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1.0 STATEMENT OF THE PROBLEM 

The final consideration of space guidance systems to be discussed in this 
series of monographs is that of system performance analysis. In general 
terms, system performance analysis implies both an assessment of system 
performance and an assessment of system requirements. In this context, 
system requirements refer to the specifications of system functions in 
order to achieve mission objectives and system performance refers to the 
results which can be expected. Of course, system performance and require- 
ments are closely related and can generally be considered as equivalent in 
terms of analysis effort, That is, the analysis effort which establishes 
system performance also establishes system requirements, however, the 
relationship is not necessarily a one-to-one correspondence. In general, 
the ultimate objective of system performance analysis is a system configu- 
ration definition, or system design specification which is sufficient in 
terms of system functions that directly and significantly affect system 
performance. It is tacitly assumed that the required system performance 
can be stated in explicit terms as translated from mission objectives and/or 
requirements. Usually, system performance requirements must be deduced 
from mission objectives and then system functions are defined to achieve 
system performance within mission constraints. In addition to a sufficient 
system configuration definition an optimum system design is desirable 
wherein the least stringent set of sufficient requirements is specified. 
Therefore, sufficiency and optimality of system design are of primary 
consideration in system performance analysis. It is highly desirable to 
establish a "single-step" system design algorithm which would achieve the 
optimum sufficient system configuration definition in a direct and immediate 
manner. Unfortunately, due to the complexity of system function inter- 
relationships, the number of possible alternatives, the lack of uniqueness 
in a set of requirements, and changes in mission requirements the system 
configuration definition evolves from an iterative design procedure which 
should be a uniformly convergent process that achieves the final sufficient 
and optimum system configuration in an intelligent and efficient manner. 
The primary function of system performance analysis can be considered as 
providing the convergence to the iterative design procedure. 

The totality of efforts involved from mission conception and definition of 
objectives to finalized system configuration definition and/or design 
specifications for a space guidance system is a significant and formidable 
undertaking. The present effort does not consider the total system design 
effort. A significant portion oftie total effort has been considered in 
the previous monographs in this series and the present effort is intended to 
supplement the previous efforts which define the basic relationships 
between system functions and performance. These relationships comprise the 
basic elements of the complete system model which is required to perform 
an overall system performance analysis. There exist two fundamental alter- 
natives in the present effort. One alternative consists of a consideration 
of various specific cases which would supposedly be representative of 
guidance system performance analyses for general missions. The second 
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alternative consists of a consideration of methodology which has general 
application. The first of these alternatives has the serious deficiency 
of being only applicable to the cases considered with general usefulness 
severly limited, especially in an era of technological evolution and revo- 
iution. Both the types of techniques and their degree of utilization 
continually change with time and progress, and present conclusions must 
continuously be reviewed and revised as technology evolves. Th.e second 
alternative has the primary merit of not being restricted to particular 
performance analyses; however, there exists the risk that generality will 
obscure the direct applicability. A compromise between these two alternatives 
with emphasis on the latter has been taken in this effort. The primary 
purpose of this effort is the consideration of the methodology of system 
performance analysis which forms the principles and techniques of direct 
applicability in assessing guidance system performance and requirements. 
The methodology is directly applicable to a guidance system which is 
dependent upon particular mission considerations. 

In general, the performance of a system is affected by the,behavior of the 
system's functions and the nature of the environment in which the system 
operates. It is generally possible to describe system performance in terms 
of a particular circumstance of system functions and environment. This 
aspect of the problem can be considered as the deterministic aspect of 
system performance analysis. A deterministic model of a system can be con- 
sidered as the correspondence between given system functions and environment 
and resulting system performance. The basic elements of this model have 
been considered in the efforts of the previous monographs in this series. 
Unfortunately, both system functions and environment do not obey fixed 
deterministic rules of behavior and, therefore, system performance cannot 
be stated on an explicit basis. A deterministic model of a system is 
utilized to establish the nominal system requirements, but this model does 
not specify performance and final requirements for system operation in its 
natural environment. Both system functions and operating environment are 
characterized by elements of uncertainty which significantly affect system 
performance. Thus, system performance is characterized by uncertainty 
and final system performance and requirements must be assessed in accordance 
with the inherent uncertainty of the situation. Therefore, there exist two 
aspects of system performance analysis which can be defined as deterministic 
and statistical considerations. The deterministic considerations are often 
referred to as nominal considerations which follow directly from the deter- 
ministic model of the system. However, these considerations do not yield 
final system performance, configuration or requirements. Rather, a nominal 
system configuration is tentatively defined. The nominal design must be 
subjected to a comprehensive statistical analysis to assess expected system 
performance and to modify design to insure compatibility of final system 
configuration definition and system performance requirements. The efforts 
of the previous monographs in this series provide the basis for the nominal 
considerations of system performance. The present effort is concenred 
primarily with the statistical considerations of the problem. 

It should be emphasized that system performance analyses are essentially 
statistical inferences. These inferences are always subjected to degrees 
of uncertainty which should be recognized and assessed. It is only in this 
manner that the final risk involved in commiting a particular system 
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configuration to development and deployment can be known and reduced to an 
acceptable level. It is apparent that technology and methodology for nominal 
system performance analysis is usually adequate and readily available. 
However, the statistical methodology is not as readily available or as 
completely understood in terms of applicability, utili.zation and limitations. 
Basic methodology is often utilized without regard to the effects of basic 
assumptions. On the other hand, useful methods are not utilized due to a 
lack of familiarity. It is the basic purpose of the present effort to 
present useful methods of analysis and to discuss applicability and limitations 
of methods. A brief description of the present effort is given below. 

A basic premise of this effort is that the nominal performance of a system 
can be written in terms of a vector equation as follows: 

In this equation y is a vector of system performance parameters for which 
requirements are s?ecified, x is a vector of system functions and environ- 
mental parameters which affecx system performance, and (;( I is a 
known function which is deduced from physical laws that the system obeys. 
In thergeneral situation X is a set of random phenomena which reflects the 
uncertainty in the behavior of system functions and environment; hence, 2 
becomes a set of random phenomena as reflected through the functional 
relationship of GO . Due to the random or uncertain nature of x 
statistical method; must be utilized in assessing system performance an: 
also system requirements. It should be noted that there generally exists 
a degree of uncertainty even in the statistical nature of X and, therefore, 
x 
analyiis 

The present consideration of the problem of systemperformance 
is concerned with the mathematical framework in which the assump- 

tions implicit in such analyses can be appreciated and intelligent appli- 
cation of general methods can be made. Ibis objective, in turn, can be 
realized through the theory of statistical inference since the problem 
being considered is embodied in a more general theory and structure in the 
extensive literature on the general subject. However, the complete theory 
is not required, thus, the present effort is concerned with presenting that 
portion of the general theory which is directly applicable to the problem 
of system performance analysis. A particular application is considered in 
terms of an error model and analysis of an Inertial Measurement Unit (IMU) 
which is of direct-usefulness in guidance and navigation system performance 
analyses. 



2.0 STATE OF THE ARJ! 

2.1 THE BASICMODEL OF TRE PROBLEM 

The general problem of system performance analysis can be defined in the foll- 
owing terms. There generally exist two sets of parameters which can be considerec 
as (1) performance parameters, denoted by x.., and (2) causal parameters, denoted 
by x. In this context, performance parameters are generally associated with 
system state quantities that directly affect mission success, and causal para- 
meters are associated with system functions and environmental factors that 
affect system performance. In general, there exists a known relationship 
between the two parameter sets 2 and 2, denoted by y = G (x) where G ( ) is 
a known function which is deduced from physical laws-that the system-obeys. 
The explicit relationship between x and 2 is dependent upon a particular 
system configuration definition. In general, there exists a region in the 
space or domain of the set y which is conclusive to mission success, i.e., 
if xcRs then th.. 0 mission iS successful. Thus, R, can be considered as a 
I'region-of-successl) or a Hsuccessll region for y. Usually, the definition 
of x and Rs depends on mission type, objectives and constraints. Now, two 
basic purposes of system performance analyses can be defined which are (1) 
given x and G ( ), determine if PER s and/or (2) determine the requirements 
for 2 and/or c ( ) such that xcR,. The ulti.mate objective is to definitize 
the system configuration and specify tolerances or design requirements for 
system functions which are sufficient to achieve mission success. Within 
this objective the optimum system is sought which consists of the least strin- 
gent set of sufficient system requirements. That is: system configuration 
and function requirements for the achievement of mission objectives are E;en- 
erally not unique and there exist a number of alternatives. Although some 
alternatives are precluded by mission constraints there exist a number of 
possible alternatives of which some are suffici_ent and supposed1.y one is 
optimum. 

If the system operatins environment and system functions are knot with 
certainty, then system performance and mission success could be stated with 
certainty. In such a situation the syste? could be "tailor-made" with ab- 
solute assurance Of success and the optimum csystem could be readily defined, 
Unfortunately, this is not the usual situation. Both system environment 
and functions are not explicitly known entities, rather, they are generally 
random phenomena or random processes. That is, the causal parameter set x 
is a random vector and, hence, the performance parsmeter set y is a random 
vector. Fortunately, mission objectives usually allow some d@ree of un- 
certainty in system performance parameters, i.e., the success region Rs is 
not a single point. Due to the random nature of the situation, system per- 
formance analyses must consider the probability that y will lie in the region 
Rs. Alternatively, the task of system performance analysis is directly con- 
cerned with determining if the uncertainty in the system performance parameters 
is compatible with mission objectives; moreover, these tasks are concerned 
with determining an optimum system configuration definition which fulfills 
system performance requirements in accordance with a specified probability 



of success, i.e., probability that xcERs. To this end performance analysis 
is concerned with four general tasks which follow the definition of mission 
objectives and constraints. 

First, the dependence of y upon of must be established. This can be con- 
sidered as the determinismc aspect of the problem which is not of primary 
consideration in this effort. 

Second, the uncertainty of the various system functions and environment must 
be specified. This can be considered as the fundamental statistical aspect 
of the problem and it is of primary considerat.ion in this effort. This 
aspect of the problem is concerned with the statistical analysis of the ran- 
dom phenomena represented by the random vector of. This task is a necessary, 
but not sufficient, effort in system performance analyses. 

Third, with knowiedge of the relationship L = g (2) and with a 
knowledge of the uncertainty of the causal parameter set 2, the 
uncertainty of system performance is determined. 

Fourth, assess the probability of mission success. 

These tasks are usually accomplished within the system design iteration pro- 
cess to evolve the optimum system configuration definition which will fulfill 
mission objectives. The methodology is ultimately that of the general prin- 
ciples of statistidal inference. The particular methods of the general 
principles which must be utilized are discussed in the following sections. 
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2.2 STATISTICAL ME?l'HODOLOGY 
2.2.1 Introduction 

System performance analysis is ultimately concerned with the analysis of random 
phenomena including system functions, operating environment and, finally, system 
performance. These random phenomena must be characterized or defined in stat- 
istical terms, i.e., adequate information of these phenomena must be obtained 
such that the nature of the randomness is sufficiently known. This is the subject 
of the general methods of statistical inference or statistical analysis. Those 
particular methods of statistical analysis which are directly applicable to 
system performance analysis are considered in this section. It is intended that 
the material presented herein is somewhat self-sufficient with adequate discussions 
presented so.the applicability and limitations of methods are readily understood. 
On the other hand, an exhaustive treatment of the general subject is not presented 
nor intended since it is not required. An attempt has been made to provide suff- 
icient and useful references where it is recognized that certain extensions of 
the basic methods will be required in certain cases. In addition, an extensive 
bibliography on the general subject of statistical inference is provided. 

It is tacitly assumed that the reader is adequately familiar with the basic con- 
cepts of randomness and probability. This is a matter of convenience since a 
sizable treatise could be written on the conceptual aspects of these entities, 
however, this does not greatly serve the purpose of present application. Usually, 
for purposes of engineering application the basic concepts of randomness and prob- 
ability suffice, although, there is often a lack of agreement with the more rigorous 
mathematical definitions of these concepts. Ultimately, the rigorous formulation 
is required, but this is not considered herein. Good discussions on this subject 
can be found in References 1, 2 and 3. 

The discussions begin with basic definitions and properties which are frequently 
encountered. AGaussian random variable is discussed in detail. The multivariate 
Gaussian probability density function is considered in detail in the definitions 
and Appendices B and C. Probabilities for Gaussian random vectors are specified 
for various regions of interest. 

Functions of random variables are discussed with particular emphas5.s on trans- 
formatj.ons of probability density functions and statistical moments of functions 
of random variables. Several particular functions of Gaussian random variables 
are discussed with emphasis upon the probability densi_ty functions and statistical 
moments. 
Several basic probability bounds are discussed which can generally be used to 
"bound" random variables when only lower order statistical moments are known. 
Similarly, several basic limiting theorems are discussed which generally concern 
the limiting behavior of sums of statistical&r Lldependent random variables. 

The determination of statistical properties is discussed with particular concern 
of estimating moments and examining the validity of assumptions concerning pro- 
bability density funci,ions. The particular case of est?:mating statistical 
moments for Gaussian random variables is considered in some detail. The basic 
methods of correlation and regression analyses are discussed. The use of con- 
fidence intervals is discussed and the method of hypothesis testing is considered. 



2. 2. 2 Basic Definitions and Properties _ _ .~. 

2. 2. 2. 1 Random Process 

A random process can be defined as any phenomenon for which 
repeated observations, under a given set of conditions,do not yield identi- 
cal results. In general, random processes are characterized by variations 
in outcomes for repeated equivalent trials. These variations in outcomes 
or observations are considered as the “randomness” of the process, which 
is equivalent to uncertainty in the outcome of- the process. As a contrary 
example, consider a process whose behavior is completely described by a 
known system of differential equations. Theoretically, it is possible to 
completely determine the behavior of such a process if an adequate set of 
observations are made at some time. 
deterministic regularity. However, 

Such a process is said to possess 
until such time that all physical laws 

are explicitly established for the microscopic and infinitesimal domains, the 
concept of random physical processes must be admitted, accepted, and 
dealt with. 

Alternatively, a random process could be defined as one which does 
not possess deterministic regularity and subsequent outcomes cannot be 
predicted with certainty from a set of observations of the process. How- 
ever, a random process can possess definite properties of behavior which 
make possible a description on a statistical basis. Such random processes 
are said to possess statistical regularity. In such cases, even though 
particular outcomes of the process cannot be specified, it is possible to 
specify the relative frequency or probability of occurrence of outcomes 
for the process. 

2. 2. 2. 2 Random Variable 

A random variable is defined as a real-valued function which is 
defined for each outcome of a random process. Of course, the outcomes 
for many random processes are actually random variables. Such random 
processes are quantitative or numerical processes, e. g., random voltages, 
pressure, errors, etc. On the other hand, random processes exist which 
are non-numerical, such as the tossing of a coin where the outcome is 
either a heads or tails. However, it is possible to define a random 
variable for this random process by assigning numbers to the outcomes or 
by defining the random variable to the number of heads in m tosses of a 
coin, etc. 

The importance of the concept of a random variable lies in the fact 
that many of the arithmetic, algebraic and analytical operations which are 
defined for real-valued functions are meaningful for random variables, 
whereas they are not for,the outcomes of all raridom processes. Thus, 
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additions, subtractions, multiplications, transformations, etc., are 
applicable to random variables. 

2. 2. 2. 3 Random Vector 

In general, a random vector X_ of dimension n is an ordered set 
of n random variables, i. e. , 

where xi is a random variable. The ordered set can be written as a row 
or column matrix or vector and convention seems to favor column vectors, 
i. e. , 

L = and 
7- 

x 
= 

C x I 9 Y” 3 

where superscript T denotes transpose. 

The basic property of random vectors, for engineering purposes, is 
that the domain of definition of each component is the set of real numbers; 
i. e. , 

--m<X;<m 

for i =1, 2, . . . . . n. 

2. 2. 2. 4 Probability Density and Distribution Functions 

Let p[&cR] denote the probability that the random vector x_ will lie 
in the region R, which is a subset of the domain of definition of x. If a 
function of 5, f (x_), exists such that p[xeR] is the multiple integral of 
f (2) over the region or subset R then f(E) is the probability density function 
of x. That is, _ if f (x) is the probability density function of x then 

P[_x a RI = f f (xl dg 
R 

where S & )dx_ denotes a multiple integral over R. A basic 
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property of f (x) is that if R is the domain of x, i. e. , the set of all possible 
values of z then 

where D(x) is the domain of x. This follows from the fact that D(x) is 
exhaustive for x and, hence, -P[x_ E D(x)] = 1 . Moreover, fix) is a 
positive semi-definite function of 2,. or f(x) is a non-negative function of x; 
i. e. , 

f(g) 2 0 for all x_ . 

If the region R is defined by --Co < xi 4 Zi for i = 1, 2, . . .n then 
f(x) integrated over R yields the 
denoted by Fx(z). That is, 

“probability distribution function” for ,x, 

d 

A basic property of F,(z) is that Fx(z) is a monotonically non-decreasing 
function of z, i. e. , a6z is “increased” over the domain of x the P[-m<x < Z] - -- 
cannot decrease. Moreover, 
for 5 over D(z). 

it is apparent that 0 LP, (_Z) < 1 
- 

If_xl andxJare two random vectors of dimensions nl and n2, 
respectively, then the “joint” probability density function of xl and x2 is 
simply the probability density function of x where x contains 21 and x2 as 
subvectors. Therefore, the probability density function f(x_) of any random 
vector _x of dimension n > 1 is a joint probability density function and f(x) 
can generally be writted as 

f(z) = f(x,,z2, - -, Q). .) &J 

where x,. are subvectors of 2 with dimensions n., respectively. Of course, 
the dimdnsion of x n, is given by J 

-’ 
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If 2 is composed of two subvectors ~1 and 52 then the “marginal” 
probability density functions of x1 and x2, f(xl) and f(z2), respectively, 
are given by 

The marginal probability density function f(xl) determines 
that x1 will lie in a region R 1 

in the domain of ~1 without 

i. e. , 

the probability 
regard to --x2, 

Similarly, 

It sould be noted that the marginal probability density function of a sub- 

vector x1 _ of x is independent of the subvector 52, where _x is composed of 

-xl 
and 2~~. 

If x is composed of two subvectors ~1 and -x2 then the “conditional” 

probability density function of xl, givenx2, f(zl/z2), is given by 

Similarly, 

f&/E,) = f(;y) 
x -, 

From the foregoing it is seen that 
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Therefore, 

f(x,/zJ f (x2) = f (&h,) fh,) 

Also, 

For the sake of notation convenience, “pdf” will be used to denote 
“probability density functionI’ and, similarly, “PDF” will be used to denote 
“probability distribution function” in the text. In this notation pdf of _x = 
f(x) and PDF of x = Fz(z). It should be noted that if 51 and ,x2 are two 
different random vectors then, generally, the pdf of ,x1 =f(_xl) is not equal to 
the pdf of 52 = f(x2), i. e. , the notation f(s1) and f(g2) does not imply that 
f(,xl) = f(z2) or that 21 = 52. 

2. 2. 2. 5 Statistical Independence 

If the pdf of the random vector _x, which is composed of subvectors 

51 and52 , can be written as 

C(z) = f(E) f&l 

then the subvectors ~1 and --x2 are defined to be “statistically” 
independent. In general, a random vector s is a statistically independent 
random vector if all of its components are statistically independent. In 
this case f(_x) can be written as the product of the n pdfs of the components 
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of 3 i. e. , 

It should be noted that these definitions differentiate between 
statistically independent vectors 51 and 5 2 and a statistically independent 
vector ,X. Also, in the latter case it is not necessary that the probability 
density functions for the vector components be the same. 

2. 2. 2. 6 Mathematical Expectation 

Let y = g(_x) be a scalar function of the random vector x. If 

exists, then the “mathematical expection” of y, denoted by E(y), is defined 
as follows. 

In a similar manner, let y be a set of scalar functions of the random vector 

Q. e. , Yl = gl(d, Y2 ‘22 w J*~*~~~~**~~ ym = &(X)9 or JI = g(X_>, 

where y and ,x can be of dimensions m and n where m fn. If 

exists for i = 1, 2, . . . . . m, then 

12 



I - 

or 

Hereafter “‘E( )I’ will denote “the expectation of” in accordance with the 
above definition. It is common practice to refer to E(y) as “the mean 
value” of y. For the special case of ,y = x the mean value of x becomes 

I. 

II. 

III. 

IV. 

Several basic properties of expectation exist which are noted below. 

If C is a constant then E(C) = C. 

If ~=~~f, and 3i= Cs then 

E(s> = E-fcg) = c-q) 

If $ = j$ W and $I2 = $2 w and 

if x 
-1 

and x -2 are statistically independent vectors 

then 
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Property IV can be established as follows. Let 

Y 
= c 1 fl 4 f2 - c,cz 3, ‘x) p, (&:,, = cp (g:I 

= c 
J J @ (&:,I f'(i,)dx- 

D(x) D( iz) 

In general, if y = g(_x) and ifs is composed of two subvectors x, 

and -x2 it is possible to define the expectation of y with respect to ~1 with 

-X2 assumed constant. That is , if y = g(_x) = g(x,l,sz ) thenrwill vary 

randomly even if sa is a constant vector, hence, it is meaningful to con- 
sider the expectation of y on the condition that either x, or x2 is a con- 

stant vector. Thus, the “conditional” expectation of y, givenxe = c, 

denoted by Eii 
Y 

&) , is defined as follows. 

where f czf /x2 > is the conditional pdf as defined previously. Similarly; 
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2. 2. 2. 7 Statistical Moments 

Let a scalar function of 

jd”) = 

x, 8 iz), be defined as follows: 

whereQ=o, 1,2,3, . . ..-.. . . . - . -foralli. The general joint 
moment of ,x, m(r), of order ‘; fkz f., ,q f-,, , +/;n is defined as 

where the vector r is the set ( b,, r, I -’ - J /;‘, 2 ’ l J c~ ) and the integral 
is the multiple integral over the domain of D(x). In a similar manner the 
general joint “central” moment, CL (2) is defined as 

/&(_r) = Dlxlg/T -ml %)dg 
J 

where m is the vector of joint moments of order 1, i. e. , 

where f(xi ) is the marginal pdf of Xi . Alternatively, 
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In general, statistical moments can be considered as the expectation 
of the particular functions of x as defined above, i. e. , 

and 

where 

Moments of particular interest are usually the first and second order 
joint moments and the second order central moments, (It is seen that the 

first order central moments are zero. ) The first order joint moments are 
simply the mean value of the components of of, i. e. , m = E(x) as defined 

- before. The second order moments consist of 

-for ‘if’ =1J22*---,n . Similarly, the second order central 

moments are given by 
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for i 
4 

’ = 4 2, c -.-, n . The second order central moments are 

usually referred as ‘Ivariances” for i = j and “co-variances” for i f j. 
The co-variances are usually denoted by CL.. where 

*t 

The variances are denoted by Us?= //--,k , i.e., 

The variance for each 3$’ can be expressed in terms of its first and 
second moment, i. e. , 

=f /%A -E%L) 

where m/L and mzi are the first and second moments of X; , 

respectively. 

A basic property of second central moments is the following inequality. 

or 

This inequality can be established in the following manner. Let 
be defined as follows: % 
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Now FL (x; , xj)f = 0 hence9 

where fi&, Y2;’ is the joint pdf for xi and ~3’ . Thus, 

It is apparent that the integral on the left side is simply 2 and that on the right 
side is PL* ’ , hence, 

2 
+ o-. c. 

A t z 4.j. 

In a similar manner define 
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Now, hence, 

+w tm 

-f-l- iI 
(x; ,- q. f (x. -m. Y + 

7’ u.* 
-03 -01 ? 

