) is given by

4
2
- -Lf ( . »
= Zy - ot
24, g- %)
and the length of the curve is given by
<z
4/ JE2rg2dt=L
To find the curve, form the augmented function, f = fz(zy -fi)’l')\b'izf?z
Substituting this equation into the F-L equations

2E¥* _ df of ¥ _ af" of ¥
2% dt X 9 a’f( )—‘O

FAG B R ‘?“ﬁ(f*/,%%r)w
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Direct integration of these equations yilelds
7">\¥/é'2,?z=C, ’ X+}‘§'/1fz"4sz =Cy
where C, and C, are arbitrary constants.

d
Finally, note that Jﬁ =% and solve for (}/—C‘,) and [Z-CZ);
Now, squaring and adding the equations obtained ylelds

2 2 _\2
(x-cz)"+ C%—C,) = N
Thus, the curve in question is a circle and the Lagrange multiplier is the

radius (/_= 277\) . Since the location of the circle is immaterial,
C, and C‘2 remain arbitrary.

2.4.4 Constrained Extrema with Free End Points

A combination of arguments carried out in this section (2.4) together
with those presented in Section 2,3 lead to the following free end condi-

tions by substituting £ ¥ =/ 4 j_'f A, (2) F for £
N

in any of the three cases of this section. Thus, (1) if neither end point
value is prescribed for extremizing I with any one of the constraints ’
discussed, then

¥ _ 45 A
Dy’ *Y for =%, and % =X%Z,

(2) if one end point lies on a curve ;p(z,;();a, then

2F* (3¢) 57,
9?, ?.‘f+‘3'§_f )
Izzz
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2.5 SUFFICIENT AND OTHER NECESSARY CONDITIONS FOR AN EXTREMUM

This section is concerned with deriving sufficient conditions for
extrema of tunctionals and further necessary conditions. By means of these
additional necessary conditions, it will be possible to obtain additional infor-
mation as to whether the extremum under question is weak or strong.

2.5.1 Existence of Fields of Extremals. Jacobi Condition

2.5.1.1 Field of Extremals

The first step in deriving sufficient conditions for extrema of
functionals is the introduction of the notion of a field of extremals.

Definition: Let there be a region D in the x ¢ —plane. If to each
point of D there is exactly one curve that belongs to the family of curves
é{: 7(2:’ c) , then this family of curves is called a field, The slope
P(ZXs4) of the tangent to a curve y= £(Z, c) at a point (Z, y) '
is called the slope of the field at the point ( x, 5{) .

Example: Let D be the circle 22+ 4% =] and let first the
family of curves be the straight lines =Z+C . These straight

lines do not intersect one another inside the circle and hence they constitute
a field. The slope of this field is 0 (z, ;/) =/ . If, on the other hand,
2

the family of curves had been the parabolas y:(z ~-C )-—/ , no field
would exist inside the same circle since some of the parabolas intersect
others,

Definition, If all the curves belonging to a family of curves y= y(r,c}
pass through a certain point (%,, %) and if none of these curves inter-
sect anywhere in a region D, except at the point (x., (/o) ,
then, it is said that the family of curves =g(%,C) is a central
field (central because it is centered at the point (%, , %o ))

Definition. If a field or a central field is generated by a family of
extremals for some variational problem, then it is called a field of extremals.

Definition. A family ¢ =¢ (%,,C,. ... 5Cr) 9 C=132,...,0
is a field in a region D of the space %, &, ..., ¢, , if through each point'
of D there passes exactly one curve of the family 4, =4 (z, Cy.--,Chp ) .
The slope functions denoted by 2( 7, Lisewo oy ;(,,) are given by
2= %ﬁ‘l y £FL 2, Lo, + The central field may be defined likewise,
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xDefinition. Let the curve 5{*— 7(,!) yield an extremum for
I-/ ?‘(z,g y')dywhere the end points (x,, %) and (Xz4¢2) are

fxxg'd The curve = (%) is said to be admissible in a field of
extremals, if there is a family of extremals g= (%;cC) which is

a field and which for a particular value of C=C, it becomes the extremal
(z) not lying on the boundary of the region D in which the family
of y (x, c) is a field. A similar definition is valid for
admissible curves in central fields. The slope of the tangent at the point
(Z, ’f') may be utilized as a parameter of the family,

Example. Let [ = ./ (V -y‘?) dx . Find a central field
of extremals admitting the extremal arc ’- , joining the points (9 o)
and (a o) , 0<aly .

E-L. equation is 7 ot =0 so that ¢=C, ml*czmx
The condition ;((o) =0 yields C, = o and hence ;{ = Cy ) X
Therefore, in an interval Ot X €a ¢ 7 , the family of curves

#= Cp aww) X form a central field, including the case Cz=0 .
]
C, for this problem is gf(o,o) LI a® , then the family

=C, ) X does not form a field since the family of curves
intersect at the point X=17.

2.5.1.2 Conjugate Points and the Jacobi Conditions

Let g= ¢(%,C) be the equation of a family of extremals eminating
from a central point A( %, , 7,) (where the parameter C may be thought
of as the slope &’ of an extremal of the family at the point A(%,, %(,) ).
But, the C-discriminant locus (on the envelope of the family of curves) is
determined by the equations:

Jy (¥, 0)
ARG RN Y5 -
where 24 (%, ¢ evaluated along an arbitrary curve (i.e., C = constant)
aC ’ g Yy
of the family becomes a function of X only, i,e., _f. (zyc) = w(x) .
Therefore, ¢’= % But, the function &= (x c) is a
' cox ! ) ) : i :{ !

solution of the E-L. equationimplying that

af ' a| af ) -
sg (21 #(%:%)s s (xaC)_]-ﬂ[a,,(z.yfz,c), #(2,¢|=0
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Differentiating this identity with respect to C and setting « = —z (xz,c)
yields

ﬁ_"(a, )] 0’ 3;2;( j=0’ (2.5.1)

%*

. 2% ) 23 7
The functions 972 (z, y,y), 3‘;7;, 3 5’?’2
of K& , for g=g(Z,C¢) is a solution of E-L. equation with
C=C, . The linear homogeneous second order differential Eq. (2,5, 1)
is called Jacobi's equation.

are linear functions

If a solution of this equation «= EL(:J—SZ vanishes at the center
of the family of curves, when z=Z, , (the center of the family always
belongs to the C-discriminant locus), and vanishes at some other point X *
of the interval X, ¢ ¥ € Z2 , then the point X * is called a conjugate
point to  Z, , and is determined by:

7=y (%z3Cs) and gg(z,c)zo or «=0

If there is a solution of Eq. (2.5.1) which vanishes at z=%, , and
does not vanish for any other point of the interval % £2¢ Z; , then
there is no point conjugate to A{Z,,%) , on the extremal arc AB ;
i.e., the Jacobi condition is satisfied and the extremal arc AB can be
admitted into a field of extremals centered at A( X, , 5{,)

Note: It can be shown that the Jacobi condition is a necessary
condition (i.e., for a curve AB giving an extremum to [I], no conjugate point
to the point A can be in the interval Z,<2 <2, .

Example: Investigate the Jacobi condition for J = /a<éx‘2-y2) dx
passing through A(0,0) and B(a,0) . o

The Jacobi equation is &% # & =0 so that &=C, 4en (2-Cpz) .

However, since &/(o)=0 , it follows that C2=0 and «=C, wmw X
( «« vanishes at the points f)r, -/=0, I 324« - . )
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Thus, if 90¢a¢?” , there is only one point Z=*O in the interval osx<a
at which «=0 (Jacobi's condition holds). Jacobi's condition does not hold
for a =7 .

2.5.2 Weierstrass Conditions

Consider the simplest problem of extremizing

4
-[=/ 27[\(2’,?,}/')0'1, ﬁ‘ﬁ):ﬁ/’:{(yz’:;z
%,

where the Jacobi condition holds (i.e., the extremal arc C can be admitted
into a central field with a slope function p(z, y) ). The variation in
the functional for this problem can be written as

AI:sz/‘(x,g,yjdz _/'Zz/‘(z,%y')a'x

Zé* z

where C* isa neighboring arc to C.,

Now consider an auxiliary functional:

¥ [ [F(x 4 p) *(ﬂ'ﬂ)%(z,y,ﬂ) dx

which becomes f(z,y, y’) dz along C¥=C , for gf— = p along
extremals of the field and, note that I * is the integral of an exact
differential:

]*4 [7(.(135/1/)-10gf(z,}’yﬂ)]dxfg(z,y,p)df (2.5.2)

In fact (see the transversality conditions in Section 2,3

A NN e Y ALY Y
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Th f , ' ’
ereifore é[[‘*.(?/_p)a?_{]dz{ -.-J;C(z,y’é/)o’z
Now since C/* [ff-(;(’-/o) a%] odx is an integral of an exact differential

and is therefore independent of the path of integration, it follows that:

[ fxs g 57) o= [ cx o 210 (o) 0 [ 72

not only when C* C, but for arbitrary C™, Thus,
AISC{ F(zy, y)dx "cff(z,y, ) dx
g )t [l (g )1y ) 8 (7 4.)) 0
=4 [f(z,;,;(') —f’(z,y,p) -(?'-p)fﬁ(z, gy p))dx

=) Elz.g. 43002

C

The integrand,denoted by E("’%P ; 7') , is called the
Weierstrass function:

E(x, 43 Py 7’)= f(z,;/, y) -/’{z,;/,,o)-(y’-,a)g(z,?,f)(& 5. 3)

It is obvious that the requirement that the function E be non-negative
(together with the validity of the Jacobi condition) is a sufficient condition
for I to have a minimum along the curve C (ifE20 , thenAlIZ0 ). A
sufficient condition of maximum is that £40 , for then AT 40 . For a
weak minimum (see Section 2.2.1), it is sufficient to have £ (Z, ¢, P, 7')20
(or E40 for maximum) for all values x, y that are close to the values
of x and y along the extremal C , and for all values of y' which are
close to Plz, )along this same extremal. For a strong minimum this same
inequality holds for the same values of x and y for arbitrary y'.
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It can be shown that the Welerstrass condition is also necessary.
Example: Consider the extremization of

a
I;/;/"’o’x ’ y{o)aa ) f{a):j- y @’0, bro:

The extremals are ¢=C, 2 +C, which upon substitution of the boundary
conditions yields ?Z Y X . The family of lines /:Ct with center at
(O,0) forms a central field including the extremal 7: ‘% X

The Weierstrass function E is (Eq. 2.5.3 )

s 3 z 2
E=(Zy s ps5) =8 " p = 3p (4"-p) (41 2p).

