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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanics, and TraJjectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports
in the series.

Volume I Coordinate Systems and Time Measure

Volume II Observation Theory and Sensors

Volume III The.- Two Body Problem

Volume IV The Calculus of Variations and Modern
Applications

Volume V State Determination and/or Estimation

Volume VI The N-Body Problem and Special Perturbation
Techniques

Volume VIX The Pontryagin Maximum Principle

Volume VIIT Boost Guidance Equations

Volume IX General Perturbations Theory

Volume X Dynamic Programming

Volume XTI Guidance Equations for Orbital Operations

Volume XTI Relative Motion, Guidance Equations for
Terminal Rendezvous

Volume XIIT Numerical Optimization Methods

Volume XIV Entry Guidance Equations

Volume XV Application of Optimization Techniques

Volume XVI Mission Constraints and Trajectory Interfaces

Volume XVIT Guidance System Performance Analysis

The work was conducted under the direction of C. D. Baker, J. W. Winch,
and D. P. Chandler, Aero-Astro Dynamics Laboratory, George C. Marshall Space
Flight Center. The North American program was conducted under the direction
of H. A, McCarty and G. E, Townsend.
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1.0 STATEMENT OF THE PROBLEM

The final consideration of space guldance systems to be discussed in this
serles of monographs 1s that of system performance analysls. In general
terms, system performance analysis implles both an assessment of system
performance and an assessment of system requlrements. In this context,

svstem requirements refer to the gpecificstions of qvq'i-nm fimetiong in
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order to achleve mission objectlves and system performance refers to the
results which can be expected. Of course, system performance and require-
ments are closely related and can generally be considered as equlvalent in
terms of analysis effort. That is, the analysis effort which establishes
system performance also establishes system requirements, however, the
relationship is not necessarily a one-to-one correspondence. In general,
the ultimate objective of system performance analysis is a system configu-
ration definition, or system design specification which is sufficient in
terms of system functions that directly and significantly affect system
performance. It is tacitly assumed that the required system performance
can be stated in explicit terms as translated from mission objectives and/or
requirements. Usually, system performance requirements must be deduced
from mission objectives and then system functions are defined to achieve
system performance within mission constraints. In addition to a sufficient
system configuration definition an optimum system design is desirable
wherein the least stringent set of sufficlent requirements is specified.
Therefore, sufficlency and optimality of system design are of primary
consideration in system performance analysis. It is highly desirable to
establish a "single-step" system design algorithm which would achieve the
optimum sufficient system confilguration definition in a direct and immediate
manner. Unfortunately, due to the complexity of system function inter-
relationships, the number of possible alternatives, the lack of unigueness
in a set of requirements, and changes in mission requirements the system
conflguration definition evolves from an iterative design procedure which
should be a uniformly convergent process that achieves the final sufficient
and optimum system configuration in an Intelligent and efficient manner.
The primary function of system performance analysis can be considered as
providing the convergence to the iterative design procedure.

The totallty of efforts involved from mission conception and definition of
objectives to finallzed system configuration definition and/or design
specifications for a space guidance system is a significant and formidable
undertaking. The present effort does not consider the total system design
effort. A slgnificant portion of the total effort has been considered in
the previous monographs in this series and the present effort is intended to
supplement the previous efforts which define the basic relationships
between system functions and performance. These relationships comprise the
basic elements of the complete system model which is required to perform

an overall system performance analysis. There exist two fundamental alter-
natives in the present effort. One alternative consists of a consideration
of varlous specific cases which would supposedly be representative of
guldance system performance analyses for general missions. The second



alternative consists of a consideration of methodology which has general
application. The first of these alternatlives has the serious deficiency
of being only applicable to the cases considered with general usefulness
severly limited, especially in an era of technological evolution and revo-
lution. Both the types of techniques and thelr degree of utilization
continually change with time and progress, and present conclusions must
continuously be reviewed and revised as technology evolves. The second
alternative has the primary merit of not being restricted to particular
performance analyses; however, there exists the risk that generality will
obscure the direct applicablility. A compromise between these two alternatives
with emphasis on the latter has been taken in this effort. The primary
purpose of thls effort is the consideration of the methodology of system
performance analysis which forms the prineiples and techniques of direct
applicability In assessing guldance system performance and requirements.
The methodology is directly applicable to a guidance system which is
dependent upon particular mission considerations.

In general, the performance of a system is affected by the behavior of the
system's functions and the nature of the environment in which the system
operates. It i1s generally possible to describe system performance in terms
of a particular circumstance of system functions and environment. This
aspect of the problem can be considered as the deterministic aspect of
system performance analysis. A deterministic model of a system can be con-
sidered as the correspondence between given system functions and environment
and resulting system performance., The basic elements of this model have
been considered in the efforts of the previous monographs in this series.
Unfortunately, both system functions and environment do not obey fixed
deterministic rules of behavior and, therefore, system performance cannot
be stated on an explicit basis. A deterministic model of a system is
utilized to establish the nominal system requirements, but this model does
not specify performance and final requirements for system operation in its
natural environment. Both system functions and operating environment are
characterized by elements of uncertainty which significantly affect system
performance. Thus, system performance is characterized by uncertainty

and final system performance and requirements must be assessed in accordance
with the inherent uncertainty of the situation. Therefore, there exist two
aspects of system performance analysis which can be defined as deterministic
and statistical considerations. The deterministic considerations are often
referred to as nominal considerations which follow directly from the deter-
ministic model of the system. However, these considerations do not yield
final system performance, configuration or requirements. Rather, a nominal
system configuration is tentatively defined. The nominal design must be
subjected to a comprehensive statistical analysis to assess expected system
performance and to modify design to insure compatibility of final system
configuration definition and system performance requirements. The efforts
of the previous monographs in this series provide the basis for the nominal
considerations of system performance. The present effort is concenred
primarily with the statistical considerations of the problem.

It should be emphasized that system performance analyses are essentially
statistical inferences. These Ilnferences are always subjected to degrees
of uncertainty which should be recognized and assessed. It is only in this
manner that the final risk involved in commiting a particular system



conflguration to development and deployment can be known and reduced to an
acceptable level. It is apparent that technology and methodology for nominal

System perfo_‘mannn nn::'lvn-ne is usuzl 'Iv nﬂnnnn‘i‘n and readi 'lv available,

However, the statistical methodology is not as readily avallable or as
completely understood in terms of applicability, utilization and limitations.
Basic methodology is often utillized without regard to the effects of basic

assumptions. On the other hand, useful methods are not utilized due to a
lack of famlliardity. It is the basic purpose of the present effort to
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present useful methods of analysis and to dilscuss applicabllity and limitations
of methods. A brief description of the present effort is given below.

A basgic premlse of this effort is that the nominal performance of a system
can be wriltten in terms of a vector equation as follows:

In this equation Yy is a vector of system performance parameters for which
requlrements are specified, X 1s a vector of system functions and environ-
mental parameters which affect system performance, and  G( ) is a
known function which is deduced from physical laws that the system obeys.

In the-general situation X is a set of random phenomena which reflects the
uncertainty in the behavior of system functions and environment; hence, y
becomes a set of random phenomena as reflected through the functional
relationship of G( ) . Due to the random or uncertaln nature of X
statlistical methods must be utilized 1n assessing system performance and
also system requirements. It should be noted that there generally exists

a degree of uncertalnty even in the statistlcal nature of X and, therefore,
Yy « The present consideration of the problem of system performance
analysis 1s concerned with the mathematical framework in which the assump-
tions 1mpliecilt in such analyses can be appreciated and intelligent appll-
cation of general methods can be made. This objective, 1ln turn, can be
realized through the theory of statistical inference since the problem
being considered 1s embodied in a more general theory and structure in the
extensive literature on the general subject. However, the complete theory
is not required, thus, the present effort is concerned with presenting that
portion of the general theory which 1s directly applicable to the problem
of system performance analysis. A particular application is considered in
terms of an error model and analysils of an Inertial Measurement Unit (IMU)
which 1s of direct usefulness in guldance and navigatlon system performance
analyses.



2.0 STATE OF THE ART
2.1 THE BASIC MODEL OF THE PROBLEM

The general problem of system performance analysis can be defined in the foll-
owing terms. There generally exist two sets of parameters which can be considere:
as (1) performance parameters, denoted by y, and (2) causal parameters, denoted
by x. In this context, performance parameters are generally associated with
system state quantities that directly affect mission success, and causal para-
meters are associated with system functions and environmental factors that
affect system performance. In general, there exists a known relationship
between the two parameter sets y and x, denoted by y = G (x) where G ( ) is

a known function which is deduced from physical laws that the system obeys.
The explicit relationship between y and x is dependent upon a particular
system configuration definition. TIn general, there exists a region in the
space or domain of the set y which is coneclusive to mission success, i1.e.,

if y € Rg then the mission is successful. Thus, Rg can be considered as a
"region-of-success” or a "success" region for y. Usually, the definition

of y and Ry depends on mission type, objectives and constraints. Now, two
basic purposes of system performance analyses can be defined which are (1)
given x and G ( ), determine if ye&Rg and/or (2) determine the requirements
for x End/of—g () such that yeRy- The ultimate objective is to definitize
the system configuration and specify tolerances or design requirements for
system functions which are sufficient to achieve mission success. Within

this objective the optimum system is sought which consists of the least strin-
gent set of sufficient system requirements. That is, system configuration

and function requirements for the achievement of mission objectives are gen-
erally not unique and there exist a number of alternatives. Although some
alternatives are precluded by mission constraints there exist a number of
possible alternatives of which some are sufficient and supposedly one is

optimum.

If the system operating enviromment and system functions are known with
certainty, then system performance and mission success could be stated with
certainty. In such a situation the system could be "tailor-made" with ab-
solute assurance of success and the optimum system could be readlly defined.
Unfortunately, this is not the usual situation. Both system environment

and functions are not explicitly known entities, rather, they are generally
random phenomena or random processes. That is, the causal parameter set x

is a random vector and, hence, the performence parameter set y is a random
vector. Fortunately, mission objectives usually allow some degree of un-
certainty in system performance parameters, 1.e., the success region Rg is
not a single point. Due to the random nature of the situation, system per-
formance analyses must consider the probability that y will lie in the region
Rg. Alternatively, the task of system performance analysis is directly con-
cerned with determining if the uncertainty in the system performance parameters
is compatible with mission objectives; moreover, these tasks are concerned
with determining an optimum system configuration definition which fulfills
system performance requirements in accordance with a specified probability



of success, i.e., probability that y €Rg. To this end performance analysis
is concerned with four general tasks which follow the definition of mission

objectives and constraints.

First, the dependence of y upon x must be established. This can be con-
sidered as the determinisTic aspect of the problem which is not of primary
consideration in this effort.

Second, the uncertainty of the various system functions and environment must
be specified. This can be considered as the fundamental statistical aspect
of the problem and it is of primary consideration in this effort. This
aspect of the problem is concerned with the statistical analysis of the ran-
dom phenomena represented by the random vector x. This task is a necessary,
but not sufficient, effort in system performance analyses.

Third, with knowledge of the relationship y = G (x) and with a
knowledge of the uncertainty of the causal parameter set x, the
uncertainty of system performance is determined.

Fourth, assess the probability of mission success.

These tasks are usually accomplished within the system design iteration pro-
cess to evolve the optimum system configuration definition which will fulfill
mission objectives. The methodology is ultimately that of the general prin-~
ciples of statistical inference. The particular methods of the general
principles which must be utilized are discussed in the following sections.



2.2 STATISTICAL METHODOLOGY
2.2.1 Introduction

System performance analysis is ultimately concerned with the analysis of random
phenomena including system functions, operating enviromment and, finally, system
performance. These random phenomena must be characterized or defined in stat-
istical terms, i.e., adequate information of these phenomensa must be obtained

such that the nature of the randomness is sufficiently known. This is the subject
of the general methods of statistical inference or statistical analysis. Those
particular methods of statistical analysis which are directly applicable to

system performance analysis are considered in this section. It is intended that
the material presented herein is somewhat self-sufficient with adequate discussions
presented so-the applicability and limitations of methods are readily understood.
On the other hand, an exhaustive treatment of the general subject is not presented
nor intended since it is not required. An attempt has been made to provide suff-
icient and useful references where it is recognized that certain extensions of

the basic methods will be reguired in certain cases. In addition, an extensive
bibliography on the general subject of statistical inference is provided.