.z I f ‘xi, x .Jdxi 
f 

dx. 
# 

+m+w 
2 

-L- 
7 u. ff f-r Y 

( xi - mi ) /z-g - my ) f (x1., xs’ ) dx,. dx/- 

Thus, 

A basic property of first and second central moments of the scalar 
product cTx should be noted, where c is a constant vector and x is a 
random vector, Let ~=12 then - 

The second central moment or variance of y becomes 
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Also, 

2. 2. 2. 8 Co-variance Matrix 

The second order central moments for a random vector z of dimension 
n comprise a set of n 2 elements. If these elements are arranged in a 
square matrix of order n x n with elements pi 

i+ 
then the resulting 

“matrix-of-covariances” is usually defined as the co-variance matrix. The 

co-variance matrix, f X , for a random vector x_ can be written in vector 
notation as follows. 

where 

2 
The diagonal elements of c are the variances ui of the components 

of the random vector x. The trace of the co-variance matrix is the sum of 
its diagonal elements, therefore, 

TRACE (<, = 2 c2 7 0 
1” I 
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If Jr=& where A is a constant matrix of dimensions mxn 

then ry = A r, AT . This can be shown as follows. If y = Ax- then 

E$) =AE(z!) = Ag 

It should be noted that A is not necessarily square, however, ry is a 
square symmetrical matrix of order m. 

An important property of the co-variance matrix rx for any 
random vector x is that rx - is a symmetrical positive definite matrix, 
i. e. , the quadratic form cT r c is positive definite for c fa . This 
can be shown as follows. 

2 
If yX=cT, -- then y is a scalar with variance 

O-Y 
which is always greater than zero if c#Q , however, this is a 

special case of the matrix A above where A = cT . Thus, 

Another property of rx is that the sum of all its elements is greater 
than zero. Simply let 2 = 1 , where 1 is a vector which has unity for each 
component, i. e. , 

T 1 = (1, 1, . . . . 1, . . . . 1). 
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It is noted that if 2 = & , then y = sTz = LTz is simply the sum 
of all the components of ,x. In this case the variance of y, U$ , is the 
sum of the elements of the co-variance matrix for ,x ) i.e .p if 

then 

2. 2. 2. 9 Correlation Coefficients 

For any two components of a random vector a “correlation coefficient, ‘I 

f?ij 
, is defined as follows. 

It is apparent that Pij = 1 for i = j . A basic property of P.. is the 

following inequality. 
=J 

This follows directly from the inequality for second central moments given 
above, i. e. , 
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2. 2. 2. 10 Statistical Correlation and Orthogonality 

In general, if the correlation coefficient, Pi,i 9 for two components 
of a random vector is non-zero then the two components are referred to as 
being statistically correlated. Alternatively, two random variables are 
referred to as being uncorrelated if their second joint moment is equal to 
the product of their first moments, i. e. , xi and xj are uncorrelated 
if 

The co-variance for xi and X. , 
J 

P. 
=j 

is given by 

It is apparent that if E[?G;zj)=q m;, then ,.Md.. = o and 
P 

L.2’ =o . 

Two components of a random vector are referred to as being statis- 
tically orthogonal if their second joint moment vanishes, i. e. , if 

E ( Ye. xi ) = 0 

then Xi and x. 
J 

are statistically orthogonal. 

It should be noted that statistical independence, correlation and 
orthogonality are related. That is, if Xi and xj are statistically 
independent then they are statistically uncorrelated, however, the converse 
does not follow. Also, if Xi and X. are uncorrelated and if at least one 
of their first moments vanishes then J 

xi and X. are statistically ortho- 
gonal. J 
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2. 2. 2. 11 Moment Generating Function 

Let JX -- denote the scalar product of the vectors 2 and x, where 2 
is a non-random vector. The moment generating function, 
the random vector x is defined as 

mj-4 (2) I of 

It is not difficult to show that the joint moments m&J of the random vector 
2 can be determined from m~f, (s> by taking appropriate partial derivatives 
of m f &) with respect to s and evaluating at s = o, i. e. , 

9x - - 

This follows from the fact that 

Taking subsequent partials derivatives and setting 2 = 2 yields the moments 

m(r) since e” = 1 . 

It is easily seen that if the components of ,x are statistical independent 
then the moment generating function for ,x becomes the product of the moment 
generating functions of the components of_x, i. e. , if 

f(z) = IT f(xJ 
i=/ 

then 
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where mfg(si) is the moment generating function for Xi . The converse 
is also true, i. e. , if the moment generating function of a set of random 
variables factors into the product of functions of each random variable then 
the random variables are statistically independent. The same holds for 
subsets or subvectors of random vectors. 

The most important property of the moment generating function for a 
random variable is that under rather general conditions the moment 
generating function and the probability density function is a unique integral 
transform pair. That is, probability density functions usually associated 
with “physical” random phenomena and their moment generating functions 
are uniquely related. This is readily illustrated by considering a positive 
definite random variable x such that f(x) =O for x 6 0 . In this case the 
moment generating function for x is equivalent to the Laplace transform of 

f(x) where s = - ( Q! + Jo) = -s’ and s’ is the usual variable of 
transformation for the Laplace transform. Generally, for values of s for 
which the moment generating function converges, the moment generating 
function and the probability density function for a random variable are a 
unique integral trasnform pair. In general terms, a sufficient condition for 
uniqueness is that the probability density function is continuous. An 
alternate statement of the uniqueness of moment generating functions and 
probability density functions is as follows. Let x and y be two random 
variables with probability density functions f(x) and f(y) 
the moment generating functions for x and y exist for - o 1 

respec$ively. If 
C s L+a and are 

equal in this interval then x and y have equal probability density functions 
except possibly at points of discontinuities. The convergence, existence and 
uniqueness of moment generating functions is discussed in detail in 
References 1, 2, 3, and 4. 

2. 2. 2. 12 Characteristic Function 

The characteristic function is essentially a special case of the moment 
generating function wherein the variable of transformation is taken as a 
vector of imaginary components, i. e., 2 = mw where o is a vector of 
real components wi for i = 1, 2, . . . . n . It 7s noted that the probability 
density function and the characteristic function are, essentially, Fourier 
transform pairs, except for a reversal of sign in the variable of trans- 
formation. In general terms, the moment generating function and character- 
istic function are equivalent in statistical analyses. The characteristic 
function for a random variable also yields the moments for the random 
variable by taking appropriate partial derivatives of the characteristic 
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function with respect to O, and evaluating at g = 0; 
however, it should be noted that the imaginary factor \I-1 appears in the 
results and the partial derivative must be divided by a factor of m raised 
to the order of the moment. 

It should be noted that in the literature both moment generating 
functions and characteristic functions are used separately, i. e. , either the 
moment generating function or the characteristic function will be used 
depending on the particular source. 

2. 2. 2. 13 Gaussian and Normal Random Variables 

Let x be a random variable whose pdf is given by 

where m and ol are the mean and variance of x respectively. The 
random variable x is referred to as a Gaussian random variable and f(x) is 
defined as the Gaussian pdf. The moment generating function for a 
Gaussian random variable is given by 

m 

rng f, (s) 5 
J 

es* f(r) d.22 

-CO 

sm = e s e s-)f(z)dx 
-00 

By evaluating the first and second derivatives of mfgjs) at s = 0 it is 
found that /n=m I 
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where ml and m2 are the first and second moments of x. It follows 
that 

These results verify that the terms m and (~2 in the Gaussian pdf are 
actually the mean and variance of x, respectively. 

The moment generating function can be differentiated repeatedly to 
determine the higher order moments of a Gaussian random variable. The 

results are given below 

m(r) = E (~'1 

where K-/2 if r is even and K b $(r-1) if r is odd. If m = 0, i. e. ,E(x)=O, 
then m(r) = 0 for odd values of r. In this case the even moments become 

fork = 1, 2, 3,a.e. Also, it is noted that m(r = 2k) are the central moments 
for a Gaussian random variable since the first moment is zero. 

Let y be related to the Gaussian random variable x is the following 
manner. 
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It is easily seen that E(y) = 0 and o$ = 1. The random variable y is a 
Gaussian random variable with zero mean value and unity variance. Such a 
random variable will be referred to as a “Nor&tal” random variable. The 
higher order moments of y are given by 

It should be noted that there exists a lack of consistency in the litera- 
ture concerning the definition of Gaussian and Normal random variables. 
Often x above is referred to as a Normal random variable and y is referred 
to as a “standard” or “normalized” Normal random variable. This termin- 
ology appears somewhat redundant and inefficient, thus, the present 
definitions are used; i. e. , x and y, as defined above, are Gaussian and 
Normal random variables, respectively. In this manner the Normal random 
variable is a “normalized” or special Gaussian random variable. The 
present definitions appear to be more efficient. 

A Gaussian random vector can be defined in the following manner. If 
the marginal pdf for each component Xi of a random vector x is Gaussian 
then the vector 2 is a Gaussian random vector, i. e. , if 

for i = 1, 2, . . . . . n, 
vector, 

then th2 random vector x is a Gaussian random 
where y=E(Xi) and Ui is the variance of xi . The definition of 

a Gaussian random vector refers only to the marginal pdf of each component. 
The joint pdf of a Gaussian random vector is given by 

where fx is the co-varianw matrix for &, lrxl is the determinant of 

r, ’ ItFEk) and n is the number of components or the dimension of x. 
- The pdf for a Gaussian random vector is usually referred to as a “multi- 

variate” Gaussian pdf. It is seen that the joint pdf of a Gaussian random 
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vector is a function of only the first moments and the second central 
moments of all of the components of ,x, i. e. , only the mean values and all 
co-variances of the components of x are required to specify a multi- 
variate Gaussian pdf. In general, the components of a Gaussian random 
vector are correlated. However, it should be noted that if the components 
of a Gaussian random vector are uncorrelated then the components are 
statistically independent, i. e. , for a Gaussian random vector, statistical 
independence and “zero-correlation” are equivalent. This is not true in 
general. The multivariate Gaussian pdf is discussed in further detail in 
Appendix B. Therein it is shown that the marginal and conditional pdfs of any 
subset of the components of ,x are also Gaussian pdfs. 

It should be noted that the basic properties of the joint Gaussian are 
dependent upon the quadratic form of the co-variance matrix rx . Itis 
apparent that the pdf is a function of the quadratic form of rx -1 ; however, 
the properties of this quadratic form are closely related to that of fx and, 
hence, the behavior of the Gaussian pdf can be consid,ered_iln terms of the 
quadratic form of TX a$ its relationship to that of fx . It should be 
noted that TX and TX are real symmetrical positive definite matrices 
which possess the same set of eigenvectors and reciprocal eigenvalues, i. e. , 
if fx@= A$ then cx -‘$=r’@ . In general, the set of eigenvectors for a real 
symmetrical matrix forms an orthogonal basis for an n dimensional space, 
where n is the order of the matrix. Moreover, the eigenvectors can be 
normalized to form an orthonormal basis for the space. Let M be the matrix 
of normalized eigenvectors of rx , i. e. , 

M = 
where 

“) 

where A is a diagonal matrix of the eigenvalues Ai of . rx i. e. 9 rX@ii= 

&i. @i fOr i = 1, 2, . . . . . . , I-r It should be apparent that Txlq =[$l, A&,..- 

. . . . . A, J I 
and, hence, >fT rx M = JL . The matrix M is 

usually re $rred to as a “modal” matrix . The modal matrix M for rx is 
also an orthogonal matrix which represents a rotation of coordinates for 
which scalar products are invariant. 

The modal matrix M and the matrix Jl- of eigenvalues for fx 
essentially characterize the behavior of the joint Gaussian pdf. In 
general, the set of points in n dimensional space for which a positive 
definite quadratic form is constant describes an n dimensional surface 
which is defined to be a “hyper-ellipsoid, ” or an ellipse and ellipsoid for 
n=2 and 3 . respectively. Thus, the joint Gaussian pdf for2 is con- 
stant along some hyper-ellipsoidal surface in n dimensional space. The 
transformation (5 - ;) = Mz essentially determines the hyper-ellipsoid 
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of con&ant probability density for x. It is apparent that the hyper- 
ellipsoid is centered at E&) = m and has principal axes which coincide with 
the eigenvectors of rx , since T&T& 2 is in diagonal form. It is 
generally possible to determine the probability that the random vector x 
will lie within a hyper-ellipsoid of constant probability density. This is 
discussed in further detail in Appendix C. 

By definition, a Normal random vector is a random vector with statis- 
tically independent or uncorrelated Normal components, i. e. , y is a Normal 
random vector if 

for i = 1, 2, . . . . , n and if 

2. 2. 3 Several Particular Probability Density and Distribution Functions 

There exist several probability density functions which are often used 
in statistical analyses. The Gaussian pdf defined above is perhaps the 
most often encountered pdf; however, the following ones are also encountered 
frequently. 

2. 2. 3. 1 Uniform Probability Density Function 

The uniform pdf is constant over some interval of x and zero else- 
where, i. e. , 

fCX,= L 8-x cc<x<p 

= 0 elsewhere 
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The first moment, or expected value, of x is 

+ 

ECXI = m, = T x fCx>d x 
-0g 

/ B =*w XdX &- Kc2 = ZfB-cc3 

The second moment of x becomes 

*no 

EfX2,, = 
/ 

X ‘f Oc>dX 

-00 

/ 
B 

=+oc X2dX --c 
/A OC3 = 3f(3 -0c) 

Thus, the variance of x becomes 
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It is easy to determine the PDF for x since 

z 
f(z)d;r If(t) 

Thus, 

f(x) = 0 for 2 4-a 

It is noted that both f(x) and F(z) can be written in convenient form using the 
unit step. function U(w) defined as follows. 
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U(W) = 0 for WLO 

= ! fObr wro 

Thus, 

2. 2. 3. 2 Gamma Probability Density Function 

The Gamma pdf is defined in terms of two parameters, cx and fi , 
and is usually denoted by f(x ; (I! , p ) . The definition is 

fly; Or,/) = Fae 
- y/d 

S! / a+t 
U(z) 

where V(X) is the unit step function and p 7 0 and cx > -1. 
g;yr;/gg function for x is given by m(s) = (1 -/3 s)-(~ $- ‘) 

The moment 
where 

. By differentiating m(s) appropriately and setting s = o the 
following moments are found. 

E/X) = m, =pc+1) 

The variance for x is determined from 
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Thus, 

The PDF for x is given as follows: 

2 

P(x=z) = f f lx; u, /)dz = F(z) 
-a- 

F(r) = &..l$ 3 7a e-’ dr 

0 

Now, if Q is a 
form. This is 

Thus, 

In particular, for cr = 0, 1 and 2 

positive integer, then the PDF for x can be obtained in closed 
done by successively integrating the integral by parts as follows: 

na, @ =a< r”e-?dr 

=- f-‘e-Tdr 

0 0 
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It should be noted that for non-integer values of Q! the term cr! must 
be defined such that F(Z e m) is unity, therefore, 

However, the integral is the Gamma function for argument Y = 014-l which 
is defined as follows. 

Thus, in general, 

a! = r(u+/l 

The following properties of r(X) are easily determined. (See Reference 1. ) 
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f(r) s I F-l) I-‘( 7-J) T 71 

If Q! is’ not an integer then cy can be written as n+S where n is an 
integer and 05 S L 1 . In this manner the integral I( a, Z/p) can be 
reduced as follows 

where 

A particular case of interest is that of s =& for which I( s - 1, z/p > = 

I(- 4, Z/P > . In this case 

By the change of variable T = 3 u2 it is found that 
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where A. = + dm . It is noted that since the integral is the 
pdf for a Normal random variable, I (- &, Z/P > is the probability 
that a Normal random variable will lie between f ,& , i.e., 

where y is a Normal random variable. The determination of P [ [yj kl] 
is discussed in Appendix C. 

2.2.3.3 Beta Probability Density Function 

The Beta pdf is defined in terms of two parameters, cy and P J 
and is denoted by f(x ; (Y , p ) . The definition is 

where - 14 “,P . It is noted that if a! = ,L3 = 0 , the Beta pdf is 
the Uniform pdf over the interval 0 & x C_ 1 It is possible to determine 
the rth moment, m, , in terms of Q! and ‘P , i. e. , 

I 

mr = ECXr) = 
(“c-t@+/)! 
a? 8! / 

X r+e (I -X)‘dX 

I o 

Ccc+fl+l]! (cc+ r,! 
= (m+/3+r+i)! cc! 

I 

(a+B+r+/>! 

(a f-r)! B! 
X 

0 
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Thus, 

The variance becomes 
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2. 2. 4 Functions of Random Variables 

In systems performance analysis, the general statistical problem can 
‘be adequately described by the following equation. 

where E( > is a “non-random” function , x is a random vector, and y 
is a random vector as a consequence of 5. Two general problems evolve in 
order to specify the statistical behavior of y. First, the statistical behavior 
of z must be specified, and second, the behavior of y must be determined as 
a function of that of x. 

In general, either the probability density function of y or a sufficient 
set of moments of y is required. This requirement can be considered as a 
transformation of probability density functions or the expectation of functions 
of random variables. 

2. 2. 4. 1 Transformations of Probability Density Functions 

Consider the case wherein x = F(x) possesses a single real-valued 
inverse transformation x_ = F--l(x) = c(i) . It is tacitly assumed 
that y is of the same dimension as x. In this case, the pdf of y can be 
obtained in a manner similar to that of transforming variables-in multiple 
integrals. The general result is simply 

where J(G) isthe absolute value of the Jacobian of G(y) . The 
Jacobian of G(g) is simply the determinant of the matrix of partial 
derivatives of G(y) with respect to the components of y, i. e. , 

If the inverse transformation is multiple-valued then the pdf of y is 
given by 
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where &i(S) is the ith solution for the inverse which has a total number 
of k solutions, and Ji(G) is the Jacobian for the ith solution. For real 
random variables only real solutions of the inverse transformation are 
included. The pdf of y can also be written in terms of the Jacobian of F(x) -- 
as follows. 

Thus, there exists a rather general method of essentially transforming the 
joint pdf of 2 into the joint pdf of 1. Usually the dimension of y is less than 
that of 5, however, the above method can still be used to determine the pdf 
of y by defining an augmented vector with y as a subvector such that the 
inverse transformation x_ = G (9 , a > exists, and then determine the 
joint pdf of the augmented vector (x , ~1) . Now, the pdf of y is simply 
the marginal pdf which can be determined from f(g , x1) . The pro- 
cedure is as follows for a single-valued inverse. 

I = -F, t!i) 
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It is apparent that El(x) is not unique, but it should be selected on the 
basis of convenience in determining 5 = (3(x, n) and the marginal pdf of y. 
Often it is most convenient to define the augmented components n as simply 
equal to xi for i = m+l , m + 2 , . . ..n where m and n are the dimen- 
sions of y and x, respectively. - 

One of the fundamental properties of transformations of pdfs is that 

if n is a function of ~1 and ~2 is a function of Z2 and if &I and 
x2 are statistically independent random vectors then Xl and Q are 
statistically independent random vectors. That is, if xl = El&) and 
~2 = F2(2) and f(xa,x;?)=f(& f’(& then f(XljX2) = f(a)*f(u) This can 
be shown in the following manner. Let y contain ~1 and a as subvectors, 
i. e. , 

Now, the inverse relationship for x and E becomes - 

The Jacobian for the relationship Y = F(x) is simply the product of 
the Jacobians for the relationships El =-~TT) and y;! = 3%) , i.e., 

IT(y,Y) = JCY,, x, > J~l.5, x2) 

This follows from the fact that the mtr-iu of partial derivatives between y 
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and x, can be partioned into two “non-null” matrices along the diagonal with 
all other terms zero. The determinant of such a matrix is simply the pro- 
duct of the determinants of the diagonal matrices. Thus, 

The transformation of pdfs is discussed in further detail in References 
5, 6, and 7. 

2. 2. 4. 2 Expectation of a Function of a Random Variable 

Let y = g(X) where x is a random variable and g( ) is a non- 
random function. Due to the dependence of y on x, y is also a random 
variable. The expectation of y, E(y) , is given by 

where f(y) is the pdf of y, which could be obtained from the pdf of x as 
indicated above. However, it is not necessary to obtain f(Y) if only E(Y) 
is required. The definition of expectation applies to any function of the ran- 
dom variable x, i. e. , if y = g(x) , then 
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Thus, if the expectation of a function g(x) of a random variable x is 
required, it is generally not necessary to determine the pdf of g(x) to obtain 
the expectation of g(x) . In the general case if x = g(x) then 

It should be noted that there exists two definitions for the expectation 
of I = g(z) . However, the definitions are consistent since, in general, 
the transformation of probability density functions yields equivalent expecta- 
tions, i. e. , 

This applies for any moment or expectation of y since if y = g(x), then 

Y r = gp(x> = h(x), etc. 

2. 2. 4. 3 Use of the Moment Generating Function 

It is often convenient to use the moment generating function or 
characteristic function to determine the probability density function and/ 
or moments of a function of a random variable. That is, if y is a function 
of the random variable x, y = F(x) , then the moment generating function 
of y can be expressed in terms of the pdf of x as follows. 
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The moments of y can be determined as discussed in Section 2. 2. 2. 11. In 
order to determine the pdf of y it is essentially necessary to determine a 
probability density function which has a moment generating function 
corresponding to the o.ne found for y. Usually this is accomplished by simply 
recognizing that the form of the moment generating function of y corres- 
ponds to one for which the probability density function is known. This is 
equivalent to employing moment generating functions and probability 
density functions as transform pairs. In case the correspondin probability 
density function cannot be recognized then by letting s = + 4!+ - 10 the 
characteristic function can be obtained which can be “inverted” by Fourier 
transform methods. Also, for positive definite random variables the 
Laplace transform can be used. The theory and methods of the Fourier 
and Laplace transforms are discussed in detail in References 8, 9, and 10. 

2. 2.4. 4 Sums of Independent Random Variables 

Consider the particular case for which y is a linear sum of a set of 
statistically independent random variables, i. e. , 

where 5 is a statistically independent random vector as defined in Section 
2. 2. 2. 5. The moment generating function for y is given by 
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Now, by setting s = + m GJ it is seen that the characteristic function 
for y is the product of the characteristic functions for the random variables 
Xi . Therefore, by using the convolution theorem of Fourier 
transform,s it is found that the pdf of y is the convolution of the pdfs of the 

xi , i.e., 

where c denotes .the convolution operation. 
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2.2.4.5 Functions of Gaussian Random Variables 

In system performance analyses Gaussian random variables are often 
.encountered, and there exist several particular functions of a set of Gaussian 
random variables which arise frequently in statistical analyses of random 
processes, especially in the problem of estimating the statistical moments 
of a Gaussian probability density function from a set of samples. Generally, 
the probability density functions of these particular functions are required. 
In this section the probability density functions of several particular 
functions of Gaussian random are discussed which arise in system performance 
analyses. 

2.2.4.5.1 Linear Functions 

Linear functions of Gaussian random vectors are often encountered in 
statistical analyses and there exist several fundamental properties of these 
functions which are of direct usefulness. Let a random vector y be defined 
as follows. 

it 
=Rx +-c 

where 5 is a Gaussian random vector, A is a constant matrix, and 2 i.s 
a constant vector. In this manner y is a Sinear function of 5 and, in 
general, the dimension of y m y and that of x n can be diff- 
erent. A fundamental prop&y'of a linear functio;of'a GauAs5co.n rar.dom 
vector is that, the resulting random vector is also a Gaussian random veTtorT 
i.e., the property of Gaussianness is invariant under a linear transformation. 
Moreover, the statistical moments of y = A(5 + c) are readily expressed 
in terms of those of ,x , especiallythe cov3rZince matrix and expectation 
of y which specify the pdf of _Y . This is easily estahlished as 
folliows. 