Along the extremal 4= % P » the slope function is o= %, >0 thus,
if y' takes on values that are close to pP= 93. , thenm £ 20 , and
a sufficient condition for a weak minimum resulted. On the other hand,
if y' can assume arbitrary values, then ’f,Zp has arbitrary sign, and
the function E may change sign, The sufficient condition for a strong
minimum does not, therefore, hold.

2,5.3 Legendre Condition

The Legendre conditions which will be derived below, will constitute
a simpler check of sufficiency (also necessity) than the one of Weierstrass.
As a first step, assume that £f(x, %, }/’) has third derivative with
respect to y' and expand it in a Taylor series

| ro )R 32f
/‘(x,y,y’)=/'(z,;,p) f{i{"ﬁ)%(z,}(,p)f%—!ﬁ az_é(z’f’b’)

where q 1is a value between p and y' . Substituting this expansion for
(=, 45 y') in Eq. (2.5, 3) yields
)= (g-p) 2 2.5.4
£(Z’,’P’;)— 2! J?Iz(z’%,g) ( o e )
Thus, E and %‘!:1,, (X,q,z\ zha.ve the same sign.
Further, for weak extrema 9-3—4 (z, ,5) should not change sign when

7
x and y are close to the extremal in question if g« is close to p (X, f) .
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K4 ’
Therefore, if 2 F(;:,Iyz,g) # O  along the extremal arc C , then,

since C is continuous this function retains a given sign for all points
which are close to the extremal C , and for all such values of y' that
are close to the values of y' taken at the corresponding points of C
Hence, the condition £20 (or £ <40 ) may be replaced by the con-

Pox P z
dition gz—i >0 (or gy—,{; <0 ) taken along the extremal C .
This condition (the so-called Legendre conditions) is a necessary con-
dition for an extremum since the Weierstrass condition is a necessary
condition. By the same token, the Legendre condition is sufficient provided
the Jacobi condition is valid.

Example: Consider 1=ja(7"-g"‘) dx with y(o) =/(a) =0 ,

o
& >0 . The E-L equation is g{",«f = O so that P C,eo0 X szth)X .
Now substituting the boundary conditions yield C, = Cp = O , provided

a # £ 7 , where £ is an arbitrary integer, Thus, if a# £ an
extremum occurs only along the lineg=0 . If a<?7 , then as shown
earlier, the family of extremals # =C sin x centered at (O, O) forms

a central field (i.e., when a <7 , the Jacobi condition is satisfied).

As for the Legendre condition in the case a<»” , since /‘=y"z —?2
pos sesse‘s a third derivative with respect to y' for arbitrary y' and
. 2*r _ ' . . . _
since J#—'z = 2 >0 regardless of y' , it follows that in this case 4= 0

furnishes I with a strong minimum.

2.5.4, Sufficiency Criteria

This section summarizes the results of Sections 2,5,1 through
2.5.3 by listing sufficient conditions for a minimum of the functional,
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(These conditions are also necessary.)

I= [ (npg)oz  §2) =g § (F2)" e

2.5.,4.1 Weak Minimum

The following conditions are sufficient (jointly) for I to have a weak .

minimum

(1)

(ii)

Jacobi condition or

Existence of a field of extremals

2
Legendre condition: g——{; >0 along the extremal arc or

Weierstrass condition: E(z, %5 Ps 5(’) =z for all the points ( x, y )
sufficiently close to the extremal arc, and all y' sufficiently
closetop ( %, v )

2.5.4.2 Strong Minimum

The following conditions are sufficient (jointly) for I to have a strong

minimum

(1)

(ii)

Jacobi condition or the existence of fields of extremals including
the extremal arc under question,

R
Legendre condition: 53_1; (:& ) ?/, f,) z0 for these points ( x, v )

which are close to the extremal under examination and for arbitrary
values of y' , or

Weierstrass condition: E(;z,, &5 P yr) 20 for all points ( %, v
sufficiently close to the extremal under examination, and arbitraryy'.

Sufficient conditions for a weak (strong) maximum, are obtained by
reversing the sense of the inequalities.
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2.5.5 Weierstrass and Legendre Conditions in r-Dimensional Space

The theory given earlier may be extended, without any essential
changes, to functions of the form:

xh Zn
I[V1=)"Ftx, gy g)dx 2 Flx;q, - tn; 4y s) d2 (2.5.5
Ty ) E) i i i) 7 05

with

1}
Y

N
~

3

4o Z)=fo s fil%2)" fim ‘

The Weierstrass function E takes the form:

E=/’(Z;%;..-,;(,,;%',,..,yn’)-/’(z;%,...,;(njﬁj...J/,")

n (2.5.6)
~ T (g-p) 2 254, .. -p...,o)
: 4775%) (%3 & 10ty 3 Pa)y
il p;
where the P; are slope functions subject to some restrictions.

s 2% 20
The Legendre conditions PRt I

must be replaced by the set
of inequalities:

L S

2p y® Py e
377; z 0, det , 2 20;... (2.5.7)

‘ A S A

3, M 9#, ! 3’ l’
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7*f 2% rksa
7 A P P
2% 72*f 2% =0
gee| 27 % gz T 84, 7y,
92/‘ 2r
E7x 7 L——(?% 77

2.5.6. Second Variation and Legendre Condition

Legendre conditions for weak extrema may also be obtained from the
sign of the second variations of the functional under 1nvest1gat1on This is
proven as follows:

By Taylor theorem

‘Z'-:./zz[{‘(%,;{’,l 6},}/98}’)-/71,%,}1{') dx

(2. 5.8)
2%
4 2 ’
X,
5‘?"] dx+R
where R is an 1n initesimal of order greater than two with respect to 6'9(
and 3’ ( Jy and Jy are sufficiently small that the sign of the

increment AI is determined by the sign of the term on the right side of
the equation involving the lowest powers of 57 and Jy ). But, the first
variation vanishes along an extremal, i.e.

"“( Syr 2 8y)oxe0

Therefore, in general, A 7 and the second variation

have the same sign.
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Now consider the integral

X
/ 2[&/'(24) Sy*+ Zw(x) 6?8%']dx=0 (2. 5. 10)
z

where @ (x) is an arbitrary differentiable function. The vanishing of the
integral (2,5.10) is due to

Xz
/ [Cu'(z) 8;/’; 2 () Sy 8?/:70’75 =fzzd_;£ (w 5,2) dz
K,

1

- 2 Y2 =
Lwwsy]
for 5y =0 = 3;{/ . Thus, adding the integral (2. 5. 10) to
S47 y1e1ds
%
5]f[( +w)5 “rZ(?’a,fw)Sgé‘;(

(2.5.11)
85'2]a/)6

But, since W (x) was chosen arbitrarily, let it be selected such that the
integral in Eq. (2.5.11) becomes a perfect square (up to a certain factor)
i.e., let w (x) satisfy the equation

A )

With this choice of ¢ (x)

SZJZJZ 9?12[8? {()f‘;f l_/ )S’q}]a’x

%" 221
2;;2

%Y

and consequently, the signs of 5 J and are the same,
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2.6 THE GENERAL PROBLEMS OF BOLZA, MAYER, AND LAGRANGE

This section is concerned with the so-called problems of Bolza, Mayer,
and Lagrange, which were partially treated earlier (Sections 2.1 through 2.5)
though no special name was given to them. These problems are the most
general problems of the calculus of variations and their treatment here may
be viewed as a summary of all of the previous sections. Even though these
problems will be shown to be theoretically equivalent, the procedure will be
to first introduce the Bolza problem and then to derive from this material
the problems of Mayer and lagrange. A complete discussion for the Bolza
problem follows:

2.6.1 The Problem of Bolza

The general problem of Bolza may be formulated as follows: Consider
the sequence of functions:

Yo €% i: 1,2, -, X, €X £ X4 (2.6.1)
satisfying the constraining equations

6.(K,Y,Yf) = O j= 5,2 ---,m <n (2.6.2)
and which are consistent with the end-point conditions

@ XY, , XYy ) =0 s /,2 ---,pgans2 (2.6.3)

The problem of Bolza is then to find the special sequence of functions 7&(1)
which minimizes the functional

X '
I= [ 5Cx,r, ¥ )dx + F(x ), n)) (264
X,

By carefully reviewing the material presented in previcus sections, it is
noticed that the minimizing criteria [Eq (2.6.4).] and the constraining
equations [ Eq (2.6.2)] were treated earlier in Section 2.3.5 and Section
2.4.2, respectively.

Hence, the solution of Bolza's problem goes as follows:

(i) The Euler-Lagrange Equations
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The extremal arcs yK(X) satisfy not only the boundary conditions
[ Eq (2.6.2)] but also the following Euler-lagrange equations.

27 . e!_(é.f.'

dY, dx K=1,2 - n (2.6.5)

v/ T ° S

where S ¥ is the augmented (or subsidiary) function given by
LJ ’ ’ ’
Elards SR Y) v 2 % w0 F (YY) (2.6.6)
Je1
and ),(x) R )‘m(x) are the lagrange multipliers.

The validity of assertion (i) above follows by combining results of
both Section 2.3.5 and Section 2.4.2.

