NASA CONTRACTOR
REPORT

I A

WN ‘G4v) AlvHEI HO3L

NASA CR-1002

AM COPY: RETURN TO
Ko AEWL (WLIL-2)
KIRTLAND AFB, M M

GUIDANCE, FLIGHT MECHANICS
AND TRAJECTORY OPTIMIZATION

Volume III - The Two-Body Problem
by G. E. Townsend and M. B. Tamburro

Prepared by
NORTH AMERICAN AVIATION, INC.

Downey, Calif.
for George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION o WASHINGTON, D. C. « JANUARY 1968



TECH LIBRARY KAFB, NM

LT T

0DLD1S2
NASA CR-1002

GUIDANCE, FLIGHT MECHANICS AND TRAJECTORY OPTIMIZATION
Volume III - The Two-Body Problem

By G. E. Townsend and M. B. Tamburro

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Issued by Originator as Report No. SID 65-1200-3

Prepared under Contract No. NAS 8-11495 by
NORTH AMERICAN AVIATION, INC.
Downey, Calif.

for George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFSTI price $3.00







FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports

in the series.

Volume I
Volume II
Volume IIT
Volume IV

Volume V
Volume VI

Volume VII
Volume VIII
Volume IX
Volume X
Volume XI
Volume XII

Volume XIII
Volume XIV
Volume XV

Volume XVI
Volume XVII

Coordinate Systems and Time Measure

Observation Theory and Sensors

The Two Body Problem

The Calculus of Variations and Modern
Applications

State Determination and/or Estimation

The N-Body Problem and Special Perturbation
Techniques

The Pontryagin Maximum Principle

Boost Guidance Equations

General Perturbgtions Theory

Dynamic Programming

Guidance Equations for Orbital Operations

Relative Motion, Guidance Equations for
Terminal Rendezvous

Numerical Optimization Methods

Entry Guidance Equations

Application of Optimization Techniques

Mission Constraints and Trajectory Interfaces

Guidance System Performance Analysis

The work was conducted under the direction of C. D. Baker, J. W. Winch,
and D. P. Chandler, Aero-Astro Dynamics Laboratory, George C. Marshall Space
Flight Center. The North American program was conducted under the direction
of H. A, McCarty and G. E. Townsend.
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Semiminor axis

Eccentric anomaly
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Force vector magnitude; or hyperbolic anomaly

Force per unit mass; coefficient employed to

generate r (t) from T (o), v (o)

Newton's universal gravitation constant

Coefficient employed to generate + (t) from
F (o), V (o)

Total angular momentum

Angular momentum per unit mass

Orbital inclination to the reference plane

(generally equatorial reference)

Bessel function of the first kind

A vector directgg toward the node
L =GR -(h -i)@]

Mean anomaly

Mass

The nodal unit wvector

Legendre polynomial

Semilatus rectum

Radial distance (from the center of force unless
otherwise specified)

Time of periapse passage

Time of the instant

Universal time

Velocity (or speed)

Three components of the force vector
Components of position (cartesian)

Flight path angle relative to local horizontal

Total energy unit per mass

True anomaly (angle from periapse to the instanta-
neous position); Euler angle equivalent to right
ascension

The gravitational constant Gp; argument of

Legengre polynomial

Orbital period

Central angle from the node to the instantaneous ; or
position (6 +w); Fugler angle equivalent to latitude
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1.0 STATEMENT OF THE PROBLEM

The approximate analysis of the motion of near-earth (planet) satellites,
and/or the generation of precise trajectories via derivatives of an Encke
formulation (employing a reference trajectory) or via an osculating conic
formulation, require that the nature of the motion be well known and express-
ible in a simple well-determined form. Thus, the fundamental objective of this
Monograph is the presentation of information adequate to satisfy these require-
ments and sufficient to introduce material to be prepared in other Monographs
of the series. This objective will be achieved by developing the classical
solution and modifying its form to assure that a completely deterministic
solution is available.

The two-body problem (the analysis of the motion of two bodies acted upon
only by their own mutual attraction) was one of the earliest problems in
dynamics to be solved. Thus, the material to be presented does not represent
the current status of a rapidly changing field on analysis as do some of the
presentations in other Monographs. Rather, the material is intended to
express the results of these previous analyses, to express the observations
regarding indeterminacies in the most commonly used form of the solution, and
to provide alternate formulations of the motion to avoid the computational
problems. In addition, this presentation is intended to function as a refer-
ence volume providing detailed tabulations of equations relating the most
basic parameters of the motion and the dynamics.






2,0 STATE OF ‘THE ART

2.1 THE LAW OF GRAVITATION

The discussion of particle dynamics has its mathematical origin with
Sir Isaac Newton and his statement of three principles of mechanics. These
principles are:

1) Every particle continues in a state of rest or uniform motion unless
compelled by an external force to change that state.

2) The product of the mass and the acceleration of a particle is
proportional to the force applied to the particle, and the
acceleration is in the same direction as the force.

3) When two particles exert forces on each other, the forces have the
same magnitudes and act in opposite directions along the line
Jjoining the two particles.

The first two laws, which are related, can be written in the following
mathematical form:

F = Km&
or,if the units of time, mass, length and force are selected properly

F=mz
This law of motion is general in form since no restrictions have been placed
on the form of the force or its origin. Thus, the general solution to this
sixth order set of equations (i.e., second order in each of three coordinates)
involves the description of the force as a function of position or time and
the analytical or nurerical solution for the resultant motion. The special
case of two-body orbits requires the description of the particular force
which is the result of the mutual attraction of the masses. (Forces of other
origin and their effects are presented in other monographs of this series.)
Since the description of such a force is most easilyv accomplished by referring
to the deductions of astronomers in the 16th and 17th centuries, a brief
resume of the steps leading to a law of gravitation will be made.

Copernicus (1543) expounded the theory that the motions of the planets
were sun centered (heliocentric) rather than earth centered as assumed in the
Ptolemaic system. This theory laid the ground work for Johamnes Kepler,
who in 1609 deduced three laws of planetary motion from the observations of
Tyvcho Brahe, and in 1619 deduced a fourth. These laws are:

1) The heliocentric motions of the planets take place in fixed planes
passing through the sun.

2) The area of the sector traced by the radius vector from the sun,
between any two points in the orbit, is proportional to the time
spent in the arc.



3) The planetary orbit is an ellipse with the sun at one focus.

4) The square of the period is proportional to the cube of the
semi-major axis.

Items 2, 3, and 4 are commonly referred to as Kepler's first, seccnd,
and third laws, respectively.

With these laws of motion as a guide, it is possible %o derive the
law of gzravitetion.

Consider Kepler's observations. Since the observed motiocns are
planer, the force vecter can be concluded to lie in the »lane of motion.
Purther, since the areal velocity

4| ﬁxji.',

>
"

t -
h n8 b/2 (a constant) (1)
was observed to be consinrnt, the coordinate system which suggests itself
is polar, Thus, the first step in the derivation of the force law is the
derivation of the acceleration vector in such a system, Conesider an
inertial frame with the fundamental rlane lying in the plane of the
observed motion, with-the origin of coordinates =t the center of mass

and with principal direction selected in such a manrer thet it locates

the minimum radius (perjapse) fer the ellipse (or scme definzble spatial
feature for the case of a circle) describinz the motion of sore body.

. . N A
Yow, since =N

the velocity and zceeleratior vectors are

-

- . A
R= A+ R

. A - oA
AN + SO O

m
3
oY

. A . A ~
A e U2 + N

(i-26*)1 + (246+28) 6

A
But the ccefficient of & 1is ohserved to be;!lg-e(h), which is zero. Thus,
by equating components of the force and accelerstion vectors, it is
observed that § is directed along the radius ard satisfies the equation

-6 =-F (2)

Further, C; can be eliminated by employing equation (1).



Thus, if a variable &« is defined to be % and if the following derivatives
are evaluvated

Ge il e 1 da do__, du
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the equation of the force is obtained as

. 2,
F= hzuz(a.f-a'a;ze—z') : (%)

This is a general force law for radial acceleration in the planar problem
as it appears in many texts (e.g., Reference 1), But Kepler's second law
(Ttem 3) states that the orbit is an ellipse with the central force at the
focus; thus the motion satisfies the equation
P

/= !/ + Ccoob
where P and e are constants which describe the geometry of the ellipse
and # is the angle between X and the half of the major axis containing
the central force (the focus). Differentiating the polar form of the
ellipse and forming the function 32,z now reveals that

d2u /

4t 46 TP

and ‘. h"u-"
- kp (5)
2
From these equations and the observational data available to him,

Newton was able to deduce that the constant x must be of the form

K= GM
where G 1s an absolute constant which is independent of the masses and of
their distance (the best experimental value of this constant is currently

8

G=6.670x10" cm¥ge. aec®)

and where the quantity M is a function of the masses, i.e.,
M = W, 1,

Thus, the force exerted on the orbiting mass assumes the form

?—;Mza:—”&/’/lz\'
- A
—-G”’:mz Z2

z 472 -
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The universality of this law can be seen from the proofs of Bertrand
( Comptes Rendus LXXVII, page 849) which state that the only two laws of
attraction which ran 1ead to elliptic motion are:

/E=A%k‘ a’u/'fL=A£¢
However, to date no cases in which the latter law applies have been observed;
thus, it must be assumed that the former law is always apvplicable.

Before passing intn the discurssion of the two-body problem, it is noted
that this law was obtained for motions in which the dimensions of both
bodies were small, relative to the distance between them. Thus, modifications
to the form must be expected for smaller distances where mass asvimmetry
relative to the plane of motion becomes more significant (see Appendix C).
However, to preclude the restriction of the law to the case of particle
motion, it will be shown that the form of the law is identical to that
obtained for the case where the bodies have finite dimensions, but are
constructed in homogeneous concentric layers. In this manner, the law
can be extended to the earth (or planets) and close satellites to the
first order.

The process of proving that finite bodies constructed in homogeneous
concentric shells produce force fields of the same form as do particles
will be accomplished by introducing the gravitational potential and comparing
the potential funection for such bedies with that for a collection of dis-
crete particles.