Using property III of Section 2.2.2.6, it is found that 

T.ihere 
found i-h% = Ek) 

. Also using the results of Section 2.2.2.8 i.t is 
.J 

where c and G are the covariance matrices of 2 and y , respec- 
tively. Thus,, both the e::cectati.on and covariance matri:: of -y are determiner 
directly in terms of those of x_ and the elem.ents of the 1ineZr function 

A and 2 . 
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The Fdf of y is easi]g de+,em<r.ed. by !Ise of the tzomn?t "en?*c?t,i.:I.~ 
fnnction. In Aw~~%-d.?:r B 2% is shown that the mcment gener?.t?.ng funct,fon for -- 
rz Gaussisr? random vector g is as folloVs. 

-y% f* (4) = -quJ [ 4T5?a, f %2-.&-/7&J 

The pdf of H is given by 

where =z = E(c) . PTOW, the moment generatinG function for y is 
fletermi ne4 hy 

The integral can be eval.uatea using integral Q(s) of Appendix A Mth 
an appropriate definition of variables. The results are as follows. 
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Therefore, if x, is a Gaussian random vector and y = k-tc_ , then 
is a Gaussian random vector with 

E(g) = F+ = fly, fS 

5 =A<ffT 
Of course, the pdf of y is as follo1~r.s. 

ccp = i 
v&z 2-j "/Lj / 

where m is the dimensi.on of y . 

There exist t.vo particular 1.3.near flmcti.ons of interest. First, con- 
sider a translation and a rotation of coordinates such that (a - -Q ) = Ma 
where M is the modal matrix for fX as discussed in section P.Z?.z.l3. The 
vector 5 is the set of coordinates of (3 - z, ) in the orthonorrz!. :?,z!.sis 
determined by the eigenvectors of fX . 

E(z) = 0 
Of course, 

and G = VT 4 M =h 
2 = M-1 (s - mx)= MT- (X - 

z$’ /$nze@ = /MT 141 Ifi 1 = l&J 
. Also, z-l-= n-1 = MT1 

. Now, the joi.nt ?+Y .'n i z '; qimply 

where 

Thus, the components of F- , are statistically independent Gaussian 
random variables with variance and zero mean. In general, a rotation 
of coordinates by M will transform a Gaussian random vector x_ into a 
statistically independent Gaussian random vector. Now, consider a further 
transformationTof the random vector z , i.e., let r Da, then E(x) = 0 
and5 =DnD . Thus, if D is a diagonal matrix with elements equal to 
the reciprocal of the square root of the eigenvalues of r then DnDT = I 
Therefore, if X_ is a Gaussian random vector, then T = DI8($-&)=A(X - mx)is 
a Normal random vector, i.e., E (y) = Q and ry = I. Thus, it is fozd that 
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a Normal random vector can be obtained from a Gaussian random vector by a 
translation and a linear transformation, i.e., if p = A(x - -s) where A = DMT, 
then x is a Normal random vector if z is a Gaussian random vector. 

2.2.4.5.2 Chi Square, X2 

Consider a statistically independent Gaussian random vector x. . Let 
9 be a Normal random vector defined by 

7 1; = 
xi-m, 

fJ=zb for i = 1, 2, . . . . n 

Clearly, each component of x has unity varian,:e and zero mean. Now, 
consider the "length" or modulus of the random vector 9 , x , defined 
as follows: 

The quantity x2 becomes n 

C=/ 

It is apparent that x2 is the square of the length or modulus of the 
random vector x , which is referred to as 'Chi-square." 

The moment generating function for x2 is given by 

However, since p is a Normal random vector, . 
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Thus, 
m fxz f 

r 

It i.s seen that mgf xa (s) is the same as that for the Gamma pdf of 
SFction 2.2.3.2 witha= n/2-1 and p= 2; therefore, the pdf for x2 is the 
following pdf which has the parameter n . 

The pdf f(x2; n> is referred to as the "Chi-square" pdf xi.th 'n "degrees 
of freedom." The first and second moments for z2 can be determined 
directly from those given i.n Section 2.2.3.2 for the Gamma random variable, 
i.e., let Q= n/2-land p= 2 for the monetits gi-ven in Section 2.2.3.2. Thus J 
it is found that 

As show in Section 2.2.3.2, the pdf for the Gamna pdf can be obtained 
in closed-form sclution for cr equal to a positive integer. 
closed-form solution can be obtained for the PDF of x2 

Therefore, a 
for an even number 

of degrees of freedom, n , i.e., sincecx= n/2-1 , n = 2 (a+l), hence, 
n is even for a! any positive integer. Thus, for even n , 
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where 0 5 z . Of course, P[x2 5 0] = 0. Some particular cases are 
given below. 

If n is an odd integer then 
however, ct can be written as k+$ 

ff is not an integer since a'= 
where k=$ (n- 3) . 

n/2-1 , 
Hence, k is 

an integer for odd n and the results given in Section 2.2.3.2 can be used 
for odd n . Thus, it is found that 

for h z 3 ands 20 andwhere / =+fl . Of course, P[x25s]= Ofor 
zco * For the special case of n =3 it is found that 

for z 5 0 and zero otherwise. It is noted that this result is the same as 
that obtained in Appendix C for a three-dimensional Gaussian random vector. 
It is also noted that 

P Ix2 5 R2 1 
P[X2 5 z]= P[(X 5 + G] , or P[(XsR]= 

; therefke, the EXE' for X , rather than x2 , is 
easily determined as follows. 
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for n even and for n odd 

for 1 2 0 , and for ,t! < 0 , P[X 5 /(]=o . 

A basic property of the Chi-square random variable is that the sum of 
Chi-square random variables also has a Chi-square pdf. That is, let p be 
a Normal random vector which contains two Normal random subvectors a , and 

x2 of dimensions nl and n2 , respectively. In this manner 

qf= = r/-r,Z 
where XT = ZT x and x$= xz 12 . The random variables %f and %s 
are statistically independent, hence, the moment generating function for thei 
sum is the product of their moment generating functions. 
of xl and x$ 

Also, the pdfs 
are Chi-square with nl and 

pectively; hence, 
n2 degrees of freedom, res- 

where n = nl + n2 . Of course, the resulting moment generating function 
is that for X2 with n degrees of freedom. In general, any sum of Chi- 
square random variables has a Chi-square pdf with degrees of freedom equal 
to the sum of the degrees of freedom of each term in the sum,i.e., if 
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where each x2 . is a CM-square random variable 
dom then x2 is's Chi-square random variable 
However, it is important to note that each%? = 
independent. 

degrees of free- 
of freedom. 

be statistically 

The foregoing can be used to determine the pdf and PDF for the modulus 
of a statistically independent Gaussian random vector with components of 
equal variances and zero mean values. Let x be a Gaussian random vector 
with joint pdf as follows. 

The modulus of the random vector E is + . Also, it is seen that 

p-x e /ya = 17-%c2 

The pdf of v2 can be obtained from the pdf of& by a simple transforma- 
tion of pdfs. That is, since, 

c+ = 

it follows that 

Using the relationship v = +a= +p the pdf of v is easily deter- 
mined to be as follows. 

fcv->= 2 
/u- /a-/ 
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The PDF for v2 and v can be determined from those for x2 and x 
given above. That is, 

PC*2 = ‘3 - P [x’s t/&q 

It is noted that for(T2 = 1, v =x ; therefore, the pdf of X becomes 

fed = 

Consider the sum of& 
variables with nl and 
is, let u = Xl +X3 
Note that u # +m- = 
mine as that for x2 _ . the following relationships. 

easy to deter- 
x2 to obtain 

Since xl and x2 are statistically independent, the joint pdf of xl and 
x2 is given by 

where r = nl + n2 and x2 =Xf +Xz . The Jacobian 
between u , v and xl , x2 is simply 1, hence, 
v becomes f(u, v) = f(xl = u - v) f(X2 = v), thus 

of the transformation 
the joint pdf of u and 



Jyow, the pdf of u = xl +qis fhe marginal l)df of u and v ,i.e., 

The PDF for u is obtained by the following expression. 

wherez>O andP[u <Ol = 0 . 

2X.4.5.3 Chi Square Ratio, Variance Ratio 

Let ~1 and X-J be two statistically independent Normal random 
vectors of dimensions m and n , respectively. Consider two random 



variables u and v which are defined as follows: 

It is apparent that u and v are Chi-square random variables with m 
and n degrees of freedom, respectively. Consider the ratio of u to v , 
i.e., let W be given by 

The random variable w is the ratio of two Chi-square random variables, 
and the pdf of w can be obtained from the joint pdf of u and v . Since 
a and I2 are statistically independent the joint pdf of u and v is 

simply the product of the pdfs of %f and $ , hence, 

The joint pdf of w and v can be obtained by the transformation of variables 
W= u/v and v = v with an inverse transformation of U---WV and v=v with 
a Jacobian of V j hence, 

Now f(ti)is the marginal pdf of f (w, v) , i.e., 
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r 

where a =4 (m+n) and P =(2/w+l). The integral is seen,to be 
of the form of the Gsmma function discussed in Section 2.2.3.2; hence, 

. 

Thus, the pdf of w becomes 

I 

The pdf of w can be generalized with respect to an arbitrary positive 
definite constant k , i.e., let r = kw where k > 0 . The pdf of r is 
easily determined from the pdf of w since w=l/k r with a Jacobian of l/k , 
hence, 

where 
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A special case of k is the ratio of n to m which is usually denoted as 
the random variable F, i.e., 

The ndf of F is easily determined, i.e., 

The random variable F is referred to as the "variance ratio" since u/m and 
v/n are of the form of sample variances which are often used to estimate 

variances. The PDF of F is used in statistical tests of equality of variances 
and it is tabulated extensively. Some useful tables are given in Reference 
5, 11 and 12. 

It should be noted that the PDF of F can be used to determine the PDF 
of r since they are related by a constant, i.e., . 

where k' = m/n k . Thus, 

P[/LfZ] =P[Fe !L& 4 

Therefore, the PDF of F can be used to determine the PDF of the following 
ratio. 

where ~1 and & 
f 

are statistically independent Gaussion random variables 
with zero mean va ues 

722 

and each component with equal variances of ~1 and 
for a and 52 , respectively. 

Consider 2 random variable q which is defined in terms of w c0.S 
follows. 
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The pdf of q c~f be determined from the pdf of-; with the inverse trans- 
formation w = q - 1 with the Jacobian of - q , hence, 

Thus, the random variable q has a Beta probability density function with 
parameters azin-1 and p=$ m - 1 as defined in Section 2.2.3.3. 

2.2.4.5.4 Student's,t 

Let x2 be a Chi-square random variable and let y be a Normal 
random variable which is statistically independent of x2. The joint pdf 
of y and x2 becomes 

f + %2> = f ly,f ($3 

Thus, defining u *x2 , 

where n is the number of degrees of freedom for X2 . Consider the 
random variable v which is defined as follows 
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The pdf of v can be determined from the joint pdf of r and u in the 
following manner. The joint pdf of v and 
formation of variables V = y/ fi 

U can be determined by a trans- 
and u = u with an inverse transformatior 

of y = v .$T and u=u with Jacobian 6, hence, 

Now, the pdf of v is the marginal pdf of v and u , hence, 

f&l = 
r= 

a-5 u> rzuc 
-m 
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The pdf of w= kv .is easily determined, i.e., 

For the special case of k=fi the random variable w is referred to 
as "Student's" t random variable which is defined as follows. 

The pdf of t becomes 

The PDF of t is used in statistical tests of estimating and it is tabu- 
lated extensively. Some useful tables are given in references 5, 6 and 12. 

It should be noted that the PDF of t can be used to determine the 
PDF of w since they are related by a constant, i.e., 

where k' = k; fi . Thus, 

The PDF of t can be used to determine the PDF for the following ratio. 

where _X is a statistically independent Gaussian andom vector with zero 
mean value and each 

k =cYJ and k' = 1 
nent of equal variance c 5 . In this manner, 
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2.2.4.5.5 Quadratic Form of.a Gauss& I@ndom yec.tor 

Let JT be a quadratic form of the random vector x , i.e., 

Y X7-Q Y 

where Q is a positive definite symmetrical matrix. Of course, y isa 
scalar random variable. The moment generating function for y is given by 

Now, if x_ is a Gaussian random vector the pdf of x_ is as follows. 

where TX is the covariance matrix for x and 2 = E(x) . For this 
case mgfy (s) becomes 
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where A=- s Q + ii rx -' . Thus, 

The integral can be evaluated using IlkI of Appendix A with an 
appropriate definition of terms. The results are as follows. 

The matrix A.can be written in the following form. 

R= 'La<- (L--A/;: 9) 

Hence, the determinant and inverse of A become 

where $3 = (I - 2s px Q)'l . Therefore, 

In general, the pdf of y is di,fficult to obtain and usually only 
approximate and limiting forms can be obtained for the pdf of y . However, 
it is possible to obtain the statistical moments of y from m&(s) . 
This is accomplished by taking the appropriate partial derivatives with 
respect to s and evaluating at s=o as discussed previously. It 
is necessary to obtainOexpressions for the terms of WfY(S) for which 
the derivatives can be determined. It is convenient to use the logarithm 
of mgfy(s) , i.e., 
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It is noted that 

However 

hence 

Thus, 

It should be noted that in taking the derivative of the last term the matrix 
B is a function of s . 

In a similar manner, it is found that the variance of J can be deter- 
mined directly from the second derivative of J?,[mgfy(s)] , i.e., 
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Evaluating' at s=o , it is found that 

Therefore, 
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,The derivatives of the two terms involving s can be determined in the 
following manner. The'determinant of (I - 2s f' Q> can be expressed as 
a polynomial in 8 by using the orthogonal transformation defined by the 
modal matrix for /Y, Q , i.e., let M be the matrix of normalized eigen- 
vectors of rX Q . In this manner, 

M7G/;7Q =A 

where A is a diagonal matrix of the eigenvalues of TX Q . Now, the 
determinant of the product of a set of matrices is equal to the product of 
the determinants of the matrices in the set, hence, 

However, since IMI = IMTI = 1, it follows that 

Now, the matrix (I - 2s-n) is a diagonal matrix, therefore, 

where Xi are the eigenvalues of G.Q for i = 1, 2, . . . . n . Thus, 

/L 
= 

c 
&d ( I- J.G?i> 

i =/ 
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It becomes apparent that 

Now, the modal matrix M 
matrix B as needed. 

can be used to determine the derivative of the 
That is, 

Thus, 

The matrix (I - 23A) is diagonal with elements 
is diagonal with elements (1 - is hi)-l 

- -2s Ai , 
. 
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In this manner it is found that 

Using the foregoing results the following is obtained for the first and se- 
CoPldmoments of y . 

For the special case of 2 = 0 , these results become 

It is noted that the sum of the eigenvalues of rx Q 
the "trace" of & Q 

is equal to 
which is the sum of the diagonal elements of rx Q . 

Similarly, the sum of the squares of the eigenvalues of fx Q is the 
trace of the square of /'-- Q . Thus, the eigenvalues of px Q are 
not needed to define the first and second moments of y, i.e., these moments 
can be expressed if the traces.of fX Q and <G Qj2 as follows. 
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where TR[ 1 is the trace of the matrix within the brackets, which is 
the sum of the diagonal elements of the matrix. 

2.2.5 Probability Bounds 

The probability density function f(z) of a random vector s: con- 
tains the complete information required to specify the probability that x 
will lie in some region of space which defines the domain of 
quite often the explicit form of f(g) 

x . However, 
is not known or it is not easily 

determined. On the other hand, the lower order moments of X are known 
they are easily determined. In such cases it is convenient to use the avail- 
able moments of z to specify domains of x and associated probabilities. 
Of course, explicit statements are not to be expected since the lower order 
moments do not contain all of the information concerning the probability of 
occurrence of y . On the other hand, useful bounds for the probability 
of occurrence can be obtained in terms of the moments of x . Several such 
bounds are given below. 

2.2.5.1 Tchebycheff Inequality 

Let x be a random variable with probpbility density function f(x) . 
The second central moment, or variance, cx ,of x is given by 

where m = first moment of x , or m = E(x) . 

The integral can be divided into three ranges as follows. 

?n+a +oD 

(x-It)j2 f Wdx tx-m2f CXlLiX 

m-a 
m+a 

where a! 7 0. 

69 



By nehlecting the second integral, the following inequality is obtained. 

m-cc +a T P 
rx2 z 

J 
cx-m~2fm dx + 

/ 
CX-7W2fWdx' 

--oo 7n+a 

It is easily seen that (X - m) 2, a2 - 
andm+a‘,L xc+00 ; therefore, 

for -c0ooxxm-- 

The two integrals within the brackets yield the probability that x does 
not lie in the interval from m - CK to 

2 
Dl+O! or that (x - m)2 2 a , 

I.e., 

Thus, 

where a .o . This inequality essentially bounds the probability in 
terms of the second central moment. Obviously, the inequality can be 
written in several equivalent forms; i.e., let a=k u X , then 

Also, 



It is apparent that 

therefore, 

Also? 

2.2.5.2 An Inequality for a Positive Random Variable 

bet X be a random variable with probability density function f(x) 
such thn+, 

f(x) = 0 for x L 0 

The random variable X is non-negative or positive semi-definite. Now, the 
first moment of x , E(x) , is given by 

+Qo 

ECX) = 

/ 

x fox) dx 

0 

r” 
.+ 00 

5 
I 

xf cx.)dx + 
/ 

xftx>dx 
g: 0 

where Q! 1 0 . By neglect 
is obtained. 

ing the first integral, the following inequal ity 

-tW 

E(X) z 

I 
xfrxldx 

oc 
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Nov > x7 0 for the range from a! to -tm ; thus, 

The jntegrxl is simply the probability that x will lie in the !.nterval. 
-from Q to + m ; thus, 

The inequality essential1.y bounds the nrobahility that x ~711 evceed a! 
in terms of the first moment of X , where x20 . Of course, a 
can be ta?<en as k E(x) in which crise the -following inequality is 
obtained. 

i- 
7PX [ z,hECxl] 

where f(x) = 0 for XL 0 

2.2.5.3 Frechet Inequality 

The Tchebycheff inequality dete-r-mines a probability bound for an inter- 
val which is symmetri.cal placed about the first moment of a random vnrinb1.e. 
It is _ possible to determine a similar bound for an interval which is not 
symmetrical about the first moment. Consider t e interval 
to m + Qaj, where kl, k2' 0 4 I from m - krx 

and m and UX are the mean and variance 
for the random variable x . The length 1 and center c of the interval- 
I are given by 
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Now, if 3~' lies outside of I, then Ix - cl 7 h ,@ or, equivalently, 

Let g=(x-~)~Zo . Since g is a positive random variable, the pre- 
vious inequality shows that 

EquiGalently, 

However, the mean of y is given by 

Therefore, 

2.2.5.4 Bienayme Inequality 

Let y=/x-ajn where x is a random variable and a and n 
are constants. Clearly, yro ; thu.s, 
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It follows that 

2.2.5.5 The Law of Large Numbers 

Let x be a statistically independent random vector such that 

and 

Consider the arithmet!c n?ean, s , of the sum of the components of 5 , 
i.e., 

It fo1lows that 

2 
IP the variance of s uS tends to zero as n 
large, then it can be sA0w-n thai s 

becomes indefinitely 
will approach E(s) . More explicitly, 

rif 
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then there exists ar? n such that 

vhere E and \ are <;. qrbitrary ~osit?.ve num~bers whS.ch determine a suitable 
n. Thris result 3.s referred to as the "Law of Large Numbers." 

The foregoing can be established in the following manner. Usring the 
Tchebycheff'inequality it follows that 

By letting k2 = $ -1 it is found that 

Thus, for all n I N (e,Tv) such that E z 
it fOllOWS that 

0rEF 2 us 
3 

P IS-f&II< C] 7 1-2 

The bounci for n, N(E , 
that 'h 

) is determined by the smallest n such 

7 cs2= ' 
77 

n2 c 
i=f 

The condition that 

assures that for each e and '$ there exists a number N(e such 
that for n 5 N(e ' \) 

then 

P [IS-US)1 < 6-j >I- 2 

75 



The bound for n can be written as 

2 
if '7s uniformly converges to zero for increasj.ng n . 

A particular case of interest is that for which each xi has the same 
mean and variance; i.e., 

E(G) =m 

E [(xi - rn)‘] = (r ’ 

In this case E(s) =m ana 2 
cs = h na 2 and 

2 
where E z '/2 tT20r 

This particular case is referred to as the 'Weak" Law of Large Numbers, 
r,rhl.ch implies that the conditions stated are suffici_ent but not necessary 
for convergence. 

2.2.6 Limiting Theorems 

Some of the most useful results of mathematical considerations of proba- 
bility consist of "limiting" theorems which, in general terms, describe the 
behavior of a random variable that is the sum of a large number of statistically 
independent random variables. Alternatively, limiting theorems can be con- 
sidered to be a study of the properties of the results of the repeated 
convolution of probability density functions. It is some:qhat remarkable that 
under rather general conditions the repeated convolution of arbitrary proba- 
bility density functions approaches the Gaussian probability density function 
in the limit. The result is often applied in various statistical analyses; 
however, there exist certain requirements of conditions of validity for these 
basic results. The most basic and useful limiting theorems are discussed in 
this section for the primary purpose of understanding the conditions of 
validity and the useful applications of the results. 

2.2.6.1 Central Limit Theorem 

One of the most basic results of mathematical considerations of proba- 
bility is the "central limit theorem" which states, in general terms, that 
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the sum of n statistically independent random variables, with identical 
probability density functions, approaches a Gaussian random variable as n 
becomes large. An alternate statement is that the repeated convolution of an 
arbitrary probability density function apDroaches a Gaussian probability 
density function in the limit. An explicit formulation of the theorem is 
given below. 

Let Y = lTX where X is a statistically independent random vector, -- 
lee,, 

and 

f(y) = 77 f’(q) 
i:l 

Further, let the probability density function for each Xi be the same, but 
arbitrary; i.e., the random vector can be considered as a set of independent 
samples taken from a random process with an arbitrary probability density 
function. It follows that the mean and variance of each Xi are equal; i.e., 
E(Xi)=m and E(Xi - mi)2 = r2, for all i. Thus, the mean and variance of 
y become 

rtjd = nE(rl = nm 

. 
2 

5 
= RV2 

Now, consider a random variable Z defined by 

.z = ; [f - EIgJ. 

It is apparent that E(Z) = 0 and Uz2 = q2 ; i.e., Z has zero mean and 
variance equal to that of X. 

The moment-generating function for Z becomes 
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Since the X. 
for Z can g 

are statistically independent, the moment generating function 
e expressed as the 

Of I/$77 (Xi - m); i.e., 
nth power of the moment generating function 

= C5xp-4 
c 

-&.-m) f(x.1 dx I hi- 1 
D(x) 

‘ I 

= L!gpc 1 ex 6 - (xi-m) f(X;)dX; 

-00 

where 

It is seen that mafi(R) 
which fs the same for each 

is the moment generating function for//J? (Xi - m) 
i; thus, 
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Since the probability density function f(Xi) is arbitrary, mgf.(lQ) is 
not explicitly known; however, mgfi(4) can be expanded in a power se6ies in 
terms of the central moments of Xi, i.e.,' 

where ,L/~ is the rth central moment of Xi, and mir is the rth moment of 
//m (Xi - m) . Of course, ,u, = 0 and pz=U2. Expanding mfgi(R) in 

a power series for expd[ vfi(Xi - m) 1 , it is found that 

mj-fca) = E /+&.-“I f2g$p7)2+...+ + 
[ 

kq-Iv)‘+. . . 
I 

A” 
= 

C 
t f/m;, +-mix f.. . + 5 mLr f.. . 

2 1 
= ,+*+A$2+..*+ A'/+ c (r!) nB 

+.,, 1 
m X() = I+’ fcr2 r 
PL c ( *-+...+ n 2 ($& f -* * )I 

Thus, 

[ 

/ 

1 
n 

M f 1.1 = 
%= 

/+-u(n) 
R 

where. 
u(n) = 
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It is seen that as n becomes large, u(n) approaches a finite limit and 
for sufficiently large n, l/n u(n) becomes arbitrarily small. Thus, as n 
becomes large, mgf@) can be expanded in a convergent power series as 
follows. 