(ii) The Transversality (Natural) Condition

The system of differential equations involved consist of m constraining
equations [ Eq (2.6.2) ] and n-Euler-Lagrange equations [ Eq (2.6.5) 1 which
are subjected to 2n+2 boundary conditions (the E-L. equations are a system
of second order equations). Of these boundary conditions, p are supplied by
Eq (2.6.3) and in view of Eq (2.3.20) and Section 2.4.2 the remaining 2n+2-p
conditions are supplied by the following transversality (natural) condition:

P (558 2T of " T
Ldd + (5 5 Sy Yo ) dx + ?'-'- 3?“43,‘ ]x:-“o (2.6.7)

This equation must be satisfied identically for all systems of infinitesimal
displacements consistent with the boundary conditions [Eq (2.6.3)7 .

For the particular case in which f* of Eg (2.6.6) is explicitly indepen-
dent of x, the following first integral of E-L, equations is valid:

LI > A% e o  (2.6.8)
Mo 91; I ° *e

where C is a constant of integration. Equation (2.6.8) follows immediately
from Eq (2.2.14) when f is replaced by f*. By the same token, the transversality
condition in this particular case reduces to

i > 2" R
[J¢ cdx + KZ Su P ]” o) (2.6.9)
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(1) Erdmann-Weierstrass Corner Conditions

As it was indicated in Section 2.2 of this monograph, many variational
problems are characterized by discontinuous solutions, i.e., solutions in
which one or more of the derivatives ( yy) erience a finite jump at a
finite number of points (called corner points). In view of Eq (2.2.15),
therefore, the Erdmann-Weierstrass corner conditions for the problem of
Bolza become:

éfu ) a_f‘
Iy |,- 24k L' K= 1,2 .-, n (2.6.10a)

(-§°+ 2 2 3;)‘,‘_ : (-;"g g—;: 9;)l+ (2.6.10b)
[ 4 xb

K3, 23; Kar

These conditions must be satisfied at every corner point x, of the extremal
arc.

(iv) The Legendre and Weierstrass Necessary Conditions

The final step in obtaining a complete soclution for the Bolza problem
is the consideration of the necessary condition due to Legendre (presented
in Section 2.5) for the purpose of determining whether the functional I
attains a minimum or a maximum value. Analytically, the Legendre condition
states that a necessary condition for I in Eq (2.6.1) to attain a weak minimum
is that the following inequality (called the Legendre-Clebsch condition) is
satisfied at all points of the extremal arc consistent with Eq (2.6.2):

2 o
2 2 sy S Saove 2.6
The consistency condition requires the ¢{3’ to satisfy the perturbed form of
the constraint equations:

dF: .
bl = -
. dy: JJ& =0 g2, e, m
The Weierstrass necessary condition for the functional I to attain a
strong minimum is that

n «
s - = 3—:',_ ay;, »0 (2.6.12)
&= [

for all systems of strong variations A gz consistent with Eq (2.6.2).

It should be noted that both the Legendre and Weierstrass conditions tsake a
slightly modified form of all the derivatives 72 (= 1h?7) to not appear
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explicitly in the function /1* ; that is if there are one or more derivatives,
5"* , say, for which },ﬂ,f =0 . In this case, Eq (2.611) becomes
X

a*F o #*F¥ , 2ok o 2 50
e o s 7 gt 845 R ise ag7os S8 St %,7 $p = .6110)

with Sﬁ.’ and ka required to satisfy the consistence equations

W o i} .
l§h 372 8%'.!'3’( Sﬂ =0 7 l,m

while the Weierstrass condition becomes

FX, Xy 1 )-FF atn i )

-L X (yr- ')-—?f*(y- z0 (2.6]2a)
IETS 5;7 ‘ ?" 37‘ k ,k) ’

where y‘-' and yk mist be consistent with the constraint equations

f*(z,x.y‘.’,yk)=o, j=lsm

A similar situation holds if two or more derivatives do not appear explicitly
in f£%,.
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2.6.2 The Problem of Lagrange

The problem of Lagrange has already been treated in Sections 2.4.2 and 2.6.1,
In fact, it is a particular case of the Bolza problem occurring when

3 -o (2.6.13)

For this problem, Eq (2.6.5) through (2.6.12) still hold. fact, the trans-
versality condition [ Eq (2.6.7) ] is simplified since J@:0.

2.6.3 The Problem of Mayer

The variational problem due to Mayer is that problem of Bolza for which
the integral f is identically zero:

§

(o] (2.6.14)

For this problem, Eq (2.6.5) through (2.6.12) are still valid, with the
further simplification that

“ .2
{\ p— X‘ . 4 (206015)
L NG (B
for all admissible paths, and hence, for the extremal path.

The justification to this can be made either by means of the Bolza
problem (as indicated above) or by means of Sections 2.3.5 and 2.4.2.

2.6.4, The Equivalency of the Problems of Bolza, Lagrange, and Mayer

It was noted in the preceding sections that the problems of Mayer and
Lagrange are special cases of the Bolza problem. In the material which
follows, it will be shown that the problems of Lagrange and Mayer reduce
to one another as well as to the problem of Bolza, by simple substitutions,
thus proving the equivalency of these three problems. Indeed, it is easy to
see, with the help of very simple considerations, that the problem of Bolza
is transformable into a problem of either Lagrange or Mayer with variable
end points. First, it is equivalent to the problem of Mayer having a
sequence of arcs

Y, (x) 5y (x) l= 1,a---n X, & X & X

N
subjected to conditions of the form

Fj(x,Y.Y’) =0 J’tl.lo--m(n
yo, - F(x,YY') =o
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with boundary conditions
G Cx Y x,,Y,) =0 M l,2,... p<ansa
n’o('x') =0
and having the functional

I = ¢ * :{nﬂ(x")
to be minimized.

Secondly, it is equivalent to the problem of Lagrange with a sequence
of arcs

Y: %), Y4,,, (%) (2,0 m X EX L X,
satisfying conditions of the form

FFCx,Y,v) =o Y. (%) =o

¢J\(x” Y:J X2, Y.) =0 v:‘" X)) - ﬁ/(“‘x,) =0

and with an integral to be minimized of the form

Xz
I-= Sx (f+y,,,)dx
Since the problem of Bolza contains the problems of Mayer and Lagrange
as specializations, and since the set of transformations of the previous
paragraphs produce the problems of Mayer and Lagrange from that of Bolza,
the three problems are equivalent and possess the same degree of generality.
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2.7 THE UNBOUNDED CONTROL PROBLEM

2.7.1 Introduction

The previous sections have dealt with the classical variational calcu-
lus in which the most general minimization problem considered was the
problem of Bolza (2.6.1). This problem consisted
of minimizing a functional of the form

X
=[xy, y) o # B (2 ) %2 sv)

X,

subject to the differential constraints

F.;'(z))’s)")z'o ) J=hm

The independent variable is the scalar quantity X while the dependent vari-
able is a vector with # components (i.e., y = (3(. ,y" e rh) ).

In the modern treatment of variational problems, the dependent vector
Y is assumed to consist of two distinct types of variables, namely ''state"
and "'control' variables., This distinction is of little importance since all
the theorems previously developed are valid regardless of how the dependent
variables are chosen or renamed. However, the distinction is of some
importance from both the physical and computational point of view.

The "state'' of a physical system is usually defined as the least amount
of information needed to know about the system at some instant in time in
order to be able to predict the systems' future behavior. For example, the
state of a point mass is given by its velocity and position. From a knowledge
of these two quantities at some instant of time, the subsequent motion of the
system is defined by Newton's second law. Thus, to control the system's
motion it must be possible to control some of the forces that are acting. For
example, control over a chemical rocket can be achieved by modulating the
thrust vector of the vehicle either by steering the engine (direction control)
or by throttling (magnitude control). The term 'control variable'' is used
to describe the variables on which the controllable forces depend. In the
chemical rocket problem, the control variables are the steering angle and
the throttle setting.
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Since the motion of a system must satisfy the differential equations
for the motion (in the example, Newton's second law) the state variables
are governed by a set of differential equations. The control variables appear
in these equations as forcing functions and can take on any values subject to
the constraints imposed on the system, Thus in the differential constraints
(thef; (=z, s ¢')=0 in the Bolza problem) the derivatives of the state
variables appear explicitly while the derivatives of the control variables do
not. This faet leads to the requirement that the state
of the system must be continuous in time (a sensible physical requirement)
but allows for the control action to be discontinuous,

In the following sections, the term T 1is used to denote the independent
variable, with the state and control vectors denoted by X{¢) and « (¢),
respectively, (X is an n dimensional vector and # is an r dimensional vector),
Furthermore, the differential equations of constraint are required to take the
form

xizﬂ'(l“3xl,z‘,vo-,zhs ll,,l(z,-..,an) (2’7‘1)
The theorems of the previous sections carry over directly with the change in

nomenclature

u

r —— ¢
?___-—v Y &
Fttyy)=0 —> Zj ~Fj % «)=0

2.7.2 Problem Formulation

Consider the class of functions
xt.(t)and %.(t) ‘ (2.7.2)

for i=1,....,nandj=1, ...., r where each X, is a state variable, and
each u., is a control variable. The x, are constrained by the following set
of diffetential equations which describe the dynamic process under consider-

ation on the time interval of system operation from to to tl :

ii:?t.(t;z"‘ - ‘)I‘h;”l3-'°, l(”)E ?‘.(t‘x"() (2.7.3)
for 1i= 1, seey N,
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The objective is to find that special set of extremal arcs { x° and Z{;)
which minimize the following criterion of system performance:

¢,
I= G(xu"wxn)l +/H(t;z,,...,z,,}c/,,--.,ur)dé (2.7.4)
g2 o

This problem (referred to earlier as the Bolza problem with constraints)
can be treated as indicated in the previous sections by introducing a set of
variable Lagrange multipliers A, for k=1, ..., n. The augmented
function from Section 2, 6. 1, with suitable change in variables,then becomes

n
= s 2.7.5
F=H*+ 2 N (% Z‘) ( )
ey
The extremal arcs (the Xy eees Xp and uj, ..., up which extremize I)

must satisfy not only Eq. (2.7.3) but also the Euler-Lagrange Equations.