Consider a mass particle m with inertial coordinates (x, y, z) and
a system of n other mass particles my, mp, . . .mp[where the coordinates
of the kth particle are (xx, yks zZk)}

Pl

3 m‘d.,y,,;.) .

*¢3)
(as 4a.3.4)

-7

A

z
The attraction exerted on m by my is(Smnz/Af , in the direction from m to
m ( ~, is the distance from m to ml). Iet X, Y, Z, represent the compo-
nents of the force exerted on m by my. Then




But
2
4,

af= (-2 + (g-4)°+(3-4)

Thus

22 _
4 2x X-%

7

(?pzm(/gé%):= _Q_(’Ginnz)
2, ox X 2,

The sum of the attractions on m in the x direction due to the n masses is
therefore > & G

- —— m m&'

X= 3x ég; A7

The summation of terms in the last expression is defined as the work function
due to mass particles mj, mp, . . .m, and its negative equivalent as the
potential at (x, y, z) due to mass particles my, mp, . . .mp, i.e.,

and

n

- Z G mm; (6)
=1 /Zc.

and the force is observed to be expressible as the negative gradient of the
potential function, e.g.,

-_-—-2!—/,.:—-3-2 ) -_—_-_M
X" o 4 o ‘ 3 (7)

Now consider the potential of a mass m at point P due to an annulus
of a thin spherical shell cut by two planes normal to the line between the
center ¢ and the point P , is given by

dU = - Gmdm,

where dm, is the mass of the annulus and r' is the distance from any part
of the annulus to the point P .

The mass of the annulus can be expressed in terms of the mass density o ,
the shell thickness ¢ , and the radius’a’as

dm, = R W.Rz,ot o PSP
Thus, the potential relative to the entire shell is



7 gnddd
A’

= - ZWM-RZG(oéj

but

: 2

22 r%rn*-2 R coog
where 2z 1is the distance between the center ¢ of the spherical shell and
the point P .

Hence
R dR'= N auwd dé

Substituting this expression into the expression for the potential and
interrating yields

2+ R 2
R 7 ma Gt f dn’ S 7h2RG pt
A2 i Ra./z - AR
But the mass #, of the shell is 47 &%¢ ; hence, the potential becomes
U= ~Gmom /n , or the potential of a spherical shell is the same as a

mass particle havin~ the same mass of the shell and situated at its center.
Now a snlid sphere whose mass distribution is radially symmetric can be
thought of as consisting of an infinite number of constant density layers.
So the total potential of an infinite number of infinitesimally thick layers
is

U= 20U

7 &=l ¢

™8
N

-~
[
-

Rk
L

(8)

where Me is the total mass.



2,2 REDUCTION OF THE TWO-BODY PROBLEM

Since the force vector was derived from the observed motion, there
would seem, on the surface,to be little meritf ir voroving that the motion
which results from this law is elliptical. However, this conclusion is
not well founded for several reasons: '

1) The previous discussions did not explore the nature of the motion
to determine if other than elliptic trajectories could be produced.

2) No means of describing the motion in three dimensional space as a
function of time was provided (i.e., the parameters of the ellipse
were not related to the dynamics).

3) No attempt was made to determine if the form of the equations
employed ever produced indeterminacies.

It is to these ends that the remaining sections of the monograph have
been prepared.

Consider two masses in an inertial coordinate system (having an
arbitrary origin) described by three rectangular cartesian unit vectors
(X, ¥, 2). In this system, the position vectors* of mass particles mj and
m, are ‘' and %27 s respectively. The forces exerted on m; and mp due
to mutual gravitational attractions are ‘F and 27 where

F -

(Newton's third law of action and reaction).

m, Py
7t \ n
F
[ \?F
3 n
3
-
l/z 'nz

0>

>

#Note - Vector quantities will use the superscript-subscript notation
established in Reference (2) where the subscripts, when given, indicate the
coordinate system the vector utilized to express; and the superscripts, the
body considered.



Newton's law of gravitation then states that

B -
F=_Gmm o = G”;'zm?",2
T

where z 1is the distance between my and mp, and Z is a unit vector from
my to mp, i.e.,

- r-x
= 2 A = o g
LA / ﬂ.l s //Z '

< Nb

According to the second law of motion, the time rate of change of linear
momentum (m ¥) of m1 and m2 is respectively equal to the forces 'F and

ZF, i.e.,
/97, ’/Z = Gm/;.':z //Z\ (93.)
m T = 8T p (%)
2 Y

Fquations (9a) and (9b) describe a second order system with 12 constants
of intepration. The Ffirst 6 of these constants can be evaluated by
adding (%) and (9b) and integrating the result twice.

17—

m, T~ m, % = Xt 4@ (10)
where & and g? are vector constants of integration.

These constants can be interpreted by defining a vector & which
locates the center of mass of the system

[ p- 2
M, X+ W2

/)7, + m,

97 =

10



e S,

ma

m +tmg,

N

A / ‘/?
3 7 2
//2
/ ?

This definition allows equation (10) to be rewritten as

-

(7 f‘z}) A E:Zf"fg

or

L= =
= m,rm, z ¢ mrmy (11)

Equation (11) states that the centeragf mass moves in the plane of C;ECQ),
€Y (o) with a constant velocity ( & /(m,+m,)- This result redefines
6 of the required 12 constants.

The remaining constants can be evaluated more easily if,at this point,
a transformation is made to reduce the solubtion to the eguivalent problem
of motion with respect to the center of one of the two masses, In the
process, motion will be referenced to the center of mass of the system.
(The center of mass is not accelerating and may, thus, be utilized as the
origin of coordinates without loss of generality.) Henceforth, in the
discussion, the vectors '¥ and *¥ will be considered to be defined in the
following sketch.

11



m’O‘\
7z N
\ 7
. AN ,?
\z/?
Z
T
My
where
wm ”, %7 =0 (12a)
The final step in the transformation is taken by defining a vector &
to be
z=%7-% (12b)
This definition allows the equations of motion to be reduced to
Gtk
- G(’”/*”Zz) A
L Jt
)
273 (13)

Equation (13) represents the motion of both bodies since equations (12)
allow both 4 and %z to be recovered

- e = 2 g

' - o . = —

/Z = ___’2._-/2 ) m,*m
A z

The solution of equation (13) is generally referred to as the Kepler
problem. This solution is the subject of the discussions which follow.

12



2,3 FIRST INTEGRAL OF THE REDUCED PROBLEM

The general solution of a second order vector differential equation
such as (13), requires six constants of integration. The first three of
these constants can, however, be obtained by recognizing that the vector
product of the position and force vectors of each mass particle equals the
time rate of change of the angular momentum of the partiecle. That is,
for particle 1

where (Z xm 2 ) is the angular momentum of particle 1, This principle
can be employed to advantage in the Kepler problem since

F=|FlA

or
% (ZAmA) =2 X])E] R =0

Thus by integration

Zxmi =l , a constant (14a)

Similarly, %2 x w3 = “H , a constant (14b)

Now, since the total angular momentum is

/Z;.: '/;77"2/;7 ’ (15)

it is also constant and can be evaluated from equation (15) or its
equivalent '

f=7 x (o) A (16)

m +my

13




Equation (16) is a rigorous proof of the first two of Kepler's laws, since
- Z(4) =0 for all t and since the area of an infinitesimal
sector of the ellipse swept by the radius vector 1is

dA= %)% x d7]
and A= %)% x 7|

or [/ e M, +m

dA= ,/2 /H/(*—,”’ Ih: e
Equation (16) is recognized as the angular momentum of a particle of
mass am, /(m+m,) whose position vector is 7z . The solution to the two-
body problem is, therefore,equivalent to that of one body whose position

vector satisfies equation (13) and whose mass is 7, my ] (my my). Thus,
if the angular momentum per unit mass is defined as

h= ey
then,
ya (17)

>
b
>

=/

is a vector constant of integration of (13). Further, since this vector
is constant and normal to the instantaneous plane of motion ( the plane
of & and &£ ), the vectors 7Z(#) and % () must lie in the same plane.
This plane of motion is determined by giving the components of the unit
normal vector

5= £/
or, equivalently, a set of orientation angles such as those illustrated

in the following sketch. This latter representation is common practice
since the orientation angles are more readily visualized.

1



The angle "i", called the inclination angle, is the angle between the
orbit and reference planes measured in a plane perpendicular to their line
of intersection. The cosine of this angle is

A

Cool = ﬁ‘ﬁ" ot L 180°

The angle " Q " is the longitude of the ascending node, and is measured
in the reference plane from the principal direction to the ascending node.
Since the equation of the line of nodes is given by

L
"7

the angle " Q " is defined by the equation
A
ban O = ':
K|
The quadrant of n is fixed by checking the signs of the numerator and
denominator. This form of representation of the planc of motion has a
major failing, however, since for inclination angles of 0° or 180°, the
longltude of the ascending node is indeterminate (both A o.
and 4. are zero). This problem leads to considerable computational
difficulty in some analyses and requwres that either the reference plane
be altered or that the components of A itself be employed to describe the
plane. This problem (along with others which will be discussed subsequently)

serves as motivation for the development of more uniformly deterministic
elements presented later in the monograph.

>

>

For the special case in which hois zero, an alternate logic is
required since the motion is rectilinear (i.e., v = rv ) for all times.
In this case, a line, rather than a plane, contains all possible trajectories
and the orientation of the line is defined by 7 (dor V() .

15




2,4 CONIC MOTION INTEGRAL

So far,three of the six constants of integration required for the
reduced problem have been determined., However, the three remaining constants
can be obtained by forming the vector product of h and equation (13)

(F)xF=(-% R)xk
= A R X (% xF) - (18)

but

—t A

Ax (EXFE)= (R -A)E ~(AF)T

by vector identity. Thus, substitution of (19) into (18) yields

(20)

However, the vector % is a constant so the left side of (20) can be written
as the time derivative of (X x % ), i.e.,

Yt (X x h) = %t () (21)
Finally, integration of (21) yields

T x b su(?r8) (22)

where € 1is a vector whose components are the remaining constants of integra-
tion (two components are independent ; the third is not, since &. h=0 ).