Since 

It follows that 

Therefore, as n increases without bound, the moment generating function 
of z approaches that for a Gaussian random variable with zero mean value and 
variance equal to u*. Alternatively, for sufficiently large n the proba- 
bility density function for 
zero mean and variance a-*. 

2 approaches the Gaussian density function with 

From the foregoing it can be concluded that the arithmetic mean of a suf- 
ficiently large set of statistically independent samples of a random variable 
will be distributed as a Gaussian random variable in the limit. That is, let 

It follows that 

and 
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Furthermore, if n is sufficiently large, then S will be approximately 
Gaussian; i.e., the probability that S will deviate from the mean value of 
X can be determined by considering the behavior of a Gaussian random variable 
for sufficiently large n. This represents an application of the central 
limit theorem. 

2.2.6.2 Local Limit Theorem 

One of the most useful results of mathematical probability is often 
referred to as the "local limit" theorem. T'ne results of this theorem estab- 
lish a convenient limiting expression for the probability density function of 
an independent trials process. This result has application in statistical 
methods of hypothesis testing. The conditions of validity of the theorem 
should be understood; thus, the basis of the theorem is considered below. 

Consider a random process which has m distinct possibilities, or pos- 
sible outcomes, each with probability pi for i=l,*,* l l ,m. Moreover, 
let the process be independent in trials such that in n trials, the proba- 
bility of a particular sequence of outsomes is given by 

where p(sa ) denotes the probability of the particular outcome in the Lth 
element of the sequence. In a total of n trials the possible outcomes can 
be repeated and, in general, each outcome can occur ki times in n trials; 
hence, P(n) can be written as follows. 

where 

=n and ;=/ 
The set of m possible outcomes is referred to as being mutually exclusive 
and exhaustive. Now, for a given set of ki there exists a total of N(k) 
sequences of outcomes where k = (kl, k2, l l l km). Thus, the probabili.Fy 
of a particular k in n trTals can be written as 

The number N(k) is the number of ways in which n elements can be arranged 
into m orderqd sets with ki elements in the ith set for *i = 1, 2, l l l m. 
From combinational analysis it is known that 
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Thus, 

It is apparent that p(n, k) is the probability density function for the 
random vector k, 

. i.e., the probability of occurrence of a particular k in 
n trials is p(n, k). It should be noted that since D- 

of occurrence of thTj' ith outcome, 
is the probability 

the expected number ofloccurrences of the 
ith outcome is Ilpi, i.e.* 

In general, p(n, k) is difficult to evaluate; however, if each ki is 
sufficiently large, then the factorials in p(n, k) can be accurately approxi- 
mated by use of Striling's formula for factorials, i.e., (see Reference 1) 

a! = f(cztJ) = rn(arQ) e-& 

In this manner, it is found that 
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Taking the natural logarithm of the numerator, it is found that 

Now,,if I (ki - npi)/npi 1 L 1 , then 

c 
(4. -npq) 

“P‘. 
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Therefore, 

Also, 

Alternatively, 

where 

This result is often referred to as the "local limit" theorem. It is impor- 
tant to note that p(n, &) generally decreases as (ki - npi)'increases and 
the maximum probability occurs for ki = npi = E(ki) for all i. This 
implies that in a large number of trials the number of occurrences of each 
possibility should equal the expected number npi with maximum probability; . I.e., as ki deviates from the expected number of occurrences npi then 
p(n, k> decreases. 
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It is important to note the conditions of validity of the above expres- 
sion for p(n, k) for finite n. Two fundamental approximations are made 
which require tiiat each ki be "sufficiently" large and that 

= E(ki). Usually, if k. z 20, 
Iki '- nPilL 

nPi then Stirling's formula is quite accurate. 
The value of n should be a equately large such that A Iki - nPil L npi 
for ki c 20 for all i; hence, the value of n will depend upon pi. 
Generally, the expression for p(n, k> is adequately accurate in the neigh- 
borhood of E(ki) if n is such that E(ki) is large for all i. 

2.2.6.3 DeMoivre-Laplace Theorem 

A special case of an independent trials process is that of two possible 
outcomes which is usually referred to as a Bernoulli trials process. For this 
case the local limit theorem shows that the probability density function 
approaches that for a Gaussian random variable. This result was first estab- 
lished by DeMoivre for the special case of equal probabilities and was later 
generalized by Laplace; hence, the name of the theorem. This theorem can be 
considered as a special case of the more general local limit theorem as shown 
below. 

For the special case of two possible outcomes the results of Section 
2.2.6.2 become 

$,f4=n 

where r-z = npipz and X = (k, - npf ). Thus, in the limit as n becomes 
large, kl has a Gaussian pdf with mean value npj and variance npIpl. 
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Now, it can be shown that these two moments are those for k, for any n,Le., 

where k = k, and C; is the binomial coefficient, i.e., 

n 
(a f J8,” = c 

c,” An-” 

A0 

The moment generating function for k becomes 

Thus, 



Similarly, 

These results have a special and important significance. Let y be defined 
as follows: 

Since E(k) = npt and rk2 = np,pa , the random variable y has zero mean 
value and unity variance. Moreover, using the foregoing results, in the limit 
as n increases the pdf of y approaches that for a normal random variable; . 
1.e. , 

for sufficiently large n. Now define a random variable Zj for the jth 
trial of a Bernoulli trials process such that if the outcome with probability 
PI occurs, then 'j = 1; otherwise, Z. = 0. Further, define u as the 
sum of Z. for n trials; i.e., 3 

3 

It follows that 

z where 9: = 
f 

variance of 2.. 3 However, u is simply k; hence, 
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and 

From the last expression y can be considered as a normalized sum of the 
statistically independent random variables [Z-j - E(Z.1 I. 

1 
According to the 

foregoing, this sum approaches a normal random variab e in terms of its proba- 
bility density function for large n. This observation leads to the conjecture 
that, in general, a sum of statistical independent random variables will 
approach a Gaussian random variable in probability density function if each 
of the contributions to the sum of each random variable is uniformly small. 
This limiting property is considered further in the following section. 
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2.2.6.4 Lindeberg Condition, Liapounov's Theorem 

The previous limiting theorems suggest that the sum of statistically 
independent random variables approach a Gaussian random variable in the limit. 
The central limit theorem and the DeMoivre-Laplace theorem are special cases of 
this property. It is of general interest and practical importance to consider 
the general conditions for which the sum of statistically independent random 
variables approach a Gaussian random variable. This problem was first investi- 
gated by Laplace and the first regorous proof of the sufficiency of certain 
conditions was given by Liapounov. However, a more general set of sufficient 
conditions was established by Lindeberg, which includes the conditions consid- 
ered by Liapunov; thus, the results of Liapounov can be obtained from the 
results of Lindeberg. In the interest of generality, the results of Lindeberg 
are considered first. These results are generally referred to as the Lindeberg 
condition which is shown to be sufficient for a sum of statistically independ- 
ent random variables to approach a Gaussian random variable in the limit. This 
condition is discussed below. 

The Lindeberg condition can be stated in the following forms. Let & be a 
statistically independent random vector whose2components have arbitrary prob- 
ability density functions, and let mi andcri be the mean and variance of 
each component of & , i.e., 

Define a random vector Z. 
Consider a random variable 

where n is the dimension of & and Z. . Clearly 

with each component Zi = Xi - mi , i.e., g = & - m . 
u which is the sum of the components of k?& i.e., - 

Define a random variable v as follows: 

It is apparent that E (v) = 0 ando; = 1 . 

The Lindeberg condition is as follows: 
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Ldim 
n-z- ( / 

T 
2 2 The notation c$ 2 where a;l =a; and r>O . is used for uu to denote the 

dependence on n . If this limit is satisfied for a random vector X, then X 
is said to satisfy the Lindeberg condition. The following interpretation of 
the Lindeberg condition should be considered. It is noted that 

The integral on the right is simply the probability that 
exceed ~a;, , thus, I 

Xi - mi] will 

Now, the probability that the maximum of IXi - mil for all i exceeds Ton 
is bounded by the sum of p[lxi - mi/lTu, J , i.e., 

where MAXi Ixi - mil is taken over all i . Therefore, 
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The Lindeberg condition requires that the right-hand member approach zero as n 
increases without bound, hence, the Lindeberg condition is equivalent to the 
following 

Thus, the Lindeberg condition requires that each random variable of the random 
vector & be uniformly small. In somewhat equivalent terms, the Lindeberg 
condition requires that none of the components of & "dominate" in a sum of 
the components. Alternatively, if the limit of on exists for n-m,, then 
the Lindeberg condition is not satisfied. Thus, a requirement for the Linde- 
berg condition is as follows: 

Lim Cn = co (Does not exist) 

n-03 

It is possible to show that if the random vector & satisfies the Lindeberg 
condition, then the probabi$ity density function of the sum v approaches 
that for a Normal random variable. The essential steps in this proof are 
discussed below. The discussion given below is rather heuristic; a detailed 
rigorous, proof is given in Reference 2. 

The sum v can be written as follows 

where I 

for i = 1, 2, . . . . n. It is important to note that v is a random variable 
with zero mean value and unity variance, i.e., 
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It should also be noted that if the random vector & satisfies the Lindeberg 
condition, then the random vector. 1 satisfies the following condition. 

Now, the random vector 1 is statistically independent, hence, the moment 
generating function of v is given by 

where mgfi(~) is the moment generating function of Vi for i = 1, 2, n. 
It is noted that mgfi(d) is dependent upon n since vi = c,'Zi . Also;'it 
is noted that 

Thus, as n increases without bound, the variance of each Vi approaches 
zero, and the probability density function of 
I1 P ulse" 

Vi, f(Vi), approaches a positive 
of unit area and infinitesimal width, i.e., as nl)oo, f(Vi) approaches 

the unit impulse function which is often used in engineering analysis. Now, 
the Fourier transform of an infinitesimally narrow unit area pulse at the 
origin approaches unity, hence, it is possible to find a sufficiently large n 
such that 
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By taking the logarithm of mgf,(k) it is found that 

where 

It is apparent that Rn is bounded as follows 

It is noted that since E(vi) = 0, 

By letting .u = flo = Jw it is seen that 
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thus, 

By multiplying both sides by the maximum of Imgfi(~) - 11 , it is found that 

Since mgfi(A) approaches unity as n increases without bound, it follows 
that 

Therefore, 

Now, the summation can be written as follows, 
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where 

Therefore, 

However, 



where E is an arbitrary positive number. Now, by virtue of the Lindeberg 
condition, the second term approaches zero for any arbitrarily small E as 
n increases without limit, therefore, 

Lim pn =U n-09 

Alternatively, 

l? f nrIJw;) =6-z”” 
3 

The terms of the right-hand sides are simply the moment generating function of 
a Normal random variable where 4 = Jo , hence, the sum v approaches a 
Normal random variable as n increases without limit. 

Liapounov established the foregoing results under a different condition 
which was that 

96 



where. 6 > 0. To prove that this condition is also sufficient for the above 
results, it is only necessary to show that if this condition holds, then the 
Lindeberg condition holds. This is easily done by the following inequalities 

Thus, if the condition of Liapounov is satisfied, then the Lindeberg condition 
is satisfied. 'A direct proof of the Liapounov theorem is given in Reference 4. 
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2.2.7 Determination of Statistical Properties 

In the design and performance analysis of Navigation and Guidance systems 
it is necessary to have available certain knowledge of-the statistical proper- 
ties of random variables, which are usually error sources that adversely affect 
system performance. The statistical properties of such error sources are 
known, then it is generally possible to define "optimumft estimation and control 
procedures which mitigate the adverse effects of these error sources. Also, 
in order to assess final system performance, it is necessary to know the statia- 
tical properties of all factors which influence system behavior. Usually, 
optimum navigation and guidance procedures are defined with the tacit assump- 
tion that all statistical properties which affect the procedures are known. 
A similar situation often exists in system performance analyses. That is, 
optimum procedures are usually defined on the basis of certain information 
being available concerning statistical properties of error sources, also, 
system performance statements are usually made assuming statistical properties 
of error sources. Of course, the usefulness and validity of such efforts and 
results is dependent upon the possibility of ultimately obtaining the required 
information of statistical properties. However, it is generally necessary to 
either verify or determine the required statistical properties from a set of 
observations of error sources or, generally, from sets of samples of random 
processes. In general, the required statistical properties cannot be determined 
explicitly, rather, they must be llestimatedl' from a set of samples of random 
variables. Therefore, it becomes necessary to consider the methods of estima- 
tion of statistical properties in both the design and performance analysis of 
Navigation and Guidance systems. 

Generally, there exists two major aspects of the problem of "determining" 
or, actually, estimating statistical properties of a random variable which are: 
(1) estimating the required set of statistical moments which specify the proba- 
bility density function; and (2) the determination of the particular type of 
probability density function for the random variable. Usually, the type of 
probability density function is assumed and the statistical moments which 
specify the probability density function are estimated from a set of samples 
of the random variable. It becomes apparent that two areas of concern exist 
which are: (1) the accuracy of estimating statistical moments from sample sets; 
and (2) the validity of assumptions concerning the types of probability density 
functions. These two aspects of determining statistical properties are 
considered below. 

The problem of estimating statist ical properties can be considered as 
equivalent to the problem of parameter estimation which has been considered in 
detail in a previous monograph concerning state estimation (see Reference 15). 
However, there exists a fundamental difference between the two problems which 
essentially changes the approach. In the problem of parameter estimation it is 
assumed that the randomness of the observation process is specified statistically 
which represents a'priori information that is available for estimation of the 
parameters of interest. In the present situation, it is this a'priori informa- 
tion which is being sought and there is usually no a'priori information avail- 
able; that is, the randomness which is usually assumed known must now be 
determined. It should be pointed out that in parameter estimation as considered 
previously, the parameters were usually physically identifiable lfstatell quan- 
tities such as position and velocity deviations of a spacecraft from a reference 



trajectory. Optimum estimation procedures for these state parameters require 
the use of the statistical properties of the observation uncertainty or random 
errors and, also, those of the parameters being estimated. The required sta- 
tistical properties are usually the statistical moments of various error 
sources. For example, in the case of Gaussian error sources, the mean vector 
and covariance matrix are used in the optimum state parameter estimation pro- 
cedure. These statistical parameters, i.e., means and covariances of error 
sources, must be determined ultimately from sample data sets of various error 
sources. That is, the statistical properties of the randomness of the state 
observation process must be determined to perform an optimum estimation of the 
state parameters, also, those of the state parameters must be determined. 

It should be apparent that there exists a salient distinction between 
state parameter estimation and the problem of estimating statistical properties 
of a random process or variable. In the latter, a sufficient set of moments is 
usually sought, or estimates of, which specifies the random process. In the 
present discussions , parameters usually refer to statistical moments. For- 
tunately, most random processes are specified by only first and second statis- 
tical moments, e.g., Gaussian random variables, and the problem is often 
reduced to estimating these two moments. 

2.2.7.1 Estimation of Statistical Moments 

The most often encountered problem in the estimation of statistical 
moments is that of estimating the first moments and second central moments of 
a joint Gaussian probability density function; i.e., the elements of the mean 
vector and the covariance matrix must be determined in order to specify the 
probability density function. In general, there exists n random variables 
and n sets of samples are available to estimate the required parameters or 
moments. The general problem can be considered in terms of a fundamemtal prob- 
lem which involves only two random variables. It should be noted that in cases 
of non-Gaussian random variables, the first and second statistical moments are 
usually sufficient to specify probability density functions. That is, in the 
case of non-Gaussian random variables, the corresponding probability density 
functions are explicit functions of parameters which are not necessarily the 
first and second moments of the random variables; however, the first and second 
moments are unique explicit functions of the parameters which specify the 
probability density function and, hence, these moments implicitly specify the 
probability density functions. It can be stated that, generally, the first 
and second statistieal moments are adequate to specify known probability density 
functions of practical interest. Usually, the first moments and second central 
moments are adequate. 

Let x and y be two random variables with the following moments which 
are assumed to be a sufficient set of parameters to specify the joint pdf of x 
and y ; e.g., in the case of Gaussian random variables. 

Em) = mx 
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The correlation coefficient, p 
Y 

, for the random variables is defined as 

In general terms, x and y denote two random variables that are gener- 
ated from two random processes which have marginal probability density functions 
f(x) and f(y), respectively. The means and variances of x and y specify 
f(x) and f(y), respectively. If x and y are statistically independent 
random variables, then ky = 0 and the joint pdf of x and y is simply 
f(x) f(Y). In this case, 
However, 

the moments mx, my, oz and os specify f(x, y). 
in the more general case the two first moments and the three second- 

central moments are required to specify f(x, y). Generally, the problem of 
determining these statistical moments, or estimating these parameters, is con- 
sidered in terms of two problems being: (1) the analysis of mean and variance; 
and (2) the analysis of correlation. It is generally assumed that sets of 
sample data are available from which the required moments can be estimated. 
The sets of sample data for the random variables will be denoted by the vectors 
5 and x, respectively, of dimensions n, where n is the number of samples. There 
exist two basic problems in estimating statistical moments which concern: (1) 
the functions of & and 9 to be used as estimates for the required.moments; and 
(2) an assessment of the accuracy of the estimates. 

In general, the estimates of the required moments are denoted by gx(x_), 
g(x), S(I) , s$(d and &@, d , which denote that the estimates are 
functions of the sample sets x and p. Often, the functional dependence of the 
estimates and the sample sets-is understood and it is not explicitly denoted. 
It is important to note that the estimates for the required moments are func- 
tions of random variables and, hence, the estimates are random variables. 
There exist two basic criteria for the estimates which are: (1) the expected 
value of an estimate for a moment should be equal to the moment, e.g., 
E@%x(x_)] = mx , etc.; and (2) the statistical variation of the estimates from 
the moments should decrease as the sample set size increases. These criteria 
are usually referred to as: (1) unbiasness and (2) consistency. The basic 
concern in assessing the accuracy of the estimates is to determine or assure, 
if possible, that the error in an estimate will be limited to a prescribed 
value with a certain probability. This usually requires consistency in terms 
of the estimate variance decreasing uniformly as sample size increases. This 
is considered in further detail in the following sections. 
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2.2.7.1.1 Statistical Analysis of Mean and Variance 

Let the random vector x_ denote a set of n samples from a random process 
with probability density function f(x) which has mean and variance as follows: 

+oo 
rtzj = 

f 
f (XI dx = m 

-00 

+ca 

Erbwi7~zl = 
f 

(x-r?/ f(x)da s c2 
-CO 

Also, let s and A2 denote the sample mean and variance as defined below: 

where 1 = x - s 1 . It is seen that there exists two means and variances 
which refer to the random process x and the random sample x. It is necessary 
to differentiate between these two means and variances. BT convention m ando 
are usually referred to as the "population" mean and variance, respectively, 
whereas s and A2 are referred to as the 3 

ample mean and variance, respectively. 
The essential difference is that s and A 
CT-2 

are random variables, whereas,m and 
are not. 

Consider the expected value of the sample mean s, i.e., 

E(s) = '2 
n E$J = M 

L'= / 
Thus, the expected value of the sample mean is equal to the expected value of 
x, or the population mean, m. On this basis, the sample mean is used as an 
estimate for the mean value of x or the population mean, i.e., m= s where2 
denotes sn estimate of m, the expected value of x. Now consider the variance 
of s, og ; i.e., 

101 



where 
69 

TX is the covariance matrix for the sample set 5. The variance of s, 
represents a measure of the accuracy of the sample mean s as an estimate 

for the population mean m. It is important to note that U$ is the variance 
of the sample mean s and not the population variance ~2. 
is statistical independent, 

If ths sample set 
or uncorrelated, then LT rx & = nu , where (r 2 

is the population variance, and 

In this case, it is apparent that 

Thus, for an uncorrelated sample set 1~ the sample mean is a consistent estimate 
for the population mean, m. It should be noted that an uncorrelated sample set 
is a sufficient condition for the consistency of s as an estimate for m. The 
necessary condition is that, uniformly, 

From the foregoing, it becomes apparent that if s is a consistent estimate 
for m, then it is possible to determine a sufficiently large n, number of samples, 
such that the sample mean is as close to the population mean as desired with a 
specified probability. This follows directly from the "law of large numbers" 
;; di;;;;;qd. previously. Consider the uncorrelated sample set such that 

From the weak law of large numbers, it follows that 

Thus, for a given E and rl if the number of samples n 

then Is - ml< e with probability 1 - 7 . 
tion variance, g2, is known, 

It is apparent that if the popula- 
then the required sample size n could be directly 

determined without knowledge of the particular probability density function f(x). 
However, in the general case, the population variance u2 is not known and it 
must also be estimated from the sample set x_, which is considered below. None- 
theless, without explicity knowledge of the probability density function of x, 
f(x), or the population variance 02, it is known that the sample mean s is an 
unbiased estimate of the population mean m, and if l/n 2 & T & 1 converges 
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uniformly to zero for increasing n then s is a consistent estimate for m, which 
is true for an uncorrelated sample set. 

In a similar manner, consider the expected value of A", i.e., 

I z--E h CC n (Xi - mz -#?6-m)(nS-nm)cn (s-?n)2 1 A=, 
/ =- 77 772 (Xi -rn)'- n(s-m)2 1;=I I 

Now, if the sample set is uncorrelated,,then 3 Trx 1 = ncr2 and 

It is seen that E(A2) is not equal toc2, i.e., A2 is a biased estimate of u2; 
however, 
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Thus,a2 is an unbiased estimate for ti2, where 

The consistency ofG2 
which is given by 

can be considered in terms of the variance of A2, c2(A2), 

For a statistically independent sample set, it can be shown after considerable 
algebraic manipulation, that (see References 1 and 6) 

(n-g /4 - (77 -3) O-4 I 
where CL,I+ is the fourth central moment of x, i.e., 

. /yp = E[fx- me] 
Thus, 
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It is apparent that if the sample set is statistically independent then 

In this caseG2 -2 is a consistent estimate foru . 

The variance of Q, (r2s2) is a measure of the accuracy in estimating the 1 
population variance o by8 . The law of large numbers can be applied to show 
that a sufficiently large sample size, n, can be found such that the error in 
estimating the population variance u 2 

Of course, the variance of a2 
can be bounded with a specified proba- 

bility. is needed which is found to be a func- 
tion of the higher-order central moment, pk, of the population, or of the 
probability density function f(x). However, if the basic assumption that the 
mean and variance of x are sufficient to specify f(x), then the higher-order 
central moment PLY is a function of the lower-order moments. For example, 
consider the case of a Gaussian random variable. In this case, the higher- 
order central moments are all expressible in terms of the second central moment, 
I.e., for f(x) a Gaussian probability density function 

where P2k is the (2k) th central moment. It follows that 

/u, =0--z 

/c/d=3o-L 

Using these results(r2@2) becomes 
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AithoughU2 is unknown, 
ratio of a2 tocr2, i.e., 

it becomes possible to determine the variance of the 

Thus, 

It becomes apparent that b making n sufficiently large ~2[2-~/&] can be made 
arbitrarily small. Now, uq[g2/u2] is in turn, a direct measure of the error 
made in estimating cr 2 * , i.e., lete =s2'-g 2 and let the relative error be E /(J* 
i.e., 

The variance of the relative error is the same as cr2[2’/o_21 , i.e., 

0-2 [$+ cT+ipi] 

Thus, the variation of $'/u" about 1 is the same as the variation of e/o2 
about 0. 

2.2.7.1.2 Statistical Analysis of Correlation 

Let x and y be two random variables with covariance Pq given as follows: 

If x and y are statistically independent, then mxy = mx my and+ = 0, however, 

pxY = 0 does not imply statistical independence in the general case. If%=0 
the random variables x and y are statistically uncorrelated random variables. 
The correlation coefficient, PW, is defined as 
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It has been shown that 

The correlation coefficient is a direct measure of the correlation between x and 
y, however, pxy is not a direct measure of statistical.independence of x and y. 
Nonetheless, Pxy is often used as a measure of dependence between x and y. This 
is motivated by the following considerations. 