It is tacitly assumed that the reader is adequately familiar with the basic con-~
cepts of randomness and probability. This is a matter of convenience since a
sizable treatise could be written on the conceptual aspects of these entities,
however, this does not greatly serve the purpose of present application. Usually,
for purposes of engineering application the basic concepts of randomness and prob-
ability suffice, although, there is often a lack of agreement with the more rigorous
mathematical definitions of these concepts. Ultimately, the rigorous formulation
is required, but this is not considered herein. Good discussions on this subject
can be found in References 1, 2 and 3.

The discussions begin with basic definitions and properties which are frequently
encountered. AGaussian random variable is discussed in detail. The multivariate
Gaussian probability density function is considered in detail in the definitions
and Appendices B and C. Probabilities for Gaussian random vectors are specified
for various regions of interest.

Functions of random variables are discussed with particular emphasis on trans-
formations of probability density functions and statistical moments of functions
of random variables. Several particular functions of Gausslan random variables
are discussed with emphasis upon the probability density functions and statistical

moments.

Several basic probability bounds are discussed which can generally be used to
"hound" random variables when only lovwer order statistical moments are known.
Similarly, several basic limiting theorems are discussed which generally concern
the limiting behavior of sums of statistically i.adependent random variables.

The determination of statistical properties is discussed with particular concern
of estimating moments and examining the validity of assumptions concerning pro-
bability density functions. The particular case of estimating statistical
rioments for Gaussian random variables is considered in some detail. The basic
methods of correlation and regression analyses are discussed. The use of con-
fidence intervals is discussed and the method of hypothesis testing is considered.



2.2,2 Basic Definitions and Properties

2,2.2.1 Random Process

A random process can be defined as any phenomenon for which
repeated observations, under a given set of conditions,do not yield identi-
cal results. In general, random processes are characterized by variations
in outcomes for repeated equivalent trials. These variations in outcomes
or observations are considered as the '"randomness' of the process, which
is equivalent to uncertainty in the outcome of the process. As a contrary
example, consider a process whose behavior is completely described by a
known system of differential equations. Theoretically, it is possible to
completely determine the behavior of such a process if an adequate set of
observations are made at some time. Such a process is said to possess
deterministic regularity., However, until such time that all physical laws
are explicitly established for the microscopic and infinitesimal domains, the
concept of random physical processes must be admitted, accepted, and
dealt with,

Alternatively, a random process could be defined as one which does
not possess deterministic regularity and subsequent outcomes cannot be
predicted with certainty from a set of observations of the process. How-
ever, a random process can possess definite properties of behavior which
make possible a description on a statistical basis. Such random processes
are said to possess statistical regularity, In such cases, even though
particular outcomes of the process cannot be specified, it is possible to
specify the relative frequency or probability of occurrence of outcomes
for the process.

2.2.2.2 Random Variable

A random variable is defined as a real-valued function which is
defined for each outcome of a random process. Of course, the outcomes
for many random processes are actually random variables. Such random
processes are gquantitative or numerical processes, e.g., random voltages,
pressure, errors, etc. On the other hand, random processes exist which
are non-numerical, such as the tossing of a coin where the outcome is
either a heads or tails. However, it is possible to define a random
variable for this random process by assigning numbers to the outcomes or
by defining the random variable to the number of heads in m tosses of a
coin, etc.

The importance of the concept of a random variable lies in the fact
that many of the arithmetic, algebraic and analytical operations which are
defined for real-valued functions are meaningful for random variables,
whereas they are not for the outcomes of all raridom processes. Thus,



additions, subtractions, multiplications, transformations, etc., are
applicable to random variables,

2.2.2.3 Random Vector

In general, a random vector X of dimension n is an ordered set
of 1 random variables, i.e.,

X = (%, Xypoouy %inonvs %)

’

where Xj 1is a random variable., The ordered set can be written as a row
or column matrix or vector and convention seems to favor column vectors,
i.e.,

— . r-—-
X = : and X = %, Z,,..,%, -, %,

where superscript T denotes transpose.

The basic property of random vectors, for engineering purposes, is
that the domain of definition of each component is the set of real numbers,
i.e.,

— o< XL < w
for i =1, 2, ¢0ev, N
2.2.2.4 Probability Density and Distribution Functions
Let P[x €R] denote the probability that the random vector x will lie
in the region R, which is a subset of the domain of definition of x, Ifa
function of x, f (x), exists such that P[?EGR] is the multiple integral of

f (x) over the region or subset R then f(x) is the probability density function
of x. That is, if f (x) is the probability density function of x then

Plzx e R] =ff'(;)d,§
R

where fR () ax denotes a multiple integral over R. A basic



property of f (x) is that if R is the domain of x, i.e., the set of all possible
values of x then -

/ fFlx)odx = /.0

R=D(x)
whare NMv) ia +the damain Af v Thiec fallaws fram the fact +hat Divw) e
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exhaustive for x and, hence, P[x € D(x)] =1 . Moreover, f(x) is a
positive semi- def1n1te function of x, or f(_}f) s a non-negative function of x;

1.e.,

flx) 2 © for all x .

If the region R is defined by —® < X3 £ 23 for i =1, 2, ...nthen
f(x) integrated over R yields the ''probability distribution function' for X,
denoted by ¥_(z). That is,

1"

4
/L;(Z) = p[—oo<&_‘.g] =ff(g)dg

]

A basic property of F (z) is that F (z) is a monotonically non-decreasing
function of z, i. e., aS'z is "1ncrea'5ed" over the domain of X the P[—w<x < Z]
cannot decrease. Moreover, it is apparent that O < F (Z) < 1

for z over D(x).

If x] andXpare two random vectors of dimensions n; and n,,
respectively, then the ""joint" probability density function of x] and %3 is
simply the probability density function of x where x contains x; and %3 as
subvectors, Therefore, the probability den51ty function f(x) of any random
vector x of dimension n>1 is a joint probability density function and f(x)
can generally be writted as

Flx) = £x,,2,,.-, =R I Zm )

the dimeénsion of x, n, is given by

m
n = E 'Z/
j:/ .

where x. are subvectors of x with dimensions nj, respectively. Of course,



If x is composed of two subvectors x; and xp then the ""marginal"
probability density functions of x; and x,, f(§1) and f(x,), respectively,
are given by '

Flx,) = flx) gz, =/ Flz,, x,)dz,
)

o(x, otg,)
Flx,) =f/‘(;)da_:, =/f’(74,,752)d3_c,
Dlx,) D(x,)

The marginal probability density function f(x;) determines the probability
that x; will lie in a region R1 in the domain of x; without regard to x,,

i, e.,

Ply, e R) = ff‘(g,)dg,
<,

Similarly,

P()_cz € Qz) =[F(g2) dx,

Ry

It sould be noted that the marginal probability density function of a sub-
vector x, of x is independent of the subvector x,, where x is composed of

Xy and x,.

If x is composed of two subvectors x, and Xy then the '"conditional'
probability density function of x,, given x,, f(_}_{l/}_{z), is given by

_ FQx, 522!
—-:/&2) - .F(Zz)

Similarly,

Flx )
'F(Z &,) = \’%
2/ o)

From the foregoing it is seen that

10



Fix) Flx,, Flx,/z,) Flyx,)

IN
N
~
[

f(gz/g,) flx,)

Therefore,

flx/x,) Flx,) = Flx,/x) Flx)

Also,

flx/z) _ Flx,/x,)
Fx,) Flx,)

For the sake of notation convenience, '""pdf'' will be used to denote
"probability density function' and, similarly, "PDF'" will be used to denote
""probability distribution function'' in the text. In this notation pdf of x =
f(x) and PDF of x = FX(E)' It should be noted that if x) and xp are two
different random vectors then, generally, the pdf of x] =f(x7) is not equal to
the pdf of xp = f(x3), i.e., the notation f(g_cl) and f(x,) does not imply that
f(_}_;l) = f(x,) or that x| = Xp.

2.2.2.5 Statistical Independence

If the pdf of the random vector X, which is composed of subvectors
x1 and X, , can be written as

flx) = Ff(x) flx,)

then the subvectors x3 and x 5, are defined to be ''statistically"
independent., In general, a random vector x is a statistically independent
random vector if all of its components are statistically independent. In
this case f(x) can be written as the product of the n pdfs of the components

11



of

e

flx) = Flx,) Fix,) ... Flx ) ... flx,)

Fx) = 17 £ix,)

I

It should be noted that these definitions differentiate between
statistically independent vectors x; and x 5 and a statistically independent
vector X. Also, in the latter case-it is not necessary that the probability

density functions for the vector components be the same.

2.2.2.6 Mathematical Expectation

Let y = g(x) be a scalar function of the random vector x. If

Dcx)

exists, then the "mathematical expection' of y, denoted by E(y), is defined

as follows.

E(é{) =f?(z) Flz) dx

D(x)

In a similar manner, let y be a set of scalar functions of the random vector
_}S’i.eo, Yl=gl(3_c), Y2=82(X),........-., Ym=gm(£), OI‘X-':g(J_E),

wherez and x can be of dimensions m and n where m #n. If

/," (;)lf'(;)dx

O(x)

exists fori=1, 2, . .. . . m, then

12



£y =f?‘, (x) £(x) dx.

D(x%)

or

£ (g =fg(z) Flx) dx
O(x)

Hereafter "E( )" will denote ''the expectation of” in accordance with the
above definition. It is common practice to refer to E(y) as ''the mean
value'' of y. For the special case of y = x the mean value of X becomes

£l x) ’*"/& flx) dx
Diw
Several basic properties of expectation exist which are noted below.
I. If C is a constant then E{(C) = C.
. If 7’=3’(5) and Z=cM then

£@) = Flcy) = c£ly)

1. If z =i ¢,y then £(xz) =£_ o, £ (y)

=

. It g " & (%) anda g4 =4, (x,) and
if X, and X, are statistically independent vectors
then

£ lle gl y,)] = ce £(4) Ey,)

13



Property IV can be established as follows. Let

F G 4 yd ™ cgg (’-‘;)7,(2.&) =cg (2).
Now E(y) can be written as follows:

[(7) = ck£ [7(Z)J= c./?(;_z) Flx) dx

Ox

= C/f ?1 (-x-l) ?2 (Zz) 70(!,) ’[‘(Ez) dx dEZ
D(x) D(x,)

= Cf 2.(2) Flx) dy, fzz(gr,) Flx,) dz,
O(x,) D(%,)

E(i) = ¢c, E(“)E(fz)

In general, if y = g(x) and if x is composed of two subvectors x,
and x, it is possible to define the expectation of y with respect to x; with
p. assumed constant. That is , if y = g(x) = g(;_c_,,}_{_z ) thengy will vary
randomly even if x, 1is a constant vector, hence, it is meaningful to con-
sider the expectation of y on the condition that either X, OTrX, is a con-
stant vector. Thus, the ""conditional'' expectation of y, given X, =6
denoted by [% /%y ) » is defined as follows.

£ y/x,) =f;(g) Fly, /%) o

O(x,)

where £ ( X, /ZZ ) is the conditional pdf as defined previously. Similarly,

£(y/y,) =/ 2(x) Flx, /n, ) dx,

O(x,)

14



2.2.2.7 Statistical Moments

Let a scalar function of X, & (Z), be defined as follows:

where I =0, 7,2,3, s ++«e+ «+ ++ . - foralli, The general joint
moment of x, m(_1:), of order Lt te A + 4y is defined as

m(r) =/ 2(x)/(x) dz

o)

where the vector r is the set (1, f, 5> <-- s 72, <+, /p ) and the integral
is the multiple integral over the domain of D(x). In a similar manner the
general joint "'central' moment, { (r) is defined as

/é((:) =f‘?(2_:-4_n) flx)dx

D(x)

where m is the vector of joint moments of order 1, i.e.,

O(x ) ocx)

where f(x; ) is the marginal pdf of x; . Alternatively,

o =/£ f(a;)d,g

Ox)

15



In general, statistical moments can be considered as the expectation
of the particular functions of x as defined above, i.e.,

£zf ¢

and

E[ T (x-m)"

. [3
=/

b
~
N
~

f

where

m = £x,)

for £ =/425 .-y 7.