The vector constant € can be related to the more conventional form
of the solution by forming the scalar product of A and equation (22)
"and employing the identity
A (Axh)= (/z XZ) b
= 4%

SO 2 . “ T
b= a2 +F -E)

= s+ IE)| &) coo (7,E))] (23)

16



or
e A
/+|8leso(%, & (24)

This equation proves Kepler's third observation, since it is recognized as
the polar form of the equation of a conic section (see Appendix A). For
this reason, equation (24) is sometimes referred to as the conic motion
integral. The conventional parameters of the conic sections are defined
by comparing (24) with the classical form; i.e.,

= Vol
/+e Coo B (25)

where 2 is the radial distance of a point on the conic section from the
focus, » is the semi-latus rectum, e is the eccentricity, and e is the
angle between the radius vector and the vector directed toward periapse
from the focus.

Thus z -
S, es1R), O e(4,8)

u

and the vector constant € can now be interpreted as a vector whose
magnitude is equal to the eccentricity, and whose direction is defined by
the position of the periapse (i.e., 6 = 0).

Since the vector & lies in the orbital plane and since a geometrical
interpretation of the constants of integration is frequently desirable,
the direction of € is generally defined by specifying the argument of
periapse ( w ). This angle is measured in the orbital plane from the
ascending node to the line from the focus to periapse. If jr denotes a
vector directed toward the ascending node

Z=(5-2)2-(h-2)3

then the argument of periapse is calculated from

J-@ e #o

Le A £0 (26)

oo u =

These quantities are illustrated in the following sketch.

17



N

Thus, a geometrical explanation of the fact that only five of the six
constants of integration are independent can be given. Two are required to
define the orientation of the orbital plane( i,0.) one is required to
orient the line of apsides in the plane of motion ( w ), and two define
the angular momentum and eccentricity of trajectory ( #Z e ). The sixth
constant defines the position on the trajectory at the specified epoch
(discussions relating the position~time relationship will be presented in
subsequent. sections of this monograph).

18



2,5 DESCRIPTION OF THE VELOCITY _VECTOR AND THE ENERGY OF THE SYSTEM

The first integra.l of the motion and the conic motion integra.l have so
far been used to geénerate five independent constants of integration for the
Kepler problem. These constants and equation (16) determine a solution path
function ¢ of the radius /£ such that” #¢A)= 0, However, no explicit
relations have been derived which exhibit information directly pertaining to
the velocity vector. Thus motivated, consider the equation for the velocity
vector in rotating coordinates, and the following. sketch drawn in the plane

0of motion.

(27)

>

v=/'l'ﬁ +)Lé

Now differentiating equation (24), yields the radial velocity component

N = pe S 8 6
(/+ets00)?
But h=n%6
Thus
T paE e w6 (28)

19



and 26

]
r

pﬁ(/,‘e cs0 6) (29)

Equations (28) and (29) suggest a geometrical construction of the
velocity vector in terms of two vectors of fixed magnitudes. One vector
has the magnitude (-%/p ) and lies along the instantaneous & . This
vector provides the constant term in equation (29). The other vector of
magnitude 484 1is aligned with the velocity vector at periapse. The
velocity vector at any point in the orbit is then given by the vector sum
as illustrated in the following sketch

focus periapse

A second representation of the velocity wvector involving the magnitude
of vV and the flight path angle ¥ can be obtained by considering the follow-
ing scalar product

A= (FA)2
x-E :
Yar (*57) = -4 ¢
t e .
Bu F-F=v*
and :
=% (%)
Thus Jd(¥% __«
%5 %)=
or
v2_ o« ¢ (30)
z r



where € is a scalar constant of integration recosnized to be the total
energy per unit mass of the equivalent one body'(ﬁﬁﬁ?) . Thus, given
a set of initial conditions (or equivalently € ) and a value of & (or.n )

V= 1-\/2(//{5 /-E) | (31)

and

= = = X2 2}
/#€e oo <)

Use of the set of equations (28, 29) or the corresponding set (31, 32)

is primarily a matter of preference, since they are of the same order of

complexity.

Since six constants of integration have already been obtained for the
Kepler problem, € must be a dependent constant. This dependency is shown

—

by forming the dot product of £ with itself, i.e.,

but it has previously been shown that /f(/’Zx 77.)=/72

, W2 vEER
Th'LIb, 62‘-‘- 'Z/a/z +:é(—7
= w2 y2 _ AL
/+2 57 ( 2 <) (33)
Therefore
2 hn*
e“=/+2€ uF (34a)

and the dependency of € on the previously obtained integration constants
is demonstrated. This dependency can also take another form by referring
to Appendix B and noting that since

a2
substitution of (34a) will produce
= —/_éf
R&
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or

= - | (34b)
Ra -

At this point, one additional formula will be developed'to show the
relationship between the various energy components. Consider the moment of
inertia (a scalar) of a system of n particles

J'-mez E/)?ﬂ - Z
=/ ént

Differentiatlng with respect to time yields
. ” - 2
I=2 g: » g,

I= 2123 7 2 /z +2223 Av.ﬂ
Now if the force fleld is conservatlve and if U and 7 are employed to
denote the total potential and kinetic energies (i.e., for the system),

F=-2 ,z":/?.-‘ﬁ-u+47

__22‘ 31 +x 5{. 3;‘)7"6/7

£t
But ¢ is homogeneous in the coordlnates and of the order -/ . That is, ¢/
has the property that the substitution z =hx , - ) and g =) merely
reproduces the original ¢/ multipled by )" whg?e é; is the order of the
function (in this case -/ ). Thus, the form of I can be simplified as
follows:

Uz, )‘y);)= MUz ¢ 3)

Now differentiating with respect to )\ yields

WU (=, 2¢ 2w , v 2(hg) , Y ()
7 ( 73 Iz) ) 2()7) 37\ fa(;,;) I
v

= ==

Zsom T X 00 9(,\3() 7 3?(1\3)

But » is an arbitrary constant so it can be selected to be / . Substitution
of this value yields Euler's theorem for homogeneous functions.

nl= % VU
Therefore

=4 7-20

Finally, if the system is to be stable (i.e., none of the 7, —~ =o ) and
does not collapse (i.e., /7 —~o ),then the time average of I must be
Zero,
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Thus

—_—t e _ I4

7 = ~al
where the prime denotes a time aver
energy of the system reduces to

€ = U +#T
/, .
24U -7

This is the Virial Theorem.
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2.6 TIME DEPENDENT NATURE OF THE MOTION

To this point the components of the position and velocity vectors have
been related to one another or to the true anomaly, & , However, no attempt
has been made to express the solution in terms of the independent variable
time, This final step in the development of the basic two-body feormulae will
require the consideration of each of the three distinct conic sections, Thus,
consider the case of elliptic, hyperbolic and parabolic motion, respectively,

2,6,1 Elliptic Motion

The scalar magnitude of the angular momentum vector (all conic motions)
is 2 4
h = "6

Thus, the time dependence of the motion can be obtained from

t : 6 2248
iojdéaj”

' e _de
-z (37)
(]

(1+e e 0)?

The solution to equation (37) is presented in most tables of integrals; how-
ever, it is informative from the standpoint of the introduction of variables
as yet undefined to perform the integration,

The eccentric anomaly illustrated in Appendix B is defined as follows:

n o= a(/-ecEY = P/ ( 1tecor ®) (38a)

where

a/r-e?

solving equation (38a) for E = E(8), yields

oo £ = SF 08 (38¢)
/+ € Cool

aw E =

2l




Thus differentiating (38c) yields

sty GE _ (1F e cs08)(~atw) §)=(e+ ct08)(-e ar)8)
B Z
Jd 8 (/+ e es08)

26 (/-e?)
ST (/* 2 coo 6)%

and substituting (38b) reduces this equation to

dE - _J/-e* (39)

do /# €Coop
Finally, substituting (38a) and (39) into (37) yields

i _éj_/’g / (1reco0b) o
-t S w* 4 (Ireco8)® [/-e®

L2 rf(/-ecooE)
= ZI (/_62)-'/2 dE

A%

= //%f [ £-c wn£] (40)

Equation (40), which is commonly referred to as Kepler's equation, defines the
position variable E as an implicit function of the time from the periapse

(E =0 when & = 03 thus, 4, is the time of periapse passage, the 6th independ-
ent constant) and completes the basic development of elliptic motion,

Implicit in equation (40) is the relationship for the orbital period since
values of the true anomaly ( 6 ) and the eccentric anomaly (E) are the same for
6 = 7w , Therefore one anomalistic period (corresponds to the time required

for 6 to increase from zero to 277) is

a5



or
27
T= "n

(41)

where » is the mean motion (i,e. the mean angular rate in radians per unit
of time ) .

The solution of Kepler's equation for the mean anomaly as a function of
the eccentric anomaly is direct. However, the reverse determination for the
eccentric anomaly as a function of time (or mean anomaly) involves the solu-
tion of a transcendental equation. This reverse solution (while at times
burdensome) is not unmanageable and is always unique since M is a monotonically
increasing function of E, That is

aM _
0’5_/ € Coo £

is positive definite for all E(e</ ), Once E is found, the true anomaly can
be evaluated explicitly as shown in Appendix B, i.e.,

) B= % f1-e? ) E (42a)
. &
ero 6 = 5 (oo k-e¢) (42b)
o_ J/2e £
éﬂ/){,z— J-e mz (420)

Since the inverse solution of Kepler's equation is more generally attempted
than the direct solution (most trajectorv problems employ time as independent
variable), many techniques have been devised to resolve the problem, Two of
these techniques (series expansion and Newton's method of numerical iteration)
will be discussed since they are easily adapted for manual or digital computer
solutions,

Consider the quantity E-M = e sin E. This is a periodic function of either
of the anomalies, E or M, Let this quantity be considered as a function of M.

Then, since it is periodic (with period P = 27 ), it can be written as a
Fourier series in M as

2] .
E-m=a,t+ 2 (a, o0, M+ 4, s, M) (43)
n=t
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where the coefficients are given by

_—
K.

