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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guildance,
Flight Mechanies, and TrajJectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports

in the series.
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azimuth angle

brightness

noise bandwidth

planet diameter

unit vectors of a cartesian coordinate system

elevation angle

vectors from planet center to occultation point
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Special Notation and Conventions

When several coordinate systems are being used at one time in the analysis
of a problem, such as in the inertial theory section of this monograph, it
is convenient to introduce a special notation in order to prevent confusion
as to which system is being used to express a particular vector. In the
notation adopted in this monograph, each coordinate system is assigned a
number; such as 1, 2, 3... . When a vector or a component of a vector is
written, a left superscript appears before the symbol to designate the
coordinate system in which it is expressed. For example, if a vector A is
expressed in terms of some coordinate system named "2", it 1s expressed as

2 k3 L'y
where €, , € y and ez_are unit vectors of coordinate system 2.

A transformation between one coordinate system and another is represented
by To.bcd where ab represents the number of new coordinate system and <d
represents the number of the old coordinate system defined by the transforma-
tion. For example, the transformation that takes a vector expressed in com-
ponents of coordinate system 11 to a vector expressed in terms of coordinate
system 07 is written as follows:

7x Hx
Ty To7u "Y
7, "~Z-

Note that the matrix of the transformation is merely the direction cosine
matrix of the new coordinate system with respect to the old system.
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1.0 STATEMENT OF THE PROBLEM

The purpose of this monograph is to present a comprehensive technical
discussion of observation theory and sensors applicable to the navigation of
boost and space vehicles,

Navigation measurements, which are the practical consequences of imple-
mentation of observation theory and sensors, involve complex physical
phenomena, It is thus a necessity that the technical discussion of observa-
tion theory and sensors in this monograph requires the crossing of the
boundaries of a number of technical disciplines. The major technical disci-
plines involved are physical optics, geometrical optics, electromagnetic
theory, classical mechanics, geophysics, noise theory and servo theory. The
obvious impossibility of providing a thorough discussion in each of the
technical dlscipllnes involved has forced a critical selectlon of mate ial
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of the following specific objectives

(1) To develop quantitative descriptions of the physical processes
associated with quantitative navigation measurements; i.e., to
develop a thorough description of the physics of the measure-
ment processes,

(2) To develop expressions for evaluation of the biases and random
errors which affect the accuracies of the navigation measure-
ment processes,

(3) To develop the relationships between navigation observables
(measurements) and the vehicle state vector (position and
velocity).

(4+) To present the solution of the navigation problem, i.e., the
determination of past, present, and future values of the
vehicle state vector from a set of measurements, for the
simple case in which no redundant measurement information is
present,

(5) To discuss vehicle constraints imposed by sensor requirements,
and criteria for selectimg observables to be measured.

The general objective, of course, is the production of a self-contained,

reference document for formulating, analyzing, and solving the practical prob-

lems of navigation measurements for boost and space vehicles,



2,0 STATE OF THE ART

The state of the art in observation theory and sensors is defined here to
be composed of two kinds of information: (1) the collection of all known
physical laws and empirically derived data associated with navigation measure-
ments, and (2) the collection of all known techniques of analysis which may be
operationally applied to the physical laws and empirically derived data to
generate analytical interrelationships between physical quantities associated
with navigation measurements,

The problem of selection and organization of the material within this
section has been difficult. It is an obvious impossibility to present in
detail the extensive collections of physical laws, physical data, and analyt-
ical techniques associated with navigation measurements within the one or two
hundred pages allocated to this discussion,

The material which has been developed and selected for presentation here
is the result of seeking the best compromise between completeness of coverage
and the conciseness of the important derivations, The emphasis in the presen-
tation is upon the interconnection of physical theory with the navigation
process. Although no '"beyond the state-of-the-art'' navigation techniques are
discussed, the reader is, by way of example, provided with several modes for
developing the navigation observation theory from any set of physical laws
through the application of analytical techniques,

In Section 2,1 which follows, a structure of the physical laws, physical
data, and techniques of analysis 1s presented which serves the dual purpose
of providing (1) a general framework into which the laws, data, and techniques
associated with navigation measurements may be fitted; and (2) a starting
point for the orderly sifting of the huge bulk of subject matter related to
navigation measurements, so that in the succeeding sections the technical
discussions may be concentrated upon the really significant areas of observa-
tion theory and sensors,



A

2.1 CLASSTFICATION OF NAVIGATION ORSERVATIONS AND MEASUREMENTS

Navigation observations and measurements are those parameters which
are quantitatively related to the vehicle state vector, i.e., position and
velocity. Hence, an operational test as to whether any observation or
mzasurement is potentially a "mnavigation observation or measnrement' is
to determine whether the value of the measurement in question varies with
a variation in the veshicle state vector. If the value of the measurement
varies with state vector variation, the measurement in question is a
potential navigation observation or measurement. As an example, the
measurement of the angles between two stars in a vehicle in interplanetary
space is not a navigation observation, since for practical purposes there
are no variations of this angle with variations of spacecraft position and
velgcity (aberration measurements are considered beyond the state of the
art).

This definition of a navigation observation is closely related to the
concept of '"observability'" in linear theory. If an =quation may be written
of the form:

Y] (q‘ TP T B B b, ]|
Yz | _ |G Qgz - - - Ozi - - - Can Xz ba
N : : : . +
yj Q, Gjz - - --ajy - 'aj_n )SK '
D’M E.m‘ Qmz « +++ Omk «+ - Ov;\n- an | bn:

where Y4, ... Y_ are measured quantities and where X, ... X, are components
of the state vector, and where b1, ..., b, are some %nown quantities, then
a component of the state vector X is said to be unobservable if all elements
of the kth column of the J'aé matrix are zero, i.e., if a;), = s = .00 =0,
More generally, if a linedr fransformation of the n componen% x state vector
is made to another n state vector Z such that

Vi Cu s G |E ™

N B ; S L

ym Cm¢g -+ - ¢ an Zn br‘l

then the '"system is not completely observable" if any transformation can be
found which converts the kth column to a zero column in the {c } matrix.
The simplicity of this definition of observability is apparent if the
matrix equation is expanded to a set of simultaneous equations, thereby
indicating that the values of the measurements y are unaffected

1

Ym

by the kth component of the Z state vector, Zy - Since the same



measurements result for an infinity of different values for &, , it is
obvious that no information concerning the value of 2, is contained in
the measurements themselves, and the statement that " zy is unobservable”
is reasonable.

Physical measurements themselves must consist of one or a combination
of measurements on particles, fields, or waves. Although a debailed exami-
nation of these three categories will yield numerous possible candidate
"navigation measurements", they may be more simply classified for the
present as follows:

Frequently Used Navigation Measurements:

1. Angular measurements of solar and celestial bodies, including
stadiametric and diameter measurements.

2. Radar range and range-rate measurements.

3. Infrared and other electromagnetic intensity measurements to yield
directional and range information, including sun and horizon
sensors and star trackers.

4. Inertial measurements using gyroscopes and accelerometers.

5. Radio directional measurements.

Infrequently Used and Potential Navigation Measurements:

Any physical quantity which is a function of vehicle position or

velocity may be a possible source of navigation information. Such quantities

are:

1. Gravitational, magnetic and electric field measurements, magnitude
and/or direction.

2. Radiocactivity measurements.

3. Pressure measurements in atmospheric flight.

4. Angle-of-attack measurements for atmospheric flight.

The "infrequently used and/or potential! category of navigation
measurements is impractical to treat in this monograph for the following
reasons:

1. Gravitational field measurements are currently measurable

via gravity gradient techniques; the accuracy required is currently

considered beyond the state of the art for the flight phases of
interest.




2. Electric and magnetic field measurements and radioactivity
measurements are time variant, and greatly affected by solar
radiation. Use of these measurements for navigation is currently
considered beyond the state of the art.

3. Pressure measurements in atmospheric flight are common, but
are rarely used for navigation purposes in the vehicles and for
the flight phases of interest.

L. Angle-of-attack measurements in atmospheric flight are common,
but are usually used within the vehicle control loop, and are
rarely used for navigation purposes in the vehicles and for the
flight phases of interest.

The phenomena which appear in the frequently used measurement lists
above are seen to involve two major sensor areas:

1. Sensors which operate upon electromagnetic radiation, which
includes telescopes, sextants, radars, infrared devices,
laser devices, and radio directional devices.

2. Sensors which operate upon inertial principles, namely
gyroscopes, accelerometers, and inertial measuring units.

The two areas of discussion which follow, namely, Radiation Theory and
Sensors, and Inertial Theory and Sensors, have been selected because these
areas appear to include all of the frequently used navigation measurements
which are currently within the state of the art.

2.2 RADIATION THEORY AND SENSORS

As discussed previously, many of the phenomena associated with
radiation measurements are essentially electromagnetic radiation phenomena.
The sensors which are used for these radiation measurements include
optical devices, infra-red devices, radar devices, etc. Each of these
sensors is associated with a number of complex electromagnetic phenomena.
The purpose of this section is to present a review of the physical phenomena
which are involved in the generation of a measured quantity by the use of these
sensors.

In line with one of the major objectives of the monograph series,
to present a unified treatment of the formulations and techniques of analysis,
the general theory describing electromagnetic radiation phenomena of
interest is presented first, followed by a more specific discussion of the
sensing techniques themselves,

2.2.1 General Theory

The general theory presented in this section is concerned with a
description of the phenomena associated with current state-of-the-art
navigation sensors. Hence, included in the following is a discussion of




diffraction, noise, and atmospheric phenomena such as penetration, absorption,
and refraction.

The general theory developed herein is for two purposes: Firstly, to
provide an introduction to the basic physics of the phenomena which play a
role in the navigation measurement process; secondly, to provide the basic
quantitative general equations which are used in later, more detailed
discussions of the sensors and their error characteristics. Since all forms
of electromagnetic radiation are different only in as much as their frequencies
differ, the description of the electromagnetic spectrum in the following
section provides a convenient and logical starting point for the discussion.

Acknowledgment is given to Space Technology Laboratories whose study
in atmospheric refraction (Reference 2) was quite useful in the preparation
of this monograph, and to Merrill A. Skolnik (Reference 3) for the
material on noise and radio techniques.

2.2.1.1 The Electromagnetic Spectrum

Those frequencies which are useful for observations are usually the
frequencies that have line-of-sight propagation. Although there is not a
sharp line that divides the propagation nature of waves of different
frequencies, 30 MC is generally considered the lowest frequency for line-
of-sight propagation (space wave) of any useful degree. Frequencies lower
than 30 MC are by no means useless for observation measurements, although the
nature of their propagation restricts their use to navigational techniques
that are used on, or very near, the earth's surface. Waves in this
frequency range propagate by ground and sky waves and, as a result, cannot
be used outside the Kennelly-Heaviside layers. Any electromagnetic waves
lower than 30 MC suffer from a large attenuation in the space wave component
and become progressively more difficult to use for line-of-sight purposes
as the frequency is decreased.

2.2.1.2 Atmospheric Penetration and Absorption

Atmospheric penetration and absorption phenomena are important in
navigation measurements for two reasons: because all radiation measurements,
made from space, of the earth are subject to re-radiation produced by the
atmospheric absorption of solar energy; and because there exist "windows,"
or penetration bands, of the spectrum which enable the observation and
communication between a point in space from the earth. The radio "window"
enables the use of radio waves to track and communicate with vehicles outside
the atmosphere. The optical "window" enables infrared satellite tracking,
laser communications in space, laser tracking, and the normal visible
phenomenon.

Acknowledgment is given to G. P. Kuiper (Reference 1) for the detailed
information on the absorption spectrum in the following discussion.
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The sun emits radiation at all wavelengths, from X-rays to radio waves,
though the solar spectrum observed from sea-level shows numerous gaps
produced by the absorption of the radiation in the earth's atmosphere.

The region from 0-3000 £ is totally obscured, as are numerous other regions
centered at approximately 1.3, 1.9, 2.7, 4.2, and 6,04 , and from 14,
to the region of millimeter waves, Between 14 and 244 there is a region.
of limited transparency, which opens up with increased altitude and
decreased water content. At longer wavelengths, the atmosphere is made
comple tely opague from 24 to about 10004 by the pure rotational spectrum
of H20, The long-wave end of the ultraviolet absorption, from 3000 )
to 2200K is produced entirely by ozone., From 2400 £ to 1300 A radiation
is absorbed by discrete bands and by continua of Og. From 1300 K to about
300 A are foynd similar bands of continua of both N, and O, ., Beginning
at about 900A the bound-free continua of atomic nitrogen and oxygen
abosrb strongly to about 200 2. Below 200 %} energy is absorbed by the K
and L X~-ray ccntinua of atcmic nitrogen and oxygen. Very little
absorption takes place in the visible region of the spectrum apart from
the red electronic bands of Oy,. In the near infrared, on the short-
wave-length side of the photographic limit at 1.35 4 , are found relatively
weak rotation vibration bands of H,0 and electronic bands of 0, at 1.06
and 1,274 . The regions of 100 percent absorption in the infrared are
caused entirely by H O and CO Many intervening regions are partially
obscured by weaker bands of HSO CO,, CHy, N,0, CO, and Os. In the
radio-frequency region, the atmosphere is semi-transparen between wave
lengths of a few millimeters and about 10 cm and almost completely
transparent at longer wave lengths up to about 10 M wavelengths. The
absorption of millimeter andcentimeter w-ves is caused mostly by a
rotational line of H_O centered at 1.35 cm and by a series of lines of

at about 5 mm and 2.5 mm that result from changes in the orientation
og the spin vector in the ground electronic state.

From this discussion, it can be seen that a relatively small amount
of electromagnetic energy penetrates the atmosphere., Generally speaking,
there are two "windows" through which electromagnetic energy can penetrate
the atmosphere. One is called the radio window which extends from
approximately 30 MC to about 22,000 MC. On the low frequency end it is
limited by the absorption of the ionosphere. On the high frequency end
the radiation is affected bywater, oxygen, and nitrogen,which begin to absorb
the raaiation so that at higher frequencies there is complete atmospheric
absorption. Figure 2.2.2 shows the penetration of the electromagnetic
spectrum through the atmosphere. This severe attenuation outside the optical
and radie windcws must be corsidered in the selecllon of navigation sensors
which operate at the earth's surface on radiation from outer space, and atrsc
in the selection of navigation sensors which are to operate in space on
radiation generated on the earth's surface or within the earth's atmosphere.
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2.2.1.3 Atmospheric Refraction

Electromagnetic waves propagating within the earth's atmosphere do
not travel in straight lines, but are generally bent or refracted. One
effect of refraction is to appear to extend the distance to the .horigzon.
Another effect is the introduction of errors in the measurement of the
elevation angle. Bending, or refraction, of electromagnetic waves in the
atmosphere is caused by the variation with altitude of the velocity of
propagation, or the index of refraction, defined as the ratio of the
velocity of propagation in free space to that in the medium in question.
The index of refraction in the lower atmosphere may be decomposed into a
mean static profile 7, (h) which depends only on height, and a component
AN  which varies randomly in time and space

7= % (D)+ AR (R,1) (2.2.1)

Since # is usually very near unity, it is convenient to measure the
refractive index in terms of parts per million or N units of refractivity,
i.e.,

N = (7-1) 708 (2.2.2)

The empirical formula for refractivity at microwave frequencies is

77.4 s
22 3.73x/0
(7-1) /0%=MN= "1 P+ TZ ¢ (2.2.3)

where T = air temperature in degrees Kelvin for the point of interest
P = total pressure in millibars for the point of interest
q = partial water vapor pressure in millibars for the point of interest

This expression is independent of frequency from 100 me to 10,000 mc and
is valid within 0.5 per cent up to 30,000 me. At optical frequencies,
water vapor has a negligible effect upon refraction and consequently
the second term of equation (2.2.3) may be neglected. The equation for
refractivity at optical frequencies is thus

(7-1) 108=N= 7726 p (2.2.4)
T

Refractivity of the atmosphere at frequencies other than those discussed
above ig not considered of interest in the monograph since, as discussed

in Section 2.2.1.2, the atmospheric absorption of electromagnetic energies at
frequencies other than those discussed above appears to preclude the
possibility of using such signals for practical state-o.-the-art navigation
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measurements, Since the barometric pressure P and water-vapor content g

decrease rapidly with height, while the temperature T decreases slowly with
height, the index of refraction normally decreases with increasing altitude.
A typical value of the index of refraction near the surface of the earth is
1.0003., In a standard atmosphere, the index decreases at the rate of about

4 x 1078 w1 of altitude.

The decrease in refractive index with altitude means that the
velocity of propagation increases with altitude, causing the rays, which
enter the atmosphere from outer space, to bend downward. Variations
of the refractive index in the horizontal plane may also exist, but they
do not materially alter the bending. Refraction of electromagnetic waves
in the atmosphere is analogous to bending of light rays by an optical
prism. The path of the wave through the atmosphere may be plotted using
ray-tracing techniques, provided the variation of the refractive index
is known,

The ionosphere is the ionized portion of the atmosphere which begins
at approximately 70 km and extends to an undetermined distance. The
theoretical problem of propagation in an ionized medium has received
extensive consideration in the literature. The interested reader is
referred to Reference 2.

For carrier frequencies much greater than the collision frequency
and gvro frequency of the ionosphere the following simplified expression
for the equivalent refractive index of an ionized plasma may be used:

- 2.
> e N
nm- = _— = |~ =P (2.2.4)
e, mw* w
where &/ = carrier frequency in radians per second
e
¥ =[Neez/é°'ht] = critical frequency in radians per second.

Ne- number of electrons per unit volume,
€ _ charge of the electron (= 4.80 x 1010 in cgs).
€ s dielectric constant of free space (= 1 in cgs).

M = mass of electron (=0,11 x 10-28 zm)
Using Memeasured in electrons/cc and f in kc/sec the above expression
simplifies as

l(z_
N = [\ - —8—’3“3-—] (2.2.5)

Because the refractive index depends on the carrier frequency employed,
it is not convenient to tabulate N as a function of altitude. Rather,
attempts to establigh profiles of the single scalar quantity ¥ as a
function of height for various locations and times are made. €
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Like the frequency-independent refractive index of the lower atmos-
phere, the electron density Ne can be decomposed into amean static
profile N, (nh) and a component AN, which varies randomly in space and
time,

Ne = Ne(h) + a Ng (B ,?) (2.2.6)

To calculate ray bending in the ionosphere it is necessary to utilize the
complete height profile of density and not merely a single maximum value.
For purposes of such calculation, the following simplified model for the
daylight electron density profile may be used.

o h<loo kny
N R (2.2.7)

.S x 16° (h" (Og_) electronsioo < h< 300k
200 ce

During periods of low solar activity, Ne should be down by a factor of

approximately 4. At night it should be down by a factor of 2 or 3 below

the corresponding daylight values.

2.2.1.4 Noise

The purpose of this section is to describe in a qualitative fashion those
noise sources that are of a major concern to navigation observation measure-
ments. Whenever possible, a quantitative estimate of the noise sources will
be given.

Since the accuracy limit of an observation is ultimately determined by
the noise in the measurement, various sources of noise will be discussed.
In most general terms, noise can be considered as any disturbance that in
some way interferes with the desired signal used for a measurement. It may
originate within the device used for the measurement or may enter the device
along with the desired signal. The former will be referred to as internal
noise whereas the latter will be called external noise.

Section 2.5.1, Radiation Sensor Errors, will utilize the information
presented in this section in order to determine the noise power that can be
expected from these various sources of noise. This information will be used
in turn to determine the signal-to-noise ratio and measurement errors induced
by noise.

2.2.1.4.1 External Noise

This section introduces the various sources of external noise of interest
to navigation observation measurements and some of the terminology that is
used to quantitatively evaluate these moise sources. Consideration is given
to the effects of noise sources on different frequency regions.
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External noise in general limits the sensitivity of long-range navigation,
broadcast, and shortwave frequency transmissions. At microwave frequencies,
the external noise level is relatively low and the sensitivity of conventional
radar receivers is determined primarily by internal noise. There are special
devices that have extremely low internal noise levels such as masers and para-
metric amplifiers in which the external noise again becomes the limiting factor
for the sensitivity.

The magnitudes of external noise sources are given in terms of bright-
ness, B, or flux density, S. These quantities cannot be used as such for
noise calculations, The following discussion will demonstrate how these
quantities can be used to determine the noise power and the effective noise
temperature due to these noise sources.

The term "brightness” is used to describe those noise sources that span
a very large portion of the sky, as opposed to point or discrete sources
whose intensities are described by the term "flux density." The amount of
power that an antenna receives from discrete noise sources can be calculated

o7 N = [A, S(f) ds,
where A, = effective aperture
dB,= differential bandwidth
N = noise power (watts)

If the flux density can be assumed to be constant .over a given bandwidth
B n » then the noise power becomes

N = AoSBn

If the noise is given in terms of the brightness, B , the power is more
difficult to determine. Since the brightness is a function of both agimuth
and elevation angles and frequency, the maximum amount of flux density that
the antemna could receive must be found by the following integral

s =[{B(AE,$)da
The antenna gain pattern reduces the amount of flux density seen by the

antenna to
Sa= J[BA,E,)G(A,Ef)da

where G(A,E,f)= normalized antenna gain pattern

It is convenient to introduce an equivalent beam area of the antenna in
order to facilitate calculations. This equivalent beam area is defined to
be 2 where

,6=ffG(A,E,{)dn.
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Now, if the antenna pattern is smaller than the extended source of
brightness 8, (assumed to be constant in the equivalent antenna pattern
and on the bandwidth), the flux density may be written as

S, =B,8
The noise power can now be written as
MN=ABABB,
where A= effective aperture area, m?

ight watts
rightness, (m=)(CPS) steradians

,3= effective beam area in steradians

B-=v

B~ bandwidth (CPS)

The typical variations of the brightness over the antenna pattern and
bandwidth do not significantly restrict the use of this equation. The
following is a sample calculation of noise power from brightness.

Example:

At a certain frequency, an antenna has an equivalent beam area of 1
steradian and is directed at a point in the sky where the brightness is
constant over the beam area and is egual to 5 x 10-25 watts/m%(CES) (steradian).
If the antenna has an effective aperture area of 20 m2 and the noise band~
width of the receiver is 1 MC, what is the power received if the flux density
(B. A ) is constant over the bandwidth?

M=A,B,B8B,
= (20m2) (5 x 1025 watts/m? (CPS)(steradian)) (1 steradian)(106 CPS)
= 10717 vatts
2.2.1.4.1.1 Cosmic Noise

There is a continuous background of noiselike electromagnetic radiation
which arrives from outer space. This extra terrestrial noise comes from our
own galaxy (the Milky Way), from extra galactic sources, discrete "radio stars"
and the sun. In general, cosmic noise decreases with increasing frequency.
Cosmic noise is of considerable importance in the design of radars which
operate in the VHF or the lower UHF bands, but it may usually be neglected at
I-band frequencies or higher (freguencies greater than approximately 1 GGC).

The magnitude of cosmic noise depends upon the portion of the celestial

sphere in which it is observed. It is a maximum when looking toward the center
of our own galaxy, and it is a minimum when observing along the pole about
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which the galaxy revolves.

shown by the dotted lines in the following sketch.
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The brightness temperature of an extended source of radiation measured
in a particular direction is the temperature of a black-body which yields a
brightness equal to that of the source under consideration. Brightness is
defined as the power received per unit area of aperture per cycle of band-
width per unit solid angle. The brightness B and the brightness temperature
Tp at radio and radar frequencies are related by the Rayleigh-Jeans formula

B = 2 ;_Tn (2.2.8)

where X Boltzmann's constant

A

wavelength

The brightness temperature specifies the intensity in a given direction at a
given frequency. The measurable temperature is the mean brightness tempera-
ture in the field of the antenna pattern,and is called the antenna temperature.

The physicist and astronomer are generally concerned with unpolarized
radiation, but most radar antennas are responsive to a single polarization.
Therefore, the brightness (or space) temperature plotted in the sketch assumes
a receiver with a single polarization and is one~half the brightness which
would be measured by an antenna responsive to two orthogonal polarizations.