_2'(3_/'_)__2/_-':0 (2.7. 6a)
 \ax; ox;
Qf:o (2. 7. 6b)
U,
v
fori=1, ..., n andj=1, ..., r.

The system of differential equations is composed of the differential
equation constraints (Eq. (2.7.3)) and the Euler-Lagrange equations. It
consists of 2n + r equations and unknowns. The solution yields the n+r
dependent variables xj, ..., Xn; u], ..., u, andn Lagrange multipliers

X o A, simultaneously.

Most practical engineering problems require numerical methods to
obtain a solution to the Eq. (2.7.3) and (2. 7. 6) since analytical solutions
are possible only in special cases. An additional difficulty results from
the fact that the variational problems of interest are always of the mixed
boundary value type; that is, problems with conditions prescribed in part
at the initial time and in part at the terminal time. Thus, in the case
where closed form solutions cannot be obtained, trial and error techniques
or directed search methods must be employed. These procedures consist
of guessing the missing initial conditions or learning them through pre=
diction techniques. The assumed initial conditions are then used in the
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numerical integration of the Euler-Lagrange equations and constraining
equations, and the difference between the resulting final conditions and the
specified final conditions are determined. Since these differences will not
in general be zero, the process must be repeated several times until these
differences are less than some specified amount.

The discussion in this monograph will be limited to a class of problems

which are sufficiently simple as to be amenable to treatment by analytic
techniques and yet realistic enough to be of practical interest,

2.7.3 Control Policy

A control policy is a mathematical function which specifies the control
as a function of t, x; and U fori=1, ..., nand k=1, ..., r. In this
monograph the control policy satisfies only necessary conditions for a weak
extremal of I. The methods of Section 2,5 can then be used to determine
whether a weak minimum (or maximum) of I was actually obtained.

The optimal control policy plays a dominant role in determining the
composition of the extremal arcs and is obtained by substituting Eq.
(2.7.5) into (2.7, 6b)

-9H 3 g, .
+) N, =0 Ry ey r (2.7.7)
Q”J' ,}; o, ’

Now, the uj (which satisfies Eq. (2.7.7) in terms of
t, x; and Aj) satisfies the Euler-Lagrange equations and will be called the
optimal control, The optimal control will be denoted by

d{/~°=€(é;l,,...,Z,,}),,---,\") (2.7.8)
forj=1, ..., r.

Eq. (2.7.8) is the optimal control policy which specifies u; as a function
of t, x; and Ajfori=1, ..., n

The optimal control policy (Eq. (2.7.8)) is used to reduce the system
of differential equations to 2n equations. This is accomplished by sub-
stituting fj for u;. Using Equations (2.7.4), (2.7.5), (2.7, 6), and (2.7.8), .
the system of ditfferential equations then becomes

o
Y YRCLANS b7 /3 (2.7.9a)
ax" Kol al‘ )
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fori=1, ..., n, where
Z=q(E %y kn iy )
H =//(é,-z,,...,x,, 37[,',...{)

(2.7.9b)
n

There are now 2n dependent variables xj, ..., X and >\l’ . vy >\n and
one independent variable t. The augmented function F from Eq. (2.7.5)
is given by

F:H(t;xn"-)xl}; ’t:) 3’(;')

n
+ }3 >\‘-[Z‘- ‘g‘.(ﬁ; Z,,- ..>Zn;{;,...,ﬂ)]
(This procedure of reducing the number of differential equations by using the

optimal control policy is also applied in the bounded control problem of
Section 2. 8 and the optimal time problem of Section 2,9,)

Using the optimal control policy described in Eq. (2. 7. 8), the first
integral, corner conditions and transversality condition can be written

as follows (see Section 2, 6).

First Integral

The first integral from Section 2. 6.1 is given by

d ( 4 2F
g H*[Z\ N Z‘)* 5£=0 (2.7.10a)
=/
For problems in which 2£/32 =0 , the first integral reduces to
Vi
“H+ ) ;g =C , (2.7.10b)
ie!

where C is an integration constant.

Corner Conditions

When discontinuities occur in the derivatives of the solution of the
variational problem (as in sections 2.8 and 2.9), a mathematical criterion
is needed to join the different portions of the solution. This criterion is
obtained by using Equations (2,7.5), (2.7.8), and (2.7.9) and the corner
conditions from Section 2,.6.1 as follows:

()‘i)_ = (N),_ (2.7.11a)
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fori=1, ..., n and

” n
- . = '—'H + . .
(u+(§>\‘z.)_ (~H 3N g),
The negative and positive signs denote conditions immediately before and
after a corner point, respectively.

(2.7.11b)

Transversality Condition

Using Eq. (2.7.5), (2.7.8), and (2.7.9), the transversality
condition from Section 2.6.1 is given by

n n ¢,
[aG-(-H+ Eng )b+ 5N o’z‘-]lo -0

and, for the special case in which 9;/2t =0 , the transversality
condition reduces to
- g (2.7.12)
[dG-Cat + LN, o] =0 e
'AY) t,

The dependent variables xj, «+«s X3 N 1r ++es X , can be found by solving
the system of differential equations (2. 7. 9) and using Eq. (2.7.10), (2.7.11)
and (2.7.12), When x;, +.., Xp; N Iovees N5 are known, the optimal
control variables uy, ..., u, can be obtained from the optimal control
policy described in Eq. (2.7.8).

After the extremal arcs have been evaluated, it is necessary to
investigate whether the I attains a weak minimum or a maximum,. In this
connection, the second variation of I can be used to give a necessary con-
dition for a weak minimum.

2.7.4, Second Variation

To apply the Legendre condition [Eq. (2.6. 11L7 the change in nomen-

clature

l(l =Z’I
Up=2Z,
”r= Z.r
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is introduced. This change is required since the development of Eq. (2.6.11)
involved the tacit assumption that

* =
2f L=ly...yn
4
%,
are not identically zero. The second variation then requires that for a weak
minimum

r ?z r r 2
T 52 sz, =X L 2 £ >
¢ K 92 dzk ? K 34 aak&(‘ &(‘ (2.7.13)

at all points along the extremizing arc.

2.7.5 Example Problems

Utilizing the optimal control policy, a set of 2n differential equations
can be formulated. The solution to these differential equations gives
xl, ce ey Xpi A 1Ir s 7\n. Since the optimal control is a function of t;
Xy sevs X5 A, essy N, it can now be evaluated analytically or synthe-
sized by a controller. The analytic procedure is illustrated by the following

three examples:

1. Linear first order, time invariant dynamic process.
2. Linear second order, time invariant dynamic process.
3, Nonlinear first order, time invariant dynamic process.

Example 1

Consider the control of the dynamic process shown in Figure 2.7.1
which is characterized by the differential equation

z,~-2I Rk X+«

Let the process be initially in the state %,(0) = 2. The objective is to
determine the control u, over the time interval from tg= 0 to t] = 3 so that
the criterion of system performance

3
1 2
I= /2Df (xf +e*)dt
has a minimum.
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Figure 2.7. 1 Linear First Order System

The control attempts to optimize two aspects of dynamic performance.
First, it attempts to minimize the area under the square of the response
xj(t). This means that the control will tend to drive the x(t) to zero.
Secondly, it attempts to minimize the amount of control energy expended in
performing the first task where it is assumed that the integral of the control
squared is proportional to the control energy expended. Actually, u] can
take on any value, but its amplitude is indirectly limited by the attempt to
minimjze the control energy expended. Unequal weighting between x; ,
and uj , can be specified depending upon which aspect of performance is
considered more important; however for simplicity, equal weighting is
assumed.,

For this problem,

X=(x,) with A=/, 4=(%) witnh 2=/

2
H= % (] +a,2) § G=0 Ea.l (2.7.4]
7= -2/2 x,+4 Eq.| (2.7.3)]

Substituting these equations into Eq. (2.7.7), the optimal control policy
becomes

~4 ’L)‘l:O
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or from Eq. (2.7.8)
é/l :{:()\l) = A'

The system of differential equations from Eq. (2.7.9) then becomes

z,=- 2/Z X, +A,

X (2.7.15)
A= 2VZ N X,

where u, is replaced by A, from the optimal control policy. There are
now two dependent variables x; and /\1 and one independent variable t.

The first integral from Eq. (2.7.10) is given by
- R N2
B(22eX2) N, (-2/Z 2, +N,) =C

The transversality condition from Eq. (2.7.12) is given by

[-Cat sn,a2]] =0
¢

This condition must be satisfied identically. That is,
~Cdt =0 N, (¢,)dx, (¢,)=0
-Cdt, =0 X (4,) dz, (¢) =0

But
o/Z‘, =0 3 o'Z.lo =0 and a/z’(l‘.‘)zo
because tl, t, and xl(to) are specified and cannot be varied. The C and

?\l(to) are arbitrary; however, )\l(tl) must be zero since x (tl) is not
specified. The boundary conditions now become

%, (4,) = 2 Z(4) =7
n, (4)=7? A () =0
¢, =0 £ =3
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Figure 2.7.2 Extremal Arcs
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where the question mark denotes an unspecified number,

Solving the system of differential equations from Eq. (2. 7. 15) subject to the
boundary conditions, the following solutions are obtained:

-3¢
()= .086%(10°8) e 2e

- - -3¢
N(E)= «(d) = .508(10) 8 ~ 343
The second variation of I is obtained from Eq. (2.7.14) and is given
by

2
(8)° 20
where the augmented function F from Eq. (2.7.5)

F:/

é (zlz"'“z)'f Xr(z.l.'- /'_Z—X; ~'Z/,)

was used,

Thus, this representation of ui (t) satisfies a necessary condition for a weak
minimum of I since the second variation is = O . The resulting %) and 4y
are shown in Figure 2,7.2.