N

2z

aﬂ:;’feMEdM s a”=#few£aanMdM,
o o
2w
z . .
4,= z;[.QZJaqu?»Q»V/mA1aVW
From equation (42) dM = (1 - e cos E) d E' and the coefficient o, becomes

27
a, = icf(ewf—e‘wé'm £)dE =0
0

Also, since (e sin E) is an odd periodic function, then «, = 0. The
expression for .4 is integrated by parts to give

27

2%
4:-—_;/; CME&)O/?M/ +7;/;;fcooﬂM(//eM£) (4u)
0 o

The first term on the right side of (u44) is zero., Now the second term can be
evaluated by substituting (E - M) for (e sin E),

2w 27
/
4 =”4”/ coonM dE —,,—,,aj oo n M IM
[

The second integral of this expression is also zero, Finally, since the cosine
function is even, the limits on the single remaining integral can be changed
to give

” .
«4‘,{% too(né —re ME)O’E (45)
4

The form of equation (45) is recognized as that of the Bessel function

Jn(ne) of the first kind of order n where

-

KA
I, (7€) = 7—74—[ ﬁoO(HE—//eME) dE
o
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so that by, = % Jnp(ne). Thus, the Fourier series expansion of E = E(M)
becomes

o0
E=M+ ) 2 T (ne) am nM (46)
#=/

Where ,for purposes of calculation, the Bessel function of the first kind of
order n is
- d‘ -,15)24‘7"7
-0~ (Z

I<ﬂe)=g A7 (Zn)7

This series is convergent for all M(e < .66274),

Once an estimate of E has been obtained from this series from a
moderately accurate graphical solution, or from a numerical search, the esti-
mate can be refined to the desired precision by empleoying Newton's method.
This method is a simple restatement of the Taylor expansion in which all but
first-order terms have been neglected (Thus, the neighborhood of the position
variable must have been located.). To be specific

M
M=M + € | AE
Ee E;

AE =(M-,é;. /eMEL.)/( %4/ )
[:EL-

and .
_ M-E Q) f
E&r/ /- e coo £, + £ (47)

This iteration converges quite rapidly (generally at the rate of about 2 digits
per iteration) given an estimate which is accurate through the second digit,

Before leaving the discussion of elliptic motion, it is noted that the
arguments advanced when expanding Kepler's equation could be applied to any of
the position or velocity dependent variables., Thus, for those cases where the
eccentricity is sufficiently small to assure convergence of the series, a
series representation can be utilized to replace the process of solving for
eccentric anomaly, the true anomaly, etc. References 3 and L present the
general forms of the Fourier-Bessel expansions for most of these parameters,
The more useful of these equations have been expanded and are presented below
through terms of order ¢ .,
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2,6,2 Hyperbolic Motion

The anomaly of Kepler's equation for the case of hyperbolic motion (i.e.,
e > 1, h # 0) can also be obtained from equation (37). In contrast to the
previous approach, however, the solution will be obtained from a table of
integrals as

é-é"://:a& [-F feMF] (57)
6140)

where F is referred to as the hyperbolic anomaly and is defined by the equa-
tion

7= a.(/—e coa}éF) (58)

comparison of equations (57) and (40) and/or equations (58) and (38) reveals
that this solution is identical to that for elliptic motion under the following
substitution

£ = F (59)

Thus, all of the basic results derived previously for the specific case of
elliptic motion can be extended directly to the case of hyperbolic motion,
i.e.

a6 L /e%l amh F (60a)

eoo 8 = F(cooss F-e) (60b)

& [e+ £
Zan S & Lart (60c)

The inverse solution of (57) is accomplished in exactly the same fashion
as was (40), However, the series expansion employed previously must be dis-
carded for this case, This conclusion is due to the fact that the upper limit
on the eccentricity was placed at .66274,,., if the series was to be uniformly
convergent, In fact, no series approximations for initial estimates which are
valid over large variations of time can be constructed because the functions
M-F and F are not periodic,
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2.6,3 Parabolic Motion

Return once again to equation (37) for the case of parabolic motion

(i,esy e = 1, h # 0), For this type of motion

.2
r /+C0 0
But
]+ oo & 2 ¢s0% é%
and
mz}a = /rtam?E

Thus (37) becomes

larp 8
- é_/z_f (/,« 2) 8

N

/2 [fn 2

(61)

In contrast to the cases of elliptic and hyperbolic motion, no inter-

mediate variable analogous to E or F is required.

However, as before, it is

necessary to solve (61) iteratively for @ = @ (t) or for this case solve
the cubic equation (in tan @ /2) and subsequently evaluate the true anomaly,
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2,7 DEFINITIVE ORBITAL ELEMENTS

Throughout the text of the previous discussions, reference has been made
to computational problems arising from certain combinations of initial condi-
tions which tended to make the solution in terms of the geometrical set of
orbital elements (a, e, i, &, w, To) indeterminate. (Some of these condi-
tions were e =0, i =0 i= 180%) This behavior causes no concern in some
problems where the traJectorles of interest are well defined and lie beyond
the range over which numerical problems arising from the formulation can be
expected to occur. However, there are many other problems (such as those
arising in the construction of general conic reference trajectories for an
Encke integration of an arbitrary satellite trajectory) in which a #fix" is
required to avoid the ambiguity at the ill-conditioned points and the asso-
ciated loss of significance in the neighborhood of these points. Thus, the
following paragraphs will be directed to the task of modifying the computa-
tional procedure so as to effect the desired behavior.

Before embarking on this task, however, it is important to note that all
of the problems which must be resolved arise from the attempt to employ a set
of angles (i, Q, W) to define the orientation of the orbital plane and of the
line of apsides in the orbital plane to be utilized as the reference direction.
Thus, attention will be directed toward means of expressing the motion in the
inertial coordinate system without the aid of these quantities. Several means
exist to accomplish this objective.

1. Select combinations of variables which taken as a
group are well defined.

2. Discard this set of orbital elements and derive a
set of new elements (employ the initial position
and velocity components directly as elements).

The set which will be recommended for use will then depend on the data avail-
able, the method of calculation, the degree of complexity involved in calculat-
ing with any given set, the numerical accuracy desired, and the sufficiency
of a given set to define the orbit.
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2,7.1 The Set [a, e cos Ey,e sin E,, b T

As was shown.earlier, the specification of the components of h resolved
problems associated with inclinations of e and W . Thus, if h is given,
attention need only be directed toward the problem of defining a principal
direction other than Jt,, to be utilized for the purpose of defining time
along the trajectory. This set of wvariables is established to utilize the
initial position vector R, (unit magnitude) as such a direction.

Consider Kepler's equation in the form

(£-T)-(4-T) » L E-esinE - E+esink, ]

or

M-M, = E-E, - el sinE - sinE, 1] (62)

Now if E is replaced by the quantity

E=~E, + (E-£) = E + AE

and if this quantity is substituted into Equation (62) and the result expanded,
the change in the mean anomaly can be expressed as

M-M, = esmE, + AE - ecosk, sin AE

- esin E, cos AE

S + AE -Csin AE - S coslAE (63)

where

: e sin k.

cos £,

0O w
N
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Now, if the constants S and C can be evaluated uniquely for the case
of circular motion; and if AE can be related to the angle between A, and
AR ; then a deterministic solution is possible for all elliptic motions. The
first of these objectives 1is accomplished by referring to

n = ol 1-ecos £)
or ecos E, = C = a- R, = 1 - K (64)
o o

Now, since Equation (64) may be differentiated to yield
esink, =S = n, /(ak)

and since Kepler's equation may be differentiated to yield

M= E("CCOSE)
= E'(ﬂ-/&)

£ may be written as:

E.‘ = M° ( a./n.,)
- [ Carn) < [Z]
a.' O.ﬂo
and
. s
5 = wn /(wa)
. AR wa)® (65)

The final step in the derivation is the relation of the change in the
eccentric and true anomalies. This step is essential since the change in the
true anaomaly (a@) will orient the vector A in the plane of motion

(defined by A ) with respect to A, . Referring to Equations (B9) and (B10),
it follows that:
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cos©® = cos (O -6, +6,) = a( cosE-e) (66a)
-t

5@ = sin(©®-6, +8,) = ayjfi-et sk (66b)
/t

Thus, expanding Equation (66) in terms of cos (€-8,) and sin (6-6v) yields
the linear equations below, written in matrix form

cos O, - 316, cos (0-0.) % (Cos £-¢)
. = (67)
S/n O cos O, sin (O - o.) o // -t sin £
Jt

A determinant solution for cos (8-6y) and sin (6-6¢) then yields

o (Cos £-¢) -0 Ji-e* sinE,
COS(G‘SQ) = ~ }lo

o Jr=c® sin E a (cos£E,-e) (68)

s A,

g(Cos E°~c) o ( cos E-e)
sm(®-68,) = 7o -

o Vi sim £, a Ji-et sinE (69)

n, V]

Expanding the determinants (68) and (69) in terms of (E~Eo) now yields

neos (6-0,) = _9_-t [ SI‘C(I'C) +3(1-C)smn aF
o

#(1-C=5%) cos AE ] (70)
nsm(0-6.)= g€ [ S+ (1-C)smAE -Seas AE 1 ()
/T, _
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The expressions (70) and (71) are immediately recognized as the components of
the positior}\ vector /U in the /%, direction and in the direction of increasing
anomaly ( A X A, ), respectively, i.e.

JU cos (O'so\ )Al. + n sin(0-6,) 3° (72)

1)
]

~ - A
where 6, = hixo

Thus, since S and C, and thus st cos(€-@,) and s sin(@-6,),are deter-
ministic for_.all motions €< ! , Eguation (72) is a unique representation of
the vector s, and is valid for all eccentricities e<rs .

The process of utilizing these variables to define the position vector as
a function of time is as follows.

1. Equations (64) and (65) are utilized to define the
variables C and S .

2. Kepler's equation in the form (62) is solved iter-
atively for AE .

3. Equations (70) and (71) are solved for Jtcos(€-8p)
and /t.sin(O—Oo) .

-
L. Equation (72) is solved for /U .