The term'space temperature"is sometimes used synonymously with the bright-
ness temperature of cosmic noise. It is the temperature seen by an ideal
antenna (one with no sidelobes, backlobes, or resistive losses) which looks
at cosmic noise in the absence of the earth's atmosphere or any other sources
of noise.

2.2.1.4.1,2 Atmospheric Absorption Noise

It is known that any body in equilibrium which absorbs energy, radiates
the same amount of energy that it absorbs. An example of this is the lossy
transmission line that absorbs a certain amount of energy and re-radiates it
as noise. The same is true of the atmosphere,since it also attenuates or
absorbs microwave energy. The radiation arising in the atmosphere (or any
other absorbing body) must just compensate for the partial absorption of the
black-bedy radiation.

Consider an absorbing atmosphere at an ambient temperature T, surrounded
by an imaginary black-body at the same temperature. The loss L is the factor
by which energy is attenuated in passing through the atmosphere. The noise
power avallable over a bandwidth Bp from the imaginary black-body is K Ty Bn.
The noise power after passing through the atmosphere is (K T, By)/L. Thus
the amount of power absorbed by the atmosphere is K Ta Bn(l-l/i? and is equal
to the noise power radiated by the atmosphere itself. This corresponds to an
effective noise temperature of

Te = Ta (1-1) (R.2.9)
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A plot of the single-polarization brightness temperature or space tempera-
ture due to both cosmic noise and atmospheric absorption is shown by the solid
curves of the previous sketch. An ambient temperature of 260°K is assumed in
the computation of atmospheric absorption noise. At the higher frequencies
(X band or above), atmospheric absorption is the predominant contributor to
the brightness temperature, while at the lower frequencies (L band or lower),
the cosmic noise predominates. There exists a broad minimum in brightness
temperature extending from about 1 GC to 10 GC. It is in this region that it
is advantageous to operate low-noise receivers to achieve maximum system
sensitivity.

The minimum atmospheric absorption occurs when the antenna is vertical
(pointed at the zenith), while the maximum occurs when the antenna is directed
along the horizon. The noise is greater along the horizon than at the zenith
since the antenna "sees" more atmosphere. FExperience shows that antenna beams
must be oriented at elevation angles greater than about 5 percent to avoid
excessive space noise in the main beam.

2.2.1.4.1.3 Atmwospheric Noise

Noise that arises from the lightning-stroke radiation is called atmospheric
noise (not to be confused with noise produced by atmospheric absorption as
previously described). A single lightning stroke radiates considerable RF
noise power. There are at any one moment an average of 1,800 thunderstorms in
progress in different parts of the world. From all these storms, about 100
lightning flashes take place every second. The combined effect of all the
lightning strokes gives rise to a nolse spectrum which is especially large at
broadcast and short-wave radio frequencies. The spectrum of atmospheric noise
falls off rapidly with increasing frequency and is usually of little consequence
above 50 MC. Hence, atmospheric noilse i1s seldom an important consideration in
radar except for long-range navigation and radars in the VIF region.

Another source of noise predominant at the lower radar frequencies is man-
made noise. Noise from automobile ignition, electric razors, power tools, and
fluorescent lights are examples. Just as with atmospheric noise, man-made noise
is usually of little concern to radars at UHF or higher frequencies.

2.2.1.4.1.4 Solar Noise

The sun is a strong emitter of electromagnetic radiation, the intensity
of which varies with time. The minimum level of solar noise is due to black-
body radiation at a temperature of about 6000°K. The flux density received on
earth from a thermal source at the distance of the sun is

.88 x/o " Ty
/\L

S =

(2.2.10)
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flux density watts/(m?)(cps)

]

where S

Td = apparent disk temperature, °K
A

The above equation indicates that solar noise power increases approximately
as the square of the frequency. This is unlike most other noise mechanisms
which produce less power with increasing frequency. A plot of the flux density
as function of frequency for the basic thermal-noise component from the ®quiet"
sun is shown in the following sketch.

I

wavelength, m

10-16 T T T T T T T
\\\ Maximum peak intensities of

10-17 "~ , enhanced solar noise
2 ~ - T
13 \'\_
N\ 10-18 L. \'\. -
E \'\
b . 5 ~
E 10-19 |- —— Region of slowly —

. N varying compon~

-~ Region of ~ t noise — =
ﬁ’ 10-20 [~ solar noise S~ ??-/”ls 2 nois® -
-2}
&
3 _
g _
[

10-23 . 1 I I l i

10 30 100 300 1,000 3.000 10,000 100,000

Frequency, Mc (Reference 3)

It does not exactly follow the relationship of Equation (2.2.8) since it
takes into account the absorption in the solar atmosphere.

The solar-noise level can increase orders of magnitude over that of the
tquiet" or undisturbed sun when its surface is disturbed by solar storms (sun-~
spots and flares). The enhanced noise from the disturbed sun is complex, and
its mechanism is not well understood. It might last for but a fraction of a
second, or it might last for days. ZEnhanced solar noise is alsoc shown in the pre-
vious sketch. At VHF the solar noise can exceed the thermal component by 40 db
or more, while at the upper end of the microwave region there is but a slight
increase in the noise level during the periods of enhanced activity. In
general, the greater the intensity of the enhanced noise, the shorter its
duration. The 'noise storms" indicated in the sketch last for hours or days,
during which the level shows a series of bursts on seconds! duration super
imposed on a more slowly varying background. The "slowly &warying component®
is believed to originate in thermal radiation from localjized regions of
abnormally high density and temperature.
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2.2.1.4.1.5 Discrete Radio Star Noise

There are a number of discrete radio noise sources in the sky, called _
radio. stars. One of the largest is located in the Cassiopeia constellation.
Its flux density is also plotted in the previous sketch. In general, radio
stars are too weak at radar frequencles to be a serious source of interfer-
ence.

2.2.1.4.2 Internal Noise

There are several sources of noise that originate within the sensor
itself. These noise sources are usually due to the random fluctuations of
the flow of electrons in a sensor,and fluctuations in the stream of photons
incident on a radiation sensor.

If an electrical resistor is held at thermal equilibrium at temperature
T, a random noise voltage appears across its terminals. This phenomenon is
called Nyquist noise, Johnson noise, or thermal noise and is due to the
random thermal motion of electrons. Since minimal thermal noise is used to
determine the '"'noise quality" of a sensor, the quantitative discussion of
it has been placed in section 2.5.1.5, Signal-to-Noise Ratio.

Shot noise is another type of internal noise found in simple diodes,
grid-controlled tubes, traveling-wave tubes, klystrons, magnetrons, crystal
diodes, transistors and other current carrying devices. Shot noise is
attributed to the passage of electrons through an electronic device after
randomly attaining enough energy to overcome some potential energy barrier.
The quantitative analysis of shot noise depends on the nature of the device
being considered. These numerous discussions are beyond the scope of this
monograph. The interested reader is referred to References (3) and (11).

Noise is also introducea in photo-detectors due partly to the fluctua-~
tions in the rate of generation of the current carriers,and partly from
fluctuations in thelr rate of recombination. Photo-detectors are also sub-
Jected to variations in a stream of photons that they receive.

Mechanical vibrations also induce noise in sensors because they have
minute effects on the stray capacitances and inductances that are found in
sensors. These microphonic effects can be eliminated by proper design of
sensor.

There exists in semi-conductors at low frequencies a noise mechanism
whose spectral density is inversely proportional to frequency. This is
called flicker noise or 1/f noise. Several theories have been developed to
explain this effect, but it is difficult to account for the lack of tem-
perature dependence and the 1/f dependence over all frequencies. Because
of the inverse relationship between flicker noise power and frequency,
flicker noise will be the predominant effect in devices at low frequencies.
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2.2.2 Radiation Sensing Techniques

The general theory describing radiation phenomena presented in the
previous section provides a basis for discussing the subject of primary
interest; namely, the radiation sensing techniques useful in navigation.

Navigation sensors which exploit radiation phenomena may be divided
into two groups. One group consists of those devices used in conjunction
with electromagnetic radiation energy which passes through the atmosphere.
The second group consists of those devices employed to sense electromagnetic
radiation which is unfiltered by the atmosphere. The electromagnetic radiation
sensors which have naturally been developed to the greatest degree are those
sensitive to frequencies which are not severely attenuated by the atmosphere.
As discussed in the previous section, there are only two ranges of frequencies
of electromagnetic radiation capable of penetrating the atmosphere. These
frequency ranges are called windows, and are called (1) the optical window,
and (2) the radio window, A1l other frequencies suffer severe attenuation

As discussed in Section 2.2.1.1 and illustrated in Figure 2.2.2, the
devices which are currently considered state of the art for making navigation
measurements reflect this historical interest in the optical and radio
frequencies. It may be anticipated in the future that other parts of the
electromagnetic spectrum will be exploited for specialized space navigation
purposes in which the incident energy exposed to the sensors has not been
pre-filtered by the atmosphere to remove all but the optical and radio fre-
quencies. The discussion of this section is concerned with a description
of the sensing techniques used in generating information via optical and
radio devices.

2.2,2.1 Optical Techniques

The visible portion of the electromagnetic spectrum, usually defined
as extending from .4 to .7 microns, and the infrared portion of the spectrum,
usually defined as extending from .7 to 4 microns, dominates those wave-—
lengths which pass through the atmosphere with little attenuation in the
optical window. The common use of optical techniques to generate navigation
measurements is in the sensing of the direction in space of a single line-
of-sight instrument or the use of a two line-of-sight instrument to measure
the included angle between two objects which radiate electromagnetic energy
in space. Although infrared frequencies may be sensed by using the IR
sensors, more often visible frequencies are sensed with the more common
optical devices. The classification of the single line-of-sight instrument
includes devices such as the telescope, star tracker, horizon scanner, and
sun sensor, The two line-of-sight instrument includes the sextant, trisextant,
and stadiametric devices. The navigation measurements which result from the
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use of the single line-of-sight instrument may be either intensity measure-
ments or direction measurements. The intensity measurements are not often
used as navigation measurements. The direction measurements are common

but require the use of some form of platform having a known orientation.
The inertial platforms discussed in Section 2.3.2.1 are often used for this
purpose and permit the generation of azimuth and elevation angular measure-
ments. The two line-of-sight instruments are used to generate a measure of
an included angle between two radiation sources, as mentioned above, and
are usable in making sun-planet, planet-planet, planet-star, sun-star, and
star-elevation measurements. In addition, stadiametric measurements which
determine the curvature of a planet horizon may be used to infer planet
diameter,and are essentially a variation of a sextant. Star occulation is
“in essence a time measurement but is associated with a single line-of-sight
measurement. These single and two line-of-sight measurement techniques

are discussed in detail in this section. Section 2.4 will present detailed
analyses of the important line-of-sight techniques.
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2.2.2.2 Radio Techniques

Since radar is used quite extensively in some types of observations,
a general discussion of some of the more important techniques has been
jncluded in this section, The primary use of radar in observations is to
determine the following "observables": range, range-rate, azimuth and
elevation of some target. The measurement of these "observables! involves
inaccuracies,as is expected in any measurement. However, two of these
"observables ," namely, range and range-rate are not measuvred directly, but
by the measuvrement of time delays, phase measurements and frequency measure-
ments. Tt is therefore necessary to relate the inaccuracies of these
parameters to the "observables" so that the inaccuracies in the '"observables!
can be determined. The following sections formulate the various range and
range-rate measurement techniques so that these relations can be established.

Section 2.5, Observation Errors, describes the errors associlated with
the paramsters that are actually measured. The combination of the informa-
tion from section 2.5 and this section provide the information of the
accuracies of the observables that will be necessary to use in the state
determination problem which is discussed in the Tollowing monograph.

2.2.2.2.1 Radar Range Measurement

The range of a target is determined by measuring the time required for
a pulse to travel from a radar station to the target and return. Since
electromagnetic energy travels at the speed of light, the range R can be
written as

R= S, (2.2.11)

where
At = time required for wave to travel to target and back

¢ = velocity of light 3 x 108 m/sec

Range measurement commonly uses a train of narrow pulses for its wave-
form. The measurement of range is then proportional to the measure of the
time delay between the leading edge of the transmitted and reflected pulse.
The accuracy with which one can measure this time delay is discussed in
section (2.5.1.2.2).

Another range measurement technique uses Frequency Modulated Continuous
Wave Radar (abbreviated FM-CW Radar). In this technique, the transmitter
frequency is changed as a funetion of time in a known manner. Assume that
the transmitter frequency increases linearly with time, as shown by the solid
line in the following sketch:
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If there is a reflecting object at a distance R, an echo signal will
retwun after a time &t = 2R/c. The dashed line in the sketch represents

the echo signal as it is received, If the echo signal is heterodyned with

a portion of the transmitter signal in a nonlinear element such as a crystal
diode, a beat frequency f} will be produced. If there is nc doppler frequency
shift, the beat frequency (difference frequency) is a measure of the target's
range and f}, = fj, where f,. is the beat frequency dve only to the target's
range. If the rate of change of the carrier frequency is f,, the beat
frequency is

7»C_R {; (2.2.12)

In any practical CW radar, the frequency cannot be continually changed
in one direction only. Periodicity in the modulation is necessary, as in
the triangular - frequency modulated waveform shown below,
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The modulation need not necessarily be triangular; it can be sawtooth,
sinusoidal, or some other shape. The resulting beat frequency as a function

of time 1s shown below for triangular modulation.
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The beat frequency is of constant frequency except at the turn around region.
If the frequency is modulated at a rate fy over a range 4f, the beat
frequency is

£ = 2R 24, af = 4rRFnAF (2.2.13)
r C C

Thus, the measurement of the beat frequency determines the range R. It
should be noted that the target was assumed to be stationary in the previous
analysis., It will be shown in the following section, Radar Range-Rate
Measurement, that this method is still valid for moving targets after proper
treatment of the waveforms.

The use of single frequency CW radar for range measurements is not
practical because the time delay that is to be measured manifests itself
as a phase difference between the transmitted and reflected signals,and
at radio frequencies the ambiguous distances that correspond to the true
phase plus z ¥ multiples of phase are too numerous in the areas of interest
to give useful information.

The region of unambiguous range may be extended considerably by
transmitting two separate CW signals differing only slightly in frequency.
It will be shown that the measurement of range using two CW frequencies
results in an unambiguous range which corresponds to a half wavelength
at the difference freguency. Consequently, the unambiguous range can be
made considerably greater than that obtained when only a single frequency
is transmitted.

The transmitted waveform is assumed to consist of two continuous sine
waves of frequency fy; and fp. For convenience, the amplitudes of all
signals are set to unity. The voltage waveforms of the two components of
the transmitted signal Vyp and Vop may be written as

<
)

S/N(Z.77‘f,t + ¢ )
(2.2.14)

Ve = siv(emfit+ &, )
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where @ and @5 are arbitrary (constant) phase angles. Due to the transit
time delay, the reflected signal can be expressed as

y, = Sw [277'1§‘(-t.. Ecﬁ) ""é;]

(2.2.15)
Ve = SIN fz‘?ﬂ(t—iﬁ) +¢a]
The phase differences between each transmitted and reflected signal are
/
¢ = 27 2R
{
(2.2.16)

Sé,: 27 £, 28

2 ©

If the difference between ¢l' and ¢2' is found,it is seen that it is
an indirect measurement of range; i.e.,

AP - 27f 28 _2m€ 28 _ 2 (fi-R) e (2.2.17)
[ < [
or ‘
R- _c 8d (2.2.18)
D

Note that the unambiguous range is now a function of the difference in
frequencies rather than the frequency itself and,hence, is much larger. The
range accuracy using this method may now be determined by using the phase
measurement equations in section 2.5.1.2,1.

2.2.2,2.2 Radar Range-Rate Measurement

Standard Doppler frequency shift equations can be used in order to
derive the relation between the range-rate measurement and frequeney shift.
Consider a stationary radar station that is transmitting a frequency f,. As
this signal is received by a target in motion, the frequency appears to be
slightly different because of the radial component of the target velocity
with respect to thé radar station., This new frequency, f;, can be related
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to the original freguency by the standard Doppler eguation for a stationary
source and a moving receiver.

£ = £ C+V (2.2.19)
\ ©o —F0

where a (+) is used for approaching targets
and a (=) is used for receding targets

The target reflects the signal back to the radar station, but the
frequency again appears to change because the source (which is now the target)
is moving with respect to the stationary receiver (the radar station). This
reflected signal appears to have a frequency f5 and can be found by again
using the standard Doppler equation for a moving source and a stationary
receliver,

Hence
£, = £ c (2.2.20)
C FV

where a (-) is used for approaching targets
and a (+) is used for receding targets

Now f, can be related to fo as

€, = ﬁ(_&_) = ‘FO(C"‘V \( < ] (2.2.21)
< ¥V c N\ ecxv]
or
_c*V (2.2.22)
C TV
The difference between fo and f2 is
fy=F-F =5 (V) - 2.2.2
d 2 Q(C:Fv) -FO ( 3)
or
§,= €[StV _ _C_-_i_‘i] . 2f(xV) (2.2.24)
c=xY CFVY CFV
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Since any target velocity will be very much smaller than the speed of
light, the following approximation is valid.

CFVY = C (2.2.25)
So 'Fd:: %ﬂ) (2.2.26)

The above equation is the well known range-rate equation in terms of the
Doppler frequency shift. The appropriate sign to use should be obvious
from the previous discussion. Letting Mi be the radial component of
velocity, the above equation becomes

=

b& = i:<: d

2%

It is apparent that the accuracy that can be expected in the range-rate

measurement is related to the accuracy of the frequency measurement
accuracy.

(2.2.27)

In section (2.2.2.2.1) the FM-CW radar measurement assumed a stationary
target. It will now be shown that with the proper treatment of the result-
ing waveforms, the FM-CW is also valid,not only for range, but also range-
rate determination.

The Doppler freguency shift causes the frequency time plot of the echo
signal to be shifted up or down depending on the sign of Af. The following
sketch shows a typical shift:

I Transmitted signal
Rer ~ived signal
— / ~
d ~ A \\
// -~ o . ,//
'Fo = \\// \\/Time

4 corresponding change in the beat frequency occurs because of the Doppler
frequency shift. On one pertion of the frequency-modulation cycle, the

beat frequency is increased by the Doppler shift, while on the other portion,
it is decreased. The sketch below illustrates this point.
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If, for example, the target is approaching the radar, the beat frequency

fp (up) produced during the increasing, or up, portion of the FM cycle will
be the difference between the beat frequency due to the range f,. and the
Doppler freguency shift fj. Similarly, on the decreasing portion, the beat
frequency fy, (down) is the sim of the two; i.e.,

_Fb (poww) = £ +F

The range frequency, f.., may be extracted by measuring the average

3
beat frequency; that is d

£, = Lz. [{b(up) + {b(powN)J (2.2.29)

If fp (up) and f, (down) are measured separately by switching a frequency
counter every half modulation cycle, one-half the difference between the
frequencies will yield the Doppler frequency; i.e.,

f, =- + [Fbcup) - fb(Dow'V)] = - é[(ﬂ-ﬁ) -(ﬂ*ﬁ)] (2.2.30)
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2.3 INERTTAL THEORY AND SENSORS

It is the purpose of this section to present the fundamental dynamic
causal relationships which enable the generation of position and
velocity information from inertial sensors. The presentation is introductory
to the extent that only the broad fundamental principles of inertial naviga~
tion are included. A tremendous variety of naval, aircraft, and spacecraft
inertial systems have been developed for a myriad of purposes. These systems
and technical approaches are well documented in the literature and will not
be discussed here,

The discussion commences with a discussion of the dynamic character-
isties of the various gyroscopic sensors, and is followed by a discussion
of the various linear accelerometer sensors. Based upon the theory of the
gyroscope and accelerometer, inertial systems capable of sensing position
and velocity are then presented.

2.3.1 General Theory

2.3.1.1 Rotational Theory

The rotational theory presented in this section consists of the
development of the equations describing the dynamics of a gyroscope which
is subjected to external torgues in general three degree of rotational
freedom dynamic space. The development commences with a rigorous treatment
of a single axis gyroscope, which is subsequently used as the basis for
describing the dynamics of the rate gyro, the attitude gyro, and the angular
integrating gyro.

2.3.1.1.1 Single Axis Gyro Equations

Figure 2.3.1 presents the terminology to be utilized in this develop-
pf
ment., The angular velocity of the gimbal is denoted 3' , with the upper
rl
left superscript used to denote the cartesian coordinate frame used to define
the axis in which gimbal angular rate is specified.

From Figure 2.3.1

3(

3 319: A 3,3 3 .3 3 (3
3/
g

and expressing the angular velocity of the rotor «» " in the L coordinate frame:

4+«
‘e « * 2 +,.
w' = [ L pex+rer + =2 (2.3.2)
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Figure 2.3.1 Single Axis Gyroscope

33




The total angular momentum of the gyroscope, including the gimbal and
rotor, is:

3 3 3
B‘ GyRo b HG'“‘?AL * H RoTor, (2-3-3)
where
?b TI,, I:’_ I,; rgp,-
= II;(JJ, = ! Il ’ ¢ 2
“Gimga, T = — Ill 22 Iz; ’%_ (2.3.4)
Tsi Ty T %]
»” " " A ¢
4 " 4 ’-I " T I'3 ’-'P
— ”_. " " 1 & u
HRoToO. = I Y- I, T, Iau||'F (2.3.5)
I;, 'I'Z 13'; -4-".(1

Note that in Equations (2.3.4) and (2.3.5) that the inertia matrices ;', "
refer to the inertias of the gimbal and rotor in coordinate frames which
are fixed to the gimbal and rotor, respectively. Now the angular velocities
of equatians (2.3.4) and (2.3.5) can be related by referring to the figure.

4;Pl/ / ° o 31’ g
Tl = |o  cosg s |7¢ (2.3.6)
“p © -swmg cosg e

{ ° o
The notation To4o03= [o cosd s/v J will be used in the place of the

3x3 matrix. o -SmwB cosg
Hence } 43{“- To4do3 3&" (2.3.7)
is the abbreviated form of Equation (2.3.6).
) s a
Now, since H ReTor = (Toze4) H RaTOR (2.3.8)
Then 3 .
H-Ro'reg': (_‘-0304) ?_—:"(-T°4°3) _Q_J.' (2.3.9)

Furthermore, since the rotor is constrained by the gimbal,

3 3
u)"-’g'+_ﬂ_ e,
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3
or 3P" P Su

21 = P¢ + o (2.3.10)
3"'. Br_l °

where) is the angular velocity of the rotor with respect to the gimbal,
substitution of (2.3.10) into (2.3.9) yields:

3, ¢ ”,S‘_
3 " ;Pl "
H = To3zc4 T TO403 g | + =) (2.3.11)
~ ROTOR. = 3t o

Substituting (2.3.4)and (2.3.11) into (2.3.3) yields

3p' "_IL
3 n"
H = [{_' + Tozo4 T To4o3] '1—' + o (2.3.12)
— GYRo = = .‘r, o

Equation (2.3.12) is a general expression for the angular momentum of a
gyro in terms of the angular velocityef the gimbal and the relative angular
velocity of the rotor with respect to the gimbal., This equation is useful
for analyzing perturbations induced by errors in the direction of the prin-
cipal axes of the inertia matrix.