Moments of particular interest are usually the first and second order
joint moments and the second order central moments, (It is seen that the
first order central moments are zero.) The first order joint moments are
simply the mean value of the components of x, i.e., m = E(x) as defined
before. The second order moments consist of

[(z‘.zj) =f(x‘-xd.) fix)dx

D(x)

for L; f =/,2 ,+--- , 7 . Similarly, the second order central
moments are given by

E[(z‘--m‘-)(zl--mj)] =/(J¢L--m‘-)(1€/-—m/-) fly)ax

o(x)

16



for ,(,') . =42_,---3yn . The second order central moments are
usually referred as '"variances' for i = j and ''co-variances' for i # 3.
The co-variances are usually denoted by #"1" where

sy = E [Ore=md ey =]

The variances are denoted by o-f'= TR , l.e.,

The variance for each X,

', can be expressed in terms of its first and
second moment, i.e.,

2 2 2
= - = 2
7. f[z‘. 2 x;m, —m.]—E(z‘.)'m‘-z=m -m?

3

=£x?) -£%xo)

where m,, and My, are the first and second moments of X -
respectively.

A basic property of second central moments is the following inequality.

_o‘-g} é/a‘l £ 5

9
W

or

2
AL

~
~9
3

This inequality can be established in the following manner. Let ;/ C)Zé' J 75//)
be defined as follows:

17



100 +00
fj(x.’.f,z/,) f’(x,zf)dz‘dzi{ z O
-0g -0
where #(x, 'si;‘) is the joint pdf for X, and y;' . Thus,
+00 *oo
(x m) (,a.-m}.)*’
0_2 ] f(z‘.,z/-)dx‘-dx;-

+c0 P

= f/(x m)(z /@-)f(zd,z;-)dx‘-o’x/-

It is apparent that the integral on the left side is simply 2 and that on the right
side is # , hence,

“}

+ a;a; z /a‘}

In a similar manner define

g(x,z) = - [("”’) ‘ (Z‘z?’_”zﬂ £ 0

18



Now, [[i (z‘- , x’- )] o) hence,

*00 #p0

(z%-r Aq.)l (x; -m. )2
_/f [ + —;f___]f(x‘., zf-)'a’x‘. dx;

2 2
_ o g, /
~00 -00 P4
7 00 700

2
< 7o f/‘(z‘--»z)/x,-,,;.)f(;-, %) ofx; o,

g

Thus,

- £ L.
TGt Ay

A basic property of first and second central moments of the scalar
product ¢°x should be noted, where ¢ is a constant vector and x is a
random vector, Let 7=_C_’7}5 then

The second central moment or variance of y becomes

2

1}

f[y-f(y)]z = E[grar - Qr@]z = f[gr(;-'_n)]

£[z":z": X (z, 'm‘-)(z;. -m}-)]

Y]

o2
¢

K4

n
=’E, 2. & & [f(xt. - m‘.)(zi. ~m;-)]

19



Also,

n
?z = Z c‘? a;" * ZZE ¢ ci'/u‘.%-

=1 4'#'%'

2.2.2,8 Co-variance Matrix

The second order central moments for a random vector x of dimension
n comprise a set of n? elements. If these elements are arranged in a

square matrix of order n x n with elements p . - then the resulting
"matrix-of-covariances'’ is usually defined as the co-variance matrix., The
co-variance matrix, [ , for a random vector x can be written in vector

notation as follows.

~J
il
™
—
"
N
e
iy

7] = L]

where

2
The diagonal elements of Iy are the variances o3 of the components

of the random vector x. The trace of the co-variance matrix is the sum of
its diagonal elements, therefore,

n
TRACE ([7) = 2, o* = 0

(=

20



If y=Ax where A is a constant matrix of dim_ensions mxn
then I'y = A I;c AT . This can be shown as follows. If y = Ax then

£(y) =AE(x) = Am

VAR -

A E[(é’ A;_n}(g -A@)r] =£[(4,_2-AI33)(A£ ~/n;n)r]
=£A(g—/_n)(,3-r_n)7}-dr =A£[(;-@)(,§-@)r]ﬂr

r = alla

It should be noted that A is not necessarily square, however, [y is a
square symmetrical matrix of order m.

An important property of the co-variance matrix I'x for any
random vector x is that I'x is a symmetrical positive definite matrix,
i, e., the quadratic form gT I ¢ 1is positive definite for ¢ # 0 . This
can be shown as follows., If yx= _C_T]_E then y is a scalar with variance

oy which is always greater than zero if ¢ #0Q , however, this is a
special case of the matrix A above where A = ¢~ ., Thus,
0;2 = gT /; c > 0

Another property of Fx is that the sum of all its elements is greater
than zero. Simply let ¢ =] , where 1 is a vector which has unity for each
component, i.e.,

[}
=
i

(l, l, ceey l, eoey l)-
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It is noted that if ¢ =1 , then y = Q_T§ = _l_T}_c is simply the sum
of all the components of x. In this case the variance of y, oy , is the
sum of the elements of the co-variance matrix for x > /e s 3

then

2.2.2,9 Correlation Coefficients

For any two components of a random vector a '"correlation coefficient, '
. . , is defined as follows.
Pij

/0__ = _ /‘I‘f = _7/1(‘1_ = —é‘—
I3 . O
R 2R G
It is apparent that pij =1 fori=73 . A basic property of pij is the
following inequality.
-/ g . £ 4/
Fig *

This follows directly from the inequality for second central moments given
above, 1i.e.,

~q
~9
In
&
IN

+
-
3



[

2,2.2.10 Statistical Correlation and Orthogonality

In general, if the correlation coefficient, pij , for two components
of a random vector is non-zero then the two components are referred to as
being statistically correlated. Alternatively, two random variables are
referred to as being incorrelated if their second joint moment is equal to
the product of their first moments, i.e., X4 and X3 are uncorrelated
if

[(z‘-x;-) = [:_(x‘.)[(x,-) = py o7

< F
The co-variance for Xy and xj , 'uij is given by

= £ [zt z;- T x, ~m’- z *+ n} m;.]

A T Ev["’z/]_"f'?’

It is apparent that if f[x;zj')=/7,- #7,, then My =0 and =0 .

<z
Two components of a random vector are referred to as being statis-
tically orthogonal if their second joint moment vanishes, i.e., if

[(Zt.z;.) =0

then x; and x5 are statistically orthogonal.

it should be noted that statistical independence, correlation and
orthogonality are related., That is, if x3 and xj are statistically
independent then they are statistically uncorrelated, however, the converse
does not follow. Also, if X§ and x, are uncorrelated and if at least one
of their first moments vanishes then X4 and x5 are statistically ortho-
gonal,

23



2.2.2.11 Moment Generating Function

Let _._ST_’S denote the scalar product of the vectors s and x, where s
is a non-random vector. The moment generating function, ”7_74 ), of
the random vector x is defined as

m?f(.,s,) =[(c§r‘) =f e?’® flx)dx

D(x)

It is not difficult to show that the joint moments »?(r) of the random vector
x can be determined from mjé (s) by taking appropriate partial derivatives
of mjfx ¢s) with respect to s and evaluating at s = o, i.e.,

AT A 2" 2%
(r) = y Lol mg £ (s)
nE ds" s 35" e TE |§=9

Taking subsequent partials derivatives and setting s = o yields the moments
m(zr) since e° =1

It is easily seen that if the components of x are statistical independent

then the moment generating function for x becomes the product of the moment
generating functions of the components of x, i.e., if

Fix) = IF Fix)
e

then
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where mfg(si) is the moment generating function for Xji . The converse
is also true, i.e,, if the moment generating function of a set of random
variables factors into the product of functions of each random variable then

the random variables are statistically independent. The same holds for
subsets or subvectors of random vectors.

The most important property of the moment generating function for a
random variable is that under rather general conditions the moment
generating function and the probability density function is a unique integral
transform pair. That is, probability density functions usually associated
with '""physical" random phenomena and their moment generating functions
are uniquely related. This is readily illustrated by considering a positive
definite random variable x such that £f(x) =0 for x £ 0 . In this case the
moment generating function for x is equivalent to the Liaplace transform of
f£(x) where s = - (& + Jw) = -s' and s' is the usual variable of
transformation for the Laplace transform. Generally, for values of s for
which the moment generating function converges, the moment generating
function and the probability density function for a random variable are a
unique integral trasnform pair. In general terms, a sufficient condition for
uniqueness is that the probability density function is continuous. An
alternate statement of the uniqueness of moment generating functions and
probability density functions is as follows. Let x and y be two random
variables with probability density functions f(x) and f(y), respectively. If
the moment generating functions for x and y exist for - "< s&+®% and are
equal in this interval then x and y have equal probability density functions
except possibly at points of discontinuities. The convergence, existence and
uniqueness of moment generating functions is discussed in detail in
References 1, 2, 3, and 4.

2.2.2.12 Characteristic Function

The characteristic function is essentially a special case of the moment
generating function wherein the variable of transformation is taken as a
vector of imaginary components, i.e., s = /-1 @ where @ is a vector of
real components wj for i =1, 2, ..., n. Itis noted that the probability
density function and the characteristic function are, essentially, Fourier
transform pairs, except for a reversal of sign in the variable of trans-
formation. In general terms, the moment generating function and character-
istic function are equivalent in statistical analyses. The characteristic
function for a random variable also yields the moments for the random
variable by taking appropriate partial derivatives of the characteristic
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function with respect to @ and evaluating at = 0; ,
however, it should be noted that the imaginary factor V-1' appears in the
results and the partial derivative must be divided by a factor of {-1' raised
to the order of the moment,

It should be noted that in the literature both moment generating
functions and characteristic functions are used separately, i.e., either the
moment generating function or the characteristic function will be used
depending on the particular source.

2.2.2.13 Gaussian and Normal Random Variables

Let x be a random variable whose pdf is given by

v
_ x-m)*
Flx) = ! » © £ 0%
V2 o,
where m and 0_}2( are the mean and variance of x respectively. The

random variable x is referred to as a Gaussian random variable and f(x) is
defined as the Gaussian pdf. The moment generating function for a
Gaussian random variable is given by

=]

myf;(s) —'—/es"f(x)dx

-0

00

= emf S 0 () Ix

~-00

on

sm -zé;[x-m-o;,‘s]

'r‘/€'7;'<7/;2

=00

e dx

+msi} 2 st

m?f;(ﬁ = e x ]

By evaluating the first and second derivatives of mfg]{s) at s = o it is
found that



where m and m, are the first and second moments of x. It follows
that

These results verify that the terms m and 0% in the Gaussian pdf are
actually the mean and variance of x, respectively.

The moment generating function can be differentiated repeatedly to
determine the higher order moments of a Gaussian random variable. The
results are given below

m(r) = £ (x")

24
Ox

XK
- / r-24
" ‘zo: S VYN §Y

where K=r/2 if r is even and K = 3(r-1) if r is odd. If m =0, i.e.,E(x)=0,
then m(r) =0 for odd values of r. In this case the even moments become

24
= £ _ Ty
mr=24) = £(x*) = (24)/ 2347

fork =1, 2, 3,.... Also, it is noted that m(r = 2k) are the central moments
for a Gaussian random variable since the first moment is zero.

Let y be related to the Gaussian random variable x is the following
manner.

X - p?