The solution for the velocity vector may now be obtained by differentiat-
ing Equation (72) and substituting for the derivatives of the coefficients of
n, and @, their equivalents. Or, by expressing the velocity vector in terms
of its magnitude and flight path angle. This latter approach is more attractive
since both of the required quantities are easily defined (the velocity magnitude
from the energy equation and the flight path angle from the angular momentum).
Thus,

V = vsnd A « veos?d 8 (73)
where V= \/—:0- (}‘L_i - _ol_‘)—' : (71;3.)
cos ¥ = Yeup / (rv) (74b)



and where sin ¥ is fixed by expressing ¥ in terms of 60, or AE
(to avoid sign ambiguities in the angle ¥ )

ton ¥ = e sin EF

Vi-et

= _e sin(Ey,+ AE)
r-e

- / E S COSAE -+ C sin AE ] (7hc)

/7-€

This set of variables, while valid for all e <] , is also extendable
to the case of hyperbolic motion. This fact is observed by noting that the
substitution of E = iF into (63) through (74) yields purely real terms.
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24742 The Set [Fg, Vg, T1]

Since the angular momentum for the angular momentum for the central force
problem is constant, any vector lying in the plane of motion (é.g., A) can be
expressed as a linear combination of any two non-colinear vectors in that
plane, Thus, the initial position and velocity vectors themselves can be uti-

lized as "elements" for the purpose of constructing the radius vector at some
time (t) as

K. SA +aq7. BNCEY
where f and g are expressions to be determined, Furthermore, since %
and Q, are constants, then (75) can be differentiated to yield the velocity
vector

o= A rqV, (76)

Consider the following sketch illustrating motion in the orbit plane

v
8,1
F v,
» /(.
- ~ A A
where the normal to A&, in the orbit plane is given by ©_, = hx A, .

The position vector at time t is resolved as the sum of components in
the direction of the given radius and its normal, i.e,

2

neos B A, + nanA O,
(77)

2t [ COA/S /_z: + Sm/3 (/'ix-\;\ X)Eo]
L, h

4o



But, the vector identity for the triple cross product is
- - - - - - - - -
(L xV)xAa =(r, -1,)Ve (% V) (78)

Substituting this identity into (77) yields

- _4'[605/5 7". « A AV, - ;z‘o'-‘;° ig)] (79)
”, h
: - & . - R -
= //_l_t.( cos A - /L";Vo Ain/d )/lv +lth_n., s v, (80)

Now, since equations (75) and (80) represent the same vector,

—I

§ = )'—z.(/;“s/s) -( A °) s (81)
3:(%)/13/'0/3 (82)

At this point the geometrical element /9 must be tied into the dynamics
of the problem, This step is accomplished by recogplzlng that the angle A is
the difference in true anomalies for the vectors st and ;L s lee.,

X cos /3 Z cos ( ®-0.)

JLsmB = . sin (©-6u)
But these relationships have already been evaluated [equations (70), (71)] in
terms of the change in the eccentric anomaly. Thus, substituting, the function
f is found to be

£= - (1 - cos AE) (83)

alp

and 3 is

q - /—-( AE - sian AE) (8u)

The coefficients f and g can now be obtained by differentiating Kepler's
equation as follows

- -esin F - . s £,
%IE“{’” 51‘[5 esinF - E, + ecosk,]

or E = E(r/a)

b3



Now noting that

>
m
[1]]

P B
S

The desired functions can be expressed as

f = d
£ FZ(f)
= =& s/n Z]EZ&é
,L.
= - fma sindE (8s)
nr

and

-

d
d_(g)

/ '/Q}( I-cosAE)Aé
AL

! = & (1-cos AE) (86)
7t

Now, the solution in terms of these variables proceeds as follows

[,

"

1, solve Kepler's equation Eq (63)AE=AE(t)
2. evaluate f, f, g, g /Fas. (83), (84), (85), (86)]
3, evaluate T,V [Eas. (75), (7627

This representation of T

s V is completely deterministic for e ¢ 1 and can
be extended to the case e »

1 simply by substituting
E =-iF
and noting that [o.< o e>l ] for hyperbolic motion,
This solution is somewhat simpler than that employed in the case of the

variables [a, e cos Egy e sin Egy, hkl; thus, unless personal preference
dictates the use of the former, the latter is recommended.
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The set of parameters ( h e) can be utilized for predicting the motion

s

if the data which is given is ' T,,V, and if the nature of the indeterminacies
are examined. Consider the sketeh ’

A A A
hxN
A
r
4
‘ 2
% -
l w | . .2/ 7
— —= Y = L o~

As the vector € shrinks to zero its direction (the angle w ) becomes
undefined. The other vectors of the sketch, however, are still well
defined. Thus, the most direct method of solution is constructed by
employing either the vector N or the vector 'r: for the reference
direction.

As was mentioned in the text,the vector N is poorly defined in the
vicinity of inclination of 0° or 1@00. However, as was also mentioned this,
indeterminacy is easily resolved by selecting any other reference plane
(e.g., if 1 = o for the equatorial reference, select the ecliptic as the
fundamental plane). With N known, the procedure for determining # ¥V
as functions of time is: ’

solve for e and F
solve Kepler's equation [Eq. (63)] for Q£
solve Equations (70) and (71) for a®

solve for @ from

= cos (I’:n o< @P < r, >o
o o » 1) o

z
T< g<all, r, <0
z
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Compute r from

F = cos(p+AO) N + sm(@ra0e) hxR
P . _hila P (87)

| + -
. ->
define v from

- . A . A A
v rr + ro® hxr

"

"

- A A A A A
[« (€xR)-h]F + h hxi (88)
A r

This approach can be simplified slightly if the declsion function
regarding the definition of the pla.ne is removed. This objective can be
accomplished simply by noting that t is also defined by

A A A A
r = cosdO® r, t+ sindO (hxr,)

Note the similarity of equations (87 ) and ( 88 ) with equations
presented earlier for other approaches to deterministic elements. This
fact graphically _1llustrates the relationships between the geometrical
elements @ and h and the variables employed in the previous discussions.
Also note that as before the extension from the case e < | to the case e >]
is direct.
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2.7.L The Set [E, ro, at]

In many cases of orbit determination, two position vectors and their
time difference are either known or given as fixed boundary conditions in-
place of traditional orbital elements. The set (f,, f,, at), however, is not
a definitive set unless the following conditions are specified.

1. 7, % noncolinear, i.e., T4k
2. the direction or sense of rotation is specified

This set of specifications and the equations

L (89)
(éi’zAt =E2‘E)'Q(SINEZ“SINEl)

. - - ~fP-T
cos (7,:1,) = 46 = Cos'(Pe_ r:)-COs‘ %‘rji) (90)

can be used to determine © -
case through the use of two-dimensional numerical search techniques when

the direction or sense of rotation is specified to resolve the ambiguity in
A6, Since the simultaneous solution of the equation by slope methods
requires a close first estimate of the parameters a and e, it is advisable

to use a general method involving interaction of only a single variable
developed by Euler (for the case of hyperbolic motion and extended for the
elliptic and parabolic cases by Lambert and Lagrange) or (for the special case
where the values of the time difference are small), a method based on series
expansions.

R2.7.4.1 Small values of A t

o Since the solution to the vector differential equation of motion
¥=-F  can be expressed in a Taylor series convergent for an adequately
small time increment, A t then

=7 = = 2
T2= T“l +77A_b+_‘fl. (A"t) -+ (A‘l') 4 eses
2

Kot

Substituting for the derivatives of ¥ higher than ¥ the expressions

="('—‘r£‘3)

== (F2) i, % - (35) F
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then gives

T2 =1"‘-'!|+7-7.": (91)
where
Al .
£ = /-'F-*(l%)z+(%) Fo (43 R (92)
g = At - RN D (93)
37

Thus, for a sufficiently small time increment At, the veloc:.ty vector at
time tq (¥, ) can be calculated from equations (61-93) from ¥, , 7, and
At. This solutlon, in terms of the f and g series, does converge rapidly
to a single value of r for moderate values of At 8o that a solution for
any of the other sets of elements (sections 2.7.1 and 2.7.3) is possible.

2.7.4.2 The Method of Lambert-Euler-Lagrange

The method of Lambert-Euler-Lagrange, valid for all time increments,
consn.ders a conic section having semimajor axis length "a" and containing the
vectors r, R ,"-2 . Expressions are then developed relating A t, n+ r, , and
C=173 - ¥, ] to "a." These expressions are simultaneously solved by
numerical iteration of the single parameter Ma.®

Consider an elliptical path as the desired solution and let \’, g V'z,
denote the distance from the end points of ¥ and f‘z,respect.lvely,to the non-
central body focus F*. Since the sums (y; . r/) and(v, + r, ) must equal
2a, then

Y, = 2a -7,

rz" =2a - \

The intersection of two circles having radii v, and rz' drawn about the end
points of r, and ¥, , respectively, locate two foci F*'and r*”.
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Hence, two elliptical orbits exist for every wvalue of the semimajor
axis chosen. This fact is also true for the other conic sections as well.
For elliptical orbits, however, there is some minimum semimajor axis for
which the two circles of radius r; PR Just touch. For this case,

l‘,"+r‘2: =0

Substituting for ¥ and r’ then yields

or (Za'/w//v -y, ) +(,2a,MlN “rpg ) = ¢

aﬁanv =
All elliptical orbits have a semimajor axis length greater than or equal to
this value since no elliptical orbits exist for a¢a min. It is observed
in the diagrams that all elliptic orbits can be classified as being either
of two types,depending on whether or not the line connecting the two foci
intersects the chord c¢. For each of these orbit types in turn, there exists
two paths: one for each sense of rotation, i.e., clockwise or counter-clock-

Y1 + Y2 +C

kg



wise. Therefore, corresponding to every sem:_ma.jor axisa>a min, there are four
possible elliptical paths containing T and Tz'. and four generally different
times. Let £;and & be the eccentric anomalies of 7 and T, for one of these
paths; then

n=a((/-ecoses, )