Symmetrical Rotor Simplifications:

The expression of Equation (2.3.12) may be grossly simplified by noting
the T"matrix usually takes on a very simple form, due to the symmetry of the
rotor, i.e.,

::lo'r © °
114
I = o T. ) (2.3.13)
- o o T

Hence, under these conditions, it is easily verified that:

(Tosoas) (") (To403)= =" (2.3.14)

Equation (2.3.12) thus simplifies to:

3 3’9' g ’
4 " . Rovor
Heyeo = Lz'+ 2"l %] + |79 (2.3.15)
“l
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or

14 3,7
3 Iu"'Ikﬂ’bk I\‘L Tis P Ilo‘lok
Bewro = | T, ,+T. I, ||°F [+ o |23.10)
Tis I{‘3 I;,+: 37 o

Gimbal Simplifications

Usually the gimbal inertia is distributed so that the gimbal principal
axes coincide with the 35,‘, 3g,, and 3g!a.xes. Under these circumstances,

4 4 ¢
I‘L= I|;= '1’_‘z = O
and Equation (2.3.16) simplifies to:

3 I, o o 3’PI Iﬂofog"n‘
= I o y o
Hevro ° T2 % * (2.3.17)
o o I, 3y o
I = II 3, ¢
v w ¥ Troron 3 P angular
where I, x5, +Te w= ’ti_' - velocity of
7 3 [ i
Ty= T+ To r gimbal

Equation (2.3.17) is the standard equation describing idealized gyro angular
momentum. Equation (2.3. 17) can be written in shorthand form as:

3H _ 3 3
~GyRo ~ SPIN (2.3.18)

where

The coordinates of any general vector in coordinate frames 2 and 3 are
related as follows:
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ng ;B“
By = (T ozo03) By (2.3.19)
k3 3
B, B
where
cCos O - S/ & ©
('ro2o3) = s/~ 8 cos O o
o o i
Hence, ’H .
AGyro = To302 “He
vRe (2.3.20)

3w’z Tozoe *w’
and substitution of (2.3.20) into (2.3.18) yields:

3
':‘.syao = (To2e3) X (To 302) 20’ (T 02 03) H,,. (2.3.21)

Expansion of Equation (2.3.21) now produces

2 T, cose+T,smwe (Tr1,)swecose e} e T L s
LS
H GYRO™ I, -T,)smve cose I, swe+Tcos’e6 O 2g | + keattswe| o
o o "_[3 lv,l °
(2.3.22)

Now, since the angular velocity of the gimbal equals the vector sum of the
angular velocity of the 2 coordinate frame plus the relative angular velocity
of the gimbal with respect to the 2 coordinate frame (Figure 2.3.1)

2w = 2w + (e, (2.3.23)

where °‘w = angular velocity of the 2 coordinate frame.

Substituting (2.3.23) into (2.3.22) yields:

- cost@ 4 T, s/xt@ (I‘—Iz) sin8cCos O oqre x~ MNcosd
' 2 RoT

-]

2 z \
Heoyro= |E-T)Sweces® T, sm® +T,cos® o 28 + |1 sswe

o o Tl o
(203 .21;-)
where it is recalled that T
2 ‘P
w =g
2
r
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Equation (2.3.24) simplifies significantly 1i‘ I=T,, i.e,, if the sum
of the inertias of the gimbal and rotor about the ex axis 1s numerically
equal to the sum of the gimbal and rotor inertias about the 3 e, axis (recall

that the rotor has been assumed to be symmetrical about the 3 ex axis, so that
its inertia about the 327 axis is time invariant, even though the rotor is

spinning with respect to the 3e7 axis).

Hence, assuming

I\ = Ia (2'3‘25)
Equation (2.3.24) becomes:
T, o o P Trot S cos &
2
EGyRo= o I, o '-ﬁ_ & YTaor SL SivS (2.3.26)
o o 13 zl” Is (=]

and the time derivative of (2.3.26) is:
. T P - Tror O 5Swo +4H(T;-T)+ T30 ~LTp SLFswe
é—HGYRoz 'I_.éb+IR,1.J'L'e cosO+ph (T~ Tyt TrorScoseo—Iz0p (2.3.27)
i T,(Ft8)* T SLpsw@ - Tror Sg cos @

where P * P %° %)r-zr
Letting the externally applied torques be termed T then:

o.

2 T 4y
T = 2‘l’Y = g —Gvyeo (2.3.28)
L
2

Hence, .

z A : )
Te= T R-Tgoe O 50 + G (T3-T)+ T8¢ ~Tyo Sk SIS (2,3,29)

(3 . . :
= T § t Tpor*-© Cose +Pr(T~X,) + TorfLrcoseo~-T,0p (2.3.30)

2
Te=T 3(I"+9)+I_ ~SLp S/ © - IRo‘r—n-‘t-“°se | ] (2.3.31)

Equations (2.3.29), (2.3.30), and (2.3.31) are a key set of differential
equations describing the motion of a single degree of freedom gyro. This set
of equations is exact, and contains no mathematical approximations. The
assumptions which have been made, both explicitly and implicitly, are
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presented in the table below:

Assumptions which qualify Equations (2.3.29), (2.3.30), and (2.3.31)
as an exact set of differential equations are:

1. The rotor is symmetrical about the ey axis (its spin axis). Thus,
all cross product inertia terms are zero, and the 2 principal axes
of the rotor which are perpendicular to the spin axis may be
chosen arbitrarily oriented in a plane which contains the rotor
center of mass, and which is perpendicular to the spin axis. These
arbitrarily oriented principal axes must, of course, be mutually
orthogonal.

3
2. The gimbal principal axes are along the ex , 3 e, ,and "g,

7 3
directions.

3. The angular speed of the rotor with respect to the gimbal is
constant.

4. The gimbal plus rotor moments of inertia, as measured about the e
and3 @, axes with the rotor frozen to the gimbal, are equal (see

Equation (2.3.25)).

The Input Axis and Output Axis Equations

Since the angular deflection of the gyro ©(¢) is considered as the
"output? of the gyro, the 2e,axis is referred to as the Youtput axis", and
the differential equation describing the force balance about this axis is
termed the '"output axis equation'.

The "output equation! can be fully developed as follows:

Assumption #5

In the general situation, the external torques applied about the ?'gi axis
may be produced by:

a retarding “spring” force = - K ©

a retarding "viscous damping”force = — <O

2
a disturbance torque = 'l_';
Hence, (Assumption #5)
2 2 P 14
Tp = ke - O+, (2.3.32)

Substituting Equation (2.3.32) into Equation (2.3.31) yields:
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Iaé 4+ C é + ko + T, ':""Iao\--n-\’ sme-'i"'r;; (2.3.33)

= TporSt-Cos® ¢ (2.3.34)

Now, if H=Z ., and

if it is assumed that the angular deflection @ is small (in practice,
usually less than one degree), then

cos e & |

s/w e 26, (2.3.35)

Substitution of Equations (2.3.34) and (2.3.35) into (2.3.33) yields:

s . ’ 2 s
T, 0 +cO+kO +Tgr v HPO -z = Hg - (2.3.36)

If it is assumed that p is small, then #® may be neglected since it is a
"second order" term. If the disturbance ‘borquez“l"*’ is also negligible,
Equation (2.3.36) becomes:

Igé.\-cé-‘rke-\'f—z'z‘ = Hg . (2.3.37)

The Laplace transform of Equation (2.3.37) assuming zero initial
conditions is:

o® = H Vo — (L)Y
(I3$‘+cs+k /%( T, <restk (S)(z 3.38)

—_

Gyroscopic effect term Inertia effect term

The first term on the right side of Equation (2.3.38) is associated

with the angular momentum of the gyro, M, and vanishes as H approaches zero
(the situation of a non-spinning rotor). The second term on the right side
of Equation (2.3.38) is associated with the total inertia of the output axis;
—e«€., the motion of the vehicle ahout the output axis induces motion of the
gimbal as caused by the total effective gimbal inertia, the damping term,

and the spring term.

Equation (2.3.38) may be rewritten as

= —H (3 - L2835 (s 2
°® =i Ey (% S be) :3.39)
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Equation (2.3.39) indicates that by increasing the angular momentum of

the gyro, H , and dccreasing the inertia of the gimbal - rotor about the
output axis X, , the gyro output can be made insensitive to vehicle motion
about the M"yaw" axis, t( t ). It is noteworthy that while low fregquency
angular accelerations in yaw may be adequately removed from the gyro output
signal ® ) , the coefficient of P(S), T3S/ , indicates that at high fre-
quencies, such as vibrational frequenc:.es of a vehicle structure, the gyro
output can have a significant component produced at that freguency. This
characteristic may require either placement of these sensing gyros in. parts
of a wvehicle structure having low vibratory environments, or insulation from
high frequency vibration by utilizing flexible '"mounts", or use of filters
in the electronics to remove high frequency signals.

If the termI; S W) is negligible, Equation (2.3.39) becomes:

¥}
ol H ”
F® = TS 4cstk (2.3.40)
The expression —%‘— is the "gyro transfer function® for a single
axis gyro. T3 S 4cs+k

The input axis equation is obtained from Equation (2 3.30) in a way
completely analogous to the generation of the output axis Equation (2.3.37).
Assuming that the products PY and ep are negligibly small, and that cose=,

H= I J L qS = g and ¢ , Equation (2.3.30) becomes:

2

—

TY = X, <[>Y + H (e+ ¢2) (2.3.141)

2.3.1.1.2 Rate Gyro Equations

From Equation (2.3.40),
(s - !
%_(ss = T, s+cs+tk
In a rate gyroscope, the value of k is made large compared with cw or

T w?, vwhere w is the frequency range of interest. Hence, the angular output
is proportional to angular rate about the input axis -~ i.e.,

=1 “w H
—?;_a— = Tk (2.3.42)

2.3.1.1.3 Attitude Gyro Equations

It the coefficient "C" is large such that the value of cw is much
greater than T, w*br k over the frequenciesw of interest,, Equation (2.3.40)
becomes
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8 - W (2.3.43)
‘3—(5) Cs

If ¢ is the time integral of @@ , then represents an attitude
14 % y .

change, and
S)
g = T2 (2.3.14)

Equation (2.3.43) can thus be re-written

S () v 2‘ (2.3.45)
¢Y(s)

Equation (2.3.45) indicates that the gyro output angular changes ©
will be proportional to input axis angular changes ¢ . Such a gyro is
called an "attitude gyro," or an "integrating rate gyro," or a "proportional

gyro.»
2.3.1.1.4 Angular Integrating Gyro Equations

If the viscous damping term, c, and the spring rate k are very
small compared with I3 , then Equation (2.3.40) can be written:

SXCY H
__%_(S) = I e (2.3.46)
or
) H

= 2.3.
T—r o T, s (2.3.47)

In this instance, the gyro output angular change & (t) is propor-
tional to the time integral of the output angular change.

2.3.1.2 Translational Theory

The translational theory presented in this section consists of a
development of the equations describing the linear accelerometer, which is
subjected to external forces and accelerations, in general six degree of
freedom dynamic space.,

The development commences with a rigorous treatment of a single axis
accelerometer, which is subsequently used as the basis for describing the
dynamics of the integrating accelerometer or velocity meter, the true
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accelerometer, and the double-integrating accelerometer or distance meter.

2.3.1.2.1 Single Axis Linear Accelerometer Equations

The device required for sensing translational motion is a linear
accelerometer. Although many different designs of inertial linear acceler-
ometers have evolved, all inertial accelerometers operate on the same
fundamental principles.

A linear accelerometer consists basically of a "proof mass" suspended
by a force measuring device as shown below. The output of the force
measuring device is the accelerometer output signal.

Accelerometer
//__— Output Signal
f\,’
Accelerometer
Case

Force
Measuring Device
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A number of different forms of linear accelerometers exist, but the
simplest conceptually consists of a proof mass suspended by a linear spring
in parallel with the linear viscous damper, as shown below. The acceler-
ometer output signal is generated by an electrical pickoff which generates
a signal proportional to "x", the mass deflection from its null position.

Accelerometer
Output Signal

Accelerometer Case

Sensitive Axis

The spring and damper force the mass deflection X to deviate in known
fashion (excluding errors) as a function of the forces acting uponm ;
hence, the spring, damper, and position pickoff constitute the force measur-

ing device.
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Sensitive Axi§
A
"" .

Letting X, = case position (inertial)

The equation of motion for the proof mass along the "sensitive axis" is:

=F=m g (2.3,48)

kx + cx -\—F‘%K =M (2.3.49)

But F= e % (2.3.50)

Where :a* = gravitational force acting upon the proof mass in the sensitive
axis direction, i.e., along the "x" axis,

Hence, from (2.3,49) and (2,3.50):

ME. -m¥ = kx+c7'<+F‘3,( (2.3.51)
mx + C)'(_‘.kx—;’)n'i(.g—(:‘%x (2.3.52)
Mmi +ck+kx=m(Ee-Gy) (2.3.53)

where &, is the x component of gravitational acceleration,

Taking the Laplace transform of Equation (2,3,53) (assuming zero initial con-~

ditions) yields:

(s + cS+K) K9 = m (K ® - <)
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Hence:

) = ( m ) X (9 - G ©® (2.3.54)
x msties+k < X

MM
MSstLCS +k

Equation (2.3,54) indicates that an accelerometer output is a function of
both gravitational acceleration &, () and the vehicle acceleration (or case

The ratio is called the accelerometer transfer function,

acceleration) $ic_09 « Note that for zero case acceleration the accel-
erometer output becomes <) = — M ) g) » Or in the steady
= G
X Mmsttcstk k(

state (as S-# 0), approaches the value —=®yx/k for a true accelerometer, and
becomes in essence a spring force balance. It is interesting to note that
during "free fall" an accelerometer case has an acceleration j&<=4-ﬁbx , hence,
substituting this into Equation (2.3.54%) yields X(s) = © (assuming zero
initial conditions) - i,e., during free fall an accelerometer will read zero,
even though the vehicle or accelerometer case is being accelerated by the force
of gravity. These brief examples serve to illustrate the fact that an accel-
erometer is incapable of sensing inertial acceleration in a gravitational force
field. The significant consequence of this observation is that if the inertial
acceleration of a vehicle is to be generated on board a vehicle, then for each
of the three components of acceleration it is necessary to:

1. utilize an accelerometer to sense X , which provides a measure of

(‘}ZC— &,) »and

2, utilize a computer to compute the value of Gy , and generate the
value of X, as (')Lc— G-x) + G, .

The details of this computation are presented in Section 2.3,2.3.

There are a number of mechanizations of true accelerometers and integrating
accelerometers (or velecity meters), Although a linear suspension of a proof
mass yields perhaps conceptually the simplest design, the suspension of the
pendulous accelerometer design is more commonly used. In this design a pendu-
lum is oriented so that the arm of the pendulum is perpendicular to the sensi-
tive axis.

Pendulum

-

Sensitive Axis

The pendulous gyro integrating accelerometer (PGIA), which is a form of
velocity meter, utilizes a gyroscope having an unbalanced gimbal as the
acceleration sensitive element,
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2.3,1,2,2 True Accelerometer Equations

For a true accelerometer, i,e,, a device which indicates acceleration
directly, the spring term k dominatesj; hence, '

X 2 2‘\: (X - & @) (2.3,55)

2,3.,1.2.3 Integrating Accelerometer Equations

For an integrating accelerometer or velocity meter, the damping term
predominates and:

(s = ZLs (Ko - G() (2.3,56)

2.3.1.2.4 Double Integrating Accelerometer Equations

For a distance meter the term ‘M - predominates and:
p

xX(s) = —‘?_— (£~ GX(S» (2.3.57)

2,3.2 Inertial Sensing Techniques

The basic inertial sensors used in generating navigation measurements,
the gyrospope and the accelerometer, have been described in previous sections.,
In this section, the application of these inertial sensors to the problem of
determining the position and velocity of a vehicle is presented.

The process of determining position and velocity from inertial sensors is
called inertial navigation. Several significant features of inertial naviga-
tion warrant emphasis:

1. Unlike all other conventional navigation techniques, inertial naviga-
tion requires no external information to be received at the vehicle to
determine position and velocity: Other techniques require the
reception of either visual of radio informationj or, in the case of
radar, to radiate and receive back reflected information., Inertial
navigation is unique in that it is selfcontained. It navigates by
sensing motion of the vehicle and calculating the changes in position
and velocity after an initial alignment.

2, By its very nature, the fundamental inertial measurements of the
vehicle motion must be made on board the vehicle, Hence, if vehicle
position and velocity information must be known at some point other
than the vehicle, e.g. at an earth-fixed command and control center,
then the use of inertial techniques requires communication of the
inertial measurement information from the vehicle.

The presentation which follows is descriptive of only the most elementary

forms of inertial navigation, The discussion has been formulated to emphasize
the principles which form the basis for the techniques, In the past 25 years
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a number of sophisticated inertial systems have evolved through development of
aircraft, cruise missile, ballistic missile, boost vehicle, and spacecraft
navigation systems, For more detailed descriptions of these systems the reader
is referred to the references in this monograph and to the technical literature.

2434241 1Inertial Platform Mechanization - Inertial Measuring Unit

The inertial platform mechanization of an inertial measuring unit is a
sensor which provides acceleration signals that are resolved along known
coordinates, It is conventionally a platform which is supported by a set of
three (or four) gimbals, as shown in Figure 2,3.2. Usually the inner gimbal
serves as the stable element and contains the three gyros and three acceler-
ometers, The function of the three gyros is to maintain the orientation of
the platform, usually to be inertially fixed or to maintain a locally level
orientation, The functions of the three accelerometers are to generate total
measured accelerations, i.e,, to measure the vector sum of the inertial and
gravitational acceleration., The accelerometers may be either 'true acceler-
ometers”" or may be integrating accelerometers which generate the integral of
inertial plus gravitational acceleration.

The orientation of the stable member is maintained by an attitude
control loop around the platform such that angular errors sensed by the gyro-
scopes are amplified to drive the motors on the appropriate gimbals; the
gimbals reorient the platform to drive the gyroscope angular error to zero,
Major variations from the inertial measuring unit described above consist of
four gimballed platforms, inside-out configurations (stable member as the
outermost gimbal), and variations on the number and kind of accelerometers
mounted on the platform itself,

The platform orientation loop will now be presented for a three gimbal
platform maintained to be angularly fixed in inertial space,
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Figure 2.3.2
Three Gimbal Inertial Platform
From Equation (2.3,36), assuming He© negligible and taking the Laplace

transform yields:

(Tys v cs+k)or 1, ql':l.!_—lTi = H;ﬁ.,

Hence: 2
+ _ ~
e= M sf_" Ta-Tasfe (2.3.58)
T,s tcs+ k

Taking the Laplace transform of Equation (2,3.40) yields:
2

¢ _ TY_H5(6+¢2-)
- T
Y T, S
It will now be assumed that a platform servo is used to correct any
deviations of the platform by appropriately torquing the platform through

torquers mounted along each gimbal, Let the platform servo transfer function
be:

(2.3.59)

—r___Y_es = - G‘TY(S) (2.3.60)
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Hence, the total torque acting about the y axis will be

= T,
. Ty by t T‘Y (2.3,61)
where "VpY_= some disturbance torque
'T}Y = saervo torque

Equations (2,3.,1), (2.3.2), (2.,3.3), and (2.3.4) may be combined to form a
control loop as shown in Figure (2.3.3).

> »| Is*
sg .
\J
s
S 4 L———’y
Disturbance torques L
— "—
4 T, o+ ! +
TBY —0) '? "I T, s Tb—_*_'—’®
+ 1;7 - y
-&_(9) Hs
- 2
G YRO
e ! - $+
I,5%cCs+k
Disturbance torques,
control torques
ZT,
2
Figure 2.3.3

Single Axls Stabilization Loop for
the Y Axis of an Inertial Platform

50



requires simultaneous torquing of the middle and outer gimbals. This physical
coupling of the middle and outer gimbals is usually done using resolvers.

The three gimballed platform Just discussed is effective and practical
when the middle gimbal angular deflection can be limited to approximately plus
or minus 60 or 70 degrees. This angular deflection restriction may be too
stringent a requirement upon vehicle motion. If the vehicle motion forces the
middle gimbal of Figure 2.3.1 through 90°, the platform ocuter gimbal axis
becomes aligned with the inner gimbal axis, and it becomes impossible for the
platform (inner gimbal) to rotate about its % axis. The consequence of this
condition is that the platform cannot null attitude errors in this condition
and may lose accuracy or "“tumble,' losing the attitude reference altogether.
This situation is prevented by incorporating a fourth gimbal, as shown in
Figure 2.3.4, which is automatically driven to try to maintain orthogonality
between the second and third gimbals, The condition wherein the middle gimbal
of a three gimballed platform becomes aligned with the outer gimbal is called
gimbal lock.

%vtrﬁca!

attach
poknf

7 L ~stable
e_\e_mer\*

|+ second
3‘|Y\\bal

~

43'. mbal

fourth
v}'.mba\l

Figure 2.3.5 Four Gimbal Platform
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2.3.2.2 Strap-Down System Mechanization — Inertial Measuring Unit

The strap-down system mechanization of an inertial measuring unit is
similar to the inertial platform mechanization described above, in that it
provides acceleration signals that are resolved along known coordinates. In
addition, like the inertial platform mechanization, the strap-down system
mechanization utilizes three gyroscopes and three accelerometers. Unlike
the inertial platform mechanization, however, these accelerometers and
gyroscopes of the strap~down mechanization are mounted directly to the
vehicle frame., Although the accelerometers generate acceleration signals
along vehicle axes, the integration of acceleration to determine inertial
position and velocity requires that the components of acceleration be either
explicitly or implicitly determined along the coordinates of a non-rotating
reference frame. Many possible mechanizations may be used to perform the
required integration. For simplicity and clarity of presentation, the
coordinate frame for integration chosen for the following development will
be a non-rotating inertial frame, This frame may be impractical or incon-
venient for some particular applications; the reader is referred to the
references for detalled discussion of the advantages of different coordinate
frames for various applications.

Consider an inertial coordinate frame having orthogonal unit vectors
ex ‘g.( ‘e 2. a'\_nd a vehicle~fixed coordinate frame having orthogonal
unit vectors ﬁeﬁ g;,)é?z . Assume that the accelerometer outputs are

A}

generated along the e, ‘e, and te , axes, i.e.,

2 LYY 1 2 T T
A = AK ex + Ay €y + Azg; (2.3.62)

Let. the matrix of direction cosines from the vehicle fixed frame to the
inertially fixed frame be Totoz , i.€.,

\ s

A= Towoc2z A

—

where ' \ ’ !
A=Ar2x+t /Sy +t A S

—

and a,, A, d.g (2.3.63)
Towvz = Gy Ray (Gos
gy CGip A;3
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Since it is necessary to determine the inertial components
of sensed vehicle acceleration, at least implieitly, in any mechanization
capable of generating the position and velocity of a vehicle, it is necessary
to define the equivalent of & mechanization technique for computing the
matrix of direction cosines, Toloz .

The techniques for computing the direction cosine matrix, T0102,
introduced in the above paragraphs, merit an introductory discussion here.
Several methods of computing T0102 may be used. All methods require
some form of angular information as a basis for computation. The customary
angular information is the vehicle angular rate, as sensed by body mounted
rate gyros, although variations of attitude gyros with periodic torquing,
free gyros, etc.,may be employed. Assume the vehicle angular rate infor-
mation to be available, where the angular rate‘gg is

2

2 2 22 2
P Ex+F & +¥F a2 (2.3.64)

then two fundamental techniques for computing the transformation matrix
“Tolo2 may be ut:Ll:Lzed based upon the availability of the angular rate
components 1?, i" s na.mely'

(1) Define a set of three Euler angles between the inertial and vehicle
axes, ¢>e’ t//} and derive expressions of the form:

?S: _F,ﬁ (’P)ﬁ‘) r ¢) e)(/’)
é= ‘Fe ('F) 3"7'”) ¢)a; S”)
#= fo (B3, 0509
Py = <, (2.3.65)

eCo> = CZ

2%

These equations may be integrated to yield the values of ¢© O (® and
¥ (€). The integration of this set of egquations then defines the instantaneous
value of the matrix TO102.

n
n
w
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An alternate technique is to:

(2) Define the initial value of the transformation matrix, and compute
each of the nine elements of the transformation matrix by direct integration.