Let y = * ax, where a is a positive constant, then Pxy = 
and% = k 1 . 

f a 4, a$ = a2uz 
Thus, if one random variable is completely determined by another 

then their correlation coefficient is ,f 1. Moreover, if two random variables 
are statistically indepependent then their correlation coefficient is zero. It 
should be noted that the correlation coefficient is a direct measure of statis- 
tical correlation and only an indirect measure of statistically independence. 
However, the correlation coefficient can be considered a direct measure of 
functional dependence of two random variables. 

On the other hand, if the two random variables are Gaussian, then zero 
correlation and statistical independence are equivalent. That is, if x and y 
are two Gaussian random variables and if P,,.y = P! = 0, then x and y are statis- 
tically independent. In the case of Gaussian random variables an analysis of 
correlation is sufficient to measure both functional dependence and statistical 
independence, This can be seen from the joint probability density function for 
two Gaussian random variables. 

In addition to the foregoing, if the conditional expectation of y, or x, 
given x,or y,is independent of x, or y, respectively, then PQ = PW = 0. This 
can be shovm as follows. T,et R(y/x) = C, then, 

Thus, 
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and 

-w -00 -m 

Therefore, C = E(Y). Using this resultPw becomes 

The foregoing is used as a basis for correlation analysis. In general, 

the conditional expectation of y, or x, piven x, or y, as a function of x, or y, 
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respectively, is referred to as the "regression" curve of y, or x, on x, or y, 
respectively. More explicitly, E(x/y) as a function of y is referred to as 
the regression curve of x on y. Similarly, E(y/x)as a function of x is referred 
to as the regression curve of y on x. 

A special situation arises if x and y are Gaussian random variables. In 
this case, the conditional expectations are linear functions of the given random 
variable and, hence, the regression curves are linear in their arguments. This 
can be seen from the conditional probability density functions for Gaussian 
random variables. In Appendix B, the conditional expectations are given for a 
general Gaussian random vector. For the special case of two random variables, 
the results become 

Alternatively, 

Tt is seen that if P 
of constant regress10 3 

= 0, then E(x/y) = mx and E(y/x) = mv which is the case 
curves as noted above. On the other' hand, if Pw # 0, 

then the repression curves for x and y are linear. This is a particular case 
which is referred to as linear regression. 

It is important to note that if tr:ro random variables, in general, have 
linear regression curves, then the coefficients are the same as those for the 
Gaussian case. That is, let x and y be two random variables such that 

where A and C are referred to as regression coefficients of y on x and x on y, 
respectively. Then the regression coefficients are given by 
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This follows by simply using the conditional expectations to determine the total 
expectation of y and x and xy, i.e., 

r(z) = CE( )tD 
f 



and 

Similiarly, 

and 

Thus, if-for two random variables x and y their regression curves are linear, 
then, 
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Of primary concern in regression analyses of correlation is the possible 
deviation between observed values of random variables and their conditional 
expectations. That is, in a set of samples of y and x, consider the random 
variables 6, and ay defined as follows: 

sx =ti t 
where yx and xy denote corresponding pairs of the random variables x and y. 
It is easily seen that the expected values of ?Sy and 6, are zero, i.e., 

Thus, the variances of 6, and 6, are given by 

Therefore, 

For the case of linear regression, the variances of ay and 6, become 
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In a regression analysis of correlation, it is required to estimate the 
regression parameters from a set of samples of the random variables x and y. 
This can be accomplished by the method of "least-squares" curve fitting in the 
following manner. Consider the case of linear regression between x and y wherein 
E(y/x) and E(x/y) are linear in x and y, respectively. In this case y and x 
can be written as follows: 

where 

For a set of samples x and 5, these equations become 

where qT = (Or,, al) andpT = (fi Pl) . It is apparent that both Q and 6 can 
be est&ated from the sample se:; of y and x. However, these repression 
parameters are not independent and only g or fi are estimated using either equa- 
tion. Consider the equation x = A Ly + fi . The "least-squares1 estimate for 

22 cr,-9 is given by (see References 5 or 15) 

113 



Therefore, 

It is easily shown that & is an unbiased estimate of 'y , i.e., E(g) = & . This 
follows from 

Thus, the error f. = (2 - a) in estimating 2 can be assessed in terms of the 
covariance matrix of g , T.e., 

The covariance matrix for a l'least-squares" estimate is given by 

7 E = < = (A?9)-‘(Aj7eA)(A%J-’ 

For the case ofc=flz I, c becomes 

-7-7 ’ /E - lQc = 0-c.cc.c (A TA)-’ 

-I 
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It should be noted that a: =02(by) =og (1 - pg) . 

The second central moments of the sample sets 5 and 9: can be used to esti- 
mate the central moment PW and the correlation coefficient PW . Let sx and 

sy be the first sample moments of x_ and x defined as follows: 

Similarly, let the second central sample moments AZ , Af andAW be defined as 

follows: 

A; = &xi - sxy 
ii=/ 

The sample correlation coefficient, r, is defined as follows 

By an analysis similar to that of the previous section, it can be shown that 
Rxy is a biased-consistent estimate for Fq , i.e., 
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Thus, an unbiased-consistent estimate for Pxy becomes 

/u""U = (g/p+ 

Based upon the consistency of A$, AZ and A XY' it follows that 

Thus, an estimate of Pxy is the sample correlation.coefficient r , i.e., 

The use of A and r as estimates of Pxy and Pxy should be considered on the 
basis of the3 accuracy. This can be accomplished in the case of Gaussian 
random variable, which is considered in a following section. 

The general problem of regression and correlation analysis involves more 
than two random variables as considered above. However, the methods of analy- 
sis are effectively equivalent with appropriate extensions. The methods for 
more than two random variables are discussed in appropriate detail in Refer- 
ences 1, 5, 6, and 11. 

2.2.7.1.3. Confidence Intervals 

Of primary concern in estimating moments from sample sets is an assessment 
of the accuracy in the resulting estimate. Alternatively, it is of concern to 
determine a sufficient sample size in order to assure that an estimate of a 
statistical moment possesses a required accuracy. In general, an estimate 
based upon a set of samples of a random variable is also a random variable. 
Thus, the accuracy of such an estimatemustbe specified in terms of two entities 
which are: (1) a region which will bound the estimate or error in the estimate; 
and (2) the probability that the estimate or error will lie within the stated 
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region. These two entities are usually stated as a %onfidence interval" which 
contains a stated probability and a description of a region. In general terms, 
a confidence interval is a bound placed upon the error in an estimate in terms 
of a region and the probability that the error will be contained within the 
region. 

In general, a particular estimate of a statistical moment which is based 
upon a sample set is referred to as a "point" estimate of the moment of the 
population. The point estimate is, in general, not very meaningful unless an 
assessment of the possible error in the point estimate is made. If a point 
estimate is to be useful, it should be specified in terms of some interval 
about the moment being estimated such that the true value of the moment will 
be within the interval with a specified probability. This is the purpose of a 
confidence interval. In order to have meaning a confidence interval must have 
a probability associated with the interval given. It is usually desirable to 
have a small confidence interval with a high probability that the interval will 
contain the moment being estimated. This is equivalent to an estimate with a 
high degree of accuracy. However, it is characteristic of estimates which are 
functions of random sample sets that the confidence interval and the 
associated probability cannot be stated arbitrarily. Usually, for a given 
sample size and population characteristics, the smaller the confidence interval 
the lower is the probability that the moment being estimated will lie in the 
interval. There exist two extremes for confidence intervals. One is that the 
modulus of the error in an estimate will lie somewhere between zero and infinity 
with probability one. The other is that the error in an estimate will be infi- 
nitesimally small with vanishing probability. These two extreme confidence 
interval5 are generally true, but they.are rather meaningless since they convey 
little useful information. It is seen that confidence intervals are not unique 
and they possess various degrees of meaning depending upon the information con- 
veyed. The most meaningful confidence interval is not explicitly defined for 
all situations. An implicit definition of a useful or meaningful confidence 
interval depends upon the particular application that the estimate is used for. 
In general terms, a useful confidence interval is one which determines the prob- 
ability that the error in an estimate will be contained within a required bound. 

k confidence interval can be given for any unbiased estimate which has a 
finite variance. This follows directly from the Tchebycheff Inequality which 
states that 

where E is the error in an estimate. It is seen that the higher the probability 
that felwill lie within the interval kce , the larger the interval. Of course, 
if UE is sufficiently small, then the interval kq can be an adequate assurance 
of the required accuracy of the estimate. Consider the case of estimating the 
mean from a set of uncorrelated samples. 
l/nu2 . By taking k2 = 

The variance for the sample mean is 
10, it is found that the probability is at least 0.9, 

or 90 percent,that 

117 



Alternatively, it could be stated that the probability that e2 will exceed 
(10/n)/ is less than 0.1, or ten percent. The quantity (lO/n)o* is essentially 
an estimate error bound., however, this bound can be used to determine an inter- 
val in which ,the true value of the population mean should lie. This is, 
e2= (s-m)" where s and m are the sample and population means, respectively, 
thus if .~'</.@>n)# then ls-m)'<(k2/n)rx , or p-rn)d(k/fi)C and 

WiW-I 
-m=[~+(I&)g] .Therefore, 

If k"= 10 then , 

The interval from (S- mff) to (s+p&L7- should contain the 
population mean m ;tith a probability of 0.9. Thus , for each partil:ulnr esti- 
mate of m, given by the sample mean s, it is possible to state an interval 
which contains the true value of m with a probability of 0.9. Of course, 
other intervals exist for other specified probabilities. In this yarticulsr 
c‘ase the intervnl from (S - m G-) to (st-mcz-) is the confidence 
interval and the probabi!.!.?y of C. 0 is usually re ferred tc: as the confidence 
coefficient. 

In determining a confidence interval all of the available i.nformation 
should be utilized in order to obtain the most meaningful confidence interval 
possible. The use of the Tchebycheff Inequality essentially ignores any 
information concerning the probability density fuxtion of the population or 
of the estimate itself, hence, a confidence interval derived therefrom is 
aslually vnjfe conservative. That is; the contidenre interval for a stated 
probability is larger than that xrhich is ohtaincd if information con-errin.? 
the cstimete nrobabi.!.ity <density function is used. Consider the case of 
estimating the mean of a Gaussian rando?! variable. In this c8s.e the sam.?le 
I::~s.c s is C-so a. Gzu ssiar? random. varis.b?-e Vith In,ean and variance given by 
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E (5) = h-, 

where m and(T2 are the mean and variance of the population, respectively. Now, 
for the Gaussian probability density function, it is found that (see Apnend.ix C) 

where m and(T 2 are the mean and variance of x, respectively. Usi,ng this result 
for the sample mean s, it is found that 

PROS 
c 

Is-ml < 'gy o- 1 = 0.9 

Therefore, 

The confidence interval for 0.9 probability is seen to be significantly smaller 
than that which would be obtained using the Tchehycheff Inequality. Thus, the 
confidence interval obtained using knowledge of the probability density function 
of the estimate is essentially more meaningful than that obtained from the 
Tchebycheff Inequality in that it contains more precise information concerning 
the accuracy of the estimate in terms of specifying the true value of the 
moment being estimated. 

In general, a confidence interval can be regarded as a statement of the 
degree of certainty which.is contained in a statistical inference. It is always 
desirable to determine the smallest confidence interval for a particular proba- 
bility since this tends to give the most precise information concerning the 
uncertainty in the inference. In general, this requires use of the probability 
density function of the estimate when it is available. The construction and 
use of confidence intervals is discussed in further detail in References 5, 6, 
and 11. 
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2.2.7.1.4 Estimati~ Moments for Gaussian Random Variables --- .-- -- 

If x and y are two Gaussian random variables, then there exists two first 
moments and three second-central moments which specify the joint probability 
function of x and y, f(x, y). These moments are as follows: 

Two sets of independent sample sets are usually used to estimate the moments 
which specify f(x, y). Let the vectors x_ and y denote independent sample sets 
of the random variables x and y. The following estimates are used for the 
moments of f(x, y). 

/\ mx=.sx= n ’ (_l’x) 
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where I1 =x_ - 1 s and The accuracy of these estimates can 
be assessed by considering he probabi!kty density functions of the estimates. 

Although the variances Cz are unknown, it is possible to obtain 
confidence intervals for of x and y as a function of the sample 
data sets x_ and I. This is accomplished by showing that for a Gaussian random 
variable the sample mean and variance for 
tically independent and the ratio of (s-m) to 
probability density function (see Section 
determine a confidence interval for m. That is,if 

then 

Now, if the probability density function of t can be determined, then a confi- 
dence interval for m can be determined in terms of the sample set 5 only, i.e., 
the population variance is not needed. It is possible to show that t has the 
Student's pdf in the following manner. First, t can be written as follows: 

where 
u = %-In) 

G- 
and 

Second, it is apparent that Uis a normal random variable. Third, it is 
necessary to show that the pdf of V2 isx2 (see Section 2.2.4.5.2) and is inde- 
pendent of U. This step is accomplished by considering an orthorgonal trans- 
formation of the sample set &, i.e., let r = C(x_ - ml) where 
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c=’ 
o- 

& j+ 0 . ..*... 0 

l . 

, . 

, . . 

. . 

. 

0 
. 
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, . , 
. 
. . 0 
. 

l 

- - 

It is not difficult to show that CTC = &'I, therefore, z is a Normal random 
vector, i.e., E(z) = 0 and G = E(g zT) = I. It is apparent that zl = u , i.e., 

% 
6-i 

= o- (s-m) = u 

r 
Wow, it can be shown that 8 = l/a2 ITI is not a fur&Ton of 21. Consider 

n 

7-7 

C( 
x~ - m S-h ‘2 = 

o- - 6 &is, ) 
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Therefore, V2 is only a function of z2, 23, 'n' It now becomes apparent 
that u and Vz are statistically independent Lkd'that V2 is a Chi-square random 
variable with (n - 1) degrees of freedom. This follows from the fact that Zi 
is a normal random variable for i = 1, 2, . . . . n. 

Based on the foregoing, it is possible to determine a confidence interval 
for the mean of a Gaussian random variable without knowledge of the variance 
of the random variable. The confidence interval is 
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where tl and t2 are obtained from the pdf of "tff for (n - 1) degrees of freedom. 
The values of tl and t2 are selected for the particular confidence coefficient 
or probability desired. Thus, if the sample mean of an independent Gaussian 
random variable sample set x_ is used to estimate the population mean, then a 
confidence interval can be determined in terms of only the sample set x. 

In a similar manner a confidence interval for the variance of a Gaussian 
random variable can be determined in,terms of the sample set x_. This follows 
directly from the fact that V" = l/o' VTV has a Chi-square pdf with (n - 1) -- 
degrees of freedom, therefore, 

Alternatively, 

It is apparent that a confidence interval can be d;termin;d for a probability 
PROB[X~<X'<~$] by simply fi.nding two values of x1 and X~ which bound the 
probability for a Chi-square random variable with (n - lj degrees of freedom. 

It is possible to determine the joint probability density function of the 
sample moments A$, A$, and A, (see Reference 1). The result is 

where 

The joint probability density function for t2e sample moments involves the 
moments of x and y, which means that f@,A ,A, ) cannot be directly used to 
determine con;Eidence intervals for the centrk mogents of x and y. 
using f(&, A , A 1, 

However, 
it is 'possible to determine the probability density func- 

tions of certgin %ctions of the sample moments which result in confidence 
intervals. Consider the following functions of the sample moment&,$ andAlcy. 
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Now, the joint pdf of u, v, and w can be found by a transformation of variables 
(see Reference 6). The results are 

where u, v > 0 and 

Thus, u, v, and v are statistically iTdependent, i.e., f(u, v, W) can be written 
as follows 

f(“JwJV) = f(u) f(W)f(w) 
where 
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By taking K3 = [2n w u”l-qf wherec$ = l/n ~~(1 - 
2y 

P'z), it is seen thatw is a 
Gaussian random variable with varianceu;, and mean val e of zero. Similiarly, 
by an appropriate selection of K 
square random variable wdth (n-2 7 

it is seer that nv[ y 2 
degrees of freedom. 

(1 - P!)1;1 is a Chi- 
Also, nu/ux is found 

to have a Chi-square pdf with (n-l) degrees of freedom. This follows from the 
following factoring of K. 

Thus, 

and 
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Since (n-3)! =T(n-2) andmrt?n) = 22n-1r(n) r(n + $) (see Section 2.2.3.2), 
it follows that 

2 qzfi (77-3)! = z3i2fi 7(77-2, = (/g2’-3,7($ -I)7 (y 
Therefore, 

and 

Thus, the pdfs for u, v, and w become 
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&Jow, tith the following si.mple changes of variables, the following probability 
density fucti.ons are determfned: 

7-l-I , 

f(VZ) =* 2 vz 
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r 

Thus, it is seen that V2 and R2 are Chi-square random variables with (n-l) and 
(n-2) degrees of freedom, respectively, and W is a Normal random variable. Of 
course, this result for V2 agrees with that previously obtained. Now, since W 
and R2 are independent with W being Normal and R2 being Chi-square with (n-2) 
degrees of freedom, it follows that the pdf of W/fi' l/n-2' is the Student's 
pdf, i.e., the pdf of t is a Student's pdf with (n-2) degrees of freedom where 

where 



Using the Student's pdf, it is possible to determine a confidence interval for 
l-%y~~Z in terms of the sample moments only. The procedure is similar to that 
used before for the mean m. The resulting confidence interval is as follows: 

The confidence coefficient is, of course, dependent upon the values of tl and 
t2 and it is equal to PROB [- tlst 5t2 1. 

The probability density function for the 
5 

ample correlation coefficient 
3: can be determined from the jointpdfofd;, A,, A,. The procedure is to 
first determine the joint pdf ofAZ,A2, and r by a change of variable and then 
determine the marginal pdf for r. (se% Reference 6). The result is as follows: 

The probability density function for r is seen to be only a function of the 
correlation coefficient Pxy and is independent of the other moments of x and y. 
Unfortunately, f(r) does not gi.ve a direct measure of the accuracy in r as an 
estimate for pxv since f(r) is a function of Pxy. However, an important use 
for f(r) is to test for statistical independence of x and y which is considered 
in a latter section. Thus, if pxy = 0, then f(r) becomes 

2.2.7.2 Hypothesis Testing 

In determining statistical properties of random variables, two basic 
assumptions are often made concerning statistical independence of random varia- 
bles and the type of probability density function that a random variable 
possesses. In general, these assumptions can have a significant effect upon 
results and the validity of such assumptions should be assessed. It is possible 
to make an assessment of the validity of such assumptions by methods of hypoth- 
esis testing. In such methods assumptions are treated as hypotheses which are 

130 



accepted or rejected depending upon the outcome of certain tests which are made 
on sets of sample data. It is apparent that the tests must be designed to 
yield information concerning the hypotheses being tested and criteria of accept- 
ance or rejection must be defined. In general, the tests are functions of 
samples of random variables and the results of such tests are also random varia- 
bles; thus, there always exists some degree of uncertainty concerning the accept- 
ance or rejection of a hypothesis based upon criteria of tests on samples of 
random variables. Therefore, it is necessary to specify a measure of accuracy 
in testing hypotheses. This measure of accuracy in hypotheses testing is 
usually referred to as the "level-of-significance1 and it is, in general terms, 
the probability of being wrong in the decision of rejecting or accepting the 
hypothesis being tested. That is, the level of significance is either the 
probability of accepting a hypothesis which is false or rejecting a hypothesis 
which is true. Usually, the lower the level-of-significance, the better is 
the test of the hypothesis. 

The method of hypothesis testing can be described in the following manner; 
There exists a hypothesis, denoted by H, concerning a random variable x, e.g., 
the hypothesis could be "the expected value of x is zero," which is usually 
denoted by 

Let 5 denote a set of samples of the random variable x. Vow certain properties 
of the sample set should be dependent upon the hypothesis H. Thils, it should 
be possible to design a test on x_, denoted by T(z), which should be dependent 
upon the validity of Ii and certain results of the test would indicate that H 
should be accepted and certain results would indicate that H should be rejected. 
For example, if the hypothesis concerns the expected value of the random varia- 
ble x, then the test cou1.d simply be the sample mean, i.e., 

Obviously, if E(x) = 0 it is not expected that T(z) = 0, i.e., T(x) is a 
random variable with expected value equal to that of x and variance of l/no: 
for an uncorrelated sample set. It is apparent that the result of T(z) is 
dependent upon the expected value of x, and if the hypothesis that E(x) = 0 is 
true, then certain results are expected for T(X), whereas if H is false, then 
other results are expected for T(z). For example, if x is a Gaussian random 
variable witha$ = 1 and Z(x) = 0 and if n = 9, then T(x) should lie within 
2 1.0 with a probability of 0.9974, or 99.74 percent of the time (see Appendix C). 
Also, T(x) should lie within 
of the time. 

f 0.6533 with a probability of 0.95, or 95 percent 
That is, if it is true that E(x) = 0, then (T(x)1 will exceed 

0.6533 with only a probability of 0.05. Thus, if it is found that T(x)>0.6533, 
then the hypothesis that E(x) = 0 would be rejected tith a probability of 0.05 
of being wrong. In this case, the level of significance is 0.05. Also, the 
interval of k 0.6533 is referred to as the acceptance region for the hypothesis. 
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In general, the method of hypothesis testing requires that the statistical 
variation in the test, T(x), be known or at least an adequate amount of infor- 
mation be available to dstermine the acceptance or rejection region for a 
desired level of significance. Usually the probability density function of T(x) 
is required and the acceptance region for a h:rpothesis at the level of signifi- 
cance, denoted bya(, is an interval or region which contains T(z) with proba- 
b'lity 1 --ct. In general, if H is true, then T(z) li.es within the acceptance 
region with a probabi.lity of 1 -(Y, where cr is the level of significance, i.e., 

In a particular test, if T(x) is found to lie within R, then H is accepted and 
if T(z) does not 1i.e in R, then H is rejected. Generally, 2 varies with ff and, 
thus, acceptance or rejection of an hypothesis is dependent upon the level of 
significance used. also, for a particular level of significance, the acceptance 
region is not unique since several regions can be found such that the probability 
of T(z) lying within the regions is 1 -o!. Usually, the malled region is used. 

Hypothesis testing can be based upon confidence intervals. Consider a 
confidence interval with a confidence coefficient of 1 -a. The true value of 
a parameter lies within the confidence interval with a probability of 1 -0; 
hence, the probability that the true value lies outside of the confidence 
interval isa. The confidence intervai is a function of the sample data set 
which can be considered as the test for the hypothesis beinp considered. In 
this manner, the confidence interval is an acceptance region for the hypothesis 
and ff is the level of significance. For example, the confidence interval for 
the mean value of a Gaussian random variable can be written as 

pROt3 = S-/-645 = 0.9 =/-o./ 

where s is the sample mean of an independent sample set of size n ando is the 
variance of the random variable. The hypothesis W: m = molt would be accepted 
if the sample set mean s yields a confidence interval which contains mo. The 
level of significance is 0.1. 

It should be pointed out that rejecting a true hypothesis is not the only 
error that can be made in testing hypotheses. It is also possible to accept a 
false hypothesis, thus, the probability of making an error in hypothesis testing 
is the probability of rejecting a true hypothesis or accepting a false hypothesis. 
Generally, the probability of rejecting a true hypothesis is referred to as the 
probability of "Type 1" error, and the probability of accepting a false hypothe- 
sis is referred to as the probability of "Type II" error. also, the probabil- 
ity of rejecting a hypothesis when it is actually false is often referred to as 
the "power of the test." In general, the probabilities of Type I and Type II 
errors can be determined in testing alternative hypotheses, i.e., there exist 
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two hypothesis, Hl and H2, and it is required to make a decision concerning the 
validity of Hl and H2. The case is usually referred to as a simply hypothesis 
and a simple alternative. The best test to be used in hypothesis testing is 
usually dependent upon the consequences of being wrong in terms of either Type I 
or Type II error. The general problem of hypothesis testing is discussed in 
detail in References 1, 5, and 11. Some particular cases of present interest 
are discussed below. 