Examgle 2

Consider the control of the dynamic process shown in Figure 2,7, 3
which is characterized by the differential equation

.. 2
z:.()c.xl,,,‘/,

I
or
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Figure 2.7.3 Linear Second Order System

Let the process be initially in the state ¥, (0) 3 A and x,(0)=8
The objective is to determine the control u, over the time internal from
to= 0tot;)= T sothat %,(7)= O » ¥ (T)=0 and the criterion
of system performance is minimized.

I= &Jrafdé

Note that %,(0), X20), %X,(T) , Z; (7) and T are specified. In addition,
let «7 >»/) . In this problem, the control attempts to minimize the
amount of control energy expended in transforming the state of the system
to the origin in state space. The control uj can take on any value, but its
amplitude is indirectly limited by the criterion L.

For this problem

X=(%,,%;) with 722 y U2 (4) with 2=/

H=YHu? ;5 G=0 [Eq. (2.7.4)
O = %, [Eq. (2.7.3)

?2-:0(21.,,-[/1
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Substituting these equations into Eq. (2.7.7) the optimal control policy
becomes

U, + Ay =20
or from Eq. (2.7.8)

a,°=z§‘(7\2)=)2

The system of differential equations from Egq. (2.7.9) then becomes

- N
i

X,

x* % + Az ' (2.7.16)
- >~z

Ry = -2,

Ny
"oy

where u, is replaced by A 2 from the optimal control policy. There are
now 4 dependent variables X, X, >~1, and A 2 and one independent
variable t. '

The first integral from Eq. (2.7.10) is given by

% X N (- k) #Xg(%, m Ry, -Xz)=C

The transversality condition (Eq. (2.7.12)) is given by

t’
[-Co’t N dx, Ay o’xz]/ =0
4

This condition specifies that °

‘Cdt,=o ‘ k) (t:) JZ(fr)=0
-Cdé¢,=0 A (&) dx (&) =0
7"Z(tl> dxz (tl):‘o ‘
N, (%) dxz(t,)=0
But
dt, =0 , ¢, =0, dx(¢)=0

9%, (4)= O y dxp(4) =0 , dxz(8)=0
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because

£ % y % (¢,), %, (66) » X2 (él) y and ZZ("‘O)

!

are specified and cannot be varied. Hence C, A, (¢,), 7\,(6,) s A2 (¢) and )\z(t,)
are arbitrary, and the boundary conditions are given by

x(te) = A N(¢,) =7
2(8)= © A(8) =7
Zz(éo) =8 Az (t°) =2
2,(¢)= © Az (t')=?
{, = T
¢, =0

Solving the system of differential equations from Eq. (2.7.16) subject to the
boundary conditions, the following solutions are obtained when &« T > > /

()= [A+(xarB)]e ™

2,(t) =[ B x(xA+B)#]
A () = =205 (s prB)e ™
A (E) = af(f)=—ZO<(O<A+B)€_ut

The second variation is obtained from Eq. (2.7. 14) as

(8a,)2 z0

where the augmented function F from Eq. (2.7.5) is

F= +éalzr)\, (72,‘752)*7\2(722—“2)5,—4(,)

Thus, this solution for uy(t) satisfies a necessary condition for a weak
minimum of I (the second variation is 20 ).

Examgle 3

Consider the control of the dynamic process shown in Figure 2.7.4
which is characterized by the nonlinear differential equation

z
= -ax, +.4,

6
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Figure 2.7.4 Nonlinear First Order System

Let the process be initially in the state X, (0)= A . The objective is to
determine the control u; over the time interval from tg = 0 to tl = T so that
the criterion of system performance

T=% S (2% +u?)ot
0

is minimized., The T and xj(o) are specified, but x){¢t) is not. As in
example 1, the control attempts to optimize two aspects of dynamic perfor-
mance,

For this problem,
2= (%) with 7=/ «= (&) with 2=/
He=Y(z5ruf); G=0 [Eq. (2.7.4]]
y,‘—azfv‘a, [Eq. (2.7.3]

Upon substituting these relations into Eq. (2.7.7), the optimal control
policy becomes

- U + X, =0
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or the optimal control is Z-from Eq. (2.7. 8)7 given by

AT=F,(0) =

!

The system of differential equations from Eq. (2.7.9) then becomes

~ax? + 2,

x
X

!

/ (2.7.17)

2an,%,+%,

where u, is replaced by A, from the optimal control policy. There are now
two dependent variables x; 'and 1} j, and one independent variable t,

The first integral from Eq. (2.7, 10) is given by
! 2 2 Ay ® -
—‘/2'( ¥/+7\/)+-/\I( C{V,l 'f'h')"c.
The transversality condition from Eq. (2.7.12) is given by

tl
[~ccjt + )('c/y,]’{ =0

where the t ransversality condition must be satisfied identically., That is,

- Cdt, =0 /\,(tl) dl/ (t) =0
—cdt, =0 h,(fo)dY,(to):O

But

- =0
g’t, = 0 ) dto =0 and C/I, Cto)
because tj, t, and x; (t,) are specified and cannot be varied. The C and

/\1 (t,) are arbitrary; however, )\ ; (tj) must be zero since xl(tl) is not
specified, The boundary conditions now become

X, (t) = A x,(¢,) =7
N, (L) = ? ACt,) =0
t, =0 £, =T

The solution to the system of differential equations from Eq. (2.7.17)
is obtained by solving this two-point boundary value problem with the pair
of simultaneous nonlinear ordinary differential equations., The solution
gives x)(t) and N\ l(t) for the optimal control ul° (t) = hl(t). The use of a
digital computer is required for this problem since there is no analytic
solution,
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2.8 CALCULUS OF VARIATIONS FOR THE BOUNDED CONTROL PROBLEM

2.8.1 Introduction

This section extends the optimal control problem of Section 2.7 to include
the bounded control. The bounded control problem originates in engineering
problems where the control variables are constrained by physical limitations.

For the bounded control problem, the class of admissible controls is
enlarged by relaxing the requirement that the controls be smooth on open sub-
intervals. The variational problem then becomes: Among all state variables
which are piecewise smooth on the interval [t,, t,] and all the control
variables which are smooth on the open subintervals of (+, ,t,)but not
necessarily continuous on the closed interval [+, , t,]1 find the state vari-
ables and controls for which the criterion has a weak extremum subject to
amplitude coustraints on the controls. This problem is treated by replacing
the control variables with the optimal control policy (i.e., a function of
the state variables and the Lagrange multipliers).

With the control variables replaced by functions of the state variables
and Lagrange multipliers, the state variables which determine a weak extremum
for the criterion are evaluated. The Euler-Lagrange equations must be satis-
fied on an open subintervals where 1) all the state and control variables are
smooth, and 2) the criterion, the differential equation constraints, and the
constraining equations are continuous with respect to the first and second
partial derivatives of all its arguments. The corner conditions are then
applied to tie together the subintervals.

Consider the interval from tgq to t,. Let t¢ (tqctc_<’cb) represent a
point which violates the condition of continuous differentiability. The
criterion 1 on the interval from t., to ¢, can be written as the sum of
two functionals

I(a,b) =I(a,c) +1(c,b)

where I (a, ¢) represents the criterion on the interval from +t, to t.etc.
The variation of I is calculated as two separate terms

§1(a,b) = §1(a,c) + 31(e,b)

The state variables and the Lagrange multipliers must join continuously at tc,
but otherwise the state at to can move freely. Note that the control variables
neet not be continuous at t since the control variables are no longer in

the variational problem. They have been replaced by functionals of the state
variables and the Lagrange multipliers. However the corner conditions must be
satisfied. This requirement places constraints on g and H from £qa. (2.7.3)
and (2.7.4). The resulting corner conditions require that Eqs. (2.7.11a) and
(2.7.11b) be satisfied at tg . Since the & I (a, ¢) and &8I (¢, b) involve
the same increments &x(tc) and &te (x denotes the state vectors. .
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In a2 similar manner, the two subintervals can be extended to any finite
number of subintervals. The corner conditions given in Eq (2.7.11a) and
(2.7.11b) are then applied to connect the subintervals.

2.8.,2 Problem Formulation

In this section and in Section 2.9 the control vector will be restricted
as follows. First, the control vector wa(«,,«,, --4«,) must lie within some
closed set U at all times, This requirement ‘is usually expressed in the form
of a constraint on the .u‘( for 4{_5 4+ For example, if r = 2, then a
typical constraint is

arure A, E U, E Mo i,
MMZ.‘."- Mz‘-'/n’MMz

for all time where minimum u, , maximm 4, , minimum &2 and maximum 4z
are given. Geometrically, this is interpreted as requiring the vector 4 to
lie within or on the boundary of the rectangle as shown in Figure 2.8.1.

max U2

|- admissible control vector

min
u, max

o

, closed set U

\
min Uy,

Figure 2.8,1 Admissible Control Region

80



Second, the w4 must be smooth on each open subinterval. C€ontrol
variables which satisfy these two conditions will be called admissible
controls. When some of the states of the process are specified, the
admissible control must also give a solution to the system of differential
equations that satisfies these specified states.

As in Section 2.7, consider the following dynamic process over the time
interval fromt tot, :

-x'l -y‘, (t) )(.,J...'xn)- L("..-) UA)

for {(=/,.-.,n . The objective is to find that special set of extremal
arcs from X and the control arcs from the set of admissible controls which
give a weak minimum for the following criterion:

L,
I :‘6 (X' ) "'ILn)‘ +£/ H(t’.xl,”.)lnj u,’...ur)dé (2.8.1)
-t °

Control problems where Eq (2.8.1) is applicable are:

1. The initial and desired terminal states of the process are known.
Jt is desired to find the control vector 4 which minimizes t,-t, »
the time of system operation, subject to constraints on the control.
This is the familiar time optimal problem and is discussed in Section
2.9.