Although technique (1) has the advantage of only three integrations
versus the nine integrations of technique (2) above, technique (1) suffers
the disadvantage that a discontinuity in the equations occurs if a particular
Euler angle passes through a + 90° value, while technique (2) suffers no

such discontinuity. The equations for technique (2) may be developed as
follows:

From equation (2.3.63),

! L < T
€= Ry By + Rz Qy + Az S (2.3.66)

Thus, the time derivative of (2.3.66) (noting tha.t‘_é_x =0 since 'gy is
inertially fixed) is:

. z . 2 . L
QB+ Ay Syt Rz €= ~ W x(a.& z<+Qw_§y+q(3ga(2-3-67)

Substituting (2.3.64) into (2.3.67), expanding, and equating correspon-
ding components of the vector equation of (2.3.67) yields:

. 2 [
Q\\ = ?—d(g - ra\L

2
a(L': ‘L\" Q“ — ’f Q\'S (2.3.68)

* 1 z
Q\g < ‘PQW_ — i—Qu

Similarly for vectors 'gY and ‘g_ s, the following equations may be
derived: z

hd t 3 T
Q?_( = %—- Q‘L; - r Q?_-p_
hd T 3
Rz ¢ Qg — P Qas

. T LS
a.zg, - ? azz" ﬁ‘ QZ( (2-3-69)
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7 2

Ay = § Rz — ¥ Qaq
fag=r @y

32= F &y — ' L33

- 2 <t
Rz =z P Taan- 5‘ A3

Equations (2.3.68) and (2.3.69) indicate that, given the initial values
of {Q A 3-(q all future values of {Q 2 j(‘t)} may be computed provided the
vehicle body angular rates }P(t),‘%(t\) e ) are sensed.

p)

The techniques for generating {Qi. -s(t‘)} using Buler angular rates are
simply, derived by summing the components of 3 > and ‘v along the ¢ (=]
and axes of rotation. The derivation oiﬁohi is quite lengthy and wbuld
not supplement the discussion. The interested reader is referred to References

8, 9, and 10.

With the determination of the {a.;}, the values of th\x,’ky,‘Aa may
be computed using equation (2.3.63). The only remaining step in the devel-
opment is to compute inertial position and velocity from 'Ay 'Ay) 'Af .

This computation is derived in the next section. ’

2.3.2.3 Position and Velocity Computations and Schuler Tuning

The use of an inertially stabilized platform, as discussed in section
2.3.2.1, permits the three platform-mounted orthogonal accelerometers to
directly sense the components of acceleration (inertial minus gravitational)
in a non-rotating inertial reference frame., Denote this measured acceleration
as:

’A:Ax(§x+ Ay'gr-*- Az ‘§2~ (2.3.70)

where ‘§,< , 'g., ,'ga are inertially fixed (non-rotating)unit vectors

The use of a strap-down system mechanization, as described in section
(2.3.2.2), now permits the computation of the components of acceleration
'\ 'AY S 'A% , as indicated in equation (2.3.70).

)

The inertial computation of position and velocity may now be carried
out as follows:
Since the response of the accelerometers is usually extremely rapid compared
with the comparatively steady acceleration of the vehicle, the sensed
acceleration ';A_\ may be well approximated by the equation:

A= R -a (2.3.71)
=¥ r_og ! '
where <3 - R=G, x+Gy §Y"‘C"e'ez
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?, —

and A (A
- {R“
{ [4
B = Rxlgx"'RYgY“'R%g%

The vector g is the position of the wvehicle in inertial coordinates. -

Equation (2.3.71) is the vector equation equivalent of equation (2.3.55)
derived in section 2.3.1.2, except that case acceleration X.(s) has been
replaced with the vehicle acceleration. Note that the g in the above equation
is the magnitude of the local acceleration.

The cbjective of this section, to indicate the inertial techniques by
which the position and velocity of a vehicle may be determined, may now
be developed; i.e., the position R(t)and velocity V() of the vehicle may
be computed from:

+
VE) = R® = gé(t.‘) dt, + V(o
+t ttt\"° *
. (2.3.72)
R = 5 5 R (E) dt, dt, + V(& jdt, + R
€re 0o tz=e

Equation (2.3.71) and (2.3.72) may be combined to form the block diagram
indicated in Figure 2.3.6.

Computation Loop

A ORISR
Accelerometer { i.c. i.c,
Sensed | v (0) R (0)
Acceleration | T y R (t)
A (t | =
A () — X —> I L —>
o

R

!
jos

Figure 2.3.6
Mechanization of Position and Velocity Computation in an Inertial Measuring Unit
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If K is slowly varying or constant in Figure 2.3.6, then the transfer
function of the components of R{)and Y&) may be written as:

Re o Re R _ _ U

A‘& A‘( Ai - S-L"'K

2. L]
Ve . Mo _ Ve . _S (2:3.73)
Ax AY - A* s*+ K

Equations (2.3,73) display an undamped natural frequency from the
characteristic equation of the computation system:

W= (K)'“‘: (%)Mz (2.3.74)

The frequency w is called the Schuler frequency, and at the surface of
the earth has a value of 84.4 minutes.

The fact that the pure inertial system has an undamped frequency
characteristic produces difficulties with respect to error propagation;
these difficulties are discussed in section 2.5.
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2,4 OBSERVATION—STATE VECTOR RELATIONSHIP

As discussed previously, the objective of making navigation observations
is to acquire sufficient information to permit accurate determination of the
vehicle state vector, i.e., position and velocity. An essential relationship
that must accompany the measured values of the navigation observables (where
essential means essential in the sense that the vehicle state cannot be
computed without it) is a set of general equations relating the vehicle state
vector to the value of the navigation observable. The set of general equations
relating the vehicle state vector to the value of the navigation observables
is simply an identity relationship for the inertial systems previously dis-
cussed (for the inertial measuring unit and strap-down inertial systems
described in paragraph 2.3.2 ), since through integration the output of the
inertial systems discussed is the vehicle state vector. Also, in the case of
radar range and range-rate under radiation sensors, again the relationship of
the vehicle state vector to the measured value is an identity relationship for
the radially oriented components of position and velocity sensed by the range
and range-rate radars, respectively. The situation for the angular measuring
sensors and for occultation measurements is, howevern, entirely different.

Several difficulties with the use of angular measurements as navigation
observables are noted: Firstly, the measurement of angle is strictly a function
of position (discounting the negligible effects of aberration); hence, velocity
dependent information can only be acquired by making angular observations
separated in time. Secondly, a single measurement of angle .provides information
only that the position of the vehicle is on a surface of revolution formed by
rotating a.circle about a chord line segment formed by the navigation objects.
If one of the navigation objects is a star, the length of AB is very large,
and vehicle motion, near some near body B (within the solar system), occurs
very close to B, in which case the actual surface can be well approximated by
the familiar navigation cone of position. If the navigation objects A and B
are on near bodies, as, for example, on the lunar and earth surfaces for mid-
cislunar flight, the conical approximation for the surface is invalid although
linear approximations may still be used. The navigation problem becomes complex
if a set of angular measurements must be processed in an exact fashion to gen-
erate the vehicle position and velocity. Even in the case of generating vehicle
position from three exact independent simultaneously measured angles, the
situation is unwieldy, since an exact computation must carry out the following
steps: (1) derive the equations for each surface which is the locus of points
producing the value of each of the three angular measurements, (2) compute the
three lines of intersections which the three surfaces form, and (3) compute
the point or points of intersection of the three intersection lines.

The navigation computations are also complex if an exact (non-linearized)
method of solution is followed for the generation of vehicle position and
velocity from planet occultation-time measurements. Any planet occultation-
time measurement requires only that the vehicle position must lie on an approx-
imately conical surface generated by rotating a ray from the radiation source
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around the surface of the planet (which degenerates to a cylindrical surface
for star radiation sources). Since occultation measurements cannot in general
be made simultaneously, the exact computation of vehicle position and velocity
can only be carried out by utilizing the vehicle equations of motion.

The state of the art in navigation has not advanced to the point where
these. more exact techniques are utilized, due principally to the fact that
sufficiently excellent accuracy in the navigation computations can be obtained
by using simplified linear relationships between the navigation observables
and the vehicle state wvector.

The following subsections present the simplified linear relationships for
a single fix which are excellent approximations provided deviations of vehicle
position from a "nominal" position are sufficiently small.

Acknowledgement is given to Richard H. Battin (Reference 4) whose book
was of significant assistance in the preparation of this section.

2,4,1 Sun Planet Measurement

Let R be the nominal position vector of the vehicle with respect to the
sun (s) and Z the vector from a nominal position of the vehicle to a planet
(P2) Tt is assumed that the positions of the sun and planet are known accu-
rately. Then, a deviation in vehicle position from the nominal position
produces a change in the sun-planet angle. The following sketch defines the
geometry to be used in the analysis:

S orf \
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If A and A% are the nominal and measured angles respectively between S
and Py , it can be seen from the above sketch that

A*= A+ SA = A + SA, &+ SA, (2.4,1)

The unit vectors N1 and N, are defined to be perpendicular to R and Z,
respectlvely and in the plane determined by B  and 2Z . If the dot product
of SR is now taken with M and fip it is seen that

SR- = (R[ €A,

]

§2 - 7

12l SA. (2.4.2)

Equations (2.,4.,2) are valid expressions providing sAl, and 5A2 are very
small, or alternately, |8l€ << [R] and \sl<< \2| . The very nature of the
analysis automatically satisfies these conditions because §R is a small
position deviation from the nominal position.

From Equation (2.,4.,2) it is seen that

SAl= Sg'ﬂl

R(
SA, = 3B -2, (2.4.3)
(2(
Hence
SA= SA,+SA = M 5@ oa, (2.)
\ IRI 12|
or . (2 N
A= (E‘ * i._;‘) SR (2.4,5)

where R = [R| and 2 =2 .

Equation (2.4.5) is the final result that relates the angular measurement and
position deviations for the sun-planet measurement.

The above result can be thought of as the general expression for a measure-

ment of the angle between two bodies of a finite distance away. Consider the

locus of points defined by such a measurement. The following sketch illustrates

such a locus in two dimensions.
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Elementary plane geometry can be used to determine the locus as part of
a circle. having a chord defined by the line S Po . The locus in three
dimensions can be thought of as the surface of revolution of the circle about
the chord. Part of this surface is shown below.
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It is seen that for every angle that is measured between the two bodies,
there is a corresponding surface of revolution. Hence,when a deviation in the
angle is measured, it can be thought of as the measure of the separation
between the two surfaces. For regions close to a nominal position 8 , this
separation thus defines a family of §R vectors, all of which satisfy
Equation (2.4,5)s The following sketch gives a pictorial representation of the
family of §R ‘s. .

surface A% 2
A
/
7/

-—4R%

surface A7
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A new surface,"Surface A%" can be associated with the measured angle A%,
uSuyrface At is the surface determined by the nominal Angle, A. In effect,
$§A 1is an indirect measure of the separation of these surfaces. It is now
apparent that the information defining a unique §R must come from at least
three independent measurements.

2,4,2 Planet~Planet Measurement

The planet-planet measurement is analytically similar to the sun-planet
measurement. All equations and sketches are exactly the same if the vector R
is interpreted as the position vector from some planet (Pl) to the vehicle.

2.,4,3 Planet=Star Measurement

The result of the analysis for the sun-planet measurement can be extended
to the planet-star measurment by letting (Rj-e © . Under these conditions,
the lines of sight to the star are parallel and the angular deviation
§A-» o . Hence, the angular relations reduce to:

*%
= A
A A She (2.4.6)

where SA = SAL

The following sketch shows the geometry of the planet-star case.

x
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Equation (2,4.5) now becomes

Limn
R-~> ®

SA-= (Zé_ .

2.,4,4 Sun~Star Measurement

Just as the planet-planet
it can also be extended to the

result is
n
LM (_\

2 —» 00

SA =

2,4,5

.SQ WL-SR

]
|

%’) (2,4,7)

analysis was extended to the planet-star -case,

sun-star case by letting |[Z| —» o0 . The
1;_) SR h -sRB
2 R (2,4.8)

Planet Diameter Measurement

The following sketch defines the geometry to be used in the planet dia-

meter measurement.

Let A be the diameter angle of a planet viewed from some nominal posi-

tion in space.

is some position vector of the vehicle.

that

() = o

Z 1s position of the planet with respect to the vehicle and

For nominal conditions it is seen

D
—_— 2.4,9
( )

Thus, for small deviations from nominal, a relationship between $A and § 2

is obtained as follows:

cos(3) 42 -

or

_Db 42
2 p* (2.4.,10)
- D d2
o cos(%\ Q44,11 )



The scalar quantity dZ can be thought of as the change of the vector
in the radial direction to the planet center. If M is a unit vector in the
Z direction, the scalar change in |&[ is

$2 = m- 82 (2.4,12)

This equation can now be written in terms of $R by noting that the position eof
the planet and the origin of R are assumed to be known very accurately.
Hence

R+2Z = Q (a known vector) (2,4,13)

Small deviations in vehicle position thus obey the equation
SR+ $%Z = SQ =0,

$Q is the null vector because there is no deviation in @ due to the vehicle
being off the nominal position.

Thus SR = - $2 (2.4414)

—

and Equation (2.,4,12) becomes

= = -8R
°Z -3k (2,4,15)

The diameter angle deviation can now be written in terms of the position
deviation vector by combining Equations (2.4.11) and (2,4,15).

S'A___ D?"_'S..R_

P C°s(%\ (2.4,16)

2,4,6 Star Occultation Measurement

As a vehicle passes through a nominal trajectory, the time for which a
star is aligned with the edge of a planet and the vehicle can be predicted.
This event is called a star occultation. The observer in a vehicle that is
slightly off the nominal trajectory will witness the alignment at a slightly
different time. This information can be used in a manner that is analogous
to previously mentioned measurements in order to determine the position
deviation of the vehicle. The following sketch shows the nominal and actual
positions of the vehicle and planet during an occultation measurement.
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The vectors E; and - E, define the position of the point of tangency of the
line of sight and center of the planet at the nominal and actual positions,
respectively, If the occultation time deviation is §t, both the planet and
the vehicle will move a certain distance from their nominal positions, 1In
addition to the movement in time §t, the vehicle will be displaced from the
nominal position by an additional amount §$R - due to the fact that it was not
on the nominal trajectory originally. If the velocity of the vehicle is V,
it will travel a distance Y gt during the occultation time. As a result,
the total displacement of the vehicle from the nominal position is

AR = SR 4 vy st (2,4,17)

which is the sum of the original position deviation and the movement during the
occultation time,

Just as the vehicle moves during the occultation time, so does the planet.
If the planet has a velocity V., it moves a distance V, §t during the
occultation time. The vectors N3 and Ny are defined go be along the lines
of sight from the point of observation to the point of tangencv. Now the fol-
lowing vector equation may be written

SR+ VISt + No-E, ~yft+E-N = o (2.4,18)

The unit vector € is now defined to be in the plane determined by the two lines
of sight and perpendicular to Nj (and Nj). The dot product of ¢ and equa-
tion (2.4,18) may now be taken,

Pose + Cust « &4, -C €, - €V 5t+ €E - K =0(2,4,19)

But g-l}!( = f Np=o because they are orthogonal.
Thus
€(y-yp st = €, -€CE - €K (2.4,20)
or
(E, - - .
st = MSB (2.4,.21)
< Yu
where
Vo= V-Ye = pelative velocity of vehicle with respect to the
planet.

Equation (2,4,21) is a very interesting result. If the point of tangency
to the planet during the actual occultation is the same as the predicted
nominal position, then the €-E.-E) term is zero because E2 = E;
and Equation (2,4,21) reduces to

- €. §R

f"!ﬁ

(2,4,22)

st
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Equation (2,4,22) is the standard occultation equation that is normally seen
in the literature (Reference 4). It must be realized that the absence of the

(E E)) term introduces an error in the expression for cases in which
the points of tangency are not the same,

2.4,7 Star Elevation Measurement

Let A be the angle from a star to the edge of a planet and 2 ¥ the
planet diameter angle measurement as shown in the following sketch:

X

As before, the vector R defines the position of the vehicle and £ is
a vector from the vehicle to the planet center. "M is a unit vector in the 3
direction and 2, is a unit vector perpendlcular to 7 and in the plane of
the diameter measurement, € is also in the diameter measurement plane but is
perpendicular to the line to the planet's edge. Now consider the angle Ax¢
as the angle in a planet-star measurement., Making use of Equation (2.4,7),

the following relationship is obtained:

_?11_15_55_ = S(A+Y) = SA +§3 (2.4.23)

Again, making use of a previous derivation on the planet diameter measurement,

it is seen that
_ D(m-s8&
sy = DA (24.20)

The combination of Equations (2.4,23) and (2.4.24) yields

SA =— 2, -8 D('f"g) (2.4.25)
i 2 2 cos ¥
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or

X o .
¢A = (___;'- - __Z*,_’-i“)' ok (2,4,26)

Remembering that é‘l‘x’ = s/ ¥ , Equation (2,4,26) becomes

SA = Jz- (1(1_ ~ TAK ¥ 7_1() . §R (2.4.27)

But, the vectors € , 7 , and m are linearly dependent so that £ can be
expressed as a linear combination of 2, and 7.

€= cas¥ 7, — s ¥ ™ (2.4,28)

or
€ = cos¥(2- TANY M) (2,4.29)

S0
cix e No - 7o Y M (2.4.30)

The combination of Equations (2,4,27) and (2,4,30) yields

oA £ \. _L.EKR
SA = Z('&?V_) SR = F oy (2.4.31)
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2.4,8 Star-Landmark Measurement

The geometry of the star-landmark system is defined in the following
sketch, P is the position vector of the landmark with respect to the planet
centers,

*»

If the figure is examined closely, it is apparent that this case is
analogous to the star-planet measurement where 3 +P and € can be considered
to be analogous to # and P,, respectively in the star-planet case.

Hence

2. - SK

A (2.,4.32)
3 2
which becomes
SA _E-°8 (2.,4.33)
[2+®| :
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2.4.9 Elevation and Azimuth Angle Measurement

Consider the angular measurement of a planet landmark with respect to
some platform that is stabilized with respect to two stars. The angilar
measurement may be expressed in terms of azimuth and elevation angles "A" and
"E'", respectively. The following sketch shows the geometry of the analysis:

L
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From previous work on the star-landmark measurement; . the information
contained in such a measurement is the component of § R in a direction that is
perpendicular to the € + P vector in the plane determined by the star and the
vector € + P. The stabilized platform can be thought of as defining the direc-
tion to two stars. Hence, the information contained in the azimuth and
elevation measurement is represented by the components of § ® in the direction
of B, andNng,, respectively. )

I £
| §+£l (2.4,34)

sy -2 SR
(2.4.35)

[z +p|

The unit vectors N, and e can be expressed in terms of rectangular cartesian
components as folIGws: ~—

~N
1Y)
I

sin A 1 + cos A j (2.4.36)

Mg =sin Ecos Ai-sinEsinA j+cos Ek (2.4,37)

Rewriting equations (2.4.34) and (2.4.35) and using equations
(2.4.36) and (2.4.37), it is seen that

~—(sinAi+cosA j+OK) - £R
BA § (2,4,38)
[2+2]
§E =(sinEcos Ai-sinEsinA j+cosEk) - §R _
l Z + 2\ (2.4,39)
or in matrix form
sin A cos A 0 i -§R
§a | |iz=r 2+ E
= 48 (2.4,40)
EE sin F cos A -sin E sin A cos E| |k -¢§ R
|2+ B| jg+p[ (2+8 |
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But i -§R8
4 SR = R
k-8
s0 §A
=H - $R (2.4.41)
§ E
where
sin A cos A 0
H=——= _ _ , (2,4,42)
(2+E| sin E cos A -sin E sin A cos E
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2.5 OBSERVATION ERRORS

A significant portion of the errors in the final values of the navigation
estimates of position and velocity, even after smoothing of redundant data,
is caused by errors in the navigation measurements themselves. Often the
most difficult requirements to be met by the navigation system are its
accuracy requirements. Hence, the evaluation of errors is a fundamental
task in the analyses of navigation systems. It is thus appropriate to con-
sider in detail the analytical methods and techniques which may be applied
to the various kinds of errors which occur in navigation measurements. In
this section the various error sources which contaminate the navigation
observation measurements are introduced and analytical techniques for their
evaluation are presented. The discussion consists of a treatment of radiation
sensor errors and inertial sensor errors.

2.5.1 Radiation Sensor Errors

The two types of basic radiation sensors which may be categorized as
current state of the art are sensors which are sensitive to electromagnetic
radiation in the visible region and sensors which are sensitive to radiation
in the radio frequency region. The sensors which are sensitive to the optical
frequencies are for the most part line-of-sight instruments whose function
is to measure the angular relationship of the line-of-sight to either a plat-
form reference or a second line-of-sight. Since the measurements for this
kind of sensor are angular measurements, the errors which dominate the total
instrument inaccuracy are most frequently the mechanical read-out devices.
These errors are non-electrcmagnetic in nature and will not be discussed
here. Another type of error discussed affects optical instruments, however.
These errors are associated with uncertainties in the path of the radiation
through space before arriving at the instrument, and include two types of
errors: atmospheric refraction and horizon-induced diffraction. The
other categories of radiation sensors discussed consist of sensors sensitive
to the radio frequencies, notably radar. frequencies. The errors discussed
describe all the major sources of inaccuracies in the optical and radar
sensors.
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2,5.1,1 Signal-to-Noise Ratio

The signal-to-noise ratio is fundamental to the discussion of radiation
noise, and hence is the logical point of departure leading to a discussion of
the random errors in radiation phenomena which are discussed in the sections
immediately following,

Since noise is the chief factor limiting the sensitivity of an observation
sensor, -1t is necessary to obtain some means of describing it quantitatively.
Noise is unwanted electromagnetic energy which interferes with the ability of
a sensor to detect the wanted signal. It may originate within the sensor
itself, or it may enter along with the desired signal, If the sensor were to
operate in a perfectly noise-free environment so that no external sources of
noise accompanied the desired signal, and if the sensor itself were so perfect
that it did not generate any excess noise, there would still exist an unavoid-
able component of noise generated by the thermal motion of the conduction
electrons in the electronic components of the sensor, This is called thermal
noise, or Johnson noise, and is directly proportional to the temperature of
the ohmic portions of the circuits and proportional to the bandwidth of the
sensor circuitry, The available thermal noise power generated by a receiver
of bandwidth B, (in cycles per second) at a temperature T (degrees Kelvin)
is equal to

available thermal-noise power = K TB, (2.5.,1)
where K = Boltzmann's constant = 1,38 x 10~23 joule/deg.

If the temperature T 1is taken to be 290°K, which corresponds approxi-
mately to room temperature (62°F), the factor kT is 4 x 10-21 watt/cps of
bandwidth, If the sensor circuitry were at some other temperature, the thermal
noise power would be correspondingly different.

It should be noted that the bandwidth B, of Equation (2.5.1) is not the

3 - db, or half-power, bandwidth commonly employed by electronic engineers.
It is an integrated bandwidth and is given by

3 NI
Ba = HETE

frequency-response characteristic of sensor circuitry

(2.,5.2)

where H(f)

fo

frequency of maximum response (usually occurs at midband)

When H(f) 1is normalized to unity at midband (maximum response frequency),
H(fo) = 1, The bandwidth B8, is called the noise bandwidth and is the band-
width of an equivalent rectangular filter whose noise-power output is the same
as the filter with characteristic H(f).

The noise power in practical sensors is usually much greater than can be
accounted for by thermal noise alone. The additional internal noise components
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are due to mechanisms other than the thermal agitation of the conduction
electrons, A discussion of the additional noise is given in Section 2.2,1.4,
"Noise," which also discusses sources of external noise,

Two useful quantities that are frequently used to describe the noise in a
system are the signal-to-noise ratio and the noise figure, The signal-to-noise
ratio is defined to be the ratioc of the power of the desired signal-to-the-noise
power,

S signal power

N noise power

This ratio is a measure of the relative amount of noise accompanying a
signal, The lower the signal-to-noise ratio, the more difficult it becomes
to detect the signal, A measure of the noise characteristics of a sensor can
be obtained by comparing the noise power out of a practical sensor to that of
an ideal sensor at some standard temperature. This ratio is called the noise
figure, F, .« If the ideal sensor has no other than Johnson noise, its noise
output is kT B,‘G* « Therefore,

No ) noise out of practical sensor
T kT, B, 3 " noise out of ideal sensor at standard temp., T
where Ny = noise output from sensor
Gz = avallable gain
To = standard temperature = 290°K

Now, the noise output of a sensor may be considered to be equal to the
product of the thermal-noise power obtained from an ideal sensor and a factor
called the noise figure, F . The noise figure may be interpreted as a meas-
ure of signal-to-noise ratio degradation as the signal passes through the
sensor, This can be seen if the gain is thought of as the ratioc of the output
signal power to the input signal power ( S5/Si ) and the quantity kToB, is
taken to be the input noise N; in an ideal sensor. Hence

Ne Si (s¢/ar)

F— - = = (2.5.‘#)

* " k7.8, (So/s;) KT, By, (So/4) (Se /)

Using the above equation, the input signal power may be expressed as
Si= kLB.E S, (2.5.5)

Assuming that the input noise is kT, B, , the minimum detectable signal power
corresponding to the minimum signal-to-noise ratio at the output can be written
as

M T
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Hence, an estimate of the minimum detectable signal of a sensor can be obtained
from the noise bandwidth, noise figure and the minimum signal-to-noise ratio of
the output.