2.2.7.2.1 Statistical Independence of Gaussian Random Variable= ---- 

Let x and y be two Gaussian random variables and let & and p be two sample 
sets of x and y. A test of the hypothesis that x and y are statistically inde- 
pendent can be made using the probability density function for the sample corre- 
lation coefficient, r. That is, if P = 0, then the probability density function 
of r is as follows: (See Section 2.2Y.l) 

n-3 

2 r2? ( ) R/z) = 
N(n-3)! 

where 

(l-n) 
ny 

IJow, ccnsider the following function of the sample correlation coefficient. 

The inverse transformation becomes 

u 
R = fU"+ (R-2) 

I 

The pdf for v is found as follows 
2 n-i 

2 n-3/-J - 
( 1 2 

iI 
J- 2 

I 

n-4, /- YZ 
-;i- C I 

P(u) = 
(u* tn-2) 

ir(n -3)! (u2 tn-2) Ju2 f (n-22) 
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Thus, it is seen that the pdf of v is the Student's "t" pdf for (n-2) degrees 
of freedom. Using this result a confidence interval can be found for v using 
the V1' pdf. That is, for a given CX, two values tl and t2 can be found such 
that 

PROB c-t, 42 <L-J= /-a 

where 0-C (Y < 1. Alternatively, 

where H is the hypothesis that x and y are statistically independent, i.e., 

H: p =o 
“8 

The values of tl and t, are determined from the %I' pdf for n-2 degrees of 
freedom. If for two sample sets x_ and x, v as determined by r is not in the 
interval -tl<v<t2 for a particular CY, then the hypothesis Pxy = ci is rejected 
at the level of si,gni?icanze of' CY , 

2.2.7.2.2 Goodness-of-Fit Test ~ --- ---- 

In determining statistical properties it is common practice to assume that 
the type of probability density function is known and only a set of parameters 
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which specify the probability density function need to be estimated from a 
sample set. For example, if it is known that a random variable x has a Gaussian 
probability density function, it is sufficient to estimate the mean and variance 
from a sample set 5. However, there remains an uncertainty concerning the type 
of probability density function assumed. Fortunately, it is possible to assess 
the validity of assumptions concerning types of probability density function by 
a rather general method which is referred to as the "Goodness-of-Fit Test." 
This method is a method of hypothesis testing wherein the approximate density 
of the sample set is "compared1 with the hypothesized density function and a 
deck.sion is made to accept or reject the hypothesis. The "comcarisonl' which 
is made is, in general terms, the actual deviations between the sample set 
density and the assumed probability density function. The actual test is based 
upon a particular measure of the observed deviations between the sample set 
density and the hypothesized probability density function. This measure of 
deviati.0r.s can be expressed as follows: 

In the measure, or test T, the term Oi denotes the number of observed occurrences, 
F;i is the expected number of occurrences, and Di is the deviation between the 
observed and expected number of occurrences. The occurrences are simply the 
number of observations, or sample set points, which fall within an interval Ii. 
That is, for a total of n samples there can be constructed a set of m intervals, 
I i, each of which w?ll'contain a certain number, say kit of the total number of 
observations. The expected number of occurrences within Ii is determined from 
the assumed probability density function, i.e., Ei is the number of occurrences 
within Ii given that the hypothesis is true. Of course, if the hypothesis is 
true and a sufficiently larpa sample size is used, then it is expected that T 
should be ttrelativelyll small. However, snme explicit measure of T is required. 
This measure is provided through the limit behavi.or of T for a general proba- 
bility density function. It can be shown that under rather general conditions, 
the pdf of T approaches the Chi-square pdf. 
can be determined using the X2 pdf, i.e., 

Thus, a confidence interval for T 

approaches 
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where 

The proof of this result is based upon the local limit theorem (Section 2.2.6.2). 
The significant steps in the proof are discussed below. 

Usi.ng the results of the local 1i.mi.t theorem it is found that 

p(n, 7j/ = Ke 
-bT 

where 

M 

T= c 
(is; -niq.f = * (0; -4)’ 

i=/ RPi c 
i= I 4 

and m is the number of intervals Ii, ki is the number of outcomes within Ii, 
and n is the total number of outcomes. It should be apparent that Oi = ki 
and Ei = npi. 

It is seen that the maximum probability occurs for T = 0. Therefore, T 
as defined is a reasonable measure of the deviation from a set of expected 
results. In general, as [Oi - nil increases p(n,&) decreases. 

The probability density function for T for large n approaches that for 
Chi-square for (n-l) degrees of freedom. This can be shown as follows. Con- 
sider T as a function of Xi where 

and 
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Now, since the ki are not independent, the Xi are not independent, i.e., 

Therefore, 

where A is a symmetrical positive definite matrix of ordnr m-l with diagonal 
term Cl/ h + l/Pi> and all off-diagonal terms l/pm, and x_ is a vector of Xi 

for i = 1, 2, . . . . m-l. . The moment generati.ng function for T becomes 
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where the summation is taken over all & such that lTk = n and, of course, 
O'ki. However, for sufficiently large n, the sum&?%on can be replaced by 
continuous integration over 5 with a change of variable ofdxi = l/~Aki; 
hence, as n-co , mu (s) b ecomes 

Using In of Appendix A and noting that IAI = fi (pi -3 ,, it is found that 
1=1 

Therefore, as n-m, T has a Chi-square pdf distribution for m-l degrees of 
freedom. 

With the foregoing, a test of "goodness" of fit can be constructed which 
assesses the validity of assumptions concerning types of probability density 
functions which random variables possess. A test of the hypothesis that a set 
of sample data is generated from a random variable with a particular probabil- 
ity density function is made by simply computing T and comparing the result 
with the 1 - Q! confidence interval. The hypothesis is accepted or rejected at 
the level of significance Q! . 

It should be noted that the foregoing test does not consider properties 
of the assumed probability density function which are estimated from the sample 
set &. That is, usually the type of probability density function is assumed 
with the first and second moments equal to those of the sample set x_. However, 
in such cases the method of the Goodness-of-Fit remains essentially the same; 
only the number of degrees of freedom change. Generally, the num'oer of degrees 
of freedom is simply reduced by the number of statistical moments which are 
estimated from the sample set x_ and the test is the same. The method of 
Goodness-of-Fit is discussed in detail in References 1, 4, and 6. 
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2.2.8 IMU Error Model and Analysis ------ 

In the evaluation of the performance of a G&N system the analysis of 
the Inertial Measurement Unit (IMU) is of prime importance. The function 
of the IMU is to provide a self-contained reference coordinate system and 
a means of measuring accelerations of the vehicle. The measured accelera- 
tions determine gyro torquing signals to maintain the orientation of the 
coordinate system and are used to determine the trajecto-ry of the vehicle. 
The objective of an IMU error analysis is to evaluate the effect of errors 
inherent in the manufacture and installation of inertial platform components 
on the measurement of accelerations and the uncertainty in orientation of 
the coordinate system. Generally, IMU inaccuracies result in measured 
acceleration errors and their effect is ultimately related to trajectory 
computation errors. 

The development in this section employs the inherent assumptions of 
the state variable linear systems approach to the solutions of the perturbed 
equations of motion of a space vehicle. Equations are derived which relate 
the effect of IMU .gyro and accelerometer errors to position and velocity 
errors. The equations are presented in a form which is indepenient of a 
particular platform and may be applied to a variety of Inertial Measurement 
Units. A discussion of platforms usin. g single degree-of-freedom or two 
degrees-of-freedom gyros and the corresponding error equations is presented. 

2.2.8 .I Perturbation Equations 

Inertial Measurement Unit errors will be in the form of acceleration 
measurement errors from the accelerometers and acceleration errors due to 
misalignment of the platform gyros. It is desired to relate these errors 
in the sensed acceleration of the platform to errors in Dosition and velocity 
of the vehicle. The motion of the vehicle in the influence of a gravity 
field and an applied thrust is given by equation (8.1.1) 

(8.1.1) 

uhere & is the second time derivative of-the position of the vehicle, 
p (4) is the total gravity vector, and A, is the applied thrust acceler- 
ation as measured by a perfect IMU. A similar equation may be written in 
which the quantities of equation (8.1.1) are igterpreted as the acceleration 
sensed by an IMU with sensor errors present, A , and the resulting "error- 
corrupted" computed value of the second time derivative of position, R . 

A + - t/i, = A 
P 

(8.1.2) 
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The variational, or perturbed equation, is the difference of the quanti- 
ties in (8.1.~) and (8.1.2). 

or 

(8.1.3) 

Equation (8.1.3) gives a relationship between the IMU measurement errors, sfi , 
and their affect on the computed value of 2 , &? . 

Before the solution of the equation may be completed the form of SE-(/r)7 
must be determined. 2 As the term appears in equation (8.1.3), it rm?rese ts 
a general expression for the gravity field and may represent the influence 
of more than one attracting body. In most cases of interest the vehicle is 
in the influence of a single attracting body and a simple form for the gravity 
term may be derived. To solve (8.1.3) it is necessary to express the gravity 
term as a function of variations in SF . 

For a gravity field of more than one attracting body an approximation 
of the term is‘made by a Taylor series expansion about - 
involving derivatives higher than first are neglected ~R~~~encei~l;y~ terms 
For the central force field of a spherical homogenous attracting body the 
evaluation of the gravity term as a function of 8x assumes a simple 
analytical form. 

In any case the quantity - (2) 
B 

may be written as 

(8.1.4) 

where X ' YJ and 3 are the components of 2 expressed in an inertial 
three-dimensional Cartesian coordinate system. 

The differential of pa is then 
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and in matrix form 

and 

(8.1.5) 

The form of the elements of the [G] . t ma rix in equation (8.1.5) is the ssme 
if the truncated Taylor series expansion of Reference (18) or the method of 
Reference (19) is used to evaluate 6[gCx)] . Using vector'operational 
symbolism, equation (8.1.5) may be expressed as 

Substituting equation (8.1.7) in equation (8.1.3) gives 

(8.1.6) 

(8.1.7) 

To specify the time history of the affect of IMU errors on the computed 
trajectory the errors must be related to the pzsition and velocity errors. 
Errors in the computed position are 62 S X-A, and the first time deriva- 
tive of position errors is 

(8.1.8) 

and time derivative of velocity is 

(8.1.9) 

(8.1.10) 

Using equations (8.1.8), (8.1.9), and (8.l.l0), the linear differential 
equation, is state vector form, relating position and velocity errors is 
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6x1 6X6 6X1 6x1 

or 

(8.1.11) 

(8.1.12) 
s; (tl =B(t) 27% tt) f & (t) 

The matrix B is a function of the gravitational forces acting on the 
vehicle and the matrix d , the forcing function of the differential equa- 
tion, represents the errors in the control vector. Subsequent sections will 
give the solution of equation (8.1.12) and specifications of d in terms 
of the IMU model. 

The G matrix of equation (8.1.~) assumes a simple form when the 
gravity field may be represented by 

Using the operational vector identities 

and 

(8.1.13) 

(8.~14) 

(8.l.15) 

the a f m 
axJ 

may be evaluated as follo?rs: 
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OX- 

(8.1.15) 

For the derivation above it was assumed that Z = (x,y,z) in an inertial 
Cartesian coordinate system with the origin at the center of the attracting 
body. Derivations resulting in equation (8.1.15) by different methods may 
be found in References (15) and (19). 

2.2.8.2 Solution of the Perturbed Equation 

The solution of equation (8.1.12) may be accomplished by a variety of 
methods of which two are most frequently used - the adjoint technique and 
variation of parameters. The variation of parameters method is the more 
direct method and is used here. In each case the solution of the homogenous 
part of equation (8.1.12) is the "Fundamental Sn!.ution Matrix" or "State 
Transition Matrix"; and the solution of the differential equation is deter- 
mined in terms of.a transition matrix, the initial conditions of the state 
variables, and the forcing function. 

2.2.8.2.1 Variation of Parameter Solution -. 

The homogenous part of equation (8.1.12) is 

5 x (t 1 - B (t) sx cc) = 0 

The solution.of (8.2.1) [References(l5) and (2O)]is given in terms of 
the state transition matrix 
state at time t, as 

d11,$) relating the state at time f to the 

dx(t) = # (t, t, ) s 2 (to) 
6x1 6x6 
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The variation of parameters solution proceeds from equation (8.2.1) by 
assuming a solution of the form 

rsX(lt) = g?Qt,t., - (?A) 
Y 

where @(t, t,) is. the fundamental solution matrix and y (t) is a function 
to be determined. The first time derivative of equation (8.2.3) is 

(8.2.4) 

Substituting equation (8.2.4) into equation (8.1.12) gives 

+(t,&)j It)+ j3(t,t,, -aiiQ2h,tJ~ = am i 
(8-2.5) 

Since fdlt, to) is the fundamental solution matrix of the homogenous 
part of equation (8.1.12), d(t,&) must satisfy the homogenous equation. 

This relationship shows the quantity in braces to be identically zero 
and 

or 

(8.2.6) 

(B-2.7) 

The integral of equation (8.2.8) is c 
p (t) =p-' (r/ 60) 2 (r)dr 

-9 t. t (8.2.9) 

= 
/ %- -' r,t,, iZ.(T)dT + 

/ 
f'tr,t,,z IT)dT 

Substituting (8.2.9) into (8.2.3)-OD to 

and equation (8.2.10) evaluated at t = to gives 

(8.2.11) 
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(8.2.12) 

A further simplification in the integrand of equation (8.2.12) may be 
accomplished through the use of the properties of the transition matrix. 
However, the simplification of the form of the equation may not give a corres- 
ponding simplification in the evaluation of the integral. The properties of 
the transition to be used are indicated in Figure 8.1. In the figure the 
time T is shown to fall between times t and z!, although the relation- 
ship is valid for the case in which T lies outside the interval indicated. 

Figure 8.1 

(8.2.13) 

and 

+(tJT) = pcwJf-‘(~&d) (8.2.14) 

Substitution of ecuation (8.2.14) into (8.2i12) gives 

5% (t) =&t, to) &ii (to) f 
/ 

#(t,:T, cz. (T)dT (8.2.15) 

Equation (8.2.15) or equation (3.2.1:~ is the desired solution of the 
perturbed equation. 

2.2.8.2.2 Statistical Evaluation of the Perturbed Equations 

In order to m&e a statistical study of the errors 6j~(t) the first 
and second morents are completed. For these eouations the symbol (- > 
represents the expected value of the quantity involved. The first moment of 
6x (I!) is 

t 
E [&X(t)] = G-7 x CL) =fct, t.,-ziy+ / 

a’(t,r) (8.2.16) 

t* 
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and the covariance matrix is 

--LLLdw-- fi (t1 = ai (t) - mx (t) c 3c SR (f) -~rnx (t) T 3 
For a zero mean 

(8.2.17) 

The last two terms of equation \4%.18) are ordinarily zero. 

2.2.8.3 Platform Error Equations 

Presented in this section are the g;rroscope and accelerometer error 
equations used for defining the IMU error model. The equations are presented 
in general form applicable to inertial units usinS either single degree-of- 
freedom or two degree-of-freedom gyros. The platform errors are related to 
measured acceleration errors thereby specifying the form of the forcing 
function of the perturbed equations of motion. 

2.2.8.3.1 Inertial Measurement Unit and Transformation 

The inertial platform of an inertial measurement unit is 2 sensor which 
provides acceleration signals resolved along known coordinates. Conven- 
tionally, the platform is supported by a set of gimbals, the inner gimbal 
serving as a stable member supporting the e;yroscopes and accelerometers. 
The function of the gyroscopes is to maintain the orientation of the platform, 
and the function of the acceler'ometers is to measure the total acceleration. 
The physical orientation of the gyros input axis and accelerometer alignment 
on the platform is determined by the specific applicatior for >lhich the JMU 
is designed. Generally, a three-dimensional orthogonal coordinate system is 
constructed through the use of three single-degree-of-freedom gyros or two 
degree-of-freedom gyros. A gyro input axis and an accelerometer may be 
aligned along each coordinate axis. 

The derivation of the perturbed equation of motion for the trajectory 
computation coordinate frame assumed an inertial coordinate system. Further, 
the expression for the [G] matrix for the central force field assumed the 
coordinate system to be centered at the center of the attracting body. The 
alignment of the platform coordinate axis with respect to this inertial 
coordinate system is also dependent on the specific application of the measure- 
ment unit. A discussion of the advantages and disadvantages of a particular 
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platform alignment is given in Reference (21). For the different platform 
alignments a transformation between the trajectory computation coordinates 
and platform coordinates may be defined and assumes the form 

The subscript HTC" indicates the transformation from the trajectory to the 
platform coordinates. The elements T. will be constants if the initial 
platform ori.entation is maintained or h&ctions of time if the platform 
coordinates are changing with respect to the trajectory frame. 

2.2.8.3.2 Gyroscope and Accelerometer Error Equations --_-.- . -- __---__ _.-- - 

The accelerati.on measurement errors from the platform gyros, in platform 
coordinates, are determined by use of equations of the General form 

E; =x,.,K’,+i.K, ax+A Ki LLr+LKj a,+ii(4 ax2fi K5 “f 

t.L K&a, “f/&K’,&&. 
7 

tA; !+&d++-i+ a?& 
(8.3.2) 

b'=x, f/Z > 
where CL. represents the total drift rate of the gyro during the acceleration 
of the vehi.cle about the "i" nlatform coordinate axis. The terms r'K. 

6 
nre 

the drift rate coefficients and are dependent on the construction of he 
-gyros. It has been tacitly assumed that a mr3 input axis has been aliGned 
along each platform coordinate axis. In general, the drift, rate coefficients 
may be functions of time but are usually expressed as constants representing 
average values. The terms aY J ajc , and ad are the components of the 
applied accelerations along the platfom coordinate <axis. The particular 
error sources represented by the L..L/ coefficents are: 

KG = bias coefficient (non-g sensitive) 

Kl,2,3 = mass unbalance coefficients (g-sensitive) 

K4,5,W,W = anisoelasticity coefficients (g2-sensitive) 

Analysis of a specific inertial unit in which the orientation of the 
spin, input, and output axis is specified, and the drift-rate coefficients 
given, will allow a reduction of number of terms used in equation (8.3.2). 
Terms may be eliminated by comparison of the relative magnitudes of the 
coefficients and by proper orientation of the platform coordinates with res- 
pect to the trajectory plane. In such cases, the number of terms retained 
may be reduced to six or seven. The particular terms which may be neglected 
can be determined only through an analysis of the uros in conjunction with 
platform orientation and the trajectory. 
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AILthough the gyro characteristics are specified by the drift rate 
characteristics, the acceleration errors due to the gyros arise from the 
angular misalignments o- f the gyros with the platform axis. The total mis- 
alignment along the platform axis may be found by integrating the drift rates. 

Jht1 = 
/ 

2 (T)dT+ -jwt., 
(8.3-3) 

% 
where pk) is the angular mlsal?gnment vector about the platform ax?s 
and. Z(T) are the drift rates in vector r”oim. The acTe!erat!oo error in 
platform coordInntes I.s then given by 

T,rhcre A' is the acceleration in plntform coordinates. 

The error model for the accelerometers mounted on the platform is of 
the form 

The term v;(A;=X‘t) 
2 

is the acceleration measurement error along the 
indicated platform a.yls, assuming an accelerometer aligned along each nxis. 
The terns a, , a are the thrust acceleration components 

Xco6rPZttea&~.s. along each blatfor. The coefficients i /j are defined 
below and are dependent on the construction and a ccuracy of al.igrmcnt of the 
accelerometers on the platform. 

ilq = bias coefficient 

ikl = linear scale factor roeffjcient 

i"2,3 = bias sensitivity to cross-axis acceleration 

ik4 = 2nd-order nonlinearity coefficient 

ik5,6 = scale factor sensitivity to cross-axis acceleration 

ik7 = jr-d-order nonlinearity coefficient 

Equations (8.3ib) and (8.3.5) may be combined to give the total accele_ra- 
tion measurement errors from gyro misalignment and accelerometer errors, Ap(t). 

(8.3.5) 
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If the initial alignment of the platform remains fixed with respect to 
the inertial coordinate system, 
(8-3.0, 

elements of the transformation, equation 
will be constants. This platform coordinate system is referred to 

as either "platform inertial" or "launch point fixed." The initial align- 
ment of the platform determines the transformation for all points along the 
trajectory, and the acceleration measurement errors in inertial coordinates 
are given by r 

(8.3.6) 

h(t) as determined above are the acceleration errors required for the 
evaluation of equations (8.2.15) and (8.2.25). 

Determination of d(t) is more complicated if the platform orientation 
changes as a function of time. The elements of the transformation matrix 
become funntions of time: and terms involving the coordinate system angular 
rate and angular rate derivative, with the inertial position and velocity, 
appear in equation (8.3.6). Letting 2 represent the vector rate of change 
of the platform coordinates with respect to trajectory coordinates, the 
position and velocity in the two frames are related by 

Jir = 1 [I 
T 

TC 
4 

iir = vc + wxji, 

The time derivative of equation (8.3.8) gives 

(8.3.7) 

(8.3.8) 

(8.3.9) 

The subscript "T" sTymbo_l-izes the trajectory inertinl frame, "C" the platform 
rotating frame, and the ""' time derivattve. Equation (8.3.9) may then be 
solved for a, . 

An alternative to the use of the time vnrflng transformation matrix is 
the solution of the perturbed equations of motion in a rotating coordinate 
frame. The solution of the perturbed equation proceeds in the same manner 
as in Section 2.2.8.1. The angular rate terms in this case are explicit in 
the formulation of the "B" matrix of equation (8.1.12), and are a part of the 
fundamental solution matrix. As such, they again appear in the j.ntegral in 
equation (8.2.12). 
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3.0 RECOMMENDED PROCEDURES 

In Section 2.1 the general problem of systems performance analysis was 
defined in terms of two parameter sets and a known functional dependence. That 
is, the general problem involves a vector function of random variables denoted 
by 

11 = G(x) -- 

where y is a vector of performance parameters, x is a random vector of causal 
parameyers and G( ) is a known vector function.-Of course, y is a random 
vector since it-is a function of the random vector x. Now, for each mission 
or mission phase there exists a region in the space-of the vector y which is 
conducive to mission success. This region can be defined as the "Fegion-of- 
success" or success region for y and is denoted by R,. That is, if y lies in 
R, then the mission or mission Fhase is successful, hence, y E R, isequiva- 
lent to mission success. Unfortunately, due to the random or uncertain nature 
of y, as caused by 5, it cannot be stated with certainty that y E R, or that 
misTion success will be achieved. On the other hand, if the pFobability 
density function of y is known, then it is theoretically possible to determine 
the probability that-y will lie in any region in the space of y. In particular, 
the probability that 7 will lie in the success region Rs could-theoretically 
be determined. This Frobability can be considered as the probability of success 
for the mission, denoted by P,, i.e., generally 

PS = P[y E Rs] = f(y) dg 

where f(y) is the probability density function of the performance parameter 
set y. fi is characteristic of space flight missions that a relatively "high" 
probzbility of success is required which reflects a high loss in the event of 
mission failure. Thus, in order to maintain a low risk it is necessary to 
reduce the probability of failure to negligible proportions. 