77
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It is easily seen that E(y) = 0 and O'?r = 1. The random variable vy is a

Gaussian random variable with zero mean value and unity variance. Such a
random variable will be referred to as a ''Normal" random variable. The
higher order moments of y are given by

24, _ (2A)/
£y = 2% 47)

It should be noted that there exists a lack of consistency in the litera-
ture concerning the definition of Gaussian and Normal random variables.
Often x above is referred to as a Normal random variable and y is referred
to as a '""standard'' or '"normalized'" Normal random variable. This termin-
ology appears somewhat redundant and inefficient, thus, the present
definitions are used; i.e., x and y, as defined above, are Gaussian and
Normal random variables, respectively. In this manner the Normal random
variable is a '"normalized' or special Gaussian random variable. The
present definitions appear to be more efficient,

A Gaussian random vector can be defined in the following manner. If
the marginal pdf for each component x; of a random vector x is Gaussian
then the vector x is a Gaussian random vector, i.e., if

2
7 g -m)
202

[A a3
Z
2

Flx;) =

A

for i=1, 2, ...., n, then the random vector x is a Gaussian random
vector, where mi=E(xi) and o3 is the variance of x; . The definition of
a Gaussian random vector refers only to the marginal pdf of each component.
The joint pdf of a Gaussian random vector is given by

1 - (x-m) 7 (x-m)

e =‘W27r)n//;l

where l"}c is the co-variance matrix for X, ]Fxl is the determinant of

I _II_1=E(J_C) and n is the number of components or the dimension of X.
The pdf for a Gaussian random vector is usually referred to as a "multi-
variate'' Gaussian pdf. It is seen that the joint pdf of a Gaussian random
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vector is a function of only the first moments and the second central
moments of all of the components of x, i.e., only the mean values and all
co-variances of the components of x are required to specify a multi-
variate Gaussian pdf. In general, the components of a Gaussian random
vector are correlated. However, it should be noted that if the components
of a Gaussian random vector are uncorrelated then the components are
statistically independent, i.e., for a Gaussian random vector, statistical
independence and '"zero-correlation'' are equivalent, This is not true in
general. The multivariate Gaussian pdf is discussed in further detail in
Appendix B. Therein it is shown that the marginal and conditional pdfs of any
subset of the components of x are also Gaussian pdfs.

It should be noted that the basic properties of the joint Gaussian are
dependent upon the quadratic form of the co-variance matrix Ix . Itis
apparent that the pdf is a function of the quadratic form of Iy -1 ; however,
the properties of this quadratic form are closely related to that of I'x and,
hence, the behavior of the Gaussian pdf can be considered in terms of the
quadratic form of Iy and its relationship to that of I'y ~Ll It should be
noted that Iy and Iy “lare real symmetrical positive definite matrices
which possess the same set of eigenvectors and reciprocal eigenvalues, i.e.,
if I"x = )\g then I.-.x _1¢=)\_lg . In general, the set of eigenvectors for a real
symmetrical matrix forms an orthogonal basis for an n dimensional space,
where n is the order of the matrix. Moreover, the eigenvectors can be
normalized to form an orthonormal basis for the space. Let M be the matrix

of normalized eigenvectors of I , 1.e., -
where ¢ * M —[g,_;,éz;- ”’Q’”J

.. 7 . .
gl fp =l hr £of  and BL=0 for < # 4

Thos, mm =1 ;=M eyt M=

where ./l is a diagonal matrix of the eigenvalues Ay of . e ,Fin=
Ai gi for i = 1, 2, veeees, v It %hould be apparent that l"xM'-‘*[/\g]._, )\2,@2,...
ceeey Ap gn and, hence, MY I M= A . The matrix M is

usually referred to as a ''"modal" matrix. The modal matrix M for I'x is
also an orthogonal matrix which represents a rotation of coordinates for
which scalar products are invariant.

The modal matrix M and the matrix L of eigenvalues for I'x
essentially characterize the behavior of the joint Gaussian pdf. In
general, the set of points in n dimensional space for which a positive
definite quadratic form is constant describes an n dimensional surface
which is defined to be a "hyper-ellipsoid, ' or an ellipse and ellipsoid for
n=2 and 3 . respectively. Thus, the joint Gaussian pdf for x is con-
stant along some hyper-ellipsoidal surface in n dimensional space. The
transforrnation (x - m) = Mz essentially determines the hyper-ellipsoid
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of cons$tant probability density for X. It is apparent that the hyper-
ellipsoid i§ centered at E(x) = m and has principal axes which coincide with
the eigenvectors of fX , since ZI AT zZ is in diagonal form. It is
generally possible to determine the probability that the random vector x
will lie within a hyper-ellipsoid of constant probability density. This is
discussed in further detail in Appendix C.

By definition, a Normal random vector is a random vector with statis-~
tically independent or uncorrelated Normal components, i.e., y is a Normal
random vector if

_._1_ "42%'2
/'(;(‘.)— o e

fori=1, 2, ...., nand if

. Y
£ly) = 7 Flg) = ¢

2.2.3 Several Particular Probability Density and Distribution Functions

There exist several probability density functions which are often used
in statistical analyses. The Gaussian pdf defined above is perhaps the
most often encountered pdf; however, the following ones are also encountered

frequently.
2.2.3.1 Uniform Probability Density Function

The uniform pdf is constant over some interval of x and zero else-

where, 1i.e.,

F (XD

1

;—7 o<<x<,6>

0 elsewhere
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The first moment, or expected value, of x is

° +
E (X) = 77, = Tx £f(xXYd x

“20F -0

EX) = 97 = 12 (@+x)

The second moment of x becomes

+a0
ccxd :fXZ-F(X)dX

— o0

I3
= z fxzdx
-

-
T 3(B-oc)

E(x2) = Yy (B2+f+ec?)

Thus, the variance of x becomes
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ot = E(X%) - E(x?)

X
=V (ﬁz+ac,5’+oc2) - (5’2,+2ac,3 Foc )

=Y | 4(BPrxBrx?) - 57 (gi420cfroc?>
-4

= '//z[ﬁ’z—zxﬂ+acz:l

= tg- 2

(=)
)

It is easy to determine the PDF for x since

Z
Plxez]=f Fix)ax =Flz)

z
=f Flx)dx
(>3

Thus,
Ftz) = 0O for Z *Q
z—
- 2= for a<z< /g
A
=/ for =z Z2 /06

It is noted that both f(x) and F(z) can be writter in convenient form using the
unit step function U(w) defined as follows.
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]
Q

Uw) for W <O
= |/ for w=zO0

Thus,

/
Fla) = oo Ulz-a) Jis-x)

(Z-a)
A=«

Flx) = Uiz-a) U(ps-2) + U (z-4)

2.2.3.,2 Gamma Probability Density Function

The Gamma pdf is defined in terms of two parameters, a and B ,

and is usually denoted by f(x ; ¢, B ) . The definition is
« a7
x e
F/Z; a,,d) = WU(Z}

where U(x) is the unit step function and B>0 and a > <l. The moment
generating function for x is given by m(s) = (1 -8s)~ o+ 1) where

s< 1/B . By differentiating m(s) appropriately and setting s = o the
following moments are found.

E(X) = 7, = (ex+1)

Ecx?)= 7, =,¢?2(oc+/) (oc+2)

The variance for x is determined from

Ecx-m)? =0%= m,-7m,
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Thus,

O'z = 51(“_'_1)

The PDF for x is given as follows:

Z
Plz«z) =ff'(z;o<,/)dx = F(z)
—o"

.,/641*1
. « -%s o

F(z)

]

l/‘ /
[I{z)f — 7% e " dr
ot}
o

Now, if @ is a positive integer, then the PDF for x can be obtained in closed
form. This is done by successively integrating the integral by parts as follows

/ -
I, %) =5; e Tdr

z 14‘ /

7
a-l _r
T +f r e 'dr
3 (a-1)!

o

% .

a!
{ a -4
=-——I'(:§-) e 7+ I¢ a-1, %)
a!
¥

s, 5) < 2-[G) 5 58 £ 2)7)e

Thus, 4 P
-5, =~ | /2
Fiz) = [1-e ‘EZ_/F) 10

In particular, for «¢ =0, 1 and 2
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Plzez] =[/-e —z/"] Uz) a =0
Plzez] =[/~(1+%) e #Utz) x = |
Plzez] = g/- [/+ %8 r 5 (%) e -z/"fU(z) &

1
N

It should be noted that for non-integer values of & the term ! must

be defined such that F(Z —2 ») is unity, therefore,

However, the integral is the Gamma function for argument Y= a1l which
is defined as follows.

[o0]
-/ -T
/7 (7) =fr e Jdr
o
Thus, in general,

al = [(a+])

The following properties of ["'(A) are easily determined. (See Reference 1,)
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) = (2-1)7°/(#-1) 7 =/
rcey) 287
= —— + 7
) = 2! For =+ /ntc?er
) = )
%) =vyr

If a is not an integer then ¢ can be writtenas n+d where nis an
integer and 02 8 €1 , In this manner the integral I(o, Z/8) can be

reduced as follows

-% n / 4+
I(aoz/ﬂ) = -e “‘z-; [Fm (lg) ]*I(é“/, 245)

where

27

I(s-1, %8) = — 7
’ J s

1

A particular case of interest is that of & = 3 for which I(86-1, Z/B) =

(- 2, Z/B) . In this case

z
/
I(-%.7) -.:fo/ raléc_zdz*
AR oDy

By the change of variable 7 = 2 u2 it is found that
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] ~hut
I(-%,%) =2 = *° ou
Y27
o
where £ =+ /2 2/83 . It is noted that since the integral is the
pdf for a Normal random variable, I(-3 2/8) is the probability
that a Normal random variable will lie between * £ , lee.,

I(-%,%) = Plly/« L]

where y is a Normal random variable. The determination of P [|y|l=_¢]
is discussed in Appendix C.

2.2.3.3 Beta Probability Density Function

The Beta pdf is defined in terms of two parameters, « and g8 ,
and is denoted by f(x ; @« , 8) . The definition is

(x+,8+1)! P
Flrja, @) = —L 2501 2)°Ulx) U/ 2)
x! 4!
where - 1< a, 8 . It is noted that if @ = 8= 0 , the Beta pdf is
the Uniform pdf over the interval 0 L x <=1 . It is possible to determine
the rth moment, m. , interms of @ and B , lee.,

/

FcxT) = (:cc:#,ii/)/ jxr+oc (/_X)ﬁdx
¥ , @

_ (et B+l (x+ )] [(x+B+ v #1021 v+ . F
T (x+Brr41) ] (< +r)! FJ X (1-x)"dx

o

3
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(cc B8 +171D 7 (x+1)}

777y =(oc-/-£+r'-f/)./aC_/
Thus,
(x+B+1> 1 (ox+/)]
Ex) =7 = (X+8+2)! oc!
(e +7)
£0x) = (oc +B+2)
P _(ecH+/)(xXx+2)
EX) =Ny 7252y (1 B7E)
The variance becomes
2
O—_x = 7772—777/2,
X oC + 2 . eC#/
T £ +p+2 < +B+3 K +B+2
o2 _(ex+r) (B+7)
. =
(oc +8+2)° (X< +8+3)
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2, 2.4 Functions of Random Variables

In systems performance analysis, the general statistical problem can
be adequately described by the following equation.

& = Fx)

where _F_‘__( ) is a '"non-random' function » X is a random vector, and y

is a random vector as a consequence of x. Two general problems evolvein
order to specify the statistical behavior of y. First, the statistical behavior
of x must be specified, and second, the behavior of y must be determined as
a function of that of x. B

In general, either the probability density function of y or a sufficient
set of moments of y is required. This requirement can be considered as a
transformation of probability density functions or the expectation of functions
of random variables.

2.2.4.1 Transformations of Probability Density Functions

Consider the case wherein y = F(x) possesses a single real-valued
inverse transformation x = f_‘l(x) = G(y) . It is tacitly assumed
that y is of the same dimension as x. In this case, the pdf of y can be
obtained in a manner similar to that of transforming variables in multiple
integrals. The general result is simply

fap = s g ool

where J(G) is the absolute value of the Jacobian of G(y) . The
Jacobian of G(y) is simply the determinant of the matrix of partial
derivatives of G(y) with respect to the components of y, i.e.,

J(G) = DET 3GL

a;tf

If the inverse transformation is multiple-valued then the pdf of y is
given by -
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% .
F(7)=Z-F [’X«‘—'G[(?.)] |J2'(G)|
=1

where (_}J_(I) is the ith solution for the inverse which has a total number
of k solutions, and Ji(G) is the Jacobian for the ith solution. For real
random variables only real solutions of the inverse transformation are
included. The pdf of y can also be written in terms of the Jacobian of F(x)
as follows.

/
£y =2m F[¥=060(42]

Thus, there exists a rather general method of essentially transforming the
joint pdf of x into the joint pdf of y. Usually the dimension of y is less than
that of x, however, the above method can still be used to determine the pdf
of y by defining an augmented vector with y as a subvector such that the

inverse transformation x =G (x R Y;L) gxists, and then determine the
joint pdf of the augmented vector (y , Il) . Now, the pdf of y is simply
the marginal pdf which can be determined from f(y , Il) . The pro-

cedure is as follows for a single-valued inverse.