Another convenient parameter used to express the noise characteristic of
a sensor is the effective noise temperature., Using this parameter is equiva-
lent to using the noise figure as is shown by the following analysis,

The definition of noise figure is the ratio of the total noise out of a
sensor compared to the noise out of an ideal sensor at 290°K,

Hence,

+ AN
c . kGBaGa (2.5.7)
KTo Egkﬁia
where AN is the additional noise introduced by the sensor (not necessarily
at 290°K),

Rewriting Equation (2.5.7) as

Fe |4 AN (2.5.8)

¥:1;i&n<3;_
and defining the effective temperature, Te, as that temperature at the input
which would account for the noise AN at the output (AN = kTe 3,t G‘}, the
noise figure can be written as

- T
KT 8. G .
or
Te = (F-0To (2.5,10)

It should be emphasized that the effective noise temperature of a sensor
is not necessarily equal to the physical noise temperature of the sensor input.
Rather, it is a convenient parameter to use in order to represent the noise
beyond that exhibited by the ideal sensor at 290°K, i.e.,

AN= KTe By G, . (2.5.11)
Both the noise figure and effective temperature are measures of the additional
noise introduced by a sensor due to the fact that it is not at 290°K and other
sources of internal noise,

Since there are many sources of noise in a system and its environment, it
sometimes becomes necessary to combine all the sources into an equivalent
source which can be represented as an equivalent system noise figure or noise
temperature, Usually the system can be broken down into a cascade of compo-
nents each having its own noise figure, F, gain, G, and noise bandwidth, B, .
It should be noted that each component could be any transmission medium that
has noise such as the atmosphere as well as any electronic equipment used to
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transmit the signal, If the medium considered has losses, the gain may be
less than one, in which case a loss factor, L, (L = V/& ) is scmetimes used.

The overall noise figure for a cascade system will now be derived for two
components in cascade and generalized to N components in cascade., Consider
two components in cascade, each with the same noise bandwidth but with differ-
ent noise figures and available gain.

Let F,, G,, be the noise figure and available gain, respectively, of
the first component and Fp, G, be similar parameters for the second component.
The problem is to find F,, the over-all noise figure for the cascaded system.
From the definition of noise figure, the output noise N, of the two components
in cascade is

M= Fo &G, kT B, (245.,12)

where Gj Gy is the total cascade gain,

This must be equal to the noise from component 1 at the output of compo-~
nent 2 plus the noise introduced by component 2, The total noise from
component 1 at its own output is kTg qu,‘(--‘ « This includes both Johnson
noise and additional imperfect sensor internal noise ( A N3), This noise
becomes kT, ®, &G, G, € at the output of component 2. The additional noise
introduced by component 2 can be found from Equation (2,5.8) as

AN, = (F-) kT B, &, (2,5.13)
Hence,
No = KToB,F &G+ (-0 KT 8, 6 = Fuk T, B, S G, (2.5.14)

Dividing the above expression by KTg B, &G G, yields

¥, = \'—" + Fﬁ_‘ (2,5.15)

]
This expression can be generalized to the total system noise figure Fo as a
function of the noise figures of N cascaded components and their respective
gains as follows:!

. = F; + L .F’;‘.-‘--~--‘+ FN-I (2.5.16)
[ S, G, G-,_ G,G-._-"- GM-(

The noise temperature for the cascaded system can be obtained by rewriting
Equation (2,5,16) as

%- | F1 |
- - F_ .z'__.. +$ 3 + mmm-e - tm——————
-l = (F-1) + y ce. CY-—
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or

Toa = __‘-‘L 4 Ia‘_.e_.+._-+ e
To To G-ITO G'tG'z.'"G'M-. To
or finally
AF T
Toe= Ty + e |\ _3e .. ve
G' G.\Gl G(Gi_""G'”_'

where Tgq the effective overall system temperature

the effective temperature of the Nth component
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2.5.1.2 Noise Frrors in Radar Megsurements

The ability of a radar to detect the presence of an echo signal is
fundamentally limited by noise. Likewise, noise is the factor that limits
the accuracy with which the radar signals may be estimated. The parameters
usvally of interest in radar applications are the range, or time delay,
the range rate, or doppler velocity, and the angle of arrival, The dmplitude
of the echo signal might also be measured, but its precise value is usually
not important except insofar as it influences the signal-to-noise ratio,

In the following analysis, the theoretical accuracies for radar
measurements will be derived. To simplify the analysis, it is assumed
that the sigral is large compared with the noise, This is a reasonable
assumption, since the signal-to-noise ratio must be relatively large
if the detection is to be reliable., Furthermore, as will be shown, large
signal-to-noise ratios are necessary for accurate measurements, It is
also assumed that the error associated with a measurement of a particular
parameter is independent of the errors in any of the other parameters.
The validity of this assumption depends upon the availability of a large
signal-to—noise ratio.

2.5.1.2,1 Sinusoidal Amplitude, Frequency and Phase Measurement Error

Consider a continuous sine wave

A sw (2Pse+ @) (2.5.19)

where f is the freguency and g5 the phase. One period of the sine wave
is shown in the following sketch.

L\- n(e)=4aA

-
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The accompanying noise n(t) causes the apparent amplitude to differ from
the true amplitude by an amount AAsnft} The rms error in measuring
amplitude is therefore

—\"
SA = (71‘3 (2.5.20)

The relative error is

sa | R
AT ZA'-/,Tz)’/L" (25/#)”&

where S/N is the signal-to-noise power ratio. The measurement of phase
may be considered as the measurement of the time at which the waveform
crosses the zero axis. The error in determining the time of a particular
crossing is

(2.5.21)

nte)

slope of sine wave at zero crossing

At =

(2.5.22)

The slope of the sine wave is2®W¥Aat the point of zero crossing. There-

fore,
Ita .
[ 2 ('Wz)
= t _1 = - ’
§t =19 Z0%A 2 f (2 su)e(2:5:23)

Since P=21f¢, the phase errorsp:=2rfst ig

/
§6 iy ewALcw (2.5.24)

The périod T is the time between two successive zero crossings of the
same slope. The rms error in measuring the period will therefore be

NZT times the single zero-crossing rms error, assuming that the
zero~crossing measurements are independent.

(ST)L= (St)l+ (59 - 2 (s
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- YNz S
§T = QM€ @2 sa)% - z‘u‘(s/,v)hiz.s.m)

The error in period AT is related to the error in frequency AT by
AT= -A_‘i:ft s therefore,

_ £ (2.5.25)
8 = 2 (s/m)'™

2.5.1.2.2 Range Accuracy - lLeading Fdge Measurement of a Pulse

The measurement of range is the measurement of time delayT a f"/c_ ,
where ¢ is the velocity of light. One method of determing range with
a pulsed waveform is to measure the time at which the leading edge
of the pulse crosses the threshold as shown in the following sketch:

,/_ ~— \ _ "Rectangular" Pulse

\((Rectangular Pulse Plus Noise

Ehre sho_];d

The pulse, uncorrupted by noise, is shown by the solid curve. The

shape of the pulse is not perfectly rectangular; i.e., the rise and decay
times are not zero, for this would require an infinite bandwidth., The
effect of the noise is to perturb the shape of the pulse and to shift

the time of threshold crossing as shown by the dashed curve. The maximum
slope (rate of rise) of the leading edge of a rectangular pulse of
amplitude A is A/t_, where t is the rise time. For large signal-to-

noise ratios, the sfope of th& pulse corrupted by noise is essentially

the same as the slope of the uncorrupted pulse. From the sketch, the

slope of the pulse in noise may be written as’&ﬁ/hn‘ where Y is the
noise voltage in the vicinity of the threshold crossing and AT, is the error
in the time-delayed measurement. Equating the two expressions for the slope
glves
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AT, = %%—— (2.5.26)

or

(e,
z t t
[(ATQ]‘-‘ $T, = W = ‘(TS;T)'IT{_ (2.5.27)

®
In the above expression,A/‘:—l,is equal to twice the signal-to-noise ratio
assuming that the signal power is &%/z. .

If the rise time of the pulse is limited by the bandwidth, B, then

t,= -

r B
Lettin =
: S: &
C
and N=ANB
where € = the signal energy,

N, = noise power per unit bandwidth

and ‘C = pulse width,

the error in the time delay can be written

T 173
$TR = [_E-EE/_MZ—] (2.5.28)

Recalling that

T, = 2R (2.5.29)

and taking the derivative to find ST‘" , it is seen that

“n 2,
SR :[—L——] (2.5.30)

8Ty = 28€/4,

R

o[
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Now,

i
R ——c'-[i——zll (2.5.31)
T2l 2BE/A, e

Por constant pulse amplitude, the rms time-delay error given by equation
(2.5.27) is proportional to the rise time and is independent of the pulse
width. An inprovement in the accuracy is obtained, therefore, by de--
creasing the rise time (increasing the bandwidth) or increasing the signal-
to-noise ratio.,

2.5.1.2.3 Accuracy of Frequency (or Deppler-Velocity) Measurement

A derivation which is analogous to the range error derivation in
Reference (3) , can be used to find the minimum rms error in the
measurement of frequency as

|
St = o((Z.E/K,)({" (2.5.32)

where

5 (27 ) <) d¢
T _ —oe

) _f”.a."(t-) dt

and s(t) the input signal as a function of time.

4 (2.5.33)

The parameter & is called the effective time duration of the
signal. In radar, the measurement error specified by equation (2.5.32)
is that of the doppler frequency shift. The value of o* for a perfectly
rectangular pulse of width “C is "i'i"T‘/s s thus the rms frequency error
is

= 3
S'F \“\._,c ZE/Mo)((L

This expression shows that the frequency measurement is improved in
accuracy as the pulse width is made longer. It should be noted that the
expression for o used above was for a perfectly rectangular pulse which
assumed an infinite bandwidth. If a bandwidth-limited case is considered,
a slightly different expression for &K is obtained. However, o reduces
to “®*V/3 in the limit as the bandwidth goes to infinity. Since
the purpose of this section was to introduce the best possible theoretical
accuracy of the doppler measurement, the analysis will not be pursued any
longer. The reader interested in finite bandwidths and other waveforms

is referred to any radar systems book,
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2.5.1.2.4 The Uncertainty Relation of Radar

The reader is no doubt familiar with the uncertainty principle of
guantum mechanics which states that the position and veloecity of an electron
or other atomic particle cannot be simultaneously determined to any degree
of accuracy desired. Precise determination of one parameter can be had
only at the expense of the other. This is not the case in radar. Both
position ( range or time delay) and velocity (Doppler freguency) msy in
theory be determined simultaneously if the appropriate system parameters
to be subsequently discussed are specified. The two uncertainty principles
apply to different phenomena, and the radar principle based on classical
concepts should not be confused with the physics principle that
describes quantum-mechanical effects., In classical radar there is no
theoretical limit to the minimum value of the §7-5f Dproduct since the radar
system designer is free to choose system parameters that make this procduct
as small as desired. The limits are practical ones, such as power
limitations or the inability to meet tolerances. In the quantum- mechaniecal
case, on the other hand, the observer does not have control over his
system as does the radar designer since the parameters that are modified
by the radar designer are fixed by the very nature of the quantum particle,

In order to derive the analytical expressions that illustrate the
above grinciples, use is made of the accuracy relations of the time delay

(range and frequency (ra.nge—rate) measurements.
ST = { 72

R B (2E/w)  (2.5.34)

Sf = [ (2.5.35)

< (28/1,)"

where B is the effective bandwidth and & is the effective time
duration of pulse.

Now -expressing STR' S-(-' as

_ |
= Boc (2_ E/No)

it can be seen that the time delay and the frequency may be simultaneously
measured to as small a theoretical error as one desires by designing the
radar to yield a sufficiently large ratio of signal energy (E) to noise,
power per cycle (No), or for a fixed E/No, to select a radar waveform which
results in a large value of 8 . Largeg8« products require waveforms long
in duration and of wide bandwidth.

(2.5.36)

ST, 5§
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2.5.1.2.5 Angg;ar Accuracy

The measurement of angular position is the measurement of the angle
of arrival of the equiphase wavefront of the echo signal. The theoretical
rms error of the angle measurement may be derived in a manner similar
to the derivation of time (range) and frequency (range—rate) errors
discussed previously. The analogy between the angular error and the time
delay or frequency error comes about because the Fourier Transform des-
cribes the relationship between the radiation pattern and the aperture
distribution of an antenna in a manner similar to the relationship between
the time waveform and its frequency spectrum.

For simplicity,the angular error in one coordinate plane only will
be considered. The analysis can be extended to include angular errors
in both planes, if desired. It is assumed that the signal-to-noise ratios
are large and that the noise can be described by the Gaussian probability-
density function.

Consider a linear in-phase receiving antenna of length D, or-a
rectangular receiving aperture of width-D as shown in the following
sketch

The amplitude distribution across the aperture as a function of x is
denoted A(x). The (voltage) gain as a function of the angle (one
dimensional radiag}on patterﬂ in the xz plane is proportional to
[N
G(e)= | A exe( 2w % s dx (2.5.37)
v

- D/2~
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When the angle ©® is small, SWe= @ and the above equation is recognized
as an inverse Fourier transform.
of2

G, (o) = j A exe (2rix 2) dx (2.5.38)
._p/L

This is analogous to the inverse Fourier transform relating the frequency
spectrum §(¢) and the time waveformaft), i.e.,

) = y S() exP(L‘ﬁ‘J £) df (2.5.39)

-~ 0O

As the antenna scans at a uniform angular rate Wy, the received signal
voltage from a fixed point source will be proportional to & (@)= G, (W,€)
and may be considered a time waveform. If @/A is associated with < in
the inverse Fourier transform and x with f, the theoretical rms error can
be obtained by an analogy to the time-delay accuracy expression

=) _ /
S(,\) = Y o) (2.5.40)

where ¥ is the effective aperture width defined by

aD
f @en® |aml e
- a0

§ = = S (2.5.41)
j IA@| dx
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2.5.1.3 Total System Noise

The technique for computing total system noise will be explained via
an example, Consider a radar system whose receiver is at Tpe °K and sees
cosmic noise and atmospheric noise. The system block diagram is shown below.

Cosmic | Absorbing Transmission
Noise Atmosphere Line
To Tats Lat Tt Ly

Receiver

Ire

From equation (2.29), it can be seen that the effective temperature of the

atmosphere is

Teat = (L - 1) Tyq

Similarly, the effective temperature of the transmission line is

Teyp = (Tt1 - 1) Ty

Using the effective temperature equation for components in Cascade, equation

(2.5.18), it is seen that

T +7T + T L., L

Te c €st, ey Lat + Tre at tl

3
I

or

Te t (Tpy = 1) Ty + (Tyy =~ 1) Ty Ly +T

re Lat I%l

Hence, if the noise parameters of the components of a system are known, the
effective noise temperature of the system can be calculated and an estimate

of the expected noise power can be determined by

N =K Tg B,
where N = Noise power in watts
K = Boltzmann's constant

Te = Effective temperature °K
B = Noise band width (CPS)
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2,5.1.4 Atmospheric Refraction Errors

Position and velocity information may be deduced by tracking boost and
space vehicles from earth based tracking stations. An approximate estimate
of vehicle position and velocity may be generated directly from the tracking
antenna, gimbal angles, and/or elapsed time measurements for radio signals
to travel from vehicle to ground, etc., These estimates of position and
velocity contain a predictable or bias error compcnent , however, which may
be removed by analyzing the refractive effects of the earth's atmosphere.
The analytical derivation follows:

First, a flat earth model with a horizontally stratified atmosphere will
be examined and then a spherical earth with the index of refraction a
function of the distance from the center of the earth will be analyzed.

Consider the electromagnetic wave traveling from some vehicle outside
the atmosphere. The path that the wave follows is shown in the following

sketch,

]

<

Observer
Vehicle
Vector Velocity of Missile
True Elevation Angle
(Observed Elevation Angle
Elevatian Angle Error
T Total Bending of Ray
+# Burnout. Angle Error
r, @ Unit Polar Coordinate Vectors
r, © tnit Vectors Obtained by
Rotating r and @ through
Angle 4

R4 RO

)
=
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The total anglevl:' through which the ray will be bent, i.e., the angle
through which the tangent to the ray rotates, in going from the vehicle
to ground can be derived using Snell's Law

LA wn
Ne Cos E = ‘hM Cos(E'- "0) (2.5.42)
where ‘)|M= 1+ €y = index of refraction at vehicle, M
Ne = | + &, = index of refraction at ground, O

‘C is sufficiently small so that one can ignore terms in‘f <. For the values
of EM , €, » and E encountered in practice

€, & 0.6 x 1076 at 10,000 MC

X 6.0 x 1070 at 1000 MC
€, & 300 x 107
E v 25°
Hence, equation (2.5.42) can be approximated as

T= (€~ €x) o™~ E (2.5.43)

The error angle $€ between line OM and the tangent to the ray at O may be
derived with the aid of the following sketch

L

Observer

Vehicle

Point of Ray OM
Tangent to Ray at O

Perpendicular to OL
Distance from 0 to G
Measured along Ray OM
¢(s) Inclination.of Ray at G
T(s) Total Bending of Ray at G

wB Bamo

91



Let ML be the perpendicular from the vehicle M to the extension OL of the
tangent to the ray at O. Then §€ is the angle whose sin is MI/OM and

ML = ,( da S P ()
C (2.5.44)

where the integration is along the ray path I and T(4) is the total
bending at point .4 relative to the ray direction at 0. Since CKM is never
very far away from the straight line OM, equation (2.5.44) may be approxi-

mated as R R
ML.-'_'SS/M‘Z‘ do = jfdf‘ = Rcé, (2.5.45)
° o
where T is the average of ‘C along OM.
Now
. M <«
E = — = C
g oM (2.5.46)

&‘é can now be evaluated by averaging equation (2.5..4.3) leading to
— L
se=(e,-€)ern E (2.5.47)

Note that,although a single observation at the surface is necessary to
determine €, , € is a function of the entire refractive index profile.
However, € can be estimated by using a standard profile. The contribution
to € from the lower atmosphere (below 30 km) can be approximated by the

following model ('&) ) - W
7 = l+r & = (2.5.48)

where €o= Meled -}

and H = 7.‘ km_

For kL = 30 km,equation (2.5.48) can be approximated as
= . 7@ €
Cins R
whe_z:e h  is the vehiele's altitude measured in kilometers. The contribution
to € from the ionosphere can be estimated by using the electron density
profile —
€_ = -0.2x107° at 10,000 mi.

= -2.0 x 10~% at 1000 mi.

Y

T
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The net average value of € is €= €_, + -é: Thus,
equation (2.5.47) can be used to determine the elevation angle error for a
flat earth model.

The spherical earth case is now considered. For a spherical earth with
the index of refraction, a function of the distance @ from the center of the
earth Snell's Taw is

Ch siv g = constant along a ray (2.5.49)

where N index of refraction

e

This expression can be obtained from the generaligzed differential form of
Snell's Law if the condition of a spherically stratified atmosphere is
utilized. The reader is referred to reference 6 for the details of

this derivation. The following skeich shows the geometry to be used in the
following analysis.

i

inclination of ray from the local vertical
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Insofar as the effects of the lower atmosphere are concerned,
equation (2.5.49) is a good approximation as long as the elevation angle E is
greater than approximately 3 degrees. This has been verified by ray tracing
calculations of Bean and Cahoon, Ionospheric effects are generally negligible
for radio frequencies above 1000 mc, compared to lower atmospheric effects.
Correction for a spherical earth in the ionosphere is a second order per-
turbation. :

The following derivation is a method for computing the total bending'C(k)
up to the altitude h in a stratified atmosphere over a spherical earth.

Taking the differential of equation (2.5.4.9) along a ray, one finds
d€ N swwg + €dn Siwg + PR cos b dfp = o (2.5.50)

Using simple geometry,

do - 4Ff Taxve
P

where © is the angle subtended at the center of the earth. Equation (2.5,50)
can now be written as

dé +de = - i—i?‘ Tawe f (2.5.51)

Thus, T(4) , the angle which the tangent at s makes with the tangent at O
is given by

ONPSNIN I ¢ - {9z
T = ,.f g+ Q) rf 5 1.44/75 (2.5.5%)

where §| is the path of the ray. The following approximation is now made

{ .
7= \-¢€ (2.5.53)
TAN G = TAN (B, + AB) = Tan B+ b ¢ see?

where the errors are of order & 2 and A;ﬁ 2. To a first approximation,
the change in the inclination of the ray to the local vertical is given by

A¢ S (eo - e_\ Tﬂ”¢° - Y C.OFS éo (2.5.54)
-}

where [, is the radius of the earth ( (§ = 6378 km).
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Equations (2.5.53) and (2.5.54) are then substituted into equation (2.5.52)
and integrated along the line OM out to r, keeping only terms which are
second order in € and /¢, :

2 -
T - [éo- € - Yz (es-€)+ /2 (&-€) e €
(2.5.55)

(2o c.as*g] crw £

xr
A

V‘ -
where €% Wz - ?So is the apparent elevation angle and € denotes the
average value of € along the line OM out to the value r:

€ = -;-; je(e) dsg (2.5.56)

o
The equation for the elevation angle correction angle can be shown to

be
SE= TAn" ( =) (2.5.57)
where LM:jdA ST
Y
Since the ray OM and the line OM lie close together, s E can be written as
R R
ggééﬁ Jk&w%é;%j?dk:% (2.5.58)
where T is the a.ve:c?a.ge value of ‘T along OM.

By averaging equation (2.5.55) over OM, the spherical earth correction
formula for the elevation angle is obtained.

- -2 _ *®L 3 g L -
SE= [e° € - L (e;- e‘) + £ (e,-€)fces” €
- )
—'(:T’(RE—ZFE) CosE] <TH E
[
Range errors are also introduced by the refraction of the electromagnetic
wave through the atmosphere. If range is measured by measuring the transit

time of a pulse going from O to M, then the distance measured will really be
the effective path length OKM

(2.5.59)

R
L=c ?‘\-,:i = c.f ‘f;‘"' (2.5.60)
r 4 o g
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where V% is the group velocity of a pulse of a carrier frequency ‘?o .

It can be shown that there is a negligible difference between the arc
OM and the straight line OM, Thus , integration of equation (2.5.60) may
be performed along the line OM. Writing

S o S = |y 8Yg (2.5.61)
V. - c
} < SV?
it is seen that
L= R+ SR (2.5.62)
R
where - V.
2R = j v dr (2.5.63)
°

Now, the doppler errors due to refraction will be considered. ILet the
vehicle at point M, moving with a velocity vector V, transmit a signal
expr (2% ¢ -(:) Then the signal which will be recelved on the ground at O

will be
v

(appropriate modifications must be made for two-way doppler transmissions).
The instantaneous frequency received on the ground will be the time rate
of change in the above expression; i.e.,

F=f - L -g:e-f‘hmc{,a.