2. The initial state of the process and the time interval ¢,-%#,are
known. It is desired to find the control vector # which minimizes
the value of I subject to constraints on the control.

2.8.3 Optimal Bounded Control Problem

If the set of differential constraint equations which describe the '
system, i1s given by

R g (6 Ry Ry 4y ) 2

~

,..,n (2.8.2)
and the constraints on the control variables are

Aﬂuhm-ﬂ‘é,ﬁke,4ruy¢’€“ k=ly..
these constraints can be represent§d as equations
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(A“'Mﬂ )(ng—u&) —rx; =0 (2.8.3)

4

where o is an arbitrary real variable on the time interval from ¢, to i, .
Note that’a w4 which satisfies Eq (2.8.3) is bounded above and below by
maximm g7 and minimumarg , respectively. The dependent variable o has
no physic2l meaning in the problem and is used for convenience in generating
a constraint equation.

Now, a set of variable Lagrange multipliers A (t) for j=/,.. SN *tA
is introduced, and the augmented function F become

F=H{ }\L(XL "2&)

el

2 2
+‘§ }\Aﬂ‘ [(U;—m‘k)(mif{ —12)—0(4(] (2.8.4)

The dependent variables X,k 4v=) U, ; and &, ) % must satisfy the
constraint Equations (2.8.2) and (2.8.3) and the Euler-lagrange equations.
Using Eq (2.8.4), the Euler-lagrange equations can be written as

n
X, = g_% - ™, gqi-"_‘ (2.8.5a)

K‘ (l’/") = \J‘*n (/)Wﬂ/‘ + run (,2 - Zux) (2.8.5b)

0 = \,\«‘h\ 0(1 (2.8.5c)

for /‘=£---,)z, and ./ --.,h where the term K (ﬂ“) is defined as

#
. -aH , ﬁ.ze
K* (”‘) J M Ag/ N; Il
The system of differential Equations (2.8.2), (2.8.3), and (2.8.5) con-

sists of 2n+3r equations. Its solution yields n+2r dependent variables
T R L T o B M Lagrange multipliers N, -, ™pna .
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These solutions are valid over each subinterval, if the corner conditions are
satisfied.

In order to reduce the number of equations in the system of differential
equations, the optimal control policy will be developed in Section 2.8.6. The
optimal control policy specifies the optimal control ui for k=¢,..r
as a function of &; X,5:+-3X, 3N\, ..,An, This ¢ satisfies the Euler-Lagrange
equations and the constraint equations on each plecewise smooth subinterval. .,

Now, if the ¢4 1in the system of differential equations is replaced by
the ¢ , the differential Egs. (2.8.2) are no longer a function of ¢y .
Furthermore, the constraining Eqs. (2.8.3) are no longer required since the
¢; will satisfy the constraints. Consequently, only n Lagrange multipliers
are required. The resulting system of differential equations will contain 2n
isuatio%$ for n dependent variables X5t 3¥p and n Lagrange multipliers
1) o

2.8.4 Second Variation

Following a development similar to that used in Eq. (2.7.13) it can be
shown that the Legendre condition takes the form

r r -

Zubu_} 5u6u+225—2—<%&6m (Sogj > 0

VA

(2.8.6)

the quantities Sv and & o must satisfy
the variational equations

(maxuk +ominl, -—qu)&uk ~o&k So(k =0 (2.8.7)

2.8.5 Selection of the lagrange Multipliers

Consider the special variation in which 8¢, =0 (<= /...~ ). From
Eq (2.8.7) it follows that either the &§«, or qQ are zero. Thus, from
Eq (2.8.6) it follows that M (k‘ /) must be less than or equal to zero
for a relative minimum, If ca is zero, then from Eq 2.8.5¢ Agpn=0(x=1/,..
Thus the Legendre condition yie]ds the necessary condition

Akpn €0 LY

which must hold at each point along the extremal arc,
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2.8.6 Control Policy

In Section 2.8.5 it was demonstrated that if W, £0 for k=l--» A a
necessary condition for a weak minimum of I would bé %atisfied. The control
policy will now be developed based on this necessary condition and will be
called here the optimal control policy.

0" Bl il S o s vy <0
KA (-U‘ = AI:‘ ) = 0

where ,u{( is the value of &, that makes K:‘ =0 and

A

K, (g ) =75 +§ N gz‘}— (2.8.8)

MA:{&AJ:‘_MJ

If, on the other hand, \A , the o from Eq (2.8.5¢c) must be zero.
This means that elther Moy uy Or nu,. That is, when Xy =0 ,
the control constraint Eq (2.8.3) has z or smun i, as a solltion.
Hence, with \" <0, B (2.8.50) vechues T 4 4

n

for Uy = ATAY Uy
K& (UA ./ma/;’ ) >0
fFop MU /’”"”’ff,@ (2.8.9)
/{j@ = /mmu{) <0
The optimal control policy is then given by

& ﬁ (Zi %, 5%ni N\, ') (2.8.10a)

n
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with
gl whenever K‘((”‘( -M»‘{é)>o
i‘= ’”’"”‘A wheneverls‘(_tj‘ =/minx;1{)<0
wy whenever K 4 (.a,€=u§() =0
where
ity © ag Lot 4y

Equation (2.8.10a) represents the optimal control policy and can be
interpreted as follows: First, the optimal control is_,uaf.«u, whenever

A

Second, the optimal control is m % whenever

e dvg]| <o

7 =m'uf(
Third, the optimal control isﬂl"( whénever

n
L”l <Z7 d4y |

.u)( =y
That is, wy is the value of « ‘4 such that the above expression is zero.

Many practical engineering problems have the following property:

K ¢€ (u* )74 O , vwhere this statement can be written as

dZ/ 3;) ‘[ 3?**7\ dt(dg")]

and where .cf‘=u2 . That is, whenk"(x“ =A,;‘)=0/K*(4;€=%)¥0 .
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Under these conditions K ,&(ﬂ = éx) cannot be zero for any length of time,
and the optimal control icy is then given by

f; Ma/,l!,u" whenever K* (/I =/fna//-4(,()>0
£

m.t% whenever K (ﬂ" s _mn U )< (2.8.10b)

In other words (/4 is instantaneously changing between,miﬂ.zlr‘ and /mw;’,:;/( .
For most practila systems, this change from,r,un iy to .,rna{,u or from
maf sy to m,u“ will not produce a disconé_nmty in th state
variables X ,..., % .

2,8.7 System of Differential Fquations

The optimal control policy from Eq (2.8.10) is used to reduce the
number of differential equations to 2n. This is accomplished by substituting
fFop ALy * The system of differential equations now becomes
/A T

?;\‘_ ..?lﬂ 2 (2.8.11)
L 9% 4(.1 4( 3@"
for t¢=/...,n wvhere 7 are now given by

P79 XX f /)
H H(t/' Xy X njyr /

The control constraint equations are no longer required since the optimal
control «° satisfies the constraints. There are now n dependent variables
Ky -1 Xn , n lagrange multipliers "\ , ---, ‘r\n and one independent
va.riable t !

The first integral, corner conditions and transversality condition [Eq
(2.7. lO) (2.7.11), and (2 7.12) ] can be simplified by replacing «, with
i (i.e., g using the optimal control policy). The solutions K, ey X
for Eq (2.8.11

2.8.8 Example Problems

Two example problems are presented. The first is a simplified linear
second order model of an attitude control system with bounded control. The
objective is to minimize the fuel expended in transforming the initial state
of the system to the specified final state. The second example is a nonlinear
thrust programming problem for a rocket in vertical flight. The objective
is to find the propeilant mass flow,which can be considered as the control,
so that the final vertical rise of the rocket is maximized.
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Example 1 Attitude Control System

Consider the control of the dynamic process shown in Figure 2.8.2
(a simplified model of an attitude control system) which is characterized
by the differential equation

X, =
or by
X, = Y2
XZ-:
u | X, J %X, 5
b A Tl e

Figure 2.8,2 Linear Second Order System with Bounded Control

Let the process be initially in the state 'x.(O)"A and X, (0)=8
The objective is to determine the control U, over the time interval from
t,= O tot =7 (where T is given) so t hat X, (T) = %, (1)=0 and the

criterion
T
L=/ uldt
°
1s minimized

-/<£u ¢/

The control attempts to minimize the amount of control fuel expended
in transforming the initial state of the system to the desired final state
(it is assumed that the integral of the absolute value of the control is
proportional to the control fuel expended).
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For this problem.
x = (%,,%,) with n:=2,4=(u) with 4 =/
Helul; G=0 (Ea. (2.7.4)
9,= %y [Eq. (2.7.3)]

e

Substituting these equations into Eq (2.8.8) the K,(u') is given by

Kl(u') =-34: +».\2.

The optimal control policy from Eq (2.8.10a) then becomes

l = M U, whenever \f\ 2 > 1
u’°=%, (7\1) =q-/= ATUN U, whenever 7\2 <-]
O= w: whenever - £ 121:1

where N
K (uz=1)=-1+N\, >0
K (u--N=1*N, <O

K,(u,‘-'w,)":.&j_ig_iw;l.,.\z =0
u,

Figure 2.8.3 shows the optimal control policy as a function of }\2 .
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hu’=f (N,)

"l A2

Figure 2.8.3 Relay with Deadband Optimal Control Policy as a Function of AX

Equation (2.8.10b) was not used here for the optimal control policy because
K can be zero on a subinterval. In fact,K=Ofor t;, <t < t3 where Za
and 7; are defined in Figure 2.8.4.
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The system of differential Equations (2.8.11) then becomes
X, = %X

Xo o2 500D P ONEEEN (2.8.12)

where W, is replaced by F( A\.) .

There are now 4 dependent variables
XpXa s N, and ),

and one independent variable t.