:4(/“86’0552)

Adding these equations yields

T+ T, =2a [/—g_(COS E;+C05£2)]
Now let Z

2Gq =£E3 +E£

LY 2?— =£2 -£/
Then, in terms of G and g

TI + Iy

#

2a [/—%605(6-;!)~ecos(6+g)]

2a [/— e COS G COS }]

measured from the center of the ellipse as

But the chord can be expressed from the equations for the x and y coordinates
c?=(a cos £, -

a coskE, Y+ Ca Ji-e% sn &,

~-a/jJi-e2 sn&)?
= a*(cos & -

ws £ )+ a2(i1-e?) (SINEy-5s/N E )P

or in terms of G and g

¢t =ga® siN 65/N23.+4 a.z(l—ez)slszeos G

This latter equation can in turn be simplified by letting
0s R = e cos G

Under thls substitution the equation of the chord becomes
¢ = 2a* siv? [_f/NZG +(7-e?) (0526]
Z2a? siv ?[ /-e? costg |
4a? S/NZ? [ /-cos? R ]
1a* 5//\/2; siIv:E

1}
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or
C=2a SN 7 SIN R
At this point, define

<=R+e 5 ﬂ:ﬁ—gw (94)
and sum the expréssion for ' , r, and ¢ to obtain
T+ +C= 24,[/—605? cosi-rswg-swi]
:,za,[/—cos(i-:-?_)]
=2a. [/—c05°<:]

— o
Lep+e =da SINR E

(95)
In a similar manner, the relation
2 B
i+ p -0 =4 a SV 2 (96)
is obtained.
Finally, the differenced form of Kepler's equation becomes
L
(%)’ At =E£y-£ -e(SINE, ~SIvE,)
:2?.—2 e S/Ni— s q
=2g- 2 s g cos 4
- B _ o~ B o+ 8
or = (e<-B) -2 siw( =3 Yeos > )
/
a -
At =('A?§)2[[“"5/NOC)"(B"5/N ﬂ)] (97)

When solved simultaneously, Eq. (95), (96), and (97) constitute Lambert's
theorem for elliptic motion. Since four paths satisfy any single value of
na! chosen, it is apparent that the A+t given by Eq. (97) represents only
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one of the four time solutions possible for an ellipse. By means of a
geometrical argument described in Reference 5, the solution (97) with posi-
tive values of « and @ is shown to correspond to the path whose sector
area contains neither of the two foci. '

If only positive values of - and @ are consistently used from Eq. (95)
and (96), the solution for At for the case of the sector area containing
the central body focus F is

atps (F)3[ca-smadt (B-smp)] (98)

The remaining two solutions for sectors containing both foei F , F*, and the
empty foci F* are simply obtained by subtracting the times Eq. (97) and (98)
from the period of the motion, i.e.,

3.4

AtFF* = 21 (%)z ‘At (99)
o2\

AtF* = Zn(;‘) ‘AfF (100)

The sector geometry of the paths corresponding to these times is illus-
trated below:

'

(a) Sector Area contains no foci (b) Sector Area contains empty focus
( 46 < 180 ) ( 4A©< 180

i

(c) Sector Area contains both foci (d) Sector Area contains central body
( a & >180) ( ae> 80° ) '
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Expanding the functions SINo and s;nf in power series in Eq. (97) and
(98),and taking the limit as "a" —» = ,the time difference for parabolic
orbits for both anomalistic angular differences less than and greater than
180° yilelds

. 3, 3 0
atp- = t(-;T'i)[(ﬂ”a r)* 'Cfx”z*)/zj (a0 <7) (xon)

! 3
stpt =4 my)[(nrg e ~(r, 4 0 o @o>my  (102)

Next consider a hyperbolic path as being the desired solution and,as
before, let r, r denote the distance from the end points of ¥ and r2 R
respectively, to the non-central body focus F*¥. Since the difference in
distances of a point on a hyperbola from the focl is a positive constant
equal to -2a% then

r-r, = -2a =06 "%
or

1 L, -

rz ~V,* - 2a r, =rz-2a

! ’
The intersection of two circles having radii ¥, and % drawn about the end
points of ¥, and #,, respectively, locatestwo foci F¥ and F¥",

r,_"Zq \
7
e
F*' F
{ F,
*ll
h—Zq £
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Hence, two hyperbolic paths exist for every value of the parameter
(~2a). TFor one of these hyperbolas (having empty focus F*’), the line
between the foci intersects the chord ¢ and the anomalistic angular differ-
ence is less than 180°. For the other (having empty focus F¥) the line
between the foci does not intersect the chord and the anomalistic angular
difference is greater than 180°. '

In the limit as a — 0, the empty focus is located at % in the diagrams
and the chord ¢ becomes the only solution path. Since the total energy
g = - i% ", the straight line solution corresponds to the infinite energy

case,

By substituting for the eccentric anomaly,f = < E , in the elliptic for-
mulation of Lambert-Euler's method and letting

€-%6-= FZ-FI

cosh [ S52 )= € cosh (21T
then Eq. (95) and (96) become

f,4f, t< = (-4q) sinh? g (103)

2 &

rytr ~C=(-4a) sinh 2 (100)

and (97) becomes
~c3. L
at= (f)Z[(g;nhe -6) ~(51nhs—a)] AD < [80° (105)

Eq. (103), (104), and (105) are the hyperbolic form of the Lambert-
Euler method and can be solved simultaneously by an iteration procedure
involving the single parameter (-a). By means of a geometrical argument in
Reference 5, it is shown that the time increment given by Eq. (105) corres-
ponds to the case where the anomalistic angular difference is less than
180°, Also, it is shown that for an anomalistic angular difference greater
than 180°, the time increment is given as:

3

at, = (32 )'2 [(s\'nhe. ~€)+ (sinh § -S)J A® > 180° (106)

Since [ ¥, ,r, , At] uniquely determines the path once the conditions
1 and 2 are satisfied,only one of the formulations of the Lambert-Euler
method is satisfied. The decision as to which of the three formulations
should be employed is aided by first evaluating the parabolic time increment
from Eq. (101) for A © < 180° or Eq. (102) for o & > 180°., If at is
greater than the parabolic time increment,the elliptic formulation is appli-
cable. If 1 is less than the parabolic time, the hyperbolic formulation is
used.
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3,0 RECOMMENDED PROCEDURES

Many classes of motion and types of analysis have been considered in
regard to the application of the material presented in Section 2.0 of this
Monograph. This review revealed many cases in which the classical set of
elements (a, e, i, @, L%, Mo) is to be preferred due to the graphic display
of information. However, these studies also revealed that a more universal
form of the solution should be adopted for those cases in which the prime
concern was in generating values of 7 and V as functions of time. This
conclusion was made based on the indeterminacies resulting in the solution
for the cases e= 0, i =0 and/or i = 7 and on difficulties arising in
the solution for values of e »i .

Based on the analysis of the materlal;presented in this Monograph, it
is recommended that the set of variables f, , Vo (and the associated
parameters f, g, f and ¢ ) be employed for this latter application. This
set exhibits none of the problems associated with the classical set and is
generally well behaved. Further, an extremely simple computational procedure
can be constructed to mechanize these equations for elliptic or hyperbolic
motion. One such mechanization is presented in diagramatic form on another
page for the case in which ¥, , V, are given and ¥ , Vv are desired at t-t,.

Special note is made that the procedure employed for determining the
initial estimate of X (X = E-Eo or F-Fo) is a numerical search. This approach
(rather than series expansion, for example) was taken to assure that the
rationale would be valid for elliptic and hyperbolic motion. The significance
of the two branches is

Branch 1 - (In this case, values of I and V are being
generated either for the first time or at
large time steps.) The initial value of X
is selected as M-My and a grid for the
numerical search is set at (X)mog 360°
10

Branch 2 - (In this case, values of F and v are being
generated at reasonably small time steps and the
previous value of X is available.) The initial
value of X 1is selected as the previous value
plus the change in the mean anomaly (Mp~Mp-1) and
the grid size is set at Mp-M, 7 . This case is

extremely useful in the case of an Encke inte-
gration, for example.
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Once this data is available, a search process is initiated as illustrated in
the sketch

A fixed step (A ) is employed in this process until 1q.l >[9.] . At this
time, A is reduced and the process continued. The numerical search phase
terminates when A <.! , and a Newton iteration is initiated. This process
continues until }a. | <€ . At this point in the process, the position
dependent variables (%,3,0) are evaluated (only the case of elliptic motion is
shownj however, only minor change is required for adding the hyperbolic capa-

bllzty) and the coefficients f, g, £ and g defined. The solution is now
complete.,
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Compute L) , V(&)

Vil = V(o) / ym

T = (E-4,) Ve

e = //'f[o)/

D, = A&V | ,

o = ( 2 - -\7, V(o) )-
Jto

[ = !l - n/a

No previovs Knewhdye /k Previovs value of X 13

of X is ovarlable T~ Knewn for 4,-2, [ (¢-¢,) small ]

X, =T/ lal™*

X,= Xo + AT/ la]™
.1 AT/laI’"-

A =.1(X. med 3¢0) A =
! !
G, = T - T(evalvated ot X))
G, = T - TClevaloatd ot Xe+A (G,/7161)]
16, 1 <16l /k 1.1 > 16,1
x¢= Xe + A[Go/lG.ll Xe= Xe
A= A/s
é a4 >.1
>3
G-’ = T-T(evalvatd ot XJ)
xe = Xe "'G/ Q_’,"
axl
Gl > €
F = ‘lr- Cgll, g= f:slﬂx¢
- - - — O = 3 Xe - 8in Xe
&) = § Feo) ¢+ sv(o) s f(( -,, n;( ))
§ = -S 7/ () = /- cos Xe
é = 1 - C/n
V) = (EFe) r g V()Y
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APPENDIX A
POLAR FORM OF THE EQUATIONS OF A CONIC SECTION
AND THE CLASSIFICATION OF SOLUTION PATHS

It will be verified that equation (24) of the text does indeed
represent the polar form of the equation of a conic section. To do so,
the following definition of a coni¢ section is used:

A conic section is the locus generated by a
p01nt whose distence from a p01nt called the
focus is in a fixed ratio to its yerpendicular

distance to a straight line called the
directrix,

The geometry of a general conic section is shown in the following diagram:

Jn-ﬁc*rix

Let e be the fixed ratio of the distance to the focus to the distance to
the directrix. The parameter e, called the eccentricity, will then be
given by @ =#&/d . Let the fixed distance from the focus to the
directrix be _)P/e s then

et +d = =

where the angle @ is the true anomaly and is measured from the direction
of least radial distance. Substituting d= ) /€ into the above gives:
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) (e &+L) = x=
—_—
JL = \+ec@<\_9

which is identical to the integral of the motion (24,). For e = O the
path is one of constant radius, namely a circle. For || <= |

is always finite for all © and the path is an ellipse, For \el > 1 ,
M becomes infinite as cos & —» (-|/e)and the path is a hyperbola.
When e = 1, the solution path is a parabola. The parameter p, known as
the semi-latus rectum, is half the width of the conic section at ©="/2,
The solution path for p = O is rectilinear ( a straight line) and is of
little practical interest. For this reason, it will not be considered
here.