< (2.5.65)
or
- < ds %, [ 9%
-F s 'F° 'c__.ﬁ ?(wl Jt - —" at dd' (2-5.66)
Thus the observed one-way doppler shift at frequency "F, is
= ‘€ n C/s 'F 5 ..a__)l; d.d,
A¥ gc‘n Lo+ 2 )5 (2.5.67)

The first term on the right hand side of the above equation is the usual
doppler shift term. It is pointed out, however, that (1) the index of
refraction Mae at the vehicle appears in this term and (2) since the direction
of increase of path length ( d S/d¢ ) is tangent to the ray path, this term
corresponds to a velocity component tangent to the ray and not in the direction
of the straight line OM.
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The primary observable quantities from which vehicle velocity V is
determined are elevation angular rate E and a doppler shift o <€ , together
with positional coordinates v+ and E. Then

dS w <« w
Y=g F+rrE8g (2.5.68)

where :1:: and §are rotated from r and @ by the angle @ ,
(B=T-8g = E-€, crw T)
and £
ds . L. caf _ f.__,ah d.4
d¢ Rae £, ¢

r\
Hence, equation (2.5.68) is the doppler velocity equation with atmospheric
refraction considered.
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2,5.1.5 Horizon-Induced Diffraction Errors

A diffraction pattern is produced whenever electromagnetic radiation
passes through a narrow slit or passes near a straight edge. Hence,
diffraction occurs when electromagnetic radiation passes close to the
horizon of a celestial object before arrival at a sensor, and produces
an apparent bending of the radiation "rays" near a horizon "edge".

For most purposes, the horizon diffraction effect can be evaluated
by applying the results of an evaluation of the Fresnel diffraction inte-
grels describing diffraction produced by a straight edge. Assume that
a straight edge is placed between a point source of light ard a screen,
as shown below;

4
Tr-msen
Thpad bt AAen
Point reicht ~
light
SOUBRE o e o om e e — - = — e — ——— — d O

The intensity of the radiation on the screen may be plotted as a function
of x, thé position on the screen. For simplification of the.presentation,
however, it is more convenient to plot intensity of the radiation as a
function of V, where

X = V )\b (a+b)

> o (2.5.69)

where: a,b, and x are defined in the sketch A = wavelength of the
radiation, The plot of intensity as a function of V is presented below:
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Intensity
ratio
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Intensity
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edge

It is noted that the radiation reaches a maximum of nearly 1.5 times
the intensity that would be measured in the absence of the straight edge
for the value

VA

s

Vv

MAx
(NTENS 1y

(.3 (2.5.70)

The correspending value of x is:

A &\ _Ablaxb) _ Ab (a+b
X =X =V \[—2_—a_—— = (3 \[—ZZ__—) (2.5.71)

MAKX
INTENSITY
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For a spacecraft at the distance b from a planet,

VYehicle

Point
light

source N

- Q >l b >4

the angular error e* is thus:

-

.2 s\ _Ab(ae) _ Alatb) (2.5.72)

—

& b 2 a 2.ab

‘If the distance from the vehicle to the planet (or celestial body) 1s
much less than from the planet to the source of radiation, then p<<a
and equation (2.5.72) becomes

(2.5.73)
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Bxamining the angular error at visible wavelengths, as an example,

A= 5,000 8 =5 x 107 cn. = 2.69 x 1010 n, mi.

eguation (2,5,73) becomes

-5 ~5
e* = 1512107 L giang =22720 x 10 7

Ve '

degrees

V—E_ arc sec

¥*
If b = 100 n.mi., © = 0.013 arc sec

As the wavelength increases, equation (2.5.73) indicates that the diffraction
angle@"t increases. For example, if the wavelength were to correspond

to the long wave radio wavelengths, say A= 5 x 105 meters, then
assuminga@=e0 , | =100 n,mi,the diffraction angle Q* becomes 0,372
degrees.

The conclusion from these examples is that for practical guidance
measurements in the visible spectrum, the effects of horizon diffraction
appear negligible. It is also noted that diffraction at radio frequencies
may introduce significant errors. The equations presented may be used to
assess horizon diffraction effects throughout the electromagnetic spectrum.
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2.5.2 Inertial Sensing Errors

The mechanizations of position and velocity computation within an
inertial navigation system are subject to several classifications of errors.
This section presents an analysis of the errors which occur in these
mechanizations. The sequence of subjects which follows is concerned first
with a derivation of the general error equations, followed by a discussion
of the solutions of the error equations and the characteristics of the
individual errors.

2.5.2.1 General Error Equations

The mechanization of two forms of inertial measuring units were
presented in Section 2.3.2. In the presentation of these mechanizations
it was convenient to carry out the computations in a non-rotating inertial
reference frame. In the derivation in this section it is more enlightening
to write the equations in "local" vertical coordinates.

The fact that the navigation computations may be carried out in
a number of different coordinate frames should cause no conceptual difficulty,
since all of the computations amount to the same solution of the equations
of motion. That this must be true is guaranteed by the uniqueness of the
solution of the equations for the position vector R (t), when the initial
conditions R (o) and V (o) and the accelerometer signals A (t) are given.

Consider a vehicle with a position vector Ry (t) and a velocity
Vo, (t). Let ex e,, '@, define an inertial orthogonal coordinate frame
I"bated with its orlgln at the earth center (assumed to be inertially fixed
in this derivation) and let "ex’ ey, 'E;_‘ define an instantaneous loca.l
vertical frame with its origin located at the earth center. Let the ™ Sa
vector be oriented upward along the local vertical, and let ‘Ex be oriented
such that the plane €? E?E- always contains the vehicle velocity vector
Vo (t). The sketch below illustrates this geometry.




Let the position and velocity vectors of the vehicle, as determined by a
perfect error-free inertial navigation system, be denoted R, (t), Vo (t),
and let the acceleration as measured by perfect error-free accelercheters
be denoted Ao (t). Then: '

At = R, + 2 Ro (2.5.74)

An actual inertial navigation system is now assumed in which the =rror
corrupted computed position and velocity vectors are R (t) and V (t), and for
which the error corrupted accelerometers yield signals A (t). Then the equation
describing the actual navigation computations is:

®= R 4
& R o« PE R (2.5.75)

Now iet the position and accelerometer errors be denoted 4 A and 4k, i.e.,

R@® = RO + AR @

(2.5.76)

@) = A A
A AL+ AA®) (2.5.77)

Subtracting Equation (2.5.74) from (2.5.75), and substituting in
Equations (2.5.76) and (2.5.77) yields:

- R
AR = AR + [_e_ -
el e S e (2.5.78)
o
dz
Note that the definition of AR is unambiguous and is J_"( AR) .
t
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Equation (2.5.78) may be re-written as:

AR = _A_|S+D,,Rf
\Ra

E°1 (2.5.79)

f.:.lw

3 If only very small deviations of position R (t) from R, (t) exist,

then & is very nearly unity. This approximation cannot be made in
Y

he braa(eted te m[&- —; 30] however, since this expression represents

a small difference of tw nreon Arantd+S as

S waula \A-I.a.d.v AW wa v v ..L 6 Liumlvd.v-l.cﬂo

An approximation of the magnitude of the variation of _5-— from
unity may be derived as' follows: R

<]
3
R A l Ror AR ‘
RS R®
2 2 2
or, R [(Rox—r AR, +Roy+ AR 4(R, + AR%)‘_S
RS R
A kS LS 2
where &o = R"K Sx + Ro‘, §7 * RO-’E €=

T
AR & AR Pex+ SRSy + AR, Ea  (2.5.80)

Hence, 3/.
2 = T z
R> fR°x+R°Y+ Rop + 2.( Rox AR, RayORy* Ro;bRg,}-\-AR R AR;]
R R3
3 3
R* . P L 2Ro-8R J z
= T (2.5.81)
R: Ra
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where it has been assumed that [AR| << Ry . Since for X<« |

(l + x\sh‘; | + ;;*__ x , an approximation to Egquation (_2.5.81) is:

2

3
— = 1+ 2Ro A% (2.5.82)
R: RE

Substituting Equation (2.5.82) into Equation (2.5.79) yields:

AA = AR 4 A [R_(HsBo;éR_)B_;}
Rz l'\’th'AR] Ra
R?_
Qo
or
AA =‘A£ . A [9_3_3(3,;/;33 5.]
3 3Bo’b5] Ro
Ro [H <
R (2.5.83)

Now, for small deviations AR about BD_’

— Rt 7| (2.5.84)
o
Also, as can be confirmed by expansion,
T
(&e . é—k3 E° = (30 _R_e) Q—E (2.5.85)
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where

RQ.‘ E{g* R°Y &0%]

T a
Re Re = Roy =

Thus, substitution of (2.5.84), and (2.5.85) into (2.5.83) yields

84 - a% + A[T-2 (5 <0)) AR
R3 R

1 006
where I is the identity matrix [o \ ;] .
ool

From Equation (2.5.80),

2 Z -
AR = AR, 8x + AR, €y + ARz Zg,

KN
Roe % Rox RN{ ROXR°-E

Roy Ro%

B
RoxRaa RO)'ROE RO}

(2.5.86)

(2.5.87)

At this point the first and second time derivatives of (2.5.87) are formed.

AR = oavu + L x &R

IP

—— —
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aa 4 2 N x eV 4+ D xAR+ XD KXOR) (2.5.89)




where:
-« 2 . 2 b *
AL~ 2 ARy @xt ARy 8y TAR; 22
A *e 2 -p 2 L X k3
A = ARxg*-(-&Rygy +ARz €2

(2.5.90)
LN kN 2
—-D__ = _ﬂ'ﬁ g)‘ +J}—7§y '\‘_n-.z. g&

and where -S_)_- is the angular velocity of the local vertical coordinate
frame (2) with respect to the inertial frame (1).

The general error equations describing inertial system errors are
given by Equations (2.5.86), (2.5.89), and (2.5.90), and are assembled here for con~

venience of reference:

General Error Equations

from (2.5.86)

2 M 3 T
AA = OR T [:-I_-: - =(R. ‘5°)] AR (2.5.912)
o Re
from (2.5.89)
AR = AZ +2 Axbo- ¢ A x AR + O x(-0-x &R) | (2.5.910)
from (2.5.90)
* 2 T 3 2
AT = AR, €x + ARy 8y tAR &, (2.5.91c)
.o T3 (X3 ™ .o N
Aa. = ARy €x + &Ry Ev+ AR 25 (2.5.914)
o ey + AL, ¢
S = x Ex +_ﬂ., Ey + 2 S= (2.5.91e)
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2.5.2.2 Special Solutions of the Error Equations

Equation (2.5.91) is too general to indicate the predominant character-
istics of the errors in an inertial navigation system. Thus, consider a more
restrictive case. In most circumstances, the angular veloeity of the local vertical
coordinate frame is dominated by its Qy term. Therefore, the indicated cross
product multiplications with the assumption that Q. = _Q “g y yields
for Equation (2.5.91a)

Aj: [A.éx-k ?_.—Q_.A.Rg —_Si"ARA?Ex
. (2.5.92)
+[a%,] %, + [ARo-2 0 AR, -_ar,]e,

. Some additional simplii'ications to Equation (2,5,91) result from the
fact that the local vertical reference frame has been defined as having its
2 axis along the radius vector. Hence, R, has the form:

2 2 %
Ro= OCx x 02 r+R, 22 (2.5.93)
§
The matrix term 3 (B_o _8_1;) can thus be written: !
RO
o) o (o) <o < <o
3 v 3
__._1_ (&o Bo) - -‘-Qt o o o = S < o (2-5-911-)
Ro o <
o O Rg =S = S

Therefore, substitution of Equation (2,5.84) into Equation (2.5,91a) yields:
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AA = AR + % o \ o LR (2.5.95)
(-]
S o -t

Substituting Equation (2,5,92) into Equation (2,5.95) now yields the three
simultaneous equations:

AR, + 2 0L AR, + [eu‘-_rf]ARx = AA,

< . —__Q-f N _
AR, - 2 QaR, -[RL+r2 AR, =nA; 55,56

2
where w

%2
AN

= local Schuler frequency

This set of equations is perhaps the most important set of equations in
inertial navigation. Note that these equations are in general coupled linear
differential equations having time varying coefficients, The time variation is
caused by two parameters, w and L . (Since,the local Schuler frequency (w?2)
is (m/R?) , it is a function of the vehicle's true radius from the inverse
gravitational force field.) The approximation of w as a constant is quite
accurate, of course, for earth fixed inertial reference frames (pre-launch),
systems cruising at constant altitude, and systems whose trajectories are circular
or near circular orbits. The approximation is usually sufficiently accurate for
analyses of a great many more missions, however, as illustrated by the fact that
the local Schuler frequency varies by only 4 percent for a vehicle traveling
from its’ launch pad to a 100 n.mi. circular orbit.

It will be recalled that Equation (2.5.96) was derived under the assumption
that the angular velocity of the local vertical reference frame could be repre-
sented by-xl’g3 , hence requiring vehicle motion to lie in a non-rotating plane
containing the gravitational mass center. For constant cruise conditions (at
constant altitude) and for circular orbits, £1 is a constant. For many other
situations, however, (), is a slowly varying quantity; therefore, the behavior
of the inertial navigation errors deducible from assuming O = sz,ﬂ;y
constant may be expected to display some of the fundamental characteristics of
pure inertial navigatien.
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Equation (2.5.96) displays perhaps the mos: oixificant feature of
inertial navigation within a gravitational force field.

For the situation in which the local vertical coordinate frame has
a low value of angular velocity, the Equation (2.5.96) assumes the form
(setting . =0):
ARy + W AR, = AAy

h

DRy + W AR, = AA, (2.5.97)

b.R..z. - ZQJ-L'AR2_= AA'Z

These equations demonstrate the boundedness of the horizontal components,

A Ry () and & Ry (t), and the instability of the vertical channel

A R, (L) , con31der1ng the homogeneous solutions (or those hav1ng zZero
forcing functions). This instability of the vertical channel is a funda-
mental deficiency of pure inertial navigation systems when the vehicle velocity
is less than orbital velocity, and is the fundamental reason why the lower
velocity inertial navigation systems (aircraft, submarine, cruise missiles,
ete.) are augmented with additional sensors to provide damping and convergence
of the vertical channel (often pressure transducers or radar altimeters).

The vertical errors are seen to be dominated by the term exeyZ wt

due to the positive root of the characteristic equation for the vertical

channel.

Another situation of interest and applicability is
the case in which the vehicle is in a circular orbit, i.e., . =w,
Equation (2.5.94) then simplifies to:

ARy + W ARy = AAy
. ] . (2.5.98)
ARE -'ZUJAR%—%QJ AR&: bA}

The equation A Ry (t) again exhibits the characteristic of

oscillation at the local Schuler frequency w. The homogeneous solution

to the above equations can be easily found by taking the Laplace transform
of the equations, using Cramer's rule to uncouple the equations, and by
taking the inverse laplace transform to generate the time solution as:
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AR, = 6 (smwwt - wt) ARy(S) + ARx0)

% (\-cos w¥) A R a(o) + —u‘j(4 S/ e - Jwt) A\.Zx(o\
(2.5.99)

ARy = ARy(0) cos wt + L s/ ot AR (&
AR, = (4-3 cos wt) bR t s sw et AR, ()

+ & (1 - cos wr) b%x (@
w

From these equations,it is noted that it is the horizontal

channel (A& Ry along the velocity vector) which is unstable, while the vertical
channel A R, is oscillatory and the other horizontal channel &Ry is
oscillatory.

The instability of the tangential channel in circular orbital flight
is thus seen to be a fundamental deficiency of pure inertial navigation,
and requires the coupling of the pure inertial navigation system with auxiliary
sensors to provide additional information. Optical navigation sightings,
star trackers, horizon scanners, etc.,have been employed to form suitable
augmented inertial navigation systems having the desired characteristics of
noise and error suppression.

Additional motivations for augmenting the pure inertial navigation
systems result from a consideration of the way in which noise propagates
through the system. As will be discussed in the monograph concerned with
filter theory, the undamped inertial navigation channels have the property
that, when subjected to a stationary zero mean noise, the output of the channels
is nonstationary noise having an rms value which increases with the square
root of time. Thus, even though the accelerometers and gyros are biased
such that their noise characteristics have zero mean values, the random
component of the errors still leads to unbounded channel errors.
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2.5.2.3 Classes of Inertial System Errors

The analysis and evaluation of errors represents a major task in
inertial navigation system analysis. Since many of the most stringent
requirements imposed upon inertial navigation systems are accuracy require-
ments, a discussion of the error characteristics in inertial navigation
systems is warranted.

A detailed discussion of the errors is impossible within the- space
allocated here; hence, attention must be focused upon the essential and
fundamental characteristics which provide some insight into the errors
problem. References (8), (9), and (L0) are notable for the simplicity and

+haranchneca nf +tha dAiecncainneg of tha nhvedieral conrcee of arrare and +hadn
Vilvi UuBLHLCDO A Wil Ml Wil il 4 Vil P‘IJ e W Gl DGUVUL oW A CLidVL O Chd AL vilicT.Ll

effects, and for the derivations and solutions of a number of error equations
describing practical inertial system mechanizations.

Some of the fundamental characteristics of pure inertial navigation
systems will now be discussed. It should probably be emphasized again that
in practice the pure inertial navigation system is often augmented with
additional sensing devices to provide stability and reduce the effects of
errors in the system. Nevertheless, the pure inertial navigation system
has been selected as the means for discussing navigation system errors,
since it is of considerable interest in its own right, and since the
approach to an evaluation of the error effects may be applied to any particular
situation.

The computation of position and velocity in a pure inertial system
is represented in the sketch below:

Sensed -
Acceleration
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A (t) represents the "sensed" acceleration (B - &), and the
symbols Ej, Ep, and E3 identify three different classes of errors.

. .El represents an error in the indicated or sensed acceleration
(E - G) and may be constant (a bias) or may be a function of time.

Ep represents a component of error in vehicle velocity and may be
constant, in which case it amounts to an error in the initial velocity V (o),
or it may vary as a function of time. Note that the error Eo must be
summed with the integrated effects of errors E; and E}_ to dérive an expression
for the total veloecity error. -

E3 represents a component of error in vehicle position and may be
constant, In which case it amounts to an error in the initial position R (o),
or it may vary as a function of time. Note that the error E3 must be summed
with the integrated effects of E] and Ep to derive an expression for the
total position error. - -

The reader is cautioned against concluding from this block
diagram that the effects of all constant errors produce sinuscidal oscillations
of the navigation loop, since the '"feedback gain" k representing the gravity
computation varies with altitude errors. It is this variation of k with
altitude errors which drives the vertical channel and tangential channel
unstable in the low velocity and orbital velocity situations(derived and
discussed in the previous section).

The effects of each of these errors can be evaluated by applying
the equations (2.5.96) derived in the previous section.

Although these general equations are readily solvable through the
laplace transform techmiques, the simple case for- = 0 is solvable almost
by inspection. For this case, Equations (2.5.96) reduce to those given in
Equations(2.5.97). The solutions to these equations, assuming AAx, 44y,
and 4 A, to be constants, are:

ARy = [aR ) — A8x[ cos wt + BRxO\ swwt +2Ax
™ w? e

ARy = [ARY(O) - éﬁz] coswe + 28N v+ AAY
w* w?® w®  (2.5.100)
2 wV¥z ¢t ~wNZTt
AR, = —‘—[R o)+ R2® A=z t_[ +Ai*] _ AA
g~z %@ w{z ' Tz S *z R Zo S 20t
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If the vector componenns of the error vectors nrl are mlx, .mly
and El in a local vertical coordinate frame (31milarly for Eg El and
ifr all are assumed small, then Equation (2.5.100) may be written

ARy =(Eszy- %‘g_.) cos wT + 5_7;_’.‘.. s wT + Erx
w @

ARy':(E?.y— = ‘i)CQS wTC + Lay st + Eiy

W wtr ()
= w\Jzt
hRa = ;_[E32+ Eza 2’*;]
@V (2.5.101)
~0\zT e E(a

Several interesting features of Equations (2.5.101) merit attention. Position
and acceleration errors may be made to cancel their effects in the horizontal
channels provided A Ry(o) = AAX/,-,L;2 and ARy(o) = AAy/w 2, This effect
suggests a technique for the initial alignment of platforms to eliminate the
error propagation of leveling errors. All errors in the horizontal channels
lead to oscillatory errors, Errors in the vertical channel lead to an
unbounded altitude error. A similar analysis procedure can be used to evaluate
errors for &~ 0, The reader interested in more details of vertical and
horizontal channel errors is referred to References (8), (9), and (10),

The individual errors that contribute to errors Ej, Ep, E3, and AA
in the above sketch are produced by initial position and Vvelo¢ity errors,
and errors in the inertial sensors themselves. The way in which the sensor
errors contribute to these errors depends upon the mechanization of the
inertial navigation system and the techniques used for initially aligning
%t.) Such detailed considerations are discussed in References (8), (9), and
10).
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Some of the more important sensor errors which must be evaluated in
deriving expressions for the system errors are:

1.
2.
3.

L
5.
6

T.

9.

10.
11.

12.

Accelerometer bias errors.

Accelerometer scale-factor errors.

Accelerometer non-linearity errors.

Misalignment error between the nominal inertial axis and the
body axis of the accelerometer system.

Fixed gyro drift.

Gyro drift that is proportional to acceleration forces along
input axis, acting on mass unbalance along the spin reference
axis.

Gyro drift errors that are proportional to the acceleration
forces along the spin reference axis, acting on the mass un-
balance along input axis.

Gyro drift errors that are proportional to acceleration forces
along the spln reference axis acting on mass unbalance along
output axis.

Gyro drift errors resulting from an isoelasticity of the physical
structure of the gyro.

Fixed gyro drift errors.

Misgalignment error between the inertial reference axis and the
input axis of the body mounted gyros.

Initial error sources due to the initial uncertainty in position
and veloclity of the vehicle.

Although deterministic error effects have been discussed in this
section, & discussion of the techniques for conducting a statistical evaluation
of errors is considered beyond the scope of this work. Reference (10) and
the references listed from the technical literature provide an introduction
to these techniques.
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2.6 STATE DETERMINATION FROM EVENLY DETERMINED DATA

The process of determining the n state vector components from n pieces
of independent data is called state determination from evenly determined
data, as contrasted with the process of determining the n state vector
components from a set of redundant data in which smoothing and averaging
techniques are used to remove some of the uncertainty from the data.

If perfect measurements could be taken, and if there were no uncertainties
in the physical constants, etc., and if all external forces acting upon
vehicles could be accounted for, and if the complex equations of motion
could be sclved by even on-board vehicle computers, there would be nc need
to make more than six independent navigation measurements to determine a
vehicle's motion, since motion would be completely predictable. The fact
that measurements, miscellaneous forces, physical constants, etc., are
subject to uncertainties, and the fact that computers suffer such limitations
of speed, truncation errors, etc. demands that some redundancy in the
information concerning a vehicle's position and velocity be available so that
effects of errors may be averaged out, filtered, smoothed, etc. The filtering
theory useful for this filtering and smoothing of navigation observations will
be presented in a subsequent monograph. Even though measurements, physical
constants, etc.,are subject to uncertainties, often an excellent value
of vehicle position or of vehicle position and velocity may be determined
by using evenly determined measurement data. Certainly a first step in an
evaluation of the number of measurements required to attain a desired accuracy
is to evaluate the accuracy of those technigues which require no filtering
or smoothing of data or results, i.e., those measurements which constitute
an evenly determined set of data.

In the following sections, the two basic techniques of deterministic
navigation are presented, namely, determination of a vehicle's position by
using data from three independent simultaneous measurements, and the determina-
tion of a vehicle's position and velocity by using data from six independent
measurements.

2.6.1 Simultaneous Measurements

In Section 2.4 it was shown that any single measurement can contribute

a limited amount of information in determining the position deviation vector
SB . The resulting expressions showed that the measurement deviation
corresponds to finding a component of $§8 in a particular direction. The
direction is determined by the geometry of the measurement and is specified
by the equation relating §4, and €8 . In order to determine $8 uniquely,
it is obvious that at least three independent such measurements must be
taken. Three measurements are considered independent if the components of

9 R vhich they determine are non-colinear and non-coplanar.

In the following section the techniques for computing vehicle position
from practical combinations of three independent measurements are presented.
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2.6.1.1 Planet-Star, Planet-Star, Planet-Diameter Measurement

The techniques discussed in Section 2.4 may be applied to the
determination of position given three simultaneous independent measurements.