The first integral from Eq (2,7.10b) is given by

SN LAY TR VE VPR VR G PO IR

The corner conditions must be satisfied whenever the control 1s
discontinuous and are obtained from Eq (2.7.11) as

(> (X)),
C M) C M),
(). Cc 2,

Thus, by 3 )’.

and C must be continuous in order for the extremal arcs
to be valid even though the control can be discontinuous. The transversality
condition Eq (2.7.12) indicates that A and N; at to=0 and t,57 are arbitrary.
The boundary conditions are

X,(0) = A () =0
X‘,(o) = B Xt(r) s O
(o) = 7 AT =7
Nelo) = 7 AT = 7
t, = o ., =T

Since N,z o from Eq (2.8.12) and N, is continuous, A\,
even when the control is discontinuous, But, 1f A,
from Eq (2.8.12) is linear with time as follows:

is constant
is constant, Ao

» = D¢ +E
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3 T -t
|
> ]
|
Au’ @)
[
tz _L-t
0 + T -
2
-/ 4
Figure 2.8.4 Possible Forms of hZ (t) and Optimal Control
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where D and E are constants. One possible ) 'S as a function of time
is shown in Figure 2.8.4. The time intervals from o to €., from
%, to 3 , and from ¢,te T contain an applied control of 1, O and -1,
respectively. Note that no more than 2 discontinuities are allowed in
tl: .

The problem reduces to a two point boundary value problem which requires
a digital computer for the solution since the system of differential equations
is nonlinear. The computer procedure is based on selecting D and E by trial
and error and solving Eq (2.8.12) repeatedly until the boundary conditions
are satisfied. Once the boundary conditions are satisfied, the optimal
control can be evaluated. Then the optimal control is substituted into the
second variation of I to determine if the necessary condition for a weak
minimun is satisfied.

Example 2 Rocket in Vertical Flight

The problem of determining a fuel burning program so that the maximum
altitude is achieved for a rocket in vertical flight is of particular signi-
ficance to this series of monographs., Several examples have been presented
in the literature where the effect of aerodynamic forces have been considered.
However, this example is confined to the limiting case in which these forces
are negligible, so that the rocket moves under the combined effects of thrust
and gravity. This limitation is required to assure that the solution will
be analytic.

The following hypotheses are employed:

1, The earth is flat and the acceleration of gravity is constant.

2. The flight takes place in a vacuum.

3. The trajectory is vertical.

L. The thrust is tangent to the flight path.

5. The equivalent exit velocity of gases from the rocket engine is
constant,

6. The engine is capable of delivering all mass flows between a
lower limit and an upper limit.

Under these assumptions, the motion of the rocket vehicle is governed

by
m*% (¢) = TI(¢) - m(tgq

m(t) = - alt) (2.8.13)
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where

T(t) = Throst = ¢ ault)

c = ¢$0|valcn£ exit Ve_/oc./!-I

wlt) = propellant mass Flow (ot ¢ mox u.)
m(t) = instan fan cous

fack¢£

mals
E §

accelerat . on

3 of rav it
X(t) = a./il;llee of rackfcé 7

This system of differential equations can be written as three first order
differential equations as follows:

‘i.:x,_

Xy = (cw, )/ %y " g

*3 = ‘u,

where
X, = 4 Ko = X,
Xsg = m

w = W
!
Let the process be initially in the state X,(6)=0 , Xe(0d =0, Xq(6)= M(o)
(where m (o) is given), and w,(o)= A (where o <A ¢ mex &« ). The objective

is to determine the control w, over the time interval from ¢,s oto ¢, where %,
is not specified so that the criterion

I = 'x. (*a)

is minimized., That is, find the propellant mass flow which maximizes the

altitude obtained in vertical flight. (Note that maximizing x,; (t,> is
equivalent to minimizing - x, (¢,)

.) This variational problem is subject
to the constraint
04 u, ¢ mxu,

The final state variables other than X,(t) are not specified (x,(t,) =0 ) -
For this problem

X=X, %ke , Xy) ne1
w= (u,) n =y
M= lo] ' G =

- % (*'l)

[ £ 2-7.4>]
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9, = ca,3/ %3 - 9 [Eq. (2.7.3)]
9 = "«

Substituting these equations into Eq (2.8.8), .the K,(u) is given by

K,‘ALC/X‘B - Aa

Note that K. is not a function of &, . The optimal control policy from

Eq (2.8.10a) is given by

may «, , K, >0
[ -]
w, = g()\,,,x,kl) = o , K, <o
“/, 3 K.:o

where

o ¢ w, £ Max W,

Using this optimal control policy, the system of differential Equations
(2.8.11) then becomes

X, = Xgo

Xe = (e§5,)/ x5 - 9

Xg = -F,

A\ = ©

Ay = =N,

g = (M) x3 - K 2%

where w, is replaced by f Ch, Xy ‘) There are now 6 dependent

variables X, , Xe » Xuy Moy Na, Ag and one independent variable t.

Again, using the optimal control policy, the augmented function F is

F:),(i,-x,)+kt(k,'¢5-+j) +)«3(.X3*5.)

-
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The first integral [Bq (2.7.10)]  then becomes

Ay Xyt Az(c—f’- -3) N4 =C

where C is an integration constant. The corner conditions which must be
satisfied whenever the control is discontinuous are obtained from Eq (2.7.11)

as
(ﬂ,(' )__ = (A,L'),'. - ’(‘ = /)2/3
and
(C )_ = (C.)+
and the transversality condition from Eq (2.7.12) is given by

t,
LN, =Dy, = C ot + 02, # 2 ck,] | =0

Since (z,(@)) X;(2,) and t, were not specified,
C = )\3 (¢,) =0

A, () =
The X = 0 ,hence ) =/ for all time.
/

The optimal control policy states that u = W, , whenever K, =0
where 0 s w, £ max¢,. However, K, % o over any length of t:Lme. This
fact can be shown by proving that /( #0 Vvhen K, = o as follows: With
/( =0, Fhe K, can be written as

Kl = >—‘-z-——c. - XJ =0
X3
Thus, the derivative of A, with respect to time is given by

k = —AzcZ, la — )\
X5 X3
But, from the syste%n of }iifferentlal equations with A - 0 and A ;= /,

- c

AB - ——I———-2

. ls

/\2 = —/

ks = =7,
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Thus, K, = =~

Now since 0< X3Ct)f”’(0)andc>o,k,<0 vhen K, =0 ,
K can be zero at any instant of time but cannot be zerc over any subinterval.
This means that ¢ 2w, over any subinterval and Eq (2.8.10b) must be used

max ¢, whenever KX, >0

e - =
4’ =7 O whenever K, <O

l4

(At the instant of time at which A, passes through zero, #, 1is changing
between max ¢, , or 0),

Now if fy is eithermax«,or 0,2f, /2 )X, is either zero or infinite.
In the latter case, the set of extremal arcs terminates and a new set begins,
and the corner conditions must be employed to connect the two set of arcs,

For a set of extremal arcs with arbitrary K, and?# /2% =0, it
can be shown that /(, = -C/¥y . This means that K,= -¢/x3 for any K, .
Further, since A, " and 3 are continuous from the corner conditions
and Xz is continuous from thysical reasoning, A, is continuous. Thus,
a plot of K, versus t should resemble Figure 2.8.5 a ( €c denotes the
instant of time where £ ,-o0 and when the U," changes from max ¢, to 0).
Figure 2.8.5 was drawn with the assumption that the initial Ufl=max ¢, .
This case doesn't represent a loss in generality since " is either maxu
or 0. But, from physical reasoning the initial ¢° # © . The maximum
number of changes in amplitude of «,° 1is one since A <0 . Thus, the o’

is
, gmmru, for oct < ¢

U, = )
o for Lo <T ST,

The «¢° and x; are shown in Figures 2.8.5b and 2.8.5c.
Solving for X, » Xz and X3 s
- _c,_)(t-z:,_) )for‘ t.<t < t,

K m(¥¢,
’ - e m(o) =t max, ) for pe < ¢
max U /0} ( mlo) ~Z. ”W\x‘u/) ’ ¢
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te
0 LA
Figure 2.8.5a
s
max u,
te t, N
o 7
Figure 2.8.5b
4 X3
m ()
m(t[) ——————————
Le <, A_
0 [d

Figure 2.8.5¢c

Figure 2.8.5 Arcs for the Variational Problem

97



R
v (te) - EE2E" 4 9, (tedC - 20
- , 2 For te<tg g,
X7

{(mimese) g (eiggpen )18} 4F

7cor thftC

m(t;)) for te<t ¢ ¢,
Ky*

-t maxy, + m(o))-For o< t £¢,

m(o)

X {“ﬁt*x:z(tc.)) for ¢e<tg ¢,
2 =
C/oj("’fﬂ)-tmayy/)—ﬁi){o'" ost= ch

In a similar mammer A, )N, and A, can be evaluated. Then, ¢

are found so that the following boundary values are satisfied: ¢

X, (0)=0 2,(¢)) = 7
x.z(°)=o cht’) =0
')(3(") = m(o) 73('6/) = ?
AL o) =] A () =
N, (0= 7 A, () =7
/\3(°)=? Ny (E)=0
¢, = O £, 7
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2.9 CALCULUS OF VARTATIONS FOR THE TIME OPTIMAL CONTROL PROBLEM

2.9.1 Introduction

This chapter extends the bounded control problem of Section 2.8 to
include the time optimal control problem., The time optimal situation
originates in engineering problems where (1) the control variables are con-
strained by physical limitations and (2) the time required to reach the
desired state is of paramount importance. The purpose of the control is to
transform the given initial state of the system to the given final or desired

state in such a way that the time required is minimized.

2.9.2 Problem Formulation

Consider the following dynamic process over the time interval from
t s 0 ‘0 t,:
o

x‘: = 3‘.(£3 X,,... xn;u'.'_. u'r) (:/).‘.’)