Since e® = 1+ ?-éaw/j‘} the eccentricity will be greater than,
equal to, or less than one dependlng on whether the total energy/unlt mass
( € ) is greater than, equal to, or less than zero (the quantity ),," bt
always being pos1t1ve) Thus, the solution paths can be classified in
terms of the eccentricity e, the total energy/unlt mass, or the relative
valuea of V/2 and B0, A table giving the values of e, € and the values
of V* . for the different conic sections is given below:

Conic Total Energy Value of
_Section Eccentricity, e /unit mass, € ViR
Circle e =0 é=-;E_~_';‘z V)(_ ).L
Ellipse e < 1 € < o T VIJt <2)L
Parabola e =1 € = C;-,, V_){':Z)J.
Hyperbola e>» 1 c > o V' > 2p
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_ APPENDIX B
SOME PROPERTIES OF THE CONIC SECTION

The Ellipse

An ellipse is twne locus of points whose distance to the directrix
is less than the distance to the focus, i.e., e { 1. The curve satisfying
this condition is closed about the focus and is symmetrical about the line
@=o . The rectangular cartesian form of the equation of an ellipse is

L ST (1)
a’ B Sy

where x and y are measured along the major axis and minor axis,respectively,
from an origin located at the center of the major axis. This curve is
symmetrical about both the x and the y axes with two foci located on the

x axis and has axis intercepts at x = + a and y = + b.

The maximum and minimum distances of the ellipse from the focus
are found from the polar form of the ellipse $o be

I = == gt = ‘:t )

i V% i — < Uik 1 <2

and the major axis length "2a" is the sum of these distances.

P
i

2.

Hence,

* = W\ —-e? (B2)

or

I a (1 -e) (B3)

In terms of the semi-major axis length, the maximum and minimum distances
are therefore

Ha, = & (122) Homia = & (1 @)
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These distances are indicated for a general ellipse in the following
"diagram: '

a(r-e) _— =
¢ < a(lte) —
F
A (4 AQ —————
X € 2] ¢
r

4y
The points F and F' donate the two foci of the ellipse, and point
C the center., By symmetry, CF=CF where

¥V =

= al(\ +a) —c

= o. &

Therefore, the x coordinate of a point on the ellipse given by polar
coordinates (%, & ) is

X = ae 4 X cea ©

Hence,

A —
ced O =

and the polar form of the equation for an ellipse becomes

oo (v -e:"\

\+e("";¢)
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or

H = alr-e¥) - e %x-ae) (84)

Since

& = (f;(-e..e\-L + ua,z (B5)

then substituting (Bl) into ( BS ) and rearranging terms gives

z z
_2(?_. + -—j——- = \ (B6)
o o> (1-€7)

Comparing (Bl ) and ( B6 ) now yields the semi-minor axis length in
terms of the semi-major axis length and the eccentricity, i.e.,

A = aN | -e? (B7)

Equation ( B6 ) suggests a construction of an ellipse by projection
of a circle of radius (a) on a plane inclined to that of the circle by an
angle (tot'di=€*) and intersecting at the center, Pursuing this development,
the equation of a circle of radius (a) in rectangular cartesian coordinates

is 2
]
B i SE (B3)
Q,-‘-

where y' is the ordinate of the circle in a plane which has been rotated
through an angle @h&‘ﬂ\-e-) from the y axis,
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Projection Plane . >
. x.Y) J
gaze®

. -
JERSE2 Cos” ( [77ei)

The projection of a point ( x, y' ) on the circle is given by (x, y) where

4 = '-3»' cod ( cod’' TR )
4 N —er

*
Hence, Y = S -ety Substitution of this expression in the equation
of the circle ( B8 ) then gives the equation of the projection of the circle,
namely the equation ( B6 ), for an ellipse of eccentricity e. The area
of an ellipse is, therefore, the area of the projection of its generating
circle, i,e.,

A = Ta‘m(c,o{'"{st-ew\
= Wa"N Cer

or in terms of the semi-minor axis
Az Wa b

The generation of an ellipse by an auxiliary circle
also enables an angle called the eccentric anomaly to be defined., The
éccentric anomaly is the central angle of the generating circle which
intersects the circle at a point Q' whose projection Q onto the ellipse
is determined by the true anomaly. A diagram showing the relationship
between the eccentric and true anomalies, with both the generating circle
(also called the auxiliary circle) and its ellipse drawn in the same
plane, is given:
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The coordinates of the point Q' on the circle are, in terms of the
eccentric anomaly,

A = o ced B vk'= o dn E.

The coordinates of the projection of this point (i.e., Q) on the ellipse

aLre

Qw

- ae %« Netsa O = X a8

Equating the expressions for the X coordinate then gives
HNeed 8 = a(cede® - &) (B9)
and since Y4 = -}' Ny - e+ then

P O a N - _ain E . (B10)
Squaring ( B9 ) and ( B10) and then adding gives

H = o (et E- 22 canrE v er) wad (et )allE

= ar (l\~22ecea E + e ces* E) (B11)



Taking the square root of both sides of (~Bll ) then gives the relation

between the radial distance of the ellipse from the focus as a function
of the eccentric anomaly of the auxiliary circle,

o= a(\ - e ces TE.E

(B12) -

The eccentric and true anomalies can be related to each other
by rewriting ( B9 ) in terms of the half angle 3 giving

» (2 m"%—l) = a (ME~&)

(B13)
A V-2t S) = a (weE-e) (B14)
then substituting ( B12) in (B13 ) and ( B14) gives
23 ot S 2 a (1-e)( 1+ coeE) (B15)
2t s & = a (1-e) (1l —con®) (B16)

and finally dividing (B16 ) by (B15 ) and employing the half-angle sub-
stitutions for E gives the following relation.

Fom

(l

» O

z
\ 4+ & l 35_
| —e 2 (B17)

The Hyperbola

A conic section having eccentricity greater than one is a hyperbola,
Since the radial distance of the hyperbola from its focus approaches
infinity as the true anomaly approaches the value cos”

(-\/=), the hyperbola
is an open unbounded curve (see equation ( 24 ). This fact is also
apparent from the cartesian form of the equation for a hyperbola

o - ——17 = | (B18)

Some clarification is, however, necessary in conjunction with the use of
the parameter "a" in equation (B18 ).

For the ellipse, it represented the.
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semi-major axis length., For the hyperbola, its magnitude represents the
distance of the periapse from the center or origin of coordinates. This
conflict will be resolved by noting that the quantity "a" is positive for
the ellipse and negative for the hyperbola ( equations 27 and 33).

Since no real values of y exist which satisfy ( B18) for the
interval \A\l< —a., the two branches of the hyperbola are symmetric to
each other about the y axis. The only axes intercepts are those at x =+ a.
Each branch'has its own focus (located on the x axis at distances of 1 ae

from the center), and directrix {parallel to the y axes at distances
+ a/e from the center).

ye by x Y=~ %

-8 /
-a. N

For large values of x and y these branches lean toward the straight lines
= 2 (bk) ~® called asymptotes. Since this situation occurs as ©
approaches coq™ (~1/2), then

Tom™' (%.’—,\ = ced” (—2

Solving for b then gives

L= a 1%‘_0«5' (""63:(
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or

/Qx-L:: O:L(.et"\)

The hyperbolic anomaly defined in equation (58) » though
imaginary, has a geometrical interpretation. This interpretation is
obtained by realizing that F is

¥ = = A
2_1Ta..ﬂ,-

where A is the measured area shown on the previous sketch.
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APPENDIX C
POTENTIAL OF AN AXIALLY SYMMETRIC MASS

Congider the integral

- - A = =t

defining the potential of a dlstrlbuted mass M at an external point P,
(See section 2. 1) But,

)t--Y_(';vE\zJ« ("&"L\l + (»x()- S\‘]Ji

where (x, ¥ z) are the coordinates of ¥ ang ( g ,ﬂ R S ) are the
coordinates of dmy, .
Then

and

v/[“’»
(gD
E
m
,_.-—/1
h’
v
b‘
)
o‘“
p/
L/—-|
o
3
o

By writing the other two second partials and adding the result, it is
shown that the potential function of a distributed mass satisfies Laplace's
2quation in the space external to the massj i.e.,

2 =
N U1 R ;__i‘ N ;_&J_L

Or, in terms of spherical coordinates QR,EZQﬁ, Laplace's equation
becomes

L RIS} \ A ! VS R
- A (ot 3t ) o S (e \ ez A6 O °
(c1)
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Ty
Y

b 34

The method of separation of variables will be used to generate
a solution of the forms

L = Rix)H(B) + I (&)

Substituting this form of the solution in Laplace's equation ( c1 )
yields

o é‘(fﬁ\*@*c__b +— =L¢(°"°‘P \R\-Q' +

!:‘.)'( J‘(‘Coéé
_L__ 440 § = o (CZ)
Wedd A8°
R‘G"CE
obtain
4 (,2 &R d - 7
a L o 0 Rl D) Jtage (c3)
® Cos® * Codce oM

Since the left side of (C3) is a function of X alone and the right side
a function of & and @ , then for any general set of coordinatesh,8 ,<
these sides must be constant. Let this constant be

¢15 = nwn *-l\

then (03) is rewritten as:

T2



z
)L‘J'Ps a 2 I EL_-%.« —n(rn+) R =o (ca)

v 2 Cerd | 43P
e e lerd ~ T 2 (X
= 7% F st @
In a similar manner,since the left and right sides of (05) are
functions of ¢ and @,respectively,then they must be constant, Let this
constant be —-P‘ . Then (CS) becomes
2

d4 8%
and

a 2 2 = o
Cod i—:&(’mc\’ 3%\ + (GUW‘P L K2 (c7)

Solution of (04), (06), and (C7) then completes the problem of determination
of a potential function by separation of variables. Solutions will be
sought that are symmetric about the axis =T/, since this case very closely
approximates the potential of the earth about its axis of rotation.