Consider the following sketch:

To

6,~\s*:au- uyn
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In this case

I

SA, n '85

2

§A, = 7, -8=8 (2.6.1)
z

SAS = Dﬂs -8R

Lis~Jh
7z2 cos (A/2)
Expressed in matrix form, these equations are

| A, ¥ © © 7 -8R
SA, | = | o "z o 7, SR (2.6.2)
D
LSAB O O F=coscAl) 71 - OR

Remembering that the 77 vectors are perpendicular to the planet

direction, the X axis is now chosen such that it is in the 7, direction.
Similarly, the Z axis is chosen to be positive in the 73 direction. If 7,
differs I’rbm 7, by a rotation @ about +Z, the unit vectors 7, , 77, and
73 may be written in terms of the unit vectors -

7 = 4
7, = COS©L + SINOY (2.6.3)
s = X%

Using these relations. it is seen that in terms of rectangular cartesian

components Equation (2.6.2) becomes

§A, '—% o o —l L - Sg
SAZ -~ |cos & SIN © @) ‘S_R

(2.6.4)

5A3 O

Q)
'“r-
n
g
N
 Raag
(Fo SR S
o
(1
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where

[<-6m
46| = | &R
.é "O% L
" SA,

SA, | = 8@
L SAB

and

cos 8 SIN © o =
z F-3

D
e © g cos(4)

e

In order to evaluate €| , the magnitude of the position deviation error,
it is necessary to first compute H_-l and (H---)-r .

VT Any one of a number of methods can be used to evaluate t}_" and
(ﬂ ) The reader is referred to any matrix algebra book. The results are

stated below.
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2CSC O o (2.6.5)
o 2" cos &
D
-2 coT & o ]
z c¢sc © o
o 2 cos 4
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2.6.1.2 Planet-Star, Planet-Star, Sun-Star Measurement

The geometry of this measurement is similar to the planet-star,
planet-star, planet diameter measurement in that the 77, and . vectors have
the same meaning and orientation. The planet diameter measurement is replaced
by a measurement of the angle between a third star and the sun. This
measurement determines the component of §R in a direction which is perpendicular
to the direction to the sun from the vehicle. This direction is represented
by unit vector s and is shown in the following sketch.

To planet

To sun
To
Sta.I' HBH
X
To To
Star #lv Star "2
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Using the relations for planet-star and sun-star measurements that were
determined earlier, the deviation equations are obtained.

SHI = 7, -8R

z

SA, = 7, - Sr (2.6.6)
z

SA,s = 2_73 '83
R

where Z is the distance from the spacecraft to the planet and R is the dis-
tance from the spacecraft to the sun. In matrix form these equations may
be written as:

=

SA

5A, |7 | o —:-g O 7, - 5R (2.6.7)
SAs o o w||[Zs°R ]

Just as in previous work, the X axis may be chosen in the direction

of % -
Now
7 o= 4
and
7, = cosesr + SINOJ (2.6.8)
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Using the angles ﬁ? and ¥

defined in the sketch,the unit vector

be similarly expressed in terms of rectangular cartesian coordinates.

7 = cosp cos ¥4 +SINBCaSBy + SINY L4

The equations for §f.and $A; now become

SIQZ = 7k -8R = COSO +-8R 4+ sSIv O 3- SR
Z 2 2 9
SHB = :03 'SB - COSﬁCoSU'i’.S_R_ + S'NQCOSKJ_SB
—r <
+ SINF k-8R
Now Equation (2.6.7) becomes
SA, 1 © © Nf2-88]
SAZ = COZSO s’z_Le o d- 83
feos¥ sINBCos Y siv ¥
SA3 gcosCost é . SR
R R R | |[Z =]

which is now in the form of

where
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(2.6.9)

(2.6.10)

(2.6.11)

(2.6.12)

(2.6.13)



and vhere H~' is

H™' =

-~z COT © £CSCO o (2.6.14)

Z coT¥csco s/N(B-©) -ZCOTY 3/NBCscO® ReaCy
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2.6.1.3 Planet-Star, Planet-Star, Sun-Planet Measurement

The analysis of the planet-star, planet-star, sun-planet measurement
is basically the same as the previous two except for the fact that the nature
of the measurements are such that the components of the position deviation
vector are originally found in terms of a linearly dependent set of base
vectors, 77 , j@ ,7§;, 57; . The geometry of this measurement is shown

below:

=
T Planet
z
S
z, A un
|
| —
L -
ST~ A P2
4://
- ¢
yJ
Z
X
To star n2%
To Star "1® 7,
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After the base vectors are expressed in terms of a linearly independent
set of base vectors, i, J, and k, the analysis is very similar to the pre-
viously discussed cases. Therefore, only a brief outline of the analysis
will be given.

The standard equations for the measurements are

SA,

?_718_3

z

SA. = 7. - SR (2.6.15)
FA

SAs

—ZZL.g:B— 4—773 'SB
~

Tz

From the sketch it is seen that

24 = £
77, = COSe t + SINSY
- B (2.6.16)
775 = cos B L + SIN(S’_Q_
3+ T ~—Ccoa ?r*cosﬁ_t_ - COS K*S/Nﬁ 4 + siIN b’*)_e
Using these relations, Equations (2.6.15) become
SA, = + - 88
z
g,qz = Co56 -8R + 5“"95'8_8
£ z —
‘ (2.6.17)
SAs = =-cos ¥ cosB , .gRr —cosy sinBg-SR
R r
+ swb’*k.gg + CosB.-88 , sinB; -8R
R - 2z z
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or

1 ua
Sﬁl = o o
- | cose e ° i
§A. z e | (2.6.18)
SAs cosB _ cosycasP  smB _ eosy*snB Rk
L - LZ R 3 R R -

The matrix involved in equation (2.6.18) is H .

-]
_H_ can be determined to be
F z I 0 | o ]
TZcoTP : Zesc © | o)
__—__’__'“_—r‘_',_g—__—_¥
Z coT 5*(cos B~ sinB coTo) 1‘ ST T f rescs
|
x Jl + Zcorp*sn I (2.6.19)
-rcscl (cgs@—.‘nNBcoT‘G) i SIN© 1

In section 2.8.2.3 this matrix is used to evaluate the average of the error
magnitude. In the analysis, the dlag.'gnal components of [u'] [H'] are needed.
Letting hj be the elements of [H- ] H-’] , the diagonal terms are equal
to

2
hy = Zz +2icor e 4 (cos@ - sinfBeoT ) (zcoso™_ Rcsczy*)

(2.6.20)
= e + SIN fs zc.oTb’
hz2 2 csc” =g ( e a—*)

2 2

haa = R csc ¥
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2.6.1.4 Radar Range, Azimuth, Elevation Measurement

In a manner similar to the optical means of state deviation pre-
viously discussed, radio techniques may also be employed. Usually in radio
measurements the observer is at some radar station and is observing some
point in the atmosphere or in space. If, when tracking a vehicle, slight
deviations from the nominal trajectory occur, the small deviations measured
on the ground radar, such as angular deviations from nominal azimuth, can
be used to calculate the state vector deviation as follows: Assume a

topodetic or radar AZ - EL coordinate system erected at some site on the
earth as illustrated below:
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Any position vector can be represented in spherical polar form by specifying
its radar range R, an azimuth angle A, and an elevation angle E. Alternately,
the same vector may be expressed in rectangular cartesian coordinate as
follows:

—cos E ces A-]

K= R cos E siv A (2.6.21)

s/N E
i

A small position deviation in the position vector may be related to spherical
polar coordinate deviations by

120

6’3:33'8&-1-@— +

———

SA
2 (2.6.22)

9]
QJ\Q/
>i=n

The terms in Equation (2.6.22) may be evaluated as follows:

— coskE ces A

oR

SR cosE€ siv A (2.6.23)
sin B
INE COBA

SR SN

>t = R ~sinE sinv A (2.6.24)
ces E

SR cos £ siv A (2.6.25)

g? cos E cos A

Note that
[%‘P% l = | (2.6.26)
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oR -

‘ 2E R (2.6.27)
98 | . R cos E

o (2.6.28)

oR oOR >R 3R
— e = —_— = = o
In order to evaluate SR , the scalar product of & K and Equation (2.6.22)
can be used as follows: 3R
R ° Z
o8 SR = OR _3R R /3R 38 / 58 .
. —_— _: e R +___ —_— SE + — ¢ — 0602
2R 2R 3 s 3 o€ 3 3A (2.6.29)
= oRr .85
Sr = 5% - %% _sw (2.6.30)
BT
R

Expressed in terms of column and row vectors, Equation (2.6.30) becomes

SN E] SR (2.6.31)

cosE SINA

SR = [— cosE cos A

The scalar product of .SLEB_ and

Similarly, SE and §A can be evaluated.
Equation (2.6,22) yields

131



o (v
OB .8r = 9K /58 gsp, 3% O8 _.?;/aﬂ
— B = L o= o8 SE £/, o8 2.6.32
S 5 =5 a_aES + 2 anSA (2.6.32)
80 39
L R
SE = 3€ &2 _ OB .g=s
Tof [z E (2.6.33)
>E R
Hence
ot = \é siwE ces A —smwEswA  ces E] [S—R] (2.6.34)
The scalar product of 2R and Equation (2.6.22) yields
A
o o
oR .85:85 . 2 SR 4_@, BSE .|.__3_:R_,9_RSA (2.6.35)
2A JA R dA S 3E 9A 3B3A
a.v.\' S
— - OR
SA= 3A
| 3% |
80O
s ! siv A cos A C’] 8 R
SA R cos E [ (2.6.37)

Combining Equations (2.6.31), (2.6.34), and (2.6.37) the final equation relating
the position and measurement deviated from nominal for the radar range, agimuth
elevation measurement is obtained.
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_‘8 | —cosE cos A cosEsin A SN E.]
SE| = sm E cos A _ on E sim A cos E 85
R R -° (2.6.38)
sin A cos A
184] | weme Reos € o |

Equation (2.6.38) i1s now in the form of the general position deviation equation

8% - H . 83 (2.6.39)
Hence, vehicle position may be calculated from:

. [ Sr

-~ (2.6.40)
o8 = H g

54

2.6.2 Sequential Measurements

The previous section considered the determination of position from
three simultaneous measurements. The determination of position from a
sequence of measurements is a more difficult navigation problem. The
general technique which is utilized in solution of this problem is to first
assume that vehicle motion is sufficiently near a reference trajectory so that
linear perturbation theory may be applied to the solution of the problem.
Since terminology and trajectory mechanics complexities may delay the
understanding of the ‘basically simple concepts involved, a simple navigation
example is presented in Section 2.6.2.1 to introduce the terminology and
teghnique before the general technique is developed in Sections 2.6.2.2 and
2.6.2.3.
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2.6.2.1 A Simple Example of a Navigation Problem

A simple sample problem has been prepared to illustrate the procedure
and to serve as a vehicle for improving the degree of appreciation for
the more precise model,

Consider the planar analysis of a spacecraft in uniform rectilinear
motion, Assume that the navigation problem in this example is to compute
or estimate the vehicle's position and velocity, knowing only:

1. The equations describing the motion on a nominal (or "reference™)
trajectory

2. The position of the minor planet from ephemeris tables

3. Successive measurements of the angle O on the actual tra jectory,
and the times at which each of the .measurements were made

éJP

Z—————— 4

N\ N Mnor ’lmf

N\

z(t) \\'

|
}
|
|
)
:
i x
v

1Y
»

The nominal or reference trajectory in this example is assumed to be:

Rﬁﬁﬁ = (ox3t) € X +(s+2t) e, (2.6.41)

Since €, and gi are nonrotating unit vectors, the nominal velocity is
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\/msﬁ: 2E€xx2E>2

(2.6.42)

The nominal position of the massless minor planet is assumed to be (x,z) =
(D, 0). Hence, from the sketch

Differentiating (2.6.43)

s:;cl e $8 = ‘;%‘S)< +

or
2e= -
or
Ye= |-
or
where

Tan O - D-%x
Z
xX-9 S?‘
il
: X % x-D
2z SECZG -2" SECze
\ X -D °Xx
2 SEC O 2 Sec @ $ 2
So= B SR
IN B X
SR = 5o

(2.6.43)

(2.6,44)

(2.6.45)

(2.6.46)

The basic interpretation of Equation (2.6,45) is that if a point (x,z) is
chosen in the plane, then @ hasa fixed value; if small deviations in
the coordinate of x and z are now made, a small change in the value of
© results, as given by Equation (2,6.44) or)(2.6.45).
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The problem at hand is now the computation of an estimate of R (t)
which satisfies the observations. This step requires consideration of the

general equations of motion

RE®)= (Xo+ Vit) €y + (2o + Vzt)E 5 (2.6.47)

where xo, z, are the actual initial coordinates, and where Vx and Vz
are actual velocity components.

Define a
S Xo = Xg= X°wom initial X position error
S-Z-o 2 '20 - 2‘,_"’M initial Z position error
A (2.6.48)
° Vx = Vx - vx‘hom X velocity error
A
9Va = Vp- V*”w Z velocity error

SREE RO~ R ®
MNost

The numerical values for the nominal trajectory parameters are given by

equations

= O =
x°'nom VXWOM

(2.6.49)

2’0 ormy = s V:?',,m—': 2

Combining Equations (2,6.41), (2.6,42), (2.6.47), (2.6.48), and (2.6.49) yields

SX Kot t § Vi
SR®= [se] Si,+tSVJ
(2.6.50)
Vx
sV = A
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or

(%% | [\ o t O N

$ Ri) S o | o ¢t $2

¢ Vi) % ) o O | o sV, (2.6.51)
Ls V_z_ 0] 0] o I SV_zo-‘

Using state vector nomenclature, where z_(t) is defined as the state
vector, then

%] 'S XCS) ]
2(%) R $2(® $R®O
X @’—5 = = - ; % _X_ (t) = -
- YA v® LA )
V2@ | R (t)_

Equation (2.6,51) can thus be rewritten:

s X@ = (t,t) o X(to) (2.6.53)
where X
-| o ¢ O SK.-‘
o { o <t 2,
SICRNE sk (o) =
=] o \ o] %on
(o} (-] o | b ve
L . L °
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The matrix

(t,to) is, of course, the state transition matrix,
Equation (2.6.45) may pe rewritten:

(S X (€)1
[ I ' $ 2'('6
- ' -
Sele) = [ S 0] (2.6.54)
2 SEC @ v 2 SECE ' S Vx(t)
K Val(t)
or
0= B SK(
where B(¥) ,‘: -1 : X-D | o ; o
2 sec’o |, 2 Sgc’e; ,
Hence, for measurements $6(t), $O () ... at times ty, t, ete.,
rﬁ X (Q\).
| D [see
- X )~ ! 1
Se(t,) = : <  © O] .6,
[a(-c‘) sec olt) Z2(t) sgc"e(t.). ' S V% (€) (2.6.55)
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S X (€2)
' ! } %2‘ (tt)
§ O(t,) =[ -1l &t oo O]
Z(ts) sec Ofty) | 2 &) secofey) o ' $V, (t2)
stz(tl)J

In these equations, the values of X (t, ), 2 (tl), X (t2), z(t.),
etc,, may be computed along the reference trajectory, provided the devia-
tions $ XM and $2@®) from the reference trajectory are small, Hence,
from Equation (2,6.41),

X(t)= O + 3% 2()= 5 +2t,

etc.

Equations (2.6,55) thus provide a series of simultaneous equations, where
each is a relationship(angle and deviation)at different times. To solve
these equations requires that §xfe), S2(t), V() , sz(ﬂb'e expressed
in terms of §Xg » $2 » SVXO , and $Y, .

©

Substituting Equation (2.6,51) into Equation (2.6.55) yields

1 o t, o] [8x]

=\

Xy- o o
2@ secelt)

ey sectoltd |

' l] o ! o g S'Z'o

se(t) = [
oo I O SV,,°

oo o 1] [8)]
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or

%6k = - : %) - D E -t, i €, [ -v)
2ie) sec oft) 1 2leysed o)1 2 sec’ o(e) 1 2 (£) e O(E}
and similarly for t2, t3, eta,

[$X, ]

I
%,

Ve,

If four such measurements sre made, Eouations (2.6.56) may be written

" - .- T r -
$6(£) x Kty =D -t tlxe-s) | 3K
2{t)sec oty 2°(tysec o) 2(t) sec- @ty 2y sets(t)
§ BIt,) . . . . $Z,
$O(ty) . . . . 5\/,<°
-1 X(ty)-> - tq- t4[’<(t4-)"b]
| 50(t ) At sedolty) 2l sec Oty Z(t,) Secofty) 26t setoft) A |
Since the measurements yield the angular values of ©(%)) , o(t,) »
e('t,), ©(t4) » and since the nominal values S

y o)
Owmorm(ty) eﬂm(q) are known for the reference %?'aject £

3
ory, then the values

&L » Se(t,) ’ 56(1‘:3) », Se (tq) » may be computed from:

$o(t,) = et - e(t,:)m’”
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and since values of x(t ), z(tl), x(t ), z(t ), etc,, along the reference
trajectory may be looke& up or determIned by simply reading in the values
of t]fi t2. . . , every term except §$xo » 20 1+ SVie 8Vp, in

on

Equa (2.6.57) is known. Hence, the inverse of the 4 x 4 matrix may be
obtained to yield the solutions for these four unknown gquarntities.

These equations are best written in shorthand form following the
previously defined state vector approach, i.e., using the definitions of
B(t) and @ (¢, t ), in Equations (2.6,53) and (2.6.54), Equation (2.6.56)
becomes:

$O(ty= BEY Pl ,t) SXx(Ea  (5.5.58)

where -y X°
b Z.(to) : 2 .2-°

$ Vi,

S Vao

BEquation (2,6,57) can thus be rewritten

se(t)
$6 (L)
so(ty
$0(ty)

= D SX(t) (2.6.59)

where

a(t) Pty

B(t) ACt, to)
D= B(t;) @ (t;, o)
B(ty) ¢“j;*)tb)
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Hence

? Xo %O (&)
$ 2'0 -1 = (t?)

Si(to)‘:- $ on = D $ © (t3) (2.6.60)
$Va, §© (tq)

Thus, the numerical values of S)(° y 92, VX, $Ya, are determined
for any four measurements Se@,)} $9(tz) ,° 8(%), se(t4)which are made at
different times. The actual position of the spacecraft is then computed
using these values of $§Xg, B2q, Vi, » $¥za from Equation (2.6.48)

R®O= R, . +SRE
r X 6€) ) S0
R® = = ¥
= 2(€) Zoyong $2(%)

Hence, using Equation (2,6,50)
X = Kool + $Xg +E SV

(2.6.61)
2O Zypu @)+ $2,+ T §Va

Since Equation (2.6.61) gives the position at any time %, this simple naviga-
tion problem is solved.
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2.6.2.2 Perturbation Theory and the State Tramsition Matrix

The usual meaning of "state transition matrix" @ is a 6 x 6 time-
varying matrix which relates the position and velocity deviations of a vehicle
from a reference trajectory at time t] to the position and velocity deviations
of the vehicle at time to. Expressing the position deviations and velocity
deviations from a reference trajectory at time t as § R (t), gV (t),
respectively, the general expression relating deviations at time t2 to those
of time t, is:

S ES Cti) S;ES @:0

= <,. T,
SV (t.) P& SV (£ (2.6.62)

Equation (2.6.62) is the general solution of & time-varying linear differential
equation,

SR ° T SRE
4 = (2.6.63)
¢t §Y (B 2& SV ®
—— (@) A"
9R
The purpose of this section is to outline the derivation of Equation E 633
and to indicate the assumptions which must be satisfied for Equation .6.63) and,

hence, (2.6.62) to be valid. Equation(2.6.62)will be proven in a subsequent
monogreaph.

Consider the general motion of a vehicle under the influence of an
externally applied force (excluding gravity) F in a central gravitational
force field. If it is assumed that the applled external force F (t), the
mass of the vehicle m (t),and the initial position and velocity are known
for all time t, then the position and velocity of the vehicle in space is
known for all tlme t. Call this known trajectory the reference trajectory
and denote its position and velocity Ry (t), Yo (t), and its initial position
and velocity by Ro (o), Vo (o).

Then, from Newton's second law

< £te) M
Rol®d = — - Z_ REHE
- me© R (2.6.64)
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where M4 = GM, M = mass of attracting body,
G = universal gravitational constant

Consider now the motion of a vehicle which is acted upon by the
same force F (t), and has the same mass variation m (t), but differs from
Ry, (t), Vo zf) in that the initial conditions are not those of the reference
TrajectoFy, although they are considered sufficiently close that linear
approximations will be assumed valid. The differential equation for the
vehicle on the new trajectory, in which the position and velocity are repre-
sented as R (t) and V (t), is:

Roy=59 _ 4 o (2.6.65)
m(t) R} ()

Subtracting (2.6.64) from (2.6.65) yields:

.. .. o0
RO - R® = ,«[R ©_R® (2.6.66)
o R‘
or, defining:
AR £ R-Re
- 2z ce e (2.6.67)
AR é i (AB) = R-Ro
dt*

equation (2.6.66) may be written:

_ . B _R_° ]
e = A5 rA [T’F TR (2.6.68)

Equation (2.6.68) is seen to be identical with Equation (2.5.78) of Section
2.5.2.1 if AA is set equal to zero. If the same approximations are carried
out as indicated in Section 2.5.2.1, an equation similar to Equation (2.5.86),
Section 2.5.2.1 results, except that 4 A = 0; hence,

- Gl :1:__- TY &R
o = AR +_[ (ReR )] (2.6.69)
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The term 2% [I - z (R° T)] can be shown by a term

by term expansion to be equal to oG , where G = -E" R , and where
dk

PaGK 3('7,: ;Gx
R, 2R, 9Ra

>

292Gy 26y 26y

vy
ol

2 Ga 06 G2
-;,RK a’Ry alii_

Hence, Equation (2.6.69) may be written:

- =1c]
AR - _ - AR (2.6.70)
R
. . A .
Letting AR -gcTJ'-t (AR = AN, ,q AV = i(!é!), (2.6.71)

Equations (2.6.70) and (2.6.71) can be written:

oR
or AR @) o T ARG
o _
Ay © _°¢ o AV (2.6.72)
OR
Q.E.D.

The legitimate use of the state transition matrix is thus dependent upon
motion being close to a reference trajectory, and must be such that the same
acceleration Et)/m(® (excluding gravitational acceleration) must act upon
the vehicle on its perturbed trajectory as on its reference trajectory.

145



2.6.2.3 General Solution to the Navigational Problem with Sequential
Measurement Data

let a set of six measurements, taken at varying times, be given as:

% - (€Y= H.(E; S R )
T (5) () SR (2.6.73)
where H,; (tﬁ = [H‘_I (€3 H,:.’;Cts) H, 3(‘4’;3)]
Since motion near a reference trajectory is assumed, it is wvalid to write:
[%B (€3)

SV (&)

] = ¢(t3sto)

[S R (td

] (2.6.74)
SV (t)

let a matrix B be defined as:

B . (tn = [H;.ctn Hip &) He(tyy O O 0](2.6.75)

Then Equation (2.6.73) may be written:

$9..(tp = Bt (SR ED (2.6.76)
5§ Y ()

Substituting (2.6.74) into (2.6.76) yields:

°R.
S (ty= Bty BT [SV_OJ (2.6.77)

Define the matrix Di (t3) = [D‘-,(‘CJ) D -~ D/:G(ts\] as:
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D, (t) = B,(t) P(ti,t) (2.6.78)

Then Equation (2.6.77) may be written for any six i's and j's, i =1, 2, 3, 4, 5, 6
at times 1,2,3,4,5,6

.58‘«:" T Dy 0 0 D] SR, (L]
$82(t2) D, (€ . Ry ()
$§a(ty) . . SR (2.6.79)
Sgae| = - : $¥ (&)
$ gs(Cs) . . SV (Co)
Sgecto] R0 mgsg] [t

If all measurements $ q; (ti) are independent and the matrix |Pu
>

%
can be inverted, the solution for the position and velocity deviations at
time to can be found, i.e.,

S R (€Y 5 S, ! $%.(€)

L

. : (2.6.80)
AR o, Dee 25t

R
Knowing the initial deviations at time tq, [g.\_l(to:) is equivalent to

knowing the position and velocity at any time t, as indicated from Equation

(2.6.74),
o R () SR o)
— _ t,'to o
[S v (t)] = Pt [s v (t,\]

since it is assumed that @ (t, tg) is known or computable.
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2.7 SENSOR_REQUIREMENTS IMPOSED UPON A VEHICLE

Although it is undesirable to constrain vehicle performance and design
because of navigation sensor limitations, the imposition of constraints upon
a vehicle is often mandatory to guarantee successful deployment of the
navigation sensors.