Let a new state variable X be defined where X,, (0)so. Furthermors

let x =¢ 80 that
ne

ne+J

Xn” = |

The differential equétion X +, %! augments the above dynamic process so
that the augmented state vector becomes xe(x,,---X ).

There are now ns+a.a +1 dependent variables and one independent
variable t. The objective is to find that special set of extremal arcs
%, , 0 Ry and the control ares  «,, --- , w,. from the set of
admissible controls so that the criterion

I = X_ (&) =4
is minimlzed where

G (x| = x_, (&)
tst

?

[

and H =0

and such that the boundary conditions on x;(e) and x;(4,) for {e/.--,n are
s(;a';.isfied. Note that minimizing I minimizes the time of system operation
t).
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2,9.,3 Time Optimal Problem

The differential equation constraints, the augmented differential equa-
tion, and the control constraining equations are given by

Golt 5 X,y X 5wy wr)
. .

xnfl (2-9.1)
(u,K- mmu.)( max W, - w,) - oL: s O

2

for 1 =1, 44 ¢ 40 and k=10, 2.,

Now, a set of variable Lagrange multipliers Mjfor | = 1,.-- n+a+f is
introduced, and the augmented function F is then given by

F = Z Mo Ck-9) ¢ 2, Cxp-1)

n+
ie ' (2.9.2)

r

* Z )K‘ﬂn[ ( u’" T min u‘)( mj‘.x uK- u‘) - d;]

Kz

The dependent variables Xpy oo s gy A, ,m, e and ok, oo oy

must satisfy Eq. (2.,9.1) and the Euler-Lagrange Equations over each plecerSe
smooth subinterval, Using Eq, (2,9.2) the Euler-Lagrange Equations can be
written as

Moo = © (2.9,3)
0
K (u = A [ max th + mmu, - 2 4 1
K( “) Kéenoy K K K
K+ne¢ n = O ]
for K= 1, .--,n and €=/, n where the term KK( wye) is

defined as

K Luy) Z )\‘ 9 (2.9.4)

Uy
The system of dlfferentlal equatlons which composes the constraining
equations and the Euler-Lagrange equations represent 2n + 3r + 2 equations,

Its solution yields n + 2r + 1 dependent variables x,,- Xge 3
W, yor s s s Ry g mom oy ko and n+2 + 1 Lagrange multipliers ) ,

cee 9N .

N+ 41
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2,9.,4 Control Policy

In a manner similar to that of section 2.8, it can be shown that if
Akane1 & O for Kziye-o o r , a necessary condition for a weak mini-
mum of I is satisfied. Thus, the resulting optimal control policy is

identical to the ui for «=1,... r given in Eq. (2.8.10)

2,9.,5 System of Differential Equations

The optimal control policy from Eq. (2.8.10) is used to reduce the number
of differential equations to 2n + 2, This step is accomplished by substituting
j; for w, + The system of differential equations now becomes

K
ey,
Xm‘t !
n
. (2,9,5)
M o= -Z. \K A_ﬂ_x
Ks: Bxi
Anyy 20
for t= 1. pn where
3£= ‘L(*—;K.,--"‘ni’:u"- ;n) (2.9.6)
where the 2n + 2 dependent variables are X,, -.. , Xne ’ >, y -~

M., and where the independent variable is t,

Using the optimal control policy and Eq. (2.9.2), the first integral,
corner conditions and transversality condition can be reduced to the following:

First Integral

(a]
., q- 2F  _
-j; (g-‘; Xegqi o+ h,,) 5T °° (2.9.7)
. JF
For problems in which J¢ ™ © , the first integral reduces to
n
§ )."'3!'- + X, = C (2.9.8)

where C is an integration constant,
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Corner Conditions

(M), = (\L)
(M) = €20, (2,9.9)

and
n

(Zn X; 3(’. + )'nﬂ ) = ( Z M ﬂ;f + xl\'.) €z /1,0

iz Py +4

Transversality Condition

€z e

n n ¢,
Q) dx + (-2 ny; - Mg ) o+ 2 2o dx, { co (2.9,10)

to
The extremal arcs X,, --- s X ey and the Lagrange multipliers »,,---,
»pe, _ cCaN be found by solving the system of differential Eq. (2.9.5) and
using Eq. (2.9.7), (2.9.9) and (2.9.10). Knowingx,, ... X,, X 30 Ane
the optimal control variables uf,... ,w. can be obtained from the optlmai

control policy described in Eq. (2,8.10),
2,9,6 Example

Consider the control of the dynamic process shoewn in Figure 2.,7.1 that is
characterized by the differential equation
)'(‘=-1r; x" U.,

Let the process by initially in the state Xx,(0)=2 ., The objective is to
determine the control W, on the time interval from +¢,= O+, £ such that:

(1) the final state X,(¢) = , and (2) the final or terminal time ¢, has
a minimum subject to the constraint -/ =y, =/, The eriterion is
T X, (¢) where the X, (€) represents the new state variable

X, (¢) =4 + The augmented state vector x is now given by

x = (x’ IXL)

and the process is described by the following differential equation constraints
and the control constraining equation:

x'|= ’znxl*uﬂ
*L=l

(w,+D(1-w,) - 6(:' 0
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»

Thus,

= CR, o %) with nz2 ; ws lu) Wit e

H=0 ; 6+ X (&) from £y (2.7-4)

-2z x,+ u,

0
1]

£ rom Ez(1~7.3)

Substituting these equations into Eq. (2.9,4) yields

K,(“.,) = K, = A,

where K; is not a function of k,

The optimal control policy from Eq. (2.8.,10a) is, them, given by

l when K,= ) >0
u," ] -1 when K, =2 ) <o 3 Sﬂr\ )\I
w‘ wheﬂ K' &= )l £ o

where
< wg!

Figure(2.9.1)shows the optimal control policy as a function of

b Y

“u" = f(),)

sgn(x,)

+)

>V

Figure 2,9,1 Relay: Time Optimal Control

103



The system of differential equations (2,9,5) then becomes

K= -2902 %, + sgn A
%y =

, = 2VZ ),

5. o

where u_:'

sqn (x,) - The first integral from Eq. (2.9.8) is given by

C= 2N(-2vyZ x,+ sqn ), ) + Ao

where C 1is an integration constant, Now applying the transversality condi-
tion [Eq. (2,9,10)]

¢
[ Owendday -cdd + 2dx, 1| =0
<s
indicates that M (t,)=-7 since Jx,(¢,) is arbitrary, In addition,

Cc (4):0 since J4¢, is arbitrary. But, the ), (¢) and c(¢) are constants;
thus ), = -1 and C=o for all t, The first integral thus becomes

o= N[ -2vix, + sgo A, 1 -1

Now at ¢= &, with x (£)=1

0= 2 L-2VZ x,8) +39n a(t,) ] -1

or

A, (D) = -3¢

Since i' =zfi)Fnd €\, L8) = -3¢ then N (t)<o Further,

w’ (&) = sqn ) = -1 (4, ¢t ¢¢,)
Finally, using the boundary conditions

X, (o) =2 X(@t,) =

Xa(0) =0 X (t,) =7

2 (o) =7 N (t) = -3¢t

XL (o) = -1 M) = -1

t,= o t, = ?
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the system of differential equations yields

-2.g28t
X,(t)= -.3s¥4 r 2.354 ¢
uiey= - |

t, = .19

The X, (¢,) , )\ (¢) and u’tt) are shown in Figure 2,9.2 . An examination of the

second variation of I indicates that the extremal arc %, is a weak extremum
for 1I.

The differentiability constraints are satisfied on the interval from to
to t3; that is, x, , %, and 4 are smooth, etc,

T x,(8)
2 4
!
I
196 > ¢
[
|
4 uld) |
296 -
[-] 1 rt
i
I
R
o
- —
]
|
|
|
» (t) !
$ 1/96 o
] ' g
i
|
i
]
I
|
- .36

Figure 2,9,2: Solutions to System of
Differential Equations
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3.0 RECOMMENDED PROCEDURES

This monograph treats the optimization of deterministic systems and
includes inequality constraints on the control variables, The formulations
are, thus, primarily applicable to problems similar to those encountered
in the trajectory and control analysis.

The procedures developed and illustrated in the previous sections of
this monograph concern themselves with the problem of extremizing the
functional

e
10Y) - L Fex,Y, ¥ dx

where £ is a contimuous function,Y is a real piecewlse smooth function
of ¥ defined over the region G which contains all Y of interest, (which
satisfies the boundary conditions imposed on the problem) and where Y' is

Yl z 3_1 (Yu)) v

Attention then turns to extending the analysis to include more general repre-
gentatiorsof f (e.g., £ (x,¥,v,¥".)), the inclusion ot variable boundary
conditions, etc. In the process, several necessary conditions are derived
(Buler-lagrange, Legendre,Welerstrass, Jacobi) as are the transversality
conditions, the corner conditions and the first integral. Sufficient
conditions are also derived.

These formulations must be applied to problems as iJlustrated in the
numerous samples presented in the previous sections of the monograph.

However, the difficulties in optimization theory lie primarily in the
area of problem solution rather than problem formulation since the application
of the variational calculus to an optimization problem in general leads
to a set of equations of the two point boundary value type. These equations
are readily solvable only if they are linear. If they are non-linear, then
a solution must be effected iteratively through the use of numerical
computation techniques. At present there are three iterative techniques
based on linear theory available

(i) - Neighboring Extremal
(ii) - Quasilinearization
(iii) - Gradient or Steepest Ascent Method

Since these schemes are linear, the jterative process must begin "fairly
close" to the actual solution of the problem if convergence is to be
realized. Just how "close" depends, of course, on the particular problem
and the particular set of boundary conditions. Since these techniques

and other purely numerical techniques are the subject of a future monograph,
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the material of this monograph, while adequate to formulate most
deterministic problems, is not complete unto itself for solving these
problems. Thus, recommendations regarding this latter class of problems
and means of obtaining initial "guesses" will be deferred.
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