Nonetheless, it is the general purpose of system performance analysis to 
determine or assess P and to ultimately determine the system configuration 
and system function rzquirements which will fulfill a specified lower bound 
constraint on P, or a minimum requirement for P . The general tasks involved 
in this effort consist of (1) determining the szatistical properties of the 
causal parameter set x, i.e., specifying the nrobability density function of 
the random vector x; 72) transforming the ndf of x into the probability density 
function of the neFformance parameter set 5 which is dependent upon G( ); and 
(3) determining P, as required. However, it is usually required thaf these 
tasks be accomplished such that the dependence of P, upon G( ) and the statis- 
tical moments of x is known. This is required in order to-facilitate the 
definition of the-optimum system configuration and the requirements of system 

150 



functions. Theoretically, the problem of system performance analysis is 
readily solved, i.e., the tasks involved are easily stated. Unfortunately, 
the tasks are generally not as easily accomplished. First, even if the 
probability density function of 1 is determined it is not usually easy to 
determine an explicit evaluation of P, as a function of the statistical 
properties of x. Second, even if the probability of x is known it is not 
always easy toTdetermine an explicity form for the przbability density function 
of y. And, third, the explicit form of the probability density function of x 
is ?iot generally known, rather, only estimates of the statistical moments of- 
x are known and a limiting form of the probability density function is assumed. 
Rotwithstanding this, the general objectives of system performance analysis 
can be accomplished through appropriate use of the statistical methodology 
discussed in the previous sections. Some general applications of the proce- 
dures are discussed below. 

It is generally possible and often convenient to define the success 
region Rs with respect to a “point” & in the space of y which assures mission 
success. This point is often referred to as “nominal” conditions which are 
usually directly representative of mission objectives in terms of system 
state quantities. In this manner, it is understood that both x and y = G(x) 
are variations about nominal conditions. This, in turn, implies a nZminZi- 
system configuration or system design and requirements which usually represent 
gross, requirements. However., final and/or complete system requirements must 
be determined such that y lies in R, with the required probability of success. 
The use of nominal condiFions often provides a linear relationship between the 
parameter sets y and 2, i.e., y = G(x) = A 5, where A is a constant matrix. 
If the relationFhip between y and ‘j; 7s linear, then the statistical analyses 
involved in system performance analysis are greatly simplified. The use of 
nominal conditions is generally useful and particularly convenient if a 
linear relationship between the parameter sets y and x is obtained. tlowever, 
linear relationships obtained in this manner areusuarly first order approxi- 
mations and the effects of inaccuracies of such approximations upon the results 
of system performance analysis must be assessed. 

It should be apparent that there exists a particular, and perhaps hypo- 
thetical, situation where the tasks of system performance analysis can be 
easily accomplished. This situation is characterized by (1) a linear rela- 
tionship between the parameter sets y and x, i.e., y = A x which can often 
be obtained :using nominal conditions-as discussed above; T2) a Gaussian 
joint probability density function for the causal parameter set 5, with possibly 
statistically independent subsets; and (3) a relatively convenient region of 
success Rs defined in the soace of y, i.e., an R, for which P, = [y E Rs] can 
be determined. In this particular Situation the joint probability-density 
function of the performance parameter set y is also Gaussian with its statis- 
tical moments easily related to those of tEe causal.parameter set 5, as dis- 
cussed in Sections 2.2.2.13 and 2.4.4. The marginal and conditional probability 
density functions for the performance parameter set can be easily determined 
as discussed in Appendix B. The evaluation of probabilities for the parameter 
set y for certain regions can be made as discussed in Appendix C. 
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Frequently, the performance of a navigation and guidance system is 
evaluated in terms of a quadratic form of vehicle state quantities. That is, 
optimization criteria and performance indices are often quadratic forms of 
system state parameters. In particular, loss functions are often quadratic 
forms and an optimization criterion is often the minimization of the expec- 
tation of a quadratic loss function. In this case, there exist two questions 
which concern, first, the actual minimum expected loss and, second, the 
relationship between the minimum loss and system design parameters. Generally, 
the loss, L, can be written as L = yT Q y where y is a set of vehicle state 
parameters . The loss is a scalar r%dom?ariable;hich is specified by its 
probability density function. Usually, the explicit form of the pdf of L 
is not easily determined, i.e., a closed form expression is generally not 
possible. flowever, if y is a linear function of 5, y = A x , and x is a 
Gaussian random vector Then an explicit form can be TbtainFd for tFe first 
and second moments of the loss L which represent the actual minimum expected 
loss and a measure of its variation. In Section 2.2.4.5.5 these moments are 
shown to be an explicit function of the elements of the matrix 0 and the 
co-variance matrix of y, which is easily related to the co-variance matrix 
of x, since v = A x. In particular the expected value of the loss is equal 
to The traceLof the matrix product of Q and the co-variance matrix of y. 
It is noted that the selection of system design parameters which minimize the 
trace of this product leads to an optimum system configuration. 

As noted above, it is not always possible to obtain an explicit form 
for the probability density function of the parameter set x or functions of x 
which are used in the evaluation of performance. For example, as noted above, 
even if y has a known Gaussian probability density function, the probability 
density Function for a quadratic form of y is not easily determined. On the 
other hand, the lower order statistical mFments can generally be determined 
as discussed in Section 2.2.4. These moments, in turn, can be used to deter- 
mine probability bounds as discussed in Section 2.2.5. Thus, in cases where 
the explicit form of the probability density functions of performance functions 
cannot be obtained and, hence, an explicit,evaluation of the probability 
of success cannot be made, it is possible to bound this probability by using 
only lower order statistical moments which can usually be obtained. 

In the foregoing it is tacitly assumed that the probability density 
function of the causal parameter set x is known and, hence, that of the 
performance parameter set y can be deFermined, which is generally possible for 
a linear relationship y = Fx and a Gaussian probability density function for 
x. flowever, 
Enown. 

a complete statrstical description of x is usually not explicitly 
That is, only estimates of lower order statrstical momentsare usually 

available and assumptions are made concerning the type or form of the proba- 
bility density function of the set x. The accuracy of such estimates and the 
validity of such assumptions directly affect the accuracy and validity of 
statements concerning system performance. It must be recognized that statements 
concerning system performance are, at best, statistical inferences which must 
be based upon the available information of the statistical properties of the 
parameter sets y and 5, which is usually not complete and/or explicit. The 
methods of estitirating statistical moments are discussed in Sections 2.2.7.1.1 
and 2.2.7.1.2, wherein methods of assessing the accuracy of the estimates are 
considered. A somewhat “universal” assumption concerning the form or type of 
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probability density function when definite information is not available is that 
it is Gaussian. The general validity of this assumption can be based upon the 
limiting theorems discussed in Section 2.2.6. These theorems nrovide a rather 
general basis for the validity of the assumption of Gaussian probability density 
functions, however, there always exists some question concerning the conver- 
gence of the limiting form and the existence of the proper conditions for con- 
vergence to the Gaussian form. Most experience indicates that the convergence 
is rather rapid, but, each situation encountered should be considered upon its 
own basis. In general, the validity of assumptions concerning probability 
density functions can be assessed by the means of hypothesis testing as dis- 
cussed in Section 2.2.7.2. 

It becomes apparent that the particular procedures to be utilized in 
systems performance analysis depends upon several particular aspects of the 
problem involved which concern (1) functional dependence of performance 
parameters and causal parameters, (2) functional forms used in the evaluation 
of system performance, (3) type of probability density functions involved, 
and (4) available information of statistical properties of the parameters. 
Generally, no particular set of procedures applies to all problems involved 
and the particular procedures utilized are dictated by the nature of the 
aspects stated. The procedures discussed in the previous sections comprise 
a set of methods which are usually adequate to treat most problems of naviga- 
tion and guidance systems performance analysis, however, often extensions of 
the methods are required, which are adequately discussed in the references 
cited. 
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APPECWDIXA 
SOME USEFUL MULTIPLE INTEGRALS 

In statistical analyses the following multiple integrals often arise. 

S 

co 

where G(U) du exists, A is an nxn symmetrical positive definite matrix, 

J = T"fl , X_ is an arbitrary vector of dimension n, and s is a con- 
stant vector of dimension n. It is understood that the integra&s are 
multiple integrals over the domain of x. It is noted that the integrals are 
always encountered in statistical analyses which involve Gaussian random 
vectors. 

The evaluation of 11(S) is facilitate by a linear transformation 
of coordinates such that the quadratic form P & AZ is diagonalized, thus, 
let X_=lQ where M is the modal matrix for A, i.e., MTAM = A where 
& is the diagonal matrix of the eigenvalues of A, MTM = I and 
pq = 1 . In this manner, 11(s) becomes 
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A second linear transformation can be made such that YTAy = ZTZ -- s 
which i,s essentially a scaling of coordinates, i. e., let x = DZ where 
D zA-2 , or D is a diagonal matrix with elements equal to the 

reciprocal of the positive square root of the corresponding elements of 
A . Thus, 

By a translation of coordinates the exponent in 11(s) can be expressed 
in terms of a “square”, i. e. , if &=w+c - - , where 2 is a constant 
vector, then the exponent becomes 

Now, ‘;f += 
CT, = 4 s 

$ DMTs then 2wTc = wTDMTg, -- 
MDDMT= and the exponent becomes 

cTDMTs = L sT MDDMTs - 2- -9 
-- 
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Thus, I1 (ES) can be written as 

‘The last step follows from e do =m and that if MTAM =JL and 
jM1 = 1 then ~1 -g JJ-lA-llrT or Mh” MT = A-l and/Al= \A1 . 

03 

s 

2 
--o 

The integral 
transformation X = Q 

12(s) can be evaluated by using the two linear 
and 1 = Dz as defined above. In this 

manner 12(s) becomes 

162 



Now, let g = QLS/ whe re Q is an orthogonal matrix which rotates the 
coordinates such that one axis is co-linear with the vector DXT s , 
i. e.‘, Q is a set of orthogonal vectors 3 which span the n dimensional 
space with one vector, say El ’ co-linear with DMT 2 ; therefore, 

and 

where 

Thus, 12(s) becomes 
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The integral 13(s) can be evaluated as a special case of 11 (s), 
i. e. , simply let 2 = Jw in 11(s) given above. The result is 

Thus, the integrals 11(g) , I2(s) and 13 ($.g) become 
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APPENDIX B 
MULTIVARIATE GAUSSIAN PROBABILITY DENSITY FUNCTION 

Joint Probability Density Function 

Let f(x ) be a pdf for the random vector _ x which has the following 
general form 

f (x) = K exp - (~'As) 

Where A is a symmetrical positive definite matrix. If 

/ 
* f ciy, d_x = 1 

00) 
then f(x_ ) has the basic property of a pdf for X_ . Now 

where 11 (2) is given in Appendix A. 
then 

Thus, if K =[PhlA(-1]//2 

is a pdf for x_ . The moment generating function for x_ becomes 
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The first moments of x are found to be zero, i.e., 

=o _ 
5=0 

Since E(x) = ,O the covariance matrix, 4 , for & can be found as follows. 

7: 
a2 = - iwjf)( C_s) dl c.q7 

= &A-I 
_5=0 

-1 
Thus, noting that A =. 2-I q( AND IA I= 2 -"//':I-' 
f(z) can be written as follows. 

Ii' the random vector x has the pdf f(x) then E(x) = 0, hoblever, 
then E(z) = m and G 

ii' z = x + m 
= 1;:. The Jacobian of-the transformation - - 

3 = 2 +-E is-simply 'one" and; hence, the pdf' of z is simply f(z) = f(x = z-m), 
l.e., -- 

f(g) =&-qg 
The moment generating function for 2 

VP - ti (-_mf iy’(_F -??J) 

is given by 



It is easily seen that 

Therefore, the pdf f(x) can be written for a random vector x_ with E(x) = m # 0. 

Thus, if x is a random vector with a pdf given by 

then E (x_) = m and the covariance matrix for x_ is 1;; . This pdf is defined 
as the "multivariate Gaussian pdf and f(x) is the joint pdf for the components 
of &. The moment generating function for 1~. is given by 

Marginal Probability Density Functions 

Let & be composed of two subvectors zl and x2 such that 
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It is easily seen that 

/': = 

. 
where 

Now, if f(x) is a multivariate Gaussian pdf, as given above, then the marginal 
pdfs of &l-and x2 are also Gaussian as given below: - 

where n1 and n 2 are the dimensions ofizl a;tez, respectively. This can be 
established as 
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and where $1 = FI12T since rx is symmetrical. Now G M becomes 

thus, 

The joint pdf of & can be written as follows 

where, for convenience, z =x-m. NOW, ~Tmz can be written in terms of 
El. = &.l - gland 9 - 3-E&, z.e., 
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The marginal pdfs of zl and 3~2 are given by 

Thus, 
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Therefore, f(zl) and f(3) become 
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Now, consider the following matrix product. 

Using the rules of determinants it is found that 

or 

Similarly, 

Therefore, f&) and f&) become 
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In particular, the marginal pdf of any component Xi of 5 is as follows 

for i = 1, 2, . . . , n. 

It is important to note that the marginal pdf for any subset of a set of 
Gaussian random variables is also a Gaussian pdf, i.e., if the random vector 
x_ has a joint Gaussian probability density function then any subvector of x has 
a marginal probability density function which is Gaussian. The elements which 
specify the marginal probability density function are simply the corresponding 
elements of the vector E(z) =; and the covariance matrix I;i. Thus, the 
marginal probability density function for any subset of & can be specified 
directly from the joint probability density function of x_. 

Conditional Probability Density Functions 

Let 1~ be composed of two subvectors x_ and x2 with gl, m2, 5, 4529 
I5 and 51 as defined above. If f x_) t is a multivariate Gaussian pdf 

as defined above, 
as given below. 

then the conditional pdfs f(zl/z2) and f(z2/zl) are Gaussian 
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where 

These results can be established in the following manner. 

The conditional pdfs f(&l/zz) and f(x_z/xl) can be expressed as ratios of 
f(x) to f(s) and f(9), respectively, i.e., 

Substituting the previous results, it is found that 

It was shown that iM/-/51/ = II4221 and /Mfl&I = 114111 
The exponents can be expanded as follows. 

175 



Similarly, 

Since IL12 = - 51 
-1 

52 pl22 ardl 1421 = -IT,, -I I- pr 
it follows that I$& 142 = -r 5, 

21 11-i 

Thus, f(zl/z2) and +b,? $1 &ome 
and Fqi Ml2 = -52r22 . 

where the terms are defined above. 

It is seen that if the joint pdf for a random vector "s G-!~c:s~QT 
then the conditional pdfs f(3/52) and f(&=) are also Gaussian with 
covariance matrices M -I 11 and M2s1 I respectively. 

It should be noted that the first moments of the conditional pdfs are 
not the expected values of zl and X_ 2. Rather; these moments are the con- 
ditional expectations of zl, given x2, and x2, given ~1; i.e., 
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Using II(s) of Appendix A for 5 = 0, it is found that 

Note that 

-1 Also, it should be noted that Mll'l and M22 are the conditional covariance 
matrices for xl, given x2, and x2, given xl, respectively. 
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APPENDIX C 
SPECIAL GAUSSIAN RANDOM VECTORS - 

Gaussian random vectors are invaribly encountered in statistical analyses. 
In system performance analyses the two cases which often arise are those of 
two and three dimensions; i.e., two or three random variables have a known 
joint Gaussian pdf and it is desired to determine the probability that the 
vectors will lie in some specified region. Also, the special case of a single 
Gaussian random variable often arises, even in the cases of higher order 
Gaussian random vectors. The three special cases of dimensions one, two and 
three are considered below. 

One Dimensional Case 

Let x be a Gaussian random variable with mean value and variance of m 
and c2, respectively. The pdf of x is as follows: 

The probability that x lies in the interval alxsb is given by 

An explicit expressed for P [ a 5 x 5 b] cannot be determined. since 
the integral cannot be evaluated in closed form for arbitrary a and b. 
Therefore, P [ a 5 x 5 b] must be determined by numerical intsgration 
of the.integral. The integral has been tabulated extensively for the Normal 
random variable, i.e., for the case of m = 0 and o2 = 1. Thus, 

PLO 5 Y 5 p ] can be determined from a table for a.Normal random 
variable y. Now y can be expressed in terms of the Gaussian random variable 
x as follows: 
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Therefore, cry = x-m or x = W';Y + m and 

p [a- %& b] =P[” 4 y e PJ 

where 

Thus, the method for determining the probability that a Gaussian random 
variable will lie within some interval is to simply translate and scale the 
random variable and use a table for a Normal random variable with zero mean 
value and unity variance. A few values of P[lyl Sk ] are 
given in Table C-l below. It is noted that P[Jy/s k] = P[!-%-ml5kv] . 
An extensive tabulation of the Normal random variable probability is given in 
Reference 14 and useful tables are given in References 1, 2, 5 and 6. 

ii P [/p f a] 

0.500 0.383 
1.000 0.683 
1.500 0.866 
1.645 0.900 
1.960 0.950 
2.000 0.955 
2.576 0.990 
3.000 0.997 
3.291 0.999 

Table C-l: Probabilities for a Normal Random Variable 

Two Dimensional Case 

that 
Let 5 be a Gaussian random vector with two components xl and x2 such 



The joint pdf of 5 is as follows: 

where 

It follows that IF,/ =u~CZ -p2 and 

The covariance matrix G 
r, i!l = x1 .@1 and 

has two eigenvectors ,$ 
rx .@ = x ,@ 

and Ji!2 such that 
where 

the elgenvalues of I?, which arz determ?ned2 by ( TX - 
xl and X2 are 

XI > @ = Q or, 
equivalently, by 

Thus, the eigenvalues are roots of the following quadratic equation. 

ML- -n) (c; -73) -/” =O 

X2-(6,2f c--,)X+ o-,“0;2 -,/&‘=o 

It is easily shown that the eigenvalues for rx are given by 

180 



Consider the random vector 
matrix for p i.e., M =[&, f 

such that MY= (x - I$ where M is the modal 
2]where & and g2 are the eigenvectors of 

PX* 
Thus, g'(x)= 0 and rLc = f$Q M =J- where 

The pdf for x becomes 

where 
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Thus, the random variables y, and y3 are statistically independent 
Gaussian random variables whose pFobability of occurrence for certain regions 
can be readily determined. It will be shown that P[@ L: pl+#l] can 
be readily determined for rectangular and elliptical regions. 

It should be apparent that the determination of the probability of 
occurrence for 9 essentially determines the probability of occurrence for 5. 
That is, 

where the regions R(x) and R(x) are related by the transformation 
x = MT& - IJ). This transformation is simply a translation and rotation of 
coordinates as depicted in Figure C-l. The translation is simply along the 
mean vector m as shown. The rotation is determined by the eigenvectors of 

fx or9 equivalently, the modal matrix M; however, it is possible to define 
the angle of rotation, o( , directly in terms with the elements of px. 
That is, let 

where rx ,@ 1 = A, &. Thus, 

and 
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Solving, it is found that 

Thus, 

Figure C-l:. Transformation of p = MT& - ;> 

183 



Consider, the rectangular region R shown in Figure C-2, which is defined 
by 

The probability that x lies in R, pC+F=l , is given by 

Now, if the limits are expressed in terms of G and m the 
integrals can be determined from a table for a Normal random variable and 
this determines pryR1 - 
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Figure C-2: Rectanplar Region 
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If an elliptical region A is used, then, it is possible to obtain a 
closed form solution for P [HA] * Let A denote the elliptical 
region enclosed by an ellipse which is defined by *fJL' !$ = 24 , 
as shown in Figure C-3. It is noted that the vectors xl and x2 are the 
semi-principal axes of the ellipse. The lengths of xl and x2 are related to 

11 and are found by setting y2 and yl equal to zero, respectively; to wit, 

where a and b are the lengths of xl and r2 , respectively. It is also noted 
that the area, A, of the ellipse is given by 

m 2 

Y I 

/ 
I 
I 

m - xl 
I 

Figure C-3: Elliptical Region 
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The probability that 9 will lie in A , P [n E A] , is given bg 

where dA is the 
and A +~!e . 

In this manner, 

Thus, the probability of occurrence for the elliptical region enclosed by 

va ues are listed in Table P 
7-- 1 $$= a.4 is readily determined in terms of Al. Several 

C-2 below, where . 

P&CA-J = pi*) 
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-4 Pt..) 
0.5 0.3935 
0.7 0.5034 
0.9 0.5934 
1.2 0.6988 
1.5 0.7769 
1.8 0.8347 

Table C-2: Probability of Occurrence : P(b) 

It should be noted that for each value of 
L2 are given in terms of 4 

!t 

andb= m2. 
and A,, e.g., for 

the lengths of xl and 
-Q, =1/2, a = rAYl 

The probability that x will lie in the corresponding ellipse 
is 0.3935 as noted in Table C-2. 

Three Dimensional Case 

Let x be a Gaussian random vector with three components x1, x2 and x3 
with pdf as follows: 

where 

The covariance matrix px has three eigenvectors @i corresponding to three 
eigenvalues Ai, for i = 1, 2, 3; i.e., 



The eigenvalues are solutions of Ir, - ;Irl = 0 where 

Setting I r* - 4 
obtained. 

equal to zero the following cubic equation is 

where 
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The roots of a cubic equation can be solved by a change of variable 
3 = y- f/3 kc, which yields the following reduced cubic or 

normal form in JP . 

where 

In general, the reduced cubic has three roots which can be real or complex, 
positive or negative; however, since rx is a real symmetrical matrix, its 
eigenvalues are real and,'hence, only real roots of the reduced cubic need be 
considered. These roots are as follows: 

if K5 7 0 ~nrl 

190 



if K 5 L 0. Thus, the eigenvalues of rx become 

for i = 1, 2, 3. 

The eigenvectors can be determined by solving fx 4; - 2,. $; = Q 
for each 2; . Let each eigenvector be given by 

for i = .1, 2, 3. Substituting into 
that 7% JZL it is found 

Any two of these equations can be used to solve J$. and @. in terms of pl. 
Using the first two equations 5 l2 l3' 
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Solving for $8. and Ibi,, 
il 

for i = 1, 2, 3. It is seen that the first two components of each eigen- 
vector are proportional to the third component which is essentially arbitrary; 
I.e., the directions of the eigenvectors are determined with arbitrary 
magnitudes. If the eigenvectors are normalized to unity magnitude than an 
addition equation specifies the normalized eigenvectors, i.e., 

The foregoing equations define a set of normalized eigenvectors which con- 
stitute the modal matrix N for 'p x. It should be noted that for actual use 
it is not necessary to normalize the eigenvectors since the directions of the 
eigenvectors are of primary concern. However, the modal matrix En; implies a 
set of normalized eigenvectors. 

Using the above results, it is possible to define a statistically in- 
dependent random vector x by a linear transformation; i.e., consider the 
transformation 

where 2 = E(x) and N = [ $88, @2, g3] . The transformation is simply a trans- 
lation and rotation of coordinates as depicted in Figure C-k. It follows that 
E(z) = 0 and = M7F~ M =Jz. where 
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The pdf for x becomes 

where 

Thus, the components of x, yi, are statistically independent with zero mean 
values are variances pi for i = 1, 2, 3. 

Consider the solid rectangular region, R, defined by 
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I 

// 

I / ’ fl? - zr 

m, ----- __I/’ 

% 
Figure C-4: Transformation of x = MT lx_ - g> 
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The orientation of R is such that opposite sides are perpendicular to an eigen- 
vector gi of p,. The probability that x lies in R, P [JL h R] , is given 
by 

Now, if the limits are expressed in terms of ml, d?? and 
integrals can be determined from a table for a Normal ran 2 T lihe om variab e. 