%rz £ (x)

i
u

s (34
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£33 = fFlr=g (}L:%,)]IJ(Q,

Fog) = £y, 5, d%,

Ocy,)

It is apparent that Fi(x) 1is not unique, but it should be selected on the
basis of convenience in determining x = G(y, y1)and the marginal pdf of y.
Often it is most convenient to define the augmented components y; as simply
equal to x4 fori=ml , m+2 ,....n where m and n are the dimen-

sions of y and x, respectively.

One of the fundamental properties of transformations of pdfs is that
¥, is a function of %3 and Y2 is a function of X and if X
xo, are statistically independent random vectors then ¥; and ¥2 are
statistically independent random vectors. That is, if y; = Fy(x)) and
Yo = Falxp) and £(x3,xp)=f(x1)f(x9 then £(¥3,¥5) = £(x1) £(x2).
be shown in the following manner. Letz contain haY and Y2 as subvectors,

if

RV S
- )

Now, the inverse relationship for x and ¥ becomes

The Jacobian for the relationship y = F(x) is simply the product of
the Jacobians for the relationships ¥, =-5-(-le) and ¥y, = chz)

J(y,X) = J-fll,&;)J-(_Yz,Z{.z)

This follows from the fact that the matrix of partial derivatives between y
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and x can be partioned into two '"non-null" matrices along the diagonal with
all other terms zero. The determinant of such a matrix is simply the pro-
duct of the determinants of the diagonal matrices. Thus,

Flg = T‘w_;z/,_d Flx = e

£l =&, (4,3 . FlXz = G2 (4]
T, , %)l T (&4, , X2

AL = F (G, 42) = Flg) £lgad

The transformation of pdfs is discussed in further detail in References
5, 6, and 7.

2.2.4.2 Expectation of a Function of a Random Variable

Let y = g(x) where x is a random variable and g( ) is a non-
random function. Due to the dependence of y on x, y is also a random
variable. The expectation of y, E(y) , is given by

w fy

where f(y) 1is the pdf of y, which could be obtained from the pdf of x as
indicated above. However, it is not necessary to obtain f£(y) if only E(y)
is required. The definition of expectation applies to any function of the ran-

dom variable x, i.e., if y = g(x) , then
— oo
£ [f{x{l =/; (X) £FXxdx
- 00
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Thus, if the expectation of a function g(x) of a random variable x is
required, it is generally not necessary to determine the pdf of g(x) to obtain
the expectation of g(x) . In the general case if y = g(x) then

EC%) =f 5(_(_@ £(x)dX

DxX)

It should be noted that there exists two definitions for the expectation
of ¥y = E(J_C_) . However, the definitions are consistent since, in general,
the transformation of probability density functions yields equivalent expecta-

-~ = 3
ions, i. €.,

f (%—)d% = FX)aX

This applies for any moment or expectation of y since if y = g(x), then
y" = g"(x) = h(x), ete.

2.2.4.3 Use of the Moment Generating Function

It is often convenient to use the moment generating function or
characteristic function to determine the probability density function and/
or moments of a function of a random variable. That is, if y is a function

of the random variable x, ¥y = F(x), then the moment generating function
of vy can be expressed in terms of the pdf of x as follows.

/»1,7%7/.4)= E[csf‘]=_;‘/.:df' 7"(7)4;{?4

- E[eAF'(ﬂ)]
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oo
W(A) =f e 'dF[’o-f‘('ﬁ)/)ép
-0

The moments of y can be determined as discussed in Section 2.2,2,11, In
order to determine the pdf of y it is essentially necessary to determine a
probability density function which has a moment generating function
corresponding to the one found for y. Usually this is accomplished by simply
recognizing that the form of the moment generating function of y corres-
ponds to one for which the probability density function is known. This is
equivalent to employing moment generating functions and probability
density functions as transform pairs. In case the corresponding probability
density function cannot be recognized then by letting s = + - 1lw the
characteristic function can be obtained which can be "inverted'" by Fourier
transform methods. Also, for positive definite random variables the
Laplace transform can be used. The theory and methods of the Fourier
and Laplace transforms are discussed in detail in References 8, 9, and 10.

2.2.4.4 Sums of Independent Random Variables

Consider the particular case for which y is a linear sum of a set of
statistically independent random variables, i.e.,

7
APV

i=/

where x is a statistically independent random vector as defined in Section
2.2.2.5. The moment generating function for y is given by

27 x

/»17/—7(4_)= E[e“?’]= E[e‘z— —]

,
=fe RE'X pxdd X
o(x)

a
= ¥ fe‘x"-F'(x")dx,-
=1L
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= 77’ £ ¢ 4%0)
ey

= 7 p)
RGeS 4D = ;3; v/ Thad

Now, by setting 8 = +4-1 @ it is seen that the characteristic function
for y is the product of the characteristic functions for the random variables
Xi . Therefore, by using the convolution theorem of Fourier

transforms it is found that the pdf of y is the convolution of the pdfs of the
xi s le €.,

£ (47>= FXDeF ORIk - kFCxp)

where * denotes.the convolution operation.
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2.2.4.5 Functions of Gaussian Random Varisbles

In system performance analyses Gaussian random variables are often
.encountered, and there exist several particular functions of a set of Gaussian
random variables which arise frequently in statistical analyses of random
processes, especially in the problem of estimating the statistical moments
of a Gaussian probability density function from a set of samples. Generally,
the probability density functions of these particular functions are required.
In this section the probability density functions of several vparticular
functions of Gaussian random are discussed which arise in system performance
analyses.

2.2.4.5.1 Linear Functions

Linear functions of Gaussian random vectors are often encountered in
statistical analyses and there exist several fundamental properties of these
functions which are of direct usefulness. Let a random vector y be defined
as follows. -

%-: Ax +¢&

where X 1is a Gaussian random vector, A is & constant matriv, and £ is

a constant vector. 1In this menner y 1is a linear function of X and, in
general, the dimension of y , m ; and that of X , n , can be diff-
erent. A fundamental property of a linear function of a Gaussien random
vector is that the resulting random vector is alsn a Gaussien randiom ventor,
i.e., the property of Gaussianness is inveriant under a linear transformation.
Moreover, the statistical moments of y = A(g +_£) are readily expressed

in terms of those of x , especially the covariance matrix and expectation
of ¥ which specify the pdf of ¥ . This is easily estahlished as
follows. -

Using proverty III of Section 2.2.2.6, it is found that

E(#) = £ CAX) +r£(LD
=AE(x) + C

E(?—) = A ZHy &

where m = E(x) . Also using the results of Section 2.2.2.8 it is
found that

e e
vhere Ix and [y are the covariance matrices of X and y , respec-
tively- Thus, both the expectation and covariance matrix of "y are determiner

directly in terms of those of x and the elements of the linear function
A and ¢ .
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The pdf of y 1is eascily determined by use of the moment gencrating

function. In Appendiiz B it is shown that the moment generating funchtion for
is as follows.

t
a Gaussian random vector 3
7’”7. fe () = _@’701[ L2 * ’/,g,,gr/g,ﬁ,]
The pdf of z 1is given by
~/
FLE)= e 2gp 2 (Z-222>7 /7 (Z-222)
ez 7777 5ozl e

where m,= E(z_) . Now, the moment generating function for y 1is
Aetermined by -

T T
gt (2) =E(e?¥) = £[e* (4 t2)]

b4

Tc T

- c'g c E[e'g Az]
o’ TA

= e'g'[e4 éF(g)d,;

D(x)

2'c
7 ~f
) (27fe)" N fexp[ar/’é ~5(x-m) [] (x-m)]ax
x5 Dy
2 (Amrg)

mghy (o) = szn_l/;!o(f expla™Alx-m)-§(x-m) I (x-m)]dx
%)

The integral can be evaluatea using integral Il(_S_) of Appendix A with
an appropriate definition of variables. The results are as follovs.
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eva [wTChrm +c)+ Y2 277 I A72]

/»1,7,("’ (a)

g ,f” (d) = Lro [4_.7_;_?_:‘6{ + l/.zér/; <]

Therefore, if x 1s a Gaussian random vector and y = Ax +¢ , then
is a Gaussian random vector with :

E(gd) = 2 = A2, +<&

¢
/}_ = A/x AT
Of course, the pdf of y is as follows.

= z - - ralw ol _ .
i ot v R A R

wvhere m 1is the dimension of y

There exist two particular linear functions of interest. First, con-
sider a translation and a rotation of coordinates such that (g - My ) = Mg
wvhere M is the modal matrix for [x as discussed in Bection 2.2.%2 .13. The
vector 2z 1s the set of coordinates of (x - m. ) in the orthono*mﬂ hnsis

determined by the elg,envectors of Fx . Of course, 2 = M-1 (z - mx)"‘ MT (x -
and, hence, E(z) = and I, = MT 1_' M=A . Also, ]"' =A-1 = MTI
end JA| = = M/ /1"//M/ 1"/ . Now, the joint 7 ~~ Z& <n aimply

cxp =12 ( ETMT ™ ma)

F(=) = J—(.zﬂ‘)" 772/

”
= 1 exp -2 2T AL Z2) = T Fx)
J(.! 7)‘5/_/1-/ =/
where
2
- Z;
ZA:

-P(ZL) /—A—L

Thus, the components of 2z , Zi are statistically independent Gaussian
random variables with variance Aj and zero mean. In general, a rotation

of coordinates by M will transform a Gaussian random vector x into a
statistically independent Gaussian random vector. Now, consider a further
transformation, of the random vector z , i.e., let y= Dz , then E(y) =

and 1; = DAD" . Thus, if D is a diagonal matrix with elements equal to
the reciprocal of the square root of the eigenvalues of [ , then DADT =1
Therefore, if X is a Gaussian random vector, then X DMI(x - @)= A(X - my)is
a Normal random vector, i.e., E (x) = 0 and ]" . Thus, it is found that
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a Normal random vector can be obtained from a Gaussian random vector by a
translation and a linear transformation, i.e., if y = A(x - Qx) where A =
then y is a Normal random vector if x is a Gaussian random vector.

DMT,

2.2.4.5.2 Chi Square, X2
Consider a statistically independent Gaussian random vector x . Let
¥ be a Normal random vector defined by
X = ?2NL
71, = —ﬁ.__—ﬂ  for i=1,2, ..., n
A/

Clearly, each comporont of ¥ has unity varian:e and zero mean. Now,
consider the "length" or modulus of the random vector ¥ , X , defined
as follows:

I_?"ﬁ

v , .
XS H Yy
. 2
The quantity A= becomes

X %%Z%

It is apparent that 'X_ is the square of the length or modulus of the
random vector ¥ , which is referred to as "Chi-square."