The general solution of the equation in R (C4) is

Ar" + BT , v = -3
1
Z

-3 -3
= AXT &« Bt Rluxn i o= -

’

R

Equation (C6) has a general solution of the form

H = C coaeP@®+ Danpd, P

= C + v (_§ i> = o

.1



But for the axially symmetric body, the solution is independent
of © s P=0, D=0, andw®=C, a constant. Equation (C7) then becomes

L 4 & 2 -~ (c8)
ooad>=\¢(mcb:.;\+¢bmd>§ o

Equation (¢ 7 ) can now be rewritten in the form known as Legendre's
equation
"3 3
T pa. 7 = -
(V- pt) = 1_?_),L—————-+cb—§-—° (c9)
by letting sk =AMP | 4 golution to (C9) is obtained in the form of a
power series in/u [convergent for \)_..l <\ ], i.e.,

-]

_ % (c10)
£ - 2 “n S

) PN
Substitution of (C10) into (C9), however, yields the following
recursion relation between the coefficients

Dl by - :
(@ = = ‘6 cth ‘kt:db‘a e

Rz vt ) ( Rua2) ?

Equation (c11) leayes two arbitrary constants open to choice and the
general solution to (C9) can be written

*

where(iﬁ(yﬁ and /Q%(,}L) are series in even and odd powers of s , respec-
tively. (The valuePof these series depends on the value chosen for the
constant q). Let q be chosen such that n is an integer where 15~=41(n+0

then for k=n

Il

o, u-'b(),u\ + e /U‘B();A

4 = BN (s t)

and the coefficient Oy ., from equation (C10) vecomes zero. Consequently,
the coefficients a N s Ctpaae s Will also be zero; and depending

on whether k is even or odd, the even or odd series, LAB Q}p)or A> Q}"\
terminates as a nth order polynomial, ?

Th



For any other value of g chosen (where n is not an integer), the
series does not terminate and can be shown to be divergent by means of
Raabe's test. It therefore follows that the only solutions which re-
main convergent are those even or odd series terminating in a nth order
exponent of/l,i;e.,, for n equal to an integer. These are the series:

o, L n=o, = a4 6, -

T > >
a_’ A’-% R vw = \) 3__‘5’—’\) LA
These polynomials are known as Legendre polynomials when normalized such
that the value of the functions is unity for)*=l The first few of the
Legendre polynomials 1n:}L are:

N

= 1\

)A.
=

by

-
|

(3),1,"-!)

» T —\2’_ Qsﬁl'bﬁ)
- (38 p* 2o pt 42)

)
+
1

\

3 (C¥5')bg —‘7C>/y? -FISZ}L)

Combining the solution for R ,¥® , and & then yields

3
n

U= <= K_Aat"-» > K“M] T, ()

Since only functions which vanish as JU goes to infinity are of interest
with regard to the potential outside of a mass, the solution containing

Ar" is of no interest here. Further, sincethd potentisl equation
ot : O is linear, linear combinations of the form
as
U = - — tn (am D)
N
LRl

are valid solutions, This form is employed in describing the potential
of an axially symmetric earth model.
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APPENDIX D
EQUATIONS RELATING THE CLASSICAL PARAMETERS -
OF CONIC MOTION

Equations derived in the text of this monograph and in Appendix B have

haan Nti1ivad +0 derive ather Aantitiecs af A3 rent intarast Sn thoe analyald o
VoG UVALALLOTGU VWV UGl 4 Ve VWil \iuml‘l* LLTCO Vi ULLI VWY 1llVTlI TOouw Ll Lo mla.l.‘y [= N R

of elliptic and hyperbolic trajectories. This Appendix summarizes these
efforts. The equations presented relate the five independent constants of
integration derived in the text to the initial position and velocity vectors,
and then proceed to relate the components of position and velocity at other
points along the trajectory to the constants (elements) and the true or
eccentric anomaly at the new position. If the equations for elliptic and
hyperbolic motion are the same, they will not be repaeated.

1T S el 1 8
ELllpPlLl NyperboLdLe

Angular momentum

h = IFxvl
= r'e
rveosY

- VEF

Semi-major axis

o = na/(aau-rvd)
= A/ Lalr-e2]
= .5 (714 fp) not applicable
= P/ (1-e%)
= o/ (1+e) not applicable
= fp/ (1-¢e)
= fufp / p . not applicable
- [T /(amy]
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elliptic

hyperbolic

Eccentricity

e

Vi - ht/twa )
(rq_'rp)/(ra.ffp)
T ! - P/f‘_

P/ep) -1

=~y - pla
(rc./d-) -1

= /) - fMp/a

not applicable
not applicable

not applicable

Semi-latus rectum

P h*/ 4

(rv Cosa’)t/xv

a (/-et)

(fa/a)( 2a-Tg)

(rP/r.)().a- I‘P)
fofp /a

r. (1-e)

e rpCive)

= 2700 /()

n

n

not applicable

not applicable
not applicable

not applicable

Orientation elements

A

. -t A
¢ = ¢cos (h-.-2)
o< i T

“
OH. = Lan"L(g“i)/(h'?)]
ol N ¢ W A-% 20
/a’ ﬁ 20
Ny< Q<M B-R>0
h-P<o
< O <3 h-Rco
* 5 -g.co
3W/2¢0. < A A .K<o
A -Pro
w= cos'[L-8/CLe)]
O<w <17 e >0

T < w < 1N e, <o

-(AA

-

N ™y

MR -G P

(A xh )/

7




elliptic

hyperbolic

Radius
r= p/ Clitecos ©)
= (h/ )"
= o ( 1- ecos E)

o 1-e* Sin E / sin O
2ua/(ovtran)

P éaab’/ (CSI'IJO)

Velocity

A4

[A‘-(I-fcco;E)‘
VMo Cr-¢ cos £)
- (u C2a-r)/ra)”
h / Crecos i)

e (1 + 2ecos® +e')
r (/+ @cos® ) “
4 (1 + 2ecoso+eY / h

4 (1 + ecosh F')ﬁ
o () -ecoshF)

Vs

Flight

¥

path angle

= sin' [ esin®/1+2ccn® -rc")ﬁl
cos™! [t ecos®y (1 +zecoso~n‘)y']
cos'L A /v ] .
tan'[ € sin E / Q=) % ]
tan' [ U - r/p) tan O 1

$= tan [ esinhF/(e-n%]

Eccentric anomaly

E

= 2.£u:[/7_:_2¢_’ tan %]

= cos"[ (p.v’--A-)/c(a.v'--r ) ]

= ca;"[(¢+cos )/ (1+ecosO)
= cos'[(a-") / (ae) ]

sin'[ (rsin®)/(ayicer) ]

sis'[Vimersmo/Cise cos®)]

Hyperbolic anomaly

’Ztul-"ll_:—-i—',; tan !;_ ]

cosh [(avh w)/eCavt )]
cos h-'[ (e+cos @)/ (1+¢ cos®)]
cosh [ (a-r) /(ae) ]

sab'[ (reno) /(e feia)]
= sin l;‘[ Jei-t sino /(1tecose)]

F
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TRy

_gllipti;é o - ~ hyperbolic

True anomaly

cos'L Ceos®-e)/(l-€ecosE)] | © = cos’ L(coshF-&)/(-¢c coshF)]
cos' L (p-r/(er) ]
= gin'l Fh/(e) ]
= Jln-'L‘SIﬁ‘ Jl_-?./ l']
= sm'l pter¥y /(erd]
‘2“'1 AXA tan & ]

7-¢

)

sm"[ asinh F rg'T.T/ r ] .

tan'[ 'lz_g tanh £ ]

z

Radial velocity

v smnY¥

Wt - h/etH%

htan ¥/ r

h (1-t/p)tan O/ r
e« sin &/ h

m esin E /o T z=/-a esmnhF /r

- .
9"

i 0

Angular velocity

h/ et

(avi-a) h /( 4utalt)
wt (1tecos®d / R
[w Usecos®y / r’]y' 3
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Position & Velocity Components in 3-D o

|4 T

Z

=
—

letting

Where Ty(A), etc,, denotes a positive rotation about the X-axis through
the angle 4 . This notation was adapted in Reference 2.

.'(n,é,cp.#){

but for the second case, two successive rotations about the Z-axis are
required. Thus, the arguments of the transformation can be added.
=@+ 90 - ¥, the transformation T' reduces to

T'"Co,é,, d) =

The explicit form of the transformation T thus enables both positien or
velocity components to be written as

0+ w

xXBevPe 22
. A

XxRepP +22

<k %S

T, (-2 T,(-i) T,(-9)

<

T(a,i,¢) 53}

o

v
o

(o]

TCR ,i, @) T, Lg0-¥) g

;

;

v
o
o

Thus,

sy,
-
D Smmd

s T(aon,¢

X (or x) = r(orv) [ cos X cosk - sin 2 cost sint]
Y Lor¥?) = r(orv) [ sinf) cosk + Cost cost :/nd]
ZCorz) = r (oerv) L sinc¢ sino ]
A = @Plor =)
8o

NASA-Langley, 1968 —— 30
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