Unfortunately, the technical literature dealing with this subject in
general terms is sparse, possibly because the constraints and limitations
themselves are such individual functions of the vehicle and sensor of
interest.

Even though a comprehensive listing of all of the sensor imposed vehicle
constraints is impractical here, it is possible to indicate a general frame-
work for classifying, analyzing, and evaluating the constraints in any given
situation,

Three sources of navigation sensor limitations which may impose constraints
upon a vehicle are presented in the following sections. Examples are included
to illustrate some of the more usual sensor imposed vehicle constraints.

2.7.1 Sensor Input and Output Static and Dynamic Iimitations

Frequently a navigation sensor may become damaged or destroyed if its
input or output quantity varies beyond the sensor design limits. In additiom,
even in situations in which no damage is domne to the instruments, when such
instruments are over-driven by too vigorous a variation of its input wvarisbles
other detrimental system effects may be associated with sensor saturation,
such as the system stability margin may be decreased to the point where
the system can become unsteble, or the system can lose accuracy. This situation
exists for all three bhasic types of sensors which have been discussed in pre-
vious sections of the monograph. For -example, in inertial navigation systems,
excessive torques lmposed upon any inertial platform produced by torquing the
platform gimbals to follow the vehicle motion can cause a loss of attitude
reference accuracy, Or can cause a complete tumblirg of the platform. Addi-
tional problems with inertial platforms are associated with the three-gimbel
configuration. The three gimbal configuration requires that vehicle attitude
must be constrained such that the middle gimbal variations stay within
spproximately + TO° of attitude change. This limitation must be imposed to
preclude gimbal lock as discussed in section 2.3.2.1.

Other constraints which must be imposed upon vehicles caused by
inertial sensors are those associated with rate gyroscopes and integrating
rete gyroscopes in strap-down applications, and the different forms of
accelerometers. All of these instruments may be saturated by excessively
violent vehicle motion, and in meny cases this saturation produces uncorrecta-
ble inertial navigation errors.
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Other sensor induced vehicle constraints may be associated with radar
sensors and star trackers. The necessity of pointing these sensors, which
have a narrow beam width, requires wvehicle attitude to be controlled within
relatively narrow limits to preclude loss of signal.

2.7.2 Environmental Reguirements

These limitations must be imposed upon a vehicle to guarantee compatibi-
lity of the sensor with its physical enviromment. The physical environment
referred to here includes the temperature, pressure, vibration characteristics,
supply voltages, input and output impedance matching requirements, etec.,
associated with the desired location of the sensor within the vehicle. De-
tails describing the specific factors discussed here are strictly dependent
upon the hardware characteristics of both the vehicle and the sensor; and,
hence, are usually not considered in detail until the design of both are
reasonably well defined in a development program.

2.7.3 Operational Iimitations

These limitations reflect requirements of other hardware and functional
elements which operate within the navigation sensor loop. These other
functional elements may include ancillary equipments as well as functions
associated with man-in-the-loop. A notable example of vehicle constraints
being imposed through operational requirements is associated with the manual
operation of space sextants and telescopes. For example, consider an
astronaut in a spacecraft in an earth orbital environment or cis-lunar
environment. Accurate measurements from the manually controlled sextant
require that maximum vehicle angular rate be stringently controlled to low
values; in the case of the Apollo vehicle, the vehicle rate must be constrained
to 1.2 arc-minutes per second. Other examples include constraints due to
landmark tracking using telescopes, etc.
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2.8 CRITERIA FQOR SELECTING OBSERVABLES TO BE MEASURED

Discussed in this section will be those factors which influence the
selection of navigation observables to be measured. The first part of the
discussion presented in 2.8.1 concerns itself with the more realistic techni-
ques which must actually be employed in a realistic situation to select
the best navigation observables. Section 2.8.2 presents a discussion of more
limited applicability of the special techniques which may be used to optimize
the selection of optimum geometrical relationships between celestial objects
to minimize state vector estimation errors for a evenly determined data
set.

2.8.,1 General Criteria

The most realistic criteria which apply to the general problem of
selecting observables to be measured is the iterative technique carried out
to minimize or maximize the important parameters associated with any specific
mission. For example, in selecting observables in an earth orbital mission ,
the basic mission requirements of, say, landing a vehicle within a small
recovery area may require extremely precise position and velocity informa-
tion on board the vehicle at the time of the retro-firing. In this situation,
the navigation observables selected should be such that errors in position
and velocity at this time are minimized. In this type of problem a
number of variables affect the total accuracy obtainable, namely, such factors
as variation in the navigation sighting schedule, instrumentation characteris-
tics, operational environment (rapidity of angular motion of the vehicle),
etc., A simple approach to specification of the selection criteria for this
case is to specify that the navigation observables selected for implementation
should provide a minimization of the position and velocity error at the
retro-firing point.

The problem with this definition of a criteria is that it does not go
far enough in suggesting the technique of applying the criteria for making
the selection itself. A more practical definition of appropriate techniques
for selecting observables is outlined in the sketch shown below.
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Choose Observables ===

Choose Sensors-

'

Choose Deployment Techniques g
(Navigation Sighting Schedules,
Filtering Techniques, Mechanization
Techniques)

Evaluate System Accuracy

|

Determine Satisfaction of
System Requirements and
Degree of Optimization

More Iterations Required?

No Yes
L-—_

Optimized System
Defined

The sketch represents an iterative procedure in which observables are
chosen, the sensors are chosen, deployment techniques are chosen, followed
by an evaluation of the system accuracy. If the system accuracy is un-
satisfactory or non-optimized, variations of the deployment technique, a
different choice of navigation observables, or a different choice of naviga-
tion sensors may be made. It is only by repeated iterations through these
loops that one is assured of having reached a somewhat optimized selection
of the navigation observables, navigation sensors, and the deployment
technique itself. Hence, the criteria for selecting navigation observables
is that set of observables which in some sense optimizes the entire naviga-
tion loop. That the optimization of the selection of observables cannot
be made without considering the optimization of the entire navigation process
is characteristic of the application of the methods of system engineering,
in which ecriteria for excellence of the performance of sub-system elements
becomes subordinate to the excellence of the total system performance.
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2.8,2 Minimization of Position Estimation Error for Simultaneous Multiple Fix
Optimal Navigation Measurements

This section will present a method of determining the desirable orienta-
tions of measurements to choose such that the magnitude of the position devia-
tion error is minimized. The result will be applied to several standard
multiple fix combinations of measurements that have been previously described.

General Approach:

Consider a measurement deviation,sgg,, of a multiple fix position devi-
ation measurement, Due to the inherent limited accuracy of the measurement
instruments, it can be expected that each measurement is in error by an amount

i . Assuming that the correct value of the measurement deviation was §gi,
the measured quantity can be written as

dgi=8gi+oaci (2.8.1)

Since there are several measurements involved in a multiple fix, Equation :
(2.8.1 ) may be written in vector form. '

That is § = dg + (2.8.2)

The uncertainty in the measurements introduce a corresponding uncertainty
in the position deviation vector. This uncertainty can be expressed by a
vector € . The relationship between the true position deviation vector and
the computed one from the measurements can be expressed as

A _
Se=dr+¢e

A . .
where o g = the computed deviation
£ g = actual deviation
3 = deviation error introduced by measurement inaccuracies ;

In a previous section, it was shown that the actual deviations are
related by
dg = 4 o (2.8.3)
or -
dR = dg (2.8.4)
With an evenly determined data set consisting of three independent
measurements, an unbiased estimate for the measured quantities is

é'.A = H-' ~
k=4 Sg (2.8.5)
Using Equations (2,8,2 ) and (2.8.3 ) it is seen that
SRre =2 Gg+ar=nCgras (550
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but dR=#"dg (2.8.7)
80 the error vectors are related by

-1
E=H &£ (2.8.8)
This equation graphically displays the importance of the quality of the
data in the navigation problem.

In order to determine the magnitude of € , the square root of /5—/2
can be found, where

=12 . - T -nhT,, -1
El"= =

lel"=€T¢ =" (") "H ™ € (2.8.9)
The "T" in the above expressions represents the transpose of a matrix,while
a (~1) superscript represents the inverse.

2.8.2,1 Planet-Star, Planet Star, Planet Diameter Measurement Optimization

The method of finding the optimum positions of stars and planets for
multiple fix measurements will now be applied to the planet-star measurement
being used with the planet diameter measurement. The geometry is shown in the
following sketch,

TO STAR
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Using equation (2.8.9) and (2.6.5) in order to find Iglzyields

€] %= «T(a™)T# " e

2 2
<
z £° cos

o

-Z22005 6 core

(2.8.10)
-z2cor & cose o
2 2
Z22 cos?e o <
o Z 2cos(3)
D
(2.8.11)

This matrix mey be diagonalized to display the eigenvalues on the principal diagcnal
by employing a similarity transformation.

metric, this transformation is equivalent to rotating the rectangular cartesian
The eigenvalues of the above matrix are:

coordinate system 45° about the Z axis.

However, since the matrix is sya-

A, =z2c0se6 [cose +core]

A, =22¢0s e [cose - cor o] (2.8.12)
2, = I:zz cos (ﬁ)J z
D
Now enquntion ( 2.8.11 ) hec-mes
r 2 -1 [ |T
Z2°cos 6 (cose + coT &) o () g
- ; , ) '
1€12]%", o, o5 o z%cose (cose-cored) 0 | G
i 0 o D °(3
4 L
e (2.8.13)
’ 7 .
[OC, > X2 5 oz ] < 7
and
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The components used to express e are the values formed by the new coordinate
system that resulted when the matrix of equation ( 2.8.11 ) was diagonalized.

When equation ( 2.8.13 ) is multiplied out, the result is

161 = ()2 22 c0s o + )2 22 -
€ (<, )2 59 (o5 & +c0T 0) + ()< 2° COSO(COS & -coTe) (2.8.14)
+ 2 A 2 .
(ec3) [z— coso(Z )]

It is seen that the above expression attains its smallest value when 6 = 90°,
Now,

2 2 ’
1€1° = ()% + (ecs )+ (053)2 [22 cos(4) ]Z (2.8.15)
D

Equation ( 2,8.15 ) can bve expressed in more meaningful terms by the follow-
ing relation 2

[zzcas(fj-l =z (22;2:9) =22 (22 ~4)

o) J D2 b=z (2.8.16)
So
2_ . 2 1, 2 /7. 2
/€l < = 2 2 -
€ (eG )<+ (ex2) “+ (ex3)° 2 %E_ z) (2.8.17)

One would expect the same resulis on an intuitive basis. It seems reason-

gble to expect that the error is minimized if the stars are taken to be in
orthogonal planes which pass through the vehic¢le and planet center. - This
behavior 1s due to the fact that each star-planet meesurement determines the
§r component in its corresponding n vector direction; hence, the uncertainty
of &r° due to each measurement is in the direction of 22 . If these planes
conteining the stars are teken to be orthogonal, the area of uncertainty in
vhich € can lie in a squere is shown below.
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o
2

If, however, some other orientation of the star choice is selected, the
area of uncertainty changes 1to0 a parallelogram; and the magnitude of the
error vector, € , with the same accuracy in the instruments could be much

larger.

B
e
=

It is also apparent from equation ( 2.8.17 ) that the magnitude of the
error in the position vector increases as the vehicle gets farther away
from the planet. This result is also expected.
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2.8.2,2 Planet - Star, Planet - Star, Sun - Star Measurement Optimization

The optimum positions of a planet, the sun, and stars will now be
derived for the planet-star, planet-star, sun—-star measurement set.

- 2
The expression for I&/ may now be found to be

p— 3 [~ 3
h/l ’l 12 h 13 ey

R (2.8.18)
/§/=[“;,9C2, 0C3] hay ha2 h23 <2
Lbsl hsy h3s | |3

where

hy =22 cos? o +22 cor2 & cos26 SINZ (£-0)
hy = ~2% cor & cos & -2% cor? ¥ cos? O siv BsiN (B-6)

RZ coT ¥ cos ¥ cos & siN (f-e)

h 3

hz:'—' /7/2

hpp=2tcos2 o +r2% cor? ¥ siv? Bcos? o

hys=-2 R cos ¥ cor ¥ sin B cos &
hsz = s

hazs= R2 cos2 p

At this point in the planet-star, planet-star, planet diameter analysis,

the above matrix was diagonalized. It is apparent that this approach is

not very practical in this case, since the algebra involved is prohibitive.
The optimum selection of the various angles can still be determined, however,
by using the average value of the measurement error variables., Assuming
that the errors are unbiased, it is reasonable to conclude that the average
error in any single measurement is zero. Also, if the measurements are
independent of each other, the average of the product of two errors will

be zero, i.e.,

Ex' °‘ZJ a - °
[°‘2. °C3] an - 0
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This can readily be seen by examining the feiiowing sketch which illustrates
the plot of two independent, unbiased errors.

If a large number of measurements are taken, there will be very nearly
an equal number of points in each quadrant. ‘.'JhenEr, 2] a0 is
evaluated, those points in quadrant I will very nearly cancel those in
quadrant IV. It should also be apparent that the average value of the
square of each measurement will, in general, not be zero.

Using average values for all o3, equation ( 2.8.18 ) becomes

/§/2= [dlz]a” hy + [oczz_]w haz + [Ocjz]w h33 (2.8.20)

All other terms reduce to zero due to equations ( 2.8.19 ).

Substituting the values of 4,, hyyo and hz3z » equation ( 2.8.20 ) vecones

[/_6/2] = 2%cos?e [1+cot? Psin2 (p-0) J[2],
o +22cos? o[/+cor 2 g sinv? B] [¢,2]

2o 2 (2.8.21)
- R€c0s2 ¥ [e 2],

This is the expression that must be used to determine the optimum orienta-
tions of the angles that are measured, i.e., Al, A_, and A_., In order to
find the optimum choice for g , the partial deriva%ive of 2quation (2.8.21 )
is taken.

2 - 22 2 - 2
fe) [/§/ _]a” = 2%cos?6 cor® Y siv 2 (B e)[cc,]w

3B (2.8.22)

+22cost 6cor?rsmzpgfx}t] =0
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Since two of the angle measurements are of the same type, it may be
assumed that

2 - P
‘[OCI ]““" ["(z]w
Now (2.8.23)
E(,"-] z22co0s20 cor 7 [s5IN2 (B-8)+SIN2 B]=0
an

or

SIN2 (f-06)= -SIN2 £ =5SIN(-258) (2.8.24)

A solution to this equation is
= & (2.8.25)

This result is the first specification on the orientation of any of the
25. Equation ( 2.8.25 ) says that the projection of Zs on the x-y plane
must bisect that angle formed by s and 73 in order to minimize the magni-
tude of the error, jer.

Having established B, the expression forﬂglinow remains a function of
Q0 and ¥. Equation ( 2.8.25 ) novw reduces this expression to

[g,zJ = z2 cos? o oc,zM 2+ (coT2 B)(1-cos @) + R¥cos ¥ o<t M(2-8-26)

Now, it must be determined how to minimize the above expression when 2’is
varied. Remembering that /5 is already specified as being € , the plane
of angle measurement Az is now rotated about the line from %e spacecraft
to the sun. This rota?:ion changes the angle & and the location of the

star that is to be chosen as "star 3.," The only appearances of &' in
equation ( 2.8.26) are ascor? y and cos ¥ , both of which are minimized

at & = 90°. Clearly the largest value that 2* can achiewve from the above
rotation is that velue which occurs when the plane of the sun-star measure-
ment passes through the £ axis, i.e., "star 3" is located such that

it is in the plane determined by the spacecraft, planet and sun., This plane
is shown below.
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planet

1o Sun

oS

4 Xy plane

X~y plane ~

to star 3

It is seen that the value of & is equal to the angle between the planet
and the sun, 3* if "star 3" is chosen as specified,

the partial derivative of Ig/q with respect to 6

The only angle that has ye[;t% be specified is 6., This is done by taking
l
Qnr

aa ['_éliw =z2 E"Z_Lv f'osz 8 cor &% sine+[2+cor? ™ (/-cose Yz cos %o caTQ)J}
e

(2.8.27)

Equating this expression to zero, the optimum choice for © is found.

cos 8, = /+sIN &> (2.8.28)
T=SIN p %

The final expression for the minimum error magnitude is now determined
to be

[Ié‘lz] = cos? b"'[_z_ (r+sin %)% Emﬂ + vt E{,{] :I (2.8.29)
- |evanun 2 o~ o

A brief review of the results at this point would be beneficial. In order
to choose the best star positions for a star-planet, star-planet, sun-star
measurement, one would first select a star in the plane of the spacecraft,
the planet and the sun. The angle, A3, between the star and the sun is
now determined and any deviation from the nominal vehicle position in the
direction of 23 (the direction perpendicular to the s?n) can be detfter-
mined by an angular deviation,f{43 . Next, the selection of the other

two stars reguires that the projections of their lines of sight onto the
plane perpendicular to z axis (the direction to the planet) form some angle
8 where

- -/ »*
@ = cos //+.Zl:lvb;x (2.8.30)
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Furthermore, these projections of the two stars should be symmetric about
the plane of the A, measurement. With the selection of the last two stars,
the two planet-sta; measurements can be made. Any deviations £rom the
nominal values of Ay and Ap determine the position deviation in the 7,

and 73, directions. If all of the above conditions are met, the -
minimum average error of the magnitude of the position deviation vector
cannot be greater than the value of equation (2.8.29). For convenience,
a sketeh of the optimum star locations for a planet-star, planet-star,
sun-star measurement is shown below,

planet
PR

Sun

to star 3
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2.8.2.3 Planet-~Star, Planet~Star, Sun-Planet Measurement Optimization

The optimum positions of a planet, the sun, and stars will now be
derived for the planet-star, planet-star, sun-planet measurement.

The average of the error magnitude sSquared is
2 2 2 2
Eg/]w = ECI ]M hy + [Oczjw hag + [’C:I]w h33 (2.8.31)

To find the optimum g , the partial derivative is again taken
with respect to g ,

,56?_ Egﬂw = 0 (2.8.32)

The solution to equation (2.8,32) 153_._ . It should be remembered

that this was the optimum {3 for the prévious case also. This is due
to the fact that the A; measurement, although it is a slightly different
type of measurement, provides information in the same plane in both
cases, In this case,the components of§ g are expressed in terms of two
vectors instead of one vector. -

When 3- % 1s substituted into the expression for [g/z] ’
it becomes il

[e/]M I:Zzzcos & + (2 cor #*- gcos m*):l + rcos2 Ef-]

I+ cos o
(2.8.33)
Similarly, the optimum & is found as follows:
2

2 1ef, =o (2.8.34)

L]
The solution to this equation is

- V-2 & *x, RS _ *
005 e -2 z cos ' -+ Z& SIN J’ (2.8.35)

- * 2 ¥
\112-5_ cos ¥ +.§z+swa”

Now the final minimum expression for Eglﬂ is written as
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ré/‘:l Z% cos & * rsu ¥¥rd1-2 & cos >+ 22141 2]
= )] - 2
et 7 o e §1 )R
* 2
+ R2cos? o™ [«5*] (2.8.36)

Although only three cases have been analyzed, it is hoped that the
reader can grasp the general approach one would use in order to find
the minimum average position vector error magnitude for any useful
combination of measurements. The analyses should also demonstrate how
to select the celestidl bodies to be used in a multiple fix in order to
reduce the errors that are introduced by the inherent inaccuracies of
the instruments that are used for the measurements.
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3.0 RECOMMENDED PROCEDURES

This monograph presents two kinds of materiel:

(1) A body of facts and useful equations which can be applied to the
problems related to navigation observations.

(2) A number of anslytical techniques which are effective in quantify-
ing the inter-relationships of fundamental physical phenomena, sensing errors,
state vector determinatioms, ete. (These techniques can be applied to a
wide class of navigation observation problems to extend the theory and generate
new results).

Hence, the recommended procedures fall into two corresponding categories:

(1) The facts and equations presented herein may be utilized to:
identify the physical considerations involved in radiation and inertial sen-
sor evalustion and selection, evaluate the approximate linear relationships
which hold between the vehicle state vector (position and velocity) for a
class of optical semnsors, evalute the observation errors which affect
the outputs of radiation and inertial sensors, evaluate the vehicle state
from an evenly determined data set of navigation measurements.

(2) The analytical techniques presented may be applied to other problems
than those considered herein. Of particular importance are the techniques
for developing linear approximations, techniques for noise and error amalysis,
techniques for generating results from difficult non-linear differential
equations by sultably restricting the non-linear variations, techniques of
developing observation to state vector relationships, techniques for generating
solutions of the state vector from simultaneous and sequentisl observatlons,
techniques for optimizing the selection of observables, and techniques
for applying perturbation theory to transform non-linear to linear differential
eguetions.

The following two block diagrams present: (1) the recommended procedures
to be followed in generating the values 5%¢ (the deviation of the navigation
ebservables from their nominasl values) from the assoclated physicel phenomena,
and (2) the recommended procedures to be followed in generating estimates
of position and velocity from the gquantities 834 .

These block diagrams are intended to give the reader a perspective of the
material presented in this monograph, and to indicate the interfaces with the
related monographs of this series. The sections of this monograph which are
related to the various steps of the procedures are indicated in the appropriate
blocks.

Fhe navigation problem commences with the measurement of some physical
phenomenon. This measurement could be any one of numercus celestial body
measurements that have been mentioned, or a quantity related to the angular
or translational displacement of some inertial device. Of course, as in any
measurement process, there are many sources of inaccuracles. Before the
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measurement information reaches the measurement device, it is subjected to
random and systematic errors that prevent the measurement device from correctly
measuring the phenomenon. In addition, the measurement device itself is
subjected to inaccuracies due to its limitations and internal random
disturbances. A4s a result, the indicated value of the physical observable

is in error. It has been the intent of this monograph, in part, to develop
some of the theory that enables a quantitative treatment of the more impor-
tant error sources that 1limit the performance capability of navigation sensors.

In cases such as range and range-rate measurements, inertial measure-
indirect measurement of the actual navigation observable that is needed. It
then becomes necessary to transform the indicated measurement to the navigation
observable by some physical "law.!" Again, there are errors introduced in this
transformation process because of the limited accuracies of physical constants
that must be used, and any slight imperfections of the "laws" that describe
the phenomenon or its computational mechanization as used in the transformation
process.,

Once the measured navigation observable has been determined, it can be
compared to the value of the same observable that would be observed if the
vehicle were exactly on some nominal trajectory. This can be accomplished by
evaluating the state vector at the time of the measurement, and calculating
the nominal navigation observable using the ephemeris of the bodies used in
the sighting.

The deviation of the navigation observable from nominal can now be used
in one of two general ways. This monograph discusses the use of evenly
determined data; i.e., the use of N independent observations to determine
an N dimensional state vector, This method is discussed in detail in sections
2.6.2.1 and 2.6.2.2,

The other major method that can be used in order to determine the state
involves the utilization of redundantly determined data. Although this method
is extensively discussed in the following monograph ("State Determination and/
or Estimation," SID 65-1200-6), it will be briefly discussed here in order
that it can be related to the material presented in this monograph.

Basically, the method consists of estimating the new state and navigation
observable deviations that are based on previous deviations. If the estimated
and actual navigation observable deviations are identical, the process con-
tinues to update itself simply by the use of the state transition matrix. If,
on the other hand, the estimated and actual navigation observables differ in
value, this difference is processed in such a manner as to maximize (minimize)
some measure of performance,giving attention to the accuracy that is expected
from such a vector measurement. As a result, the estimate of the state
deviation is defined., The new state deviation vector is then added to the
nominal state vector for that particular time, and the state vector of the
vehicle is thus determined,
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