The moment generating function for 12 is given by

u
tn
"o
*
™
I_él

m?fxz 4)

_ (47 Y)
Matya ) =] e 7 rcxway

D(y)

However, since ¥ is a Normal random vector,
L]

- Yoy T
F(yY) = 72/;76 2(;‘ %)

49



Thus, M3 f2 @) = \/;,/Tn[exp [(A/—’/Z)_?’f]a’%

Dey)
= V?’);jexp— Y2 [C/-Zd/)_?r_}(,]d%
Dcy) o
=7 ’—qexp—//z(/—z¢) ¢
] it

o0
71,- - 2 -
Vi-24) o ¥/20-207

=
s :I'LV(I.-Z‘L) ‘/277\
-0

/

777 L) = —————;
7 Tx2 (r-24) U &< Yz
Tt is seen that mgf a(s) is the same as that for the Gamma pdf of

Snetion 2.2.3.2 with®= n/2-1 and B8 = 2; therefore, the pdf for 'X,2 is the
following pdf which has the parameter n .

ny, -1 2
2 gy = BT o 2 X iy

The pdf f(‘XZ; n) is referred to as the "Chi-square” vdf with 'n  "degrees
of freedom." The first and sccond moments for X can be determined
directly from those given in Section 2.2.3.2 for the Garmma random variable,
i.e., let @= n/2-land B = 2 for the moments given in Section 2.2.3.2. Thus,
it is found that

E(x®) =72
E [(2%%]= 72 (%2+2)

0 = 277

As shown in Section 2.2.3.2, the ndf for the Gamma pdf can be obtained
in closed-form sclution for a equal to a positive integer. Therefore, a
closed-form solution can be obtained for the PDF of 'X2 for an even number
of degrees of freedom, n , i.e., sincea= n/2-1 , =2 (a+ 1), hence,
n is even for &« any positive integer. Thus, for even 10 ,
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L
2 B /! [ - 2/p
P[X = i‘] = /- Z 7 T) c
L=
where O = g . Of course, P['X2 =0] = 0. BSome particular cascs are
given below.
2 - &
P[X ﬁﬂ = /~-& /‘&;OC=0J7?'=24

-2
P[xzfé] = /=(I1+%) e /z;oc=/,77=4—

p[x“”s?] = /-—[/,«-3/&-.«- Ve ('5'/2)2] c_z/z;oc=,2_, =6

If n is an odd integer then & is not an integer since @ = n/2-1
however, « can be written as k‘% where k = % (n -3) . Hence, k is
an integer for odd n and the results given in Section 2.2.3.2 can be used
for odd n . Thus, it is found that

L _inu _ &g MRim-3D / K+Ya

- e =

= [7_2 = E] = 1/-2/7"/. (=4 dau Z 7K +3/2 (.,2)
I~ A =0

for n >3 andz 20 and where £ = +¥Z . Of course, P[X = z] = 0 for
z < (Q . For the special case of n =3 it is found that
£z _, / 2\%= .2/
-1/ 4L L (= 2
]

£ -2/
vz [ e an ~ vTE JE TR
o

-Yadl 4, _ VZE e-z/z]

1/
Plx2z2])-= .‘([ = € —

o

for 5 = 0 and zero otherwise. It is noted that this result is the same as
that obtained in Appendix C for a three-dimensional Gaussian random vector.
Tt is also noted that P[X2 = z]= P[(X s+ /2] , or P[Xs/]=

P[XR = £2] ; therefore, the PDF for % , rather than 42 , is
easily determined as follows.
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for n even and for n odd

£ - 17 //2(/)1.—3) / Y 2 46,«- ¥
P [‘ﬁ <.l ]: \/2/7_[ C—//'zadl.(, - L Z Z m (7 )
=0

for £ 20 , and for £ < 0, P[X = £]=0

A basic property of the Chi-square random variable is that the sum of
Chi-square random variables also has a Chi-square pdf. That is, let y Dbe
a Normal random vector which contains two Normal random subvectors ¥, » and

Yo of dimensions ny and ny , respectively. TIn this manner

e wT o = T 4
AKE2= g7 4= G142 f2 ¥z
2
2z = AT+ %.z‘,z
T 2

where 'X% =7 X and X% = ,Y,g Yo . The random variables 'X]?: and xg
are statistically independent, hence, the moment generating function for thei
sum is the product of their moment generating functions. Also, the pdfs

of X and ‘x% are Chi-square with ny and. ny degrees of freedom, res-
pectively; hence,

Mﬁ(ﬂ?*'ti)(d) = MZL‘Z;‘ (a) * /rn»fzé_‘i la)

z z
(/-2 ° (/-24) 7722

Z Z

= —
C1-2.2)71 Y2 (/-2ed R
where n=n; +ng . Of course, the resulting moment generating function

is that for X2 with n degrees of freedom. In general, any sum of Chi-
square random variables has a Chi-square pdf with degrees of freedom equal
to the sum of the degrees of freedom of each term in the sum,i.e., if
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4 2
2% =30 #2234l g,
=l

L=y

where each 'X? is a Chi-square random variable with, ny degrees of free-
dom then X< is™a Chi-square random variable with n = ny degrees of freedom.
"

However, it is important to note that each 'X% = .'ZiT yi /must be statistically
v

2
independent.

The foregoing can be used to determine the pdf and PDF for the modulus
of a statistically independent Gaussian random vector with components of
equal variances and zero mean values. Let x be a Gaussian random vector
with joint pdf as follows.

7 - x7x
(%) = e 27*
7 VZr o=
The modulus of the random vector X is +4[xIJ_c . Also, it is seen that

XTx = 42 = rix?

The pdf of v2 can be obtained from the pdf of xz by a simple transforma-
tion of pdfs. That is, since

¢‘02 = (’/r.’l)u‘z Q'{‘__‘Z = /o=

v
it follows that

(2c3) 3

T2 - 1720 +%rz2)

£ 2 = 2
(= 2 I VE U2

(,y...‘l)’u?-f e_//z (1&%-2) T v
T /7Y )NZ >

flw2) =

Using the relationship v = +‘\I§Tﬁ§ = +'\J V2 the pdf of v 1is easily deter-
mined to be as follows.

a7’ - Y2 (#2/r2)
T/ () NZ

FC) = 2 U )
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The PDF% for v2 and V can be determined from those for X2 and X
given above. That is,

Pl*2=2]= Plx?e 2/0 3]

Plasel] =P ([x= /]
Tt is noted that for ol = 1, v =% ; therefore, the pdf of X becomes

x ! a2
7R/ 2ONZ”

Fferd) = 2 U

Consider the sum of Xl and Xg where 'Xi2 and X,% are Chi~square random
variables with n; and np, degrees of freedom, respectively, as before. That
PRSI ]

is, let u=% +%, wvhere % =+ and Ko = +A|22! vo! .
Note that u # +4l7(?r = +'!Xf + X‘g . The pdf of @ is not as easy to deter-
mine as that for y & = %X§ +X% . However, define v as %, to obtain
the following relationships.

M
-1 714

Since 'Xl and ‘X,2 are statistically independsnt, the joint pdf of xl and
X2 is given by

i

FLX,, X3) £ (2D F(#2)

4 x>’ 742712—/ - e -l KR
7%, /2) /(7 /2 )0/ Z

T IU (%)

where r =mn + np and ‘X2 = X% + ‘)(‘-2 . The Jacobian of the transformation
hetween u , v andX , X5 is simply 1, hence, the joint pdf of y and
v becomes f(u, v) =f(X; =u-v) f(Xy = v), thus

4 - Pl P (eI

Flw, )=
/772, /2) (72 J2 Y=
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Wow, the pdf of u =Xl +X2is the marginal »df of u and v ,i.e.,

Flu=¥etad= [ Fluv>dw
-2

Lo 9’1 './ 7‘1-_/
=4 f (-1 v .
s 7 j2D/7 (71,7/2.):9 A

~va w2 +ru2]

e Utlee-vodv

”, -/ 72;"/
v

- -]
F(u='l,+74.z)=4f (s .
2. 72D 2R Z

.
2
o V2P 2T 2D st

The PDF for u is obtained by the following expression.

Z
Pl =2]= f—/—‘(,a,)d.a.

2o
=[ 7 4(4&4*)”’ ! 7!
“ (7, /20/7(72, /2D Z

2
2l A=A *207) dJ L

where z 2 0 and Plu < 0] = 0

2.2.k.5.3 Chi Square Ratio, Variance Ratio

Let Y3 and yo be two statistically independent Normal random
vectors of dimensions m and n , respectively. Consider two random
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variables u and v  which are defined as follows:

It is apparent that u and Vv are Chi-square random T e
and n degrees of freedom, respectively. Consider the ratio of y to y B
i.e., let W Dbe given by

2

AL ¥,
W= = =  —
2

A <>

The random variable w  is the ratio of two Chi-square random variables,

and the pdf of w can be obtained from the joint pdf of y and v . Since
X1 and Yo are statistically independent the joint pdf of uw and v is
simply the product of the pdfs of x% and x% , hence,

tf2 Crme-2) /2 (31-2) _
/2 Cre—-2 . e 172 (et 49D

Flae, ¥ = T 550y T712)(VE) TR

Ute)TU ¢t

The joint pdf of w and V can be obtained by the transformation of variables
w = u/v and V = V with an inverse transformation of uv=wv and v=v with
a Jacobian of V ; hence,

nr VRLT-2RD 0y, 0y REPT-2D
T2y (/2D (/T ) e

/2 Cwv+v)

+ (w, v) = v U (w T

Y2 (P -2) 1/R2(P7 +71-2)
v - R Lw?)) VU tw)T >

Flw,v) = f7(""ZL)/7{7Z¢L)[,ﬁEﬁ)”7:’;

Now f(w)is the marginal pdf of f (w, v) , i.e.,

or <[ RO Doy
£ (w) = J7C?12) [P /2) (/I )T

a0
f v Va7t H-2) e falew+1) Vd v']
(-

56



¥a (79¢-2)
fwy: ¥ T ) 55T f‘zr le = VB gom
/2 /[7¢2/2XC/E )"
where « =3 (m + n) and B =(2/w+ 1). The integral is seen_ to be

of the form of the Gamma function discussed in Section 2.2.3.2; hence,

-
f V"“lc-vbdr = k-8 = 7>

Thus, the pdf of W becomes

- 2 (?r1e2) Y2 (7722 )
fFlw) = < ) w r——re == ) U ()
[(?2m/a) [7(n/2(JVZD W+l
/—r 25 +71 ) ,/a (72- 2) ’
= ¢ ud TUcw)

I Cmmia>/7(7)2)  (7+w) 7R(a)

The pdf of W can be generalized with respect to an arbitrary positive
definite constant k , i.e., let r = kw vherek >0 . The pdf of r is
easily determined from the pdf of w since w=l/k r with a Jacobian of 1/k ,

hence,

22227 -771/2 Y2 (79e-2)
F L) Vi i il S 4 — . T
T C/2) [7(21/2) () + Ajp) 7R (2r7)
where
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A special case of k 1is the ratio of n to m which is usually denoted as
the random variable F, i.e., :

. Ym L} _ P ¥E _ 7,
Y27 L E 77 Y% 27

The ndf of F 1is easily determined, i.e.,

IS ) g \ W2 RCPPR)
£
[C?/2) (Pt /2) 724) (7 # 221)21 ) /2 (PX+2) T LA

FIF) =

The random variable F is referred to as the "variance ratio" since u/m and
v/n " are of the form of sample variances which are often used to estimate

variances. The PDF of F is used in statistical tests of equality of variances
and it is tabulated extensively. Some useful tables are given in Reference

5, 11 and 12.

It should be noted that the PDF of F can be used to determine the PDF
of r since they are related by a constant, i.e.

X _7_2_)?1,2
2= A Ay T o7 4é'<'777 15':

a=A L k= A A
vhere k' = m/n k . Thus,
Plrez]l=PlF= L& 2

Therefore, the PDF of F can be used to determine the PDF of the following
ratio.

A5 )
= LT k= B 7k Xa® 7 v

wvhere x; and x, are statistically independent Gaussion random variables
with zero mean vaiues and each component with equal variances of (T% and.

75 for x1 and XD s respectively.

Consider 2 random variable g which is defined in terms of w  =es
follows.
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g = - /__ _ L
A VI T R T2

X3
The pdf of Qq ca& be determined from the pdf of W with the inverse trans-
formation w = q — - 1 with the Jacobian of - q~ , hence,
- J, -2
£egy = LA (@l -1)"2TE e >
f /"(7’!/.2)/-'(77/.2) f-//a (Pt rPH) f_z ’

[7 (237 (- gy RON-D)  lalt-2)
= U)ad (/2 )

U‘(jr. ) U(/-f)

Thus, the random variable gq has

0 | Beta probability density function with
parameters =3 n -1 and B=

m -1 as defined in Section 2.2.3.3.

2.2.4.5.4 Student's,t

Let X2 be a Chi-square random variable and let y be a Normal
random variable which is statistically independent of 7@. The joint pdf
of ¥ and %2 Dbecomes

Flyg, 82 = £l F(ED

Thus, defining u = %2

3

/ > 2 ,« (”!/.2-1) - L
Fleo )= ———e 727 - e P4 Tree)
Va7 7(72/2) V&
where n is the number of degrees of freedom for tx2 . Consider the

random variable v vwhich is defined as follows

-tk
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The pdf of v can be determined from the joint pdf of ¥ and u in theé
following manner. The joint pdf of V and U can be determined by a trans-
formation of variables Vv = y/ Ju and u =u with an inverse transformatior
of y=vyu  and v=u with Jacobian i , hence,

/ R Pe)  (?YzZ /) -//2 ¢
Fla,wd = e 2
=7 o) 4 VZ Uteed
(w2 RE77?