Consider an ellipsoidal region, A , which is enclosed by the ellipsoid 
defined by yTA-' # = 1: , as shown in Figure C-5. It is noted 
that the vectors xl, r2 and x3 are the semi-principal axes of the ellipsoid. 
The lengths of these axes are found by setting y2 and y3, yl and y3, and 
yl and y2 equal to zero, respectively; to wit 

a =flJ 

b = 4q -4 

C =c R 

where a, b, and c are the lengths of Q, r2 and r3 , respectively. It is 
noted that the volume of the ellipsoid, V, is given by 

The prob& lie in R, P[g 6 R] , IS given by 

195 



\ \ \ -5 \ \ 

” 

p-‘g = y” I 

t 
i I 0 

-3 : 
;L,-m, 

Figure C-5: Ellipsoidal Region xrA-'$ -4' 
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density is constant along an ellipsoid 
it is convenient toLchange the infini- 

dk' = ~V@,AZ 1,' a* dl, where dV is 
the infinitesimal volume between two ellipsoids defined by d. and d+dd . 
In this manner, 

Integr&jnz by parts, 

197 



where 

It is seen that $(A) 
p CY”“1 

is the pdf for a FJorma.1 random variable. Thus, 
can be evaluated with a table. for a Normal random variable which 

tabulates both the pdf and the area enclosed about the *mean value. Several 
values of p[*eA] are given in Table C-3 below. 

1 P(A) 

T3bJbl.e C-3: Probability of Occurregcc P [v&A] = P(A) 

It ,-hcd.3 be noted that the "sizew of the ellipsoid is civen by the 
lzncths of the semi-principels axes a, b and c7 e.g., for 1~1 a=m 
b= m a&C=-3 with the corres?on?i;ng probability of 0.1987. The 

orientation of the e!.lipsoid is given by the eigerxectors cf a f i.e., 
the principal axes of the elllyso'.d are ?o-lir?ew- ~5th the eigenvectws 
C;i;ren above. 
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APPEIWIX D 

SO= EXT,REKAL PROPERTIES OF QUADRATIC FORMS 

In the design of optimum navigation and guidance procedures criteria of 
quadratic forms are frequently used. The selection of various design parameters 
directly affects the resulting performance of the optimum procedures, Thus, 
in the selection of design parameters and in the analysis of performance the 
behavior of the extremal properties of quadratic forms is of considerable 
interest. In this appendix several properties of the extrema of ratio functions 
of quadratic forms are considered. The results are presented in two parts. 
Part I presents the basic results in terms of three theorems related to a par- 
ticular ratio of two quadratic forms, Part II extends these basic results to 
more general cases. 

PART 1. BASIC THEOREMS CONCERNING THE EXTREMAL PROPERTIES OF THE PATIO OF TWO 
QUADRATIC FORMS 

The subject matter of this part is concerned with a real function, denoted 
by f(X), of n independent variables which is the ratio of two quadratic 
forms. The function f(X) is expressed in matrix form as follows. 

f(g) = g$ 
- - 

(1.1) 

where A and B are real symmetrical matrices of order n X n and X is an 
n dimensional column vector. The superscript T is used to denote tge trans- 
pose of a matrix or a vector. The problem to be considered is that of 
determining the extremal properties of f(X), i.e., what, if any, bounds exist 
on f(X) as X varies throughout the range of all real n dimensional vectors 
excludrng the-null vector. The most general case where the matrices A and B 
are not related in any way is not considered in this part; rather, the less 
general case where A is equal to I) raised to some integer power is con- 
sidered. In this case, it is shown that if B is a positive definite matrix, 
then the extremal properties of f(X) are readily expressed in terms of the 
eigenvalues of B. Actually, the basic theorems are slightly more restrictive 
in that the degenerate case where the matrix B has a zero ei.gnevalue is not 
considered, i.e., the eigenvalues of B are also positive definite. This is 
no severe restriction, it simply precludes the situation where the n space 
degenerates into a space of lower dimension, where the basic results apply. 

The basic theorems are based upon the following three (3) lemmas. 
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Lemma 1 

If f(z) is given by Eq. (l.l), then the critical points of f(X) occur 
for those 5 which satisfy the following vector equation for arbitrary A 
and B such that X*BX is positive definite. - - 

(1.2) 

Lemma 1 is readily established by taking the partial derivative of f(X) with 
respect to XT 

- 
and setting the results equal to zero; to wit, 

Setting Eq. (1.3) equal to zero and multiplying through by (xTBx)2, Lemma 1 
is established. 

It is noted that Lemma 1 is somewhat general in terms of A and B; i.e., 
no particular relationship between A and B is assumed. However, the 
quadratic form X*BX is assumed positive definite such that the partial deriv- 
itive of f(X) Cxists. This is satisfied for a real symmetrical positive 
definite matFix B which is of concern in this discussion. 

Lemma 2 

If A=BN in Eq. (l.l), then any eigenvector of B multiplied by any 
arbitrary scalar constant is a critical point of f(X). To establish this 
lemma, let 2 represent the eigenvector of the matFix B which corresponds 
to.the ith eigenvalue of B, denoted by Xi . Letting A = BN and 5 = oxi 
in Eq. (1.2), the following equation results. 

(1.4) 

Since Vi is an eigenvector of B, . BcuV.= "Xiv. 
1.e.. the vector transformation represenF&d by the katrix 
an eigenvector of B simply multiplies that eigenvector by the corresponding 
eigenvalue of B. Hence, Eq. (1.4) reduces to 

(1.5) 
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Note that the eigenvectors of B form an orthonormal set of vectors, i.e., 

(1.6) 

where 6ij = 1 for i = j and 6ij= 0 for i # j. It follows that Eq. (1.5) 
could be written as 

(1.7) 

Of course, either Eq. (1.5) or (1.7) establishes Lemma 2. 

Lemma 3 

If A=BN in Eq. (1.1) and if the eigenvalues of D are distinct and 
positive definite, then the critical points of f(X) occur only for those X 
which are the eigenvectors of B, multiplied by an arbitrary scalar. The - 
difference between Lemma 3 and Lemma 2 should be pointed out. In effect, 
Lemma 2 establishes the "if" portion of an "if, and onlv if" condition. 
Lemma 3 establishes the "only if" portion of this conditionality. To establish 
Lemma 3, the eigenvectors of the matrix B are used as a basis for the 
space; any any arbitrary vector X is written in terms of this basis, i.e., - 

The transpose Of 2 iS Riven hY 

(1.6) 

(1.9) 

By using the eigenvectors of the matrix B as a basis, the product B*& is 
expressed simply as n 

(1.10) 

The product BX is the vector obtained by applying the tr 
sented by the Matrix B to the vector X. 

sformation repre- 
The product iY B X is the vector 

obtained by M such transformations applied in succession;>he resulting 
vector is expressed simply as n 

(1.11) 

201 



I III II I II I 

By pre-multiplying Eqs. (1.10) and (1.11) by Eq. (1.9) and recalling that the 
eigenvectors of B form an orthonormal set of vectors, the following expres- 
sions are obtained for the quadratic forms X*BX and XTBNY - - - " 

zTBN”r =A a’ xy 
i=/ 

(1.12) 

(1.13) 

Now, by substituting Eqs.. (1.10) through (1.13) into Eq. (1.2) for A = BN, 
the following expression is obtained. 

By transposing the interchanging the order of summation, Eq. (1.14) becomes 

n r n 
(1.15) 

The value; of crj which satisfy Eq. (1.15) determine the vectors for which 
critical points of f(X) occur. Since the eigenvectors of the matrix B 'are 
linearly independent, each multiplier of Vj in Eq. (1.15) must be zero in 
order to satisfy Eq. (1.15). Thus, determ&ing the values of ~j which yield 
critical points of f(X) is equivalent to determining values of oj for which 
the following equation-is satisfied for all j. 

(1.16) 

Writing the terms within the parentheses as one summation, Eq. (1.16) becomes 
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(1.17) 

In order to establish Lemma 3, it is necessary to show that if Eq. (1.17) is 
satisfied for all j; then only one crj can be selected arbitrarily non- 
zero. To this end, let the eigenvalues of B be ordered such that 

a ‘A I 2 ‘A, 2. . . ‘an,-, ’ h, - 0 (1.18) 

Next, for convenience, let N = 2 and write Eq. (1.17) as the following system 
of equations. Note that nothing is lost in generality since the following 
argument applies for all N greater than 2. 

. 

. 
. . 

. 

. 
. . 

[System of Equations (1.19)] 
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. .I.,. . , . . . . ,, ,,, .-. . . . . ._ ,. . . . . . . . . . . 

An examination of the above system of equations shows the following to be 
true. If al is non-zero, then all other crj's (j = 2, 3, l l l l n) must 
be zero in order to satisfy this first equation, which also satisfies the 
entire system of n equations. This is true since each term within the 
bracket of the first equation is positive and this sum must be zero if @l is 
non-zero. Therefore, all other a j's must be zero if al is non-zero. 
Thus, if cy2 is non-zero, then Q'l must be zero; moreover, if "1 is zero and 
ti 2 is non-zero, then all other o( j's must be zero to satisfy the second 

equation of the system which also satisfies the entire system of n equations. 
This is true since if ~1 is zero, the remaining non-zero terms within the 
bracket of the second equations are all positive and their sum must be zero. 
Therefore, if a2 is non-zero, all other @j's must be zero. The same 
argument can be applied generally. That is, let any combination of the ~j's be 
assumed to be non-zero. An examination of the equation in the above system 
which corresponds to the first non-zero @j's show's that the remaining Qj's 
cannot be non-zero if the entire system of equations is satisfied. In this 
manner Lemma 3 is established. 

It is noted that the argument is valid for N greater than 2 since the 
terms which are positive remain positive for N>2. The case of N = 1 is of 
no interest since f(X) is a constant. If N is an integer such that Ns9, 
the argument remains valid with a simple change of sign in all of the equa- 
tions. Thus, Lemma 3 is true for all integer N, excluding 0, which is of 
no concern. 

Theorem 1 

If B is a-real symmetrical positive definite matrix and if f(X) is 
defined by 

then a critical point of f(X) occurs if, and only if, X is equal to an 
eigenvector of the matrix B-multiplied by an arbitrary-scalar constant. The 
proof of this theorem follows directly from Lemmas 1, 2, and 3 given above. 

Theorem 2 

If the eigenvalues of the matrix B are distinct and positive definite, 
then 

and 

(1.20A) 

(1.20B) 
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where hl and X, denote the largest and smallest eigenvalues of B, respec- 
tively. Moreover, the maximum and minimum values occur for X equal to the 
eigenvectors of B, which correspond to the largest and smallest eigenvalues 
of B, multiplied by an arbitrary scalar constant. 

Generally, in order to determine which critical points of a function 
define the extremal points the second partial derivatives are examined. How- 
ever, in the present case it is easier to simply evaluate f(X) for A = BN 
at all of its critical points. By Theorem 1 it is known thatthe critical 
points of f(X) occur only at the eigenvectors of B; thus, it is a simple 
matter to evaiuate f(X) at all of its critical points in-general. To wit, 
let 5 be an eigenvectbr of B multiplied by an arbitrary scalar constant, . l.e., 

3: 
(1.21) 

Substituting Eq. (1.20) into Eq. (1.1) for A = BN it is found that 

(1.22) 

where h. is the eigenvalue of B which corresponds to the eigenvector Vj. 
Note tha+ Eq. (1.21) is actually Eq. (1.13) divided by Eq. (1.12) for the - 
special case of cri equal to zero for i#j. Eq. (1.21) is all that is nec- 
essary to establish Theorem 2. From Eq. (1.20) it is seen that no matter 
what X is taken as in the n space, f(X) is constrained to the bounds of 
Eq.' (1720). 

_ 

It is seen that when N>l, the maximum and minimum values of f(X) 
occur for 5 equal to al V 

-?i- 
and OLn J&9 respectively, where 3 and !& 

are the eigenvectors of B w ich correspond to the eigenvalues Xl and Xn , 
respectively. Of course, when NCO, the opposite extremal value occurs. 
This establishes Theorem 2. 

Theorem 2 has been proved for the case in which the eigenvalues of the 
matrix B are positive.definite and distinct. For the case where the eigen- 
values of B are positive definite but not necessarily distrinct, the follow- 
ing theorem is established. 

Theorem 3 

If the eigenvalues of the matrix B are positive definite but not 
distinct, i.eb, multiplicities of various orders exist in the eigenvxes of 
B, the extremal properties of f(X) given in Theorem 2 are unaltered. That 
is, the extremal properties of f(XT are not affected by multiple eigenvalues - 
of B. 

Assume that the eigenvalues of B have a single multiplicity of order k 
in an eigenvalue hj , i.e., in the array of n eigenvalues of B there are 
k eigenvalues equal to hj. For this case, the system of equations 
Eq. (1.19) becomes 



. 
gz a2 [ q,2;\,(A. 4,) +o+u; A3 ~hR--hJ) + . . . f4,fXn ‘A2 -a,)] = 0 

, . 
. . 

0 . . 
l , c 
b b 

q. a. 
f i [ 

q,za,tx. -A,) f. * . 

t 
fey 2 (A.-A 

i-’ *‘-I + i-’ 

)+O+O+... 

. . 
l . 

0 
. 

. . . 

. # l 

[System of Equations (1.24)] 
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Comparing the two systems of Eq. (1.19) and (1.24) shows that if all multi- 
plicities of the eigenvalues of B are of order one, i.e., the eigenvalues 
are distinct, then a single zero occurs in each of the n equations which 
determines the possible a j's; whereas, if a single multiplicity of order k 
occurs, then those equations which correspond to the multiple eigenvalues each 
have a total of k zeros. The effect of having additional zeros in these 
equations is that more than one non-zero aj is possible in satisfying the n 
equations, This, in turn, means that for multiple eigenvalues of B the 
critical points of f(X) occur for certain X other than the eigenvectors of 
B. More specifically, -if the eigenvalues of- B have a single multiplicity of 
order k, then critical points of f(X) occur for any linear combination of 
the k eigenvectors of B which corrzspond to the k multiple values of the 
eigenvalues of B. This is verified by an examination of the system of equa- 
tions (1.24). If Q, through a j-1 are selected as zero, then aj through 
aj+k- 1 can be selected arbitrarily non-zero. However, the remaining 
aj's,aj + k through an must be zero. 

From the foregoing it is seen that the effect of multiple eigenvalues of 
B is that critical points of f(X) exist for X other than the eigenvectors 
of B. However, the additional cFitica1 points zf f(X) occur only for linear 
combinations of those eigenvectors which correspond to-the multiple eigen- 
values of B. This is important because for this reason the values of f(X) 
at these additional critical points are all the same. To show that this is 
true, let xi through V j + k - 1 represent the eigenvectors of B which 
correspond to the multipie eigenvalues h j through hj + k - 1 of B. Let 
Ji- be any arbitrary linear combination of these eigenvectors, i.e., 

(1.25) 

Now, the products BX and BNX become - - 

(1.26) 

(1.27) 

However, since the hi's are equal for i = j, j t 1, l l l , j t k - 1, 
Eqs. (1.26) and (1.27) become 

(1.28) 



‘, 1-l 

g*a = 1; ‘c a; Yi 
L’ ’ / 

Hence, the two quadratic forms XTBX and XTBNX become - - - - 

(1.29) 

(1.30) 

(1.31) 

Therefore, f(X), which is the ratio of Eq.. (1.31) to Eq. (1.30), is equal to 
AN-1 at all zf the critical points defined by Eq. (1.25). The value of 

f(R) at these critical points is independent of the order of the multiplicity 
Of--k. ; and, furthermore, the value of f(X) at these critical points is the 
sameJas its value for a multiplicity of ord% one. Thus, the effect of a 
multiplicity in the eigenvalues of B is that additional critical points of 
f(X) exist; but the values of f(X) at these points are all equal to the 
value of f(X) for a multiplicity-of order one. Therefore, the extremal 
values of fTX> are unaffected by a multiplicity in the eigenvalues of B. - 

Strictly speaking, 'the foregoing ar.gument has been given for the case of 
a single multiplicity. In the interest of generality, the argument should be 
extended to the case of m multiplicities each of order km . B;r extending 
the above argument it is found that the results are the same for m different 
multiplicities in the eigenvalues of 5. The important factor in this exten- 
sion is that no more than km aj's can be selected arbitrarily non-zero which 
must correspond to eigenvalues'in the mth multiplicity. To verify this, note 
that for m multiplicities the set of equations (1.19) has m sets of equa- 
tions lqhich have more than one zero. In fact, the set of equations which cor- 
responds to the mth multiplicity has km zeros. However, if km aj's are 
selected arbitrarily non-zero on the basis of the mth set of equations, the 
remaining aj's must be zero in order to satisfy the entire system. Therefore, 
no two sets of aj's corresponding to different multiplicities can be taken as 
non-zero and satisfy the entire n equations of system (I.. 19). 

The foregoing argument shows that the extremal properties of f(X) are 
unaffected by multiplicities in the eigenvalues of B. The remarkablg result 
is that in spite of the fact that a multiplicity in the eigenvalues of B 
greatly increases the number of critical points of f(X), the values of f(X) 
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at these critical points are all equal to the value of f(X) for a multi- 
plicity of order one. This is the essence of the foundatizn of Theorem 3. 

Summary of Part 1 

The essense of the above three theorems can be summarized in more precise 
mathematical terminology as follows. If B is an n x n positive definite 
matrix whose n eigenvalues have m distinct values, m _e n, yielding a total 
of m multiplicities of order km, respectively, including all multiplicities 
of order one, and if f(X) is given by 

(1.32) 

then the vectors X for which critical points of f(X) occur can be collected 
into n different-sets of vectors, denoted by Srn(x)T Each set Sm(&) is a 
linear manifold of dimension km and is spanned by the km eigenvalues of B 
which correspond to the km eigenvalues of B contained in the mth multi- 
plicity of the eigenvalues of B. The sum of the dimensions of these m 
linear manifolds is equal to n; the dimension of the space. These m mani- 
folds Sm(X) are invariant with respect to the linear transformation 
representexby the matrix B. Also, the values of f(X) for & in the mani o d 
Sm(X> is independent of the dimension of the manifold and is equal to j-1 
for-all X in Sm(X), where Xj is the value of those eigenvalues in thd 
mth multiFlicity. -Thus, the values of f(X) for all X in the n space lie - - 
in. the range 

(1.33) 

The maximum value of f(X) occurs for all vectors in the manifold Sl(X), 
where Sl(X) is the manTfold which corresponds to the largest eigenvalue of 
B. Likewire, the minimum value of f(X) occurs for all vectors in the mani- 
fold Sn(X), where _ Sri(X) is the manTfold which corresponds to the smallest 
eigenvalue of B. 

The meaning of the foregoing is that the variation of f(X) is deter- 
mined solely by N and the largest and smallest values of the eigenvalues of 
B. If the difference in the smallest and largest eigenvalues of B is small, 
then the variation of f(X) is likewise relatively small; and conversely, if 
the difference in these eTtrema1 eigenvalues is large, then the variation in 
f(X) can be large. Of course, "relatively" small or large in terms of the 
va:iation of f(X) is a function of N; i.e., the variation of f(X) can 
exceed the difference in the largest and smallest eigenvalues of B.- One of 
the most important results of the foregoing is that the extreme values of 
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f(X) are not uniquely determined with respect to the vectors X. That is, 
in-the case of distinct eigenvalues of B the extremal values zf f(X) occur 
for those X equal to the two eigenvectors of 
extreme‘eiggnvalues of B, 

B which correspond to the 
multiplied by an arbitrary constant. In the case 

where multiplicities occur in the extreme eigenvalues of B, then the extreme 
values of f(X) occur for all vectors X in the manifolds which CorresDond 
to these extrgme eigenvalues. As an inFeresting example of this situation, 
consider the case where all of the eigenvalues of B are equal, then f(X) 
is equal to a constant independent of X. 
is the value of the n eigenvalues of -B. 

This constant is AM--' , where-2 

PART 2. EXTENSIONS OF THE BASIC RESULTS 

The basic results of Part 1 are extended in the following theorems. An 
immediate extension concerns the reciprocal of f(X) as defined previously. 
Other extensions of important concern include the yituation where the matrices 
A and B are not related by a particular function as considered previously. 
In extending the previous results, it is convenient to consider the basic 
results of Part 1 in the following matrix notation. 

Let M be the modal matrix for the real symmetrical positive definite 
matrix B, i.e., M is the matrix of orthonormal eigenvectors of B. The 
modal matrix M has the following properties. 

MT/M =I 

M-I = MT 

h&r =A (2.1) 

where A is the diagonal matrix of eigenvalues of B. Let any vector X be 
expressed in terms of the orthonormal vectors of M; i.e., the eigenvectors 
of B are used as a basis for the n dimensional space. In this manner any 
vector X can be written as 

E =/war 

where g are the components of X in the basic vector M. - 

Theorem 4 

If B is a real symmetrical positive definite matrix, then 
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It is noted that Lemma 1 applies to g(z) =f"(z) for A = B* where XTBX is -- 
positive definite. Thus if 

then the critical points of g<x> are determined by 

Therefore, Lemmas 1 and 2 apply to g(X), and the critical points of g(x> 
are the same as those of f(X) for A-= B*. The arguments of Theorem 2 and 3 
also apply to g<x> and Thzoren 4 follows immediately. 

Theorem 5 

Let B be a positive definite matrix and let f(X) be defined as 
follows: 

-1 
If the eigenvalues. of C = B A are distinct, then the critical points of 
f(X) occur for X equal to the eigenvectors of C multiplied by an arbitrary 
coktant. From Emma 1, the critical points of f<x> are determined by 

(2.2) 

Letting X=Ms, (XT A X)BX = (aTMTAMa)BMg and (&TBx>~x = _ (QTM~BMCX)AMCT 
<olT&)AMz; henze, ET. T2.2)-becomes 

_ _ = 

(&I a) AMa = h&d9Mg) BMcv 

.Therefore, the critical points are determined by 
(2.3) 

(2.4) 
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Alternatively, 

where H( E, A,A) is a scalar function of cy , A and A given bY 

(2.5) 

It is seen that Eq. (2.5) is the characteristic equation which determines the 

(2.6) 

eigenvalues and eigenvectors for the matrix C = B-1 A, i.e., the equation 

c.!? = A$ 
(2.7) 

determines the eigenvalues A and eigenvectors 0 of the matrix C. Eq. (2.5) 
is the same as Eq. (2.7) where C = ~-1 A, ?la! = X = 0 and H(cr , A,A)= 1. 
It is easily shown that if Ma! = 2, then H@ , A,l) =-h ; to wit: 

The foregoing can be verified directly from Eq. (2.2); i.e., if &=a8 
where A 0 = XB 2, then Eq. (2.2) becomes - 

212 



Theorem 6 

If B is a positive definite matrix and if the eigenvalues of C = B"A 
are distinct, then 

(2.8) 

where Xl and A, are the maximum and minimum eigenvalues of B'lA, which 
are given by 

IA-AL?1 = 0 (2.9) 

This follows directly from evaluating f(K) at its critical points which are 
X = LYE where 

= hB$ 
(2.10) 

J-Q 

Hence, for X = ag, f<ri> becomes 

Therefore, at each critical point X = CY~, f(X) is simply equal to the 
eigenvalue corresponding to the eiggnvector $4 Which defines the critical 
point. The bounds of Eq. (2.8) follow from sylecting the critical points for 
the maximum and minimum eigenvalues. 

Theorem 7 

If B is a positive definite matrix, then 

(2.11) 
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where Al and Xn are the maximum and minimum eigenvalues of C = B-1 A. The 
bounds of Eq. (2.11) are seen to be the same as those of Eq. (2.8) in 
Theorem 6. However, it is noted that the present theorem does not require 
distinct eigenvalues of C = B-1 A. 

The present theorem can be established by an argument similar to that of 
Theorem 3. It is easily seen that if several eigenvectors of C = 13-l A 
exist for a particular eigenvalue, then there exists a manifold of critical 
points for f(X). That is, let 0j denote a set of k eigenvectors which 
corresponds to-the eigenvalue A;. Let X be an arbitrary linear combination - 
of the set 6~; i.e., 

Since A gj =A, B ~j , it follows that 

d 

Thus, X as defined satisfies the equation for the critical points of f(X) 
since ? A X = hk XTBX. 
is simpiy x;T; i.e.- - 

It is easily seen that f(X) at each critical pgint 
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Thus, the results of Theorem 6 are not changed by multiplying eigenvectors 
for an eigenvalue of C = 3'1 A. 
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