2 (¥s1) e
N TE C U ce)

Now, the pdf of v is the marginal pdf of v and u , hence,

Ford = f F s a0y e
2 *® Y2L22-1) /2 (2 /) ae
* P W!(ﬂ/.z) e d;f‘
/ /“"7, va(n-1) o=@ rOT
[/ 2DOVT J
_ / 2 - - 743
T U ns2dITT [T < €7
Y/
() - 2 (2+1)
FV = (e /2)J7 [/+ ]
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The pdf of w= kv is easily determined, i.e.,

- lzl?C #7)
/7 (%0 [/*.%;]

y,
fwr = e T o

For the special case of k = Vi the random variable w 1s referred to
as "Student's" +t random variable which is defined as follows.

‘e

The pdf of t becomes

2 = L2(2+1)

/ [ 2REL) [/*3
»nr [7(n/a2) b4

£ (¢) =

The PDF of t is used in statistical tests of estimating and it is tabu-
lated extensively. Some useful tables are given in references 5, 6 and 12.

It should be noted that the PDF of t can be used to determine the
PDF of w since they are related by a constant, i.e.,

-8 L -

-A /
= - — ¢ =4
w= _& Ny —

where k = k/ Jo .  Thus,

Plw=z]=pP[C= Yk Z]
The PDF of ' can be used to determine the PDF for the following ratio.

= £ _ _ _Z£ . __
wE e - ~ v

where X is a statistically independent Gaussian Iéandom vector with zero

mean value and each component of equal variance o In this manner,

k =0~t and k' =1 , hence,

Plwez] = Plt = /707 2]

61"



2.2.4.5.5 Quadratic Form of a Gaussian Random Vector

Let y be a quadratic form of the random vector x , i.e.,

s - x’ex

where Q is a positive definite symmetrical matrix.

Of course, ¥
scalar random variable.

The moment generating function for ¥

7

is a
is given by

]

ele~#]

I

£le ,L(erX)]

/”I—W(»d/)

D(X)

Now, if x 1is a Gaussian random vector the pdf of x

is as follows.
f(X) = 24 exp — /2 (14.-&)7'/;" (X -2722)
= NEXTEEY~L
where f} is the covariance matrix for x and m = E(x) For this
case mgfy (s) becomes

3 1
7 el > 7 7L f ez [0(2,43] dx
DX

where

G (X a)= 4 KT@xD>- /a (x-22)7177 (x- 720

Now, sirce

XTQx= (X-22)"QCx~2ad)+ 227 QX ~ 2287 Q22

the function  G(x, s)  becomes

G(X,ad=e [Reza"@Q(z-2 + 2 221 e - (K- 22007 A(X-7%)]
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where A=-5sQ+ 3 /; . Thus,

cn('mrozaof .
PRgLL(L) = P [2.a227Q (X-20)-(x-2207A (k-
R4 Wam) (24220 (X-20)-(x-207A (k- p0 ) dx

The integral can be evaluated using Il(g) of Appendix A with an
appropriate definition of terms. The results are as follows.

/
77 (Z) = 7 2z 7 -/
17!—7 T e (@ 227R 2z ra* @R Q2]

The matrix A can be written in the following form.

A= lar;” (£-2af} Q)

Hence, the determinant and inverse of A become

W = 2N - r2er] el

A= alrzRae @I =28F

where B = (I -2s [ ) Therefore,

(a) = ! = [ e227 @ (zrra B @)21n)
7. e=alid 7

In general, the pdf of y is difficult to obtain and usually only
approximate and limiting forms can be obtained for the pdf of y . However,
it is possible to obtain the statistical moments of ¥y from mgfy(s) .
This is accomplished by taking the appropriate partial derivatives with
respect to s and evaluating at s =0 as discussed previously. It
is necessary to obtain'expressions for the terms of mgfy(s) for which
the derivatives can be determined. It is convenient to use the logarithm

of mgfy(s) , i.e.,

ln [rgfepiad) =12 Ln[\r-Ra @) e [mTe (Tria 8700 24)
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It is noted that

Therefore,

= [’”’7'7‘?‘@]{ = g fpiad

© £ 2 [rgrree]

a =0 »0

However

,,,7747,(4=0)=/

Yerwce

&

2&4: [wpﬁf—?w}] |=£ Lre [%w—)]

=20
Thus,
ot

e & Lrpfpel |

- L )]

= & e,

2 7 /7 ]

E(/f) = 222" Q2az~ '/,'Lfd, L []I_ 5’44’00 +de/— [4’ 2 RB K@K e

d=0

It should be noted that in taking the derivative of the last term the matrix
B is a function of s

In a similar manner, it is found that the variance of y can be deter-
mined directly from the second derivative of {,[mgfy(s)] , i.e.,
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_Z*

= Zm[moW(xb)]: ﬁ { /'»%24_) .ﬁ_ [/»foz)]}

= oty e [ e g ppiad)t -
o L cce LAY 4 4 J

*- ,»,77,7__/(4) f‘;z [4«72(,7 )]

Evaluating at 8§ =0 , it is found that

‘[d_ £ [Mﬁﬁ&)] 4»7,747. /4,)

C & ]

-

= 5(72) —EZK?J

Therefore,

q

5(77) - £ (7—)

A Al |

- Y2 Zgz_ o[ lr-2e /5] |*-..

9
Ny
0

=0
rp i [ 22 RERE 22:/]'
42 A=0
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The derivatives of the two terms involving 8 can be determined in the
following manner. The determinant of (I - 28 /% Q)  can be expressed as
a polynomial in ® by using the orthogonal transformation defined by the
modal matrix for [% Q , i.e., let M Dbe the matrix of normalized eigen-
vectors of (1 Q . In this manner,

MTROM = A

Mm =T
imi = /
where ~A.  is a diagonal matrix of the eigenvalues of [X Q . Now, the

determinant of the product of a set of matrices is equal to the product of
the determinants of the matrices in the set, hence,

M7 (£ -Ra /% @IM| = IMTIHL-2.2 /70|l

However, since |M| = |M"l =1, it follows that

lz - 2e 7 @I 7 (Z-ra 7@ D) ml

IM” Zm - 2a 1747 @ml

lz ~2af’@l  =lz -2a_4]
Now, the matrix (I - 2sA) is a diagonal matrix, therefore,
»?
\Z-2e @l = 7 (/-2a;)
;=)

where Aj are the eigenvalues of [ Q for i=1,2, ..., n. Thus,

0

lullz-2eiel)= £La [z’/: ¢ r-2a ], )]

I

"
E Ao (/=R A;)

L=/
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It becomes apparent +that

%
ir-ge F@l)|= 23 ),
. Aallz-ael ]a-o LZ=/
2
d_d._;z Lz - Fe 4 ol] L; -4 Z;/lg

Now, the modal matrix M

can be used to determine the derivative of the
matrix B as needed. That is,

g = (r-2ae/i@)”

3-,-: (.Z'—de/xvg)

MTB_/M--MT(I—;A‘/;Q)M
= (T -XRa A )
Thus,
>M7
B_I = M(I"gﬂ-/'—
—/

The matrix (I -2s.A)

hence, (I - 2s/A.)-1

is diagonal with elements 1l =28 A\
Therefore,

i D
is diagonal with elements (1 ~ 2s /\i)'l

é—, V-4 = 27
4=0

PA a

22 Z = Bmaim
=0
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In this manner it is found that

= O
a =0

ﬁ (2222 @ 8 /i @z22]

= 2T QR P 4t

L =0

A [L2mTos R @2z]
Hda®

Using the foregoing results the following is obtained for the first and se-
cond moments of  y

22
E(y> = zm" @z +E AL

=y

g = ai A2 14 2TQ I P2
by

cogre emroRenm » 2RA + [arem oS AT
' =7 L=/

For the special case of m = Q , these results become

i=/
2 z
L=/
R OWND IS
5(7“ ‘( /l")ﬁz Aé
=/ “=/
It is noted that the sum of the eigenvalues of [x Q is equal to
the "trace" of [% Q which is the sum of the diagonal elements of % Q
Similarly, the sum of the squares of the eigenvalues of Bc Q is the
trace of the square of /% Q . Thus, the eigenvalues of [T, Q are
not needed to define the first and second moments of - y, i.e., these moments
can be expressed if the traces of f% Q and (/;'[ Q)2 as follows.
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£ly) = m Qm + TR/ @]

o =2TRUZ RV 4m"@f; @n

where TR[ ] is the trace of the matrix within the brackets, which is
the sum of the diagonal elements of the matrix.

2.2.5 Probability Bounds

The probability density function f(z) of a random vector Yy con-
tains the complete information required to specify the probability that X
will 1lie in some region of space which defines the domain of ¥ . However,
quite often the explicit form of f(x) is not known or it is not easily
determined. On the other hand, the lower order moments of ¥ are known
they are easily determined. In such cases it is convenient to use the avail-
able moments of y to specify domains of ¥ and associated probabilities.
Of course, explicit statements are not to be expected since the lower order
moments do not contain all of the information concerning the probability of
occurrence of Y . On the other hand, useful bounds for the probability
of occurrence can be obtained in terms of the moments of ¥y . Several such
bounds are given below.

2.2.5.1 Tchebycheff Inequality

Let X be a random variable with prog?bility density function f(x) .
The second central moment, or variance, OZX ,cﬁ’ x 1is given by

oo
0_2 2
x =] (X=-77)" £ (X)) dx
-~ @
where m = first moment of X , or m = E(x)

The integral can be divided into three ranges as follows.
-
2 & 2 M+ o +
g, = - 2
p (X-"fxrydx+ | (x-m) fX)dyx + (X-7%F xrd x

-© 7N o
M+

vhere a > C.
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By neélecting the second integral, the following inequality is obtained.

Mn-oc + o0
2
0;%2 =| x-mr*fFexydx + | x-m)% fFexordx.
-o@ 77+ oc
It is easily seen that (x - m)2 2 a? for ~ v £4x <m -~

and m+a £ x «+w ; therefore,

on-oc + @
0, = e fx)ax + £ (x)dx

MN+ec

The two integrals within the brackets yield the probability that x dges

not lie in the interval from m - « to m+ o or that (x - m)* =& ,
i.e.,
P [(X m)* = o ] [f(x)dx -I/’f(x)dx
7N+ o
Thus,
2
Oy 3
— > P[(X~777)2 2 oc]
oc 2
where a >0 . This inequality essentially bounds the probability in

terms of the second central moment. Obviously, the inequality can be

written in several equivalent forms; i.e., let a =k Oy , then

/
7z 7 P[(X—777)2_>_ ﬁzorj]

Also,

/-
47 7 PlUvml = 4]
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It is apparent that
_ 2 2 2 2
- [(X 77m° < A o-x] + PE’(” 05 é.(X-??'J)ZJ =/
therefore,
2 2
P [(X"772) < A 6}2] > /- L
‘éz

Also’

Plix-ml < ko]> /- 5

2.2.5.2 An Inequality for a Positive Random Variable

Let X Dbe a random variable with probability density function ¥}x)

such that
f(x) =0 for x & ©

The random variable X is non-negative or positive semi-definite. Now, the

first moment of x , E(x) , is given by

+ 00
Ex) =] XFx)dx
° oc + 00
=] XfX)dx + | Xfx)dx
[+ oC

where o2 0 By neglecting the first integral, the following inequality

is obtained.

+ oo
E(x) = Xfex)ydx

&
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Now, x>0 for the range from o to <+ ; thus,
+ oo

) > o< | Fordx

oc

The integral is simply the probability that x will lie in the interval
from ¢ to + o ; thus,

20 - p e

The inequality essentially bounds the probability that X will evceed «

in terms of the first moment of X , where x20 . Of course, &
can be taken as k F(x) in which case the following inequality is
obtained.

_]e’_ > P[xz,kE(x)]

vhere f(x) =0 for x< 0
2.2.5.3 Frechet Inequality

The Tchebycheff inequality determines a probability bound for an inter-
val which is symmetrical placed about the first moment of a random variable.
It is possible to determine a sinilar bound for an interval which is not
symmetrical about the first moment. Consider tl'ée interval 1 from m - kox
to m + kpoy  where k3, koZ O and m and O% are the mean and variance
for the random varisble x . The length £ and center ¢ of the interval
I are given by

L
Z = (z@.*/kz) Oy

m'/'»éz O_X "7777"/‘)/ O‘X

[\l

o)

m-’él 0-;( + //Zae

o)
\

7+ l/z (’kZ"/k,)O_x
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Ix~-c)> % ¢ or, equivalently,

b\ ,
2 )

Now, if =z 1lies outside of I, then
Cz ) %

Let y = (x - c)2 Z (0 . Since y is a positive random varisble, the pre-

vious inegquality shows that
2 E
» [y > %) =) i
+okz

Tz O‘x
2
Equivalently,

P[(X—,c)z >("(’/_2*_2)20}2] E([:;x;c;) =

However, the mean of y 1is given by

E(;c-)

Elex-€2Y

=€ [(x-m - Y2 (ky-4,) 0')(]2

=€ [ox-7)"- (x-7m) (o) 0 +[*f2“é')z<rx"]
ot )

ep = [ (B52) |

Therefore,

2 708 A
oot o) ] el

&2

is a random variable and a and n

2.5.4 Bienayme Inequality

Let y=/x - 3" vhere x
are constants. Clearly, y20 ; thus,

P(7_>.oc) < E;Z)
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It follows that

P [lx-a,j"zx] < M

2.2.5.5 The Law of Large Numbers

Let x Dbe a statistically independent random vector such that

and

Consider the arithmeti~ mean, s , of the sum of the components of x ,

i.e.,

n
4 7 /
.S = — - S
n 4 X N Z XL
L=y
It follows that
n
/ i}
E(5) = — my

St
™
t
N
o
1
™
~
n
<
—
[
1
M~
(‘qb.

S 2
7 L =1
. 2 . .
If the variance of 8 , Og , tends to zero as n becomes indefinitely
large, then it can be shown that s will approach E(s) . More explicitly,
if

. 77
z&/rn _/2 Z 0-.2 = O
77—~00 77 - “

L =/
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then there exists an n such that

Plls-£r5)] < €] ~1-7

where € and are arbitrary positive numbers which determine a suitable
n . This result is referred to as the "Law of Large Numbers."

The foregoing can be established in the following manner. Using the
Tchebycheff inequality it follows that

/
P Is-&(s)) < £ 03] > /- g3
By letting k° = "% it is found that
!
Y/
pls-es)l <y oy ~ -7

i
Thus, for all n= N (€,7%)  such that €=z 7, "C, or 61’7-;' 2z og
it follows that t

P ﬂs—s(s)l< e > -7

The bound for mn, N(e , 7%) is determined by the smallest n such
that n
2 2 / 2
= P p—
€ 724 = 0s = 72 0L
L=l

The condition that

7700 | 7% | =o0
/
assures that for each € and there exists a number N(€ s "]f) such
that for n < N(€, 'qr) then

P []S-E(S)] < e] >1-7
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The bound for N can be written as

: / LI
V) = eam ). %
L=l
o g R . . .
if Og uniformly converges to zero for increasing n .

A particular case of interest is that for which each Xy has the same
mean and variance; i.e.,

E(xi) =m

E[(XL— 777)2]= o2

2

In this case E(s) =m and o = 3ing and

P lls-mi<el > -7

2 2
where € 7Z =z Y2 0%or
o2
627&
This particular case i§ referred to as the "Weak" Law of Large Numbers,

which implies that the conditions stated are sufficient but not necessary
for convergence.

n=

2.2.6 Limiting Theorems

Some of the most useful results of mathematical considerations of proba-
bility consist of "limiting" theorems which, in general terms, describe the
behavior of a random variable that is the sum of a large number of statistically
independent random variables. Alternatively, limiting theorems can be con-
sidered to be a study of the properties of the results of the repeated
convolution of probability density functions. It is somewhat remarkable that
under rather general conditions the repeated convolution of arbitrary proba-
bility density functions approaches the Gaussian probability density function
in the limit. The result is often applied 1In various statistical analyses;
however, there exist certain requirements of conditions of wvalidity for these
basic results. The most basic and useful limiting theorems are discussed in
this section for the primary purpose of understanding the conditions of
validity and the useful applications of the results.

2.2.6.1 Central Limit Theorem
One of the most basie results of mathematical considerations of proba-

bility is the "central limit theorem" which states, in general terms, that
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the sum of n statistically independent random variables, with identical
probability density functions, approaches a Gaussian random variable as n

hecomes larga, An a2lternate statement ig +h:+ the nnnn:fnﬂ nnnvn1n+1nn of

becomes large., An alt tatemen f an

arbitrary probablllty density function approaches a Gauss:.an probability
density function in the limit. An explicit formulation of the theorem is
given below.

let y = lTX where ¥ is a statistically independent random vector,
i.eo,
n
= 2 X.
- (3
? =1
and

7TF(x)

&=/

Flx)

Further, let the probability density function for each X; Dbe the same, but
arbitrary; i.e., the random vector can be considered as a oet of independent
samples taken from a random process with an arbitrary probability density
function. It follows that the mean and variance of each X; are equal; i.e.,
E(X;)=m and E(X; - my )2 = ¢2, for all i. Thus, the mean and variance of
y become

nk(x)

[(y)

2 z
na

\

o
’
Now, consider a random variable Z defined by

LB = /7_/.- |:7 -[(#):l

It is apparent that E(Z) = 0 and ¢,° = ¢° ; i.e., Z has zero mean and
variance equal to that of X.

The moment-generating function for Z becomes
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mphte) = £[e*]

= E:cxppl;/,T/ Z"?u‘ -m):”

(=
n /
= E{Z exp A«[ﬁ &3 -m):”
Since the X. are statistically independent, the moment generating function

for 7 can be expressed as the nth power of the moment generating function
of 1/.//? (X; - m); 1i.e.,

/
/77?7‘2‘, () =f:‘7=,7:' cxp,a__[ﬁ (z‘--m)]ff(_z_:)d_z_:

D(x)

2 {

/
=f¢-/ lcxpa /—_,(x —m)] F(z‘-)f dx

D(x)
* o
- 7 [ /
= iy exps = (x‘--m):l flx;) dx;

n

;7=7,' l:m?;f (oz)]

”Q f"z (4)

where

/ngf(/d) fepr{—(z m)] Flx;) dx;

It is seen that mgf;(4) is the moment generating function for iy (X - m)
which is the same for each 1j; thus,

n
m?f; () = ‘_m; £ (s )]
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Since the probability density function £(X;) is arbitrary, mgf.(#) is
. s . i. .
not explicitly knownj however, mgfi(é) can be expanded in a power series in
terms of the central moments of Xj, i.e.,’'

/ r
” (x‘.-m):l

= Al

)
= n,.él:'[(x‘.-m)r:l

/
M T % A

where 4, is the rth central moment of X;, and mj, is the rth moment of
yvw (X, = m) . Of course, 4 =0 and 4, = 02, Expanding mfg; (@) in
a power séries for expal /A (X; ~m) 1 , it is found that

R r
g £ (a) =£[/+ Z(xm) + 2 (g m) b e D ()T h ]

/r 2n rin

P 47
= + + — -
I +.om,, 7 Mzt t " my t..

]

I+0+A20-2+ 4.& +
2n 77 (ri)n™ "7

/ ,4'80'2 4 rﬁ
ﬁ()=P+—( ... = r- .”ﬂ
g% r\ 2 ")
Thus,
- _/ 4% »dr/ur "
<[ (G s )
/ n
M;é(;) = [/*',I—U(n)]
where 2202 P r/dr :I
u(n)-—[z *...*Wt..
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It is seen that as n becomes large, u(n) approaches a finite limit and
for sufficiently large n, 1/n u(n) becomes arbitrarily small. Thus, as n
becomes large, mgf;(4) can be expanded in a convergent power series as
follows.

2n) *. .

4
_ (n-1) ! wu(n)
”73";("’) = l:/fa(n) * .2’.:;7 U .t n,lﬂ(n_,g)!n,g_/ ? ]

Since

n! _ (n-1)(n-2)...(n- %)
o Z(h £ 1 n-voo "

n->o0 n

= Jomt 77.. (n-¢)

nvo =/ n

Z# .énw'(/- ﬁi)

(=l noewn

P=rmrn)
ya e S — =
i ntin-4)! g

It follows that

n >0

20
Lim [}q?f'daﬁ =c %

Therefore, as n increases without bound, the moment generating function
of Z approaches that for a Gaussian random variable with zero mean value and
variance equal to o2, Alternatively, for sufficiently large n the proba-
bility density function for Z approaches the Gaussian density function with
zero mean and variance ¢ 2.

From the foregoing it can be concluded that the arithmetic mean of a suf-
ficiently large set of statistically independent samples of a random variable
will be distributed as a Gaussian random variable in the limit. That is, let

S = - =_’ _/Zn: /
n # n - ;- X ~n s‘

=/

It follows that

and
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Furthermore, if n 1is sufficiently large, then S will be approximately
Gaussianj i.e.,, the probability that S will deviate from the mean value of
X can be determined by considering the behavior of a Gaussian random variable
for sufficiently large n, This represents an application of the central
limit theorem.

2.2.6,2 Local Limit Theorem

One of the most useful results of mathematical probability is often
referred to as the "local 1limit" theorem. The results of this theorem estab-
lish a convenient limiting expression for the probability density function of
an independent trials process, This result has application in statistical
methods of hypothesis testing. The conditions of validity of the theorem
should be understood; thus, the basis of the theorem is considered below.

Consider a random process which has m distinct possibilities, or pos-
sible outcomes, each with probability pi for i =1, 2, « ¢« ¢« , m. Moreover,
let the process be independent in trials such that in n trials, the proba-
bility of a particular sequence of outsomes is given by

n
P(n) = }z; ;0(6‘_1)

where p(sj, ) denotes the probability of the particular outcome in the £ th
element of the sequence. In a total of n trials the possible outcomes can
be repeated and, in general, each outcome can occur k; times In n trials;
hence, P(n) can be written as follows.

P) = 7 %
where
m m
Z '{ =n and Z 2 =/
i=/ i=/

The set of m possible outcomes is referred to as being mutually exclusive
and exhaustive. Now, for a given set of k, there exists a total of N(k)
sequences of outcomes where k = (kl, ko, ete k ). Thus, the probability
of a particular k in n trials can be written as

m 4
p(ﬂ, ‘!) =/{/(£) LZ7/-' ﬂ ¢

The number N(k) is the number of ways in which n elements can be arranged
into m ordered sets with kj elements in the ith set for -1 =1, 2, ¢ * * m.
From combinational analysis it is known that
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N(E) = ——
T (4:)!
AT
Thus,
/ »
pnd) = —"2 g LA

m =/ ¢
7 (%)

‘-

It is apparent that p(n, k) 1is the probability density function for the
random vector k, 1i.e., the probability of occurrence of a particular k in
n trials is p(n, k). It should be noted that since p; is the probability
of occurrence of the ith outcome, the expected number of occurrences of the

ith outcome is npi, il.e.y

El(4) = np

(3

In general, p(n, k) is difficult to evaluate; however, if each k; is
sufficiently large, then the factorials in p(n, k) can be accurately approxi-
mated by use of Striling's formula for factorials, i.e., (see Reference 1)

x! =/a+!) =/ Zra (x®) ¥

In this manner, it is found that

pin b= A (g ‘)
4

77 L
o~ [-/ i‘-
- m p
o |7 2]
=
82
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/A (/+ £-rm )
o=/ ”ﬂ'

wl | m
m(2nw) * (‘/’ -/n;o‘.)

f(ﬂl ./_é) ~

Taking the natural logarithm of the numerator, it is found that

Ln[ﬁz’(n 1{_'2’1'2’)'(4;%)] __:_i (4 +%)Ln (/ *—'{,,;:ﬂ)

’=/

Now, -if I(ki - npi)/npi ] <1 , then

4 R e “ N (1) (A -np\é
Ln[?r(/* ;“4) J:—E({,_}I_)Z (4. /ﬂ;)
i3/ np inl /.a, / ” Q.

2 () &
B R menn )
"=/ ,‘( cal

. l'fl m _ ; /'fl
(./) [(1€ n;q.) (np. %)
PR = L (nglé ¢
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o l; -”ﬂ' -(-‘-*4) o ——/ i (4_” 24)
LH[F (/+ ] 2 »
=l rn5 =/ b
Therefore,
 dng ) L Aenm)”
7'7’—,,(/'* m ) = e Y ny:
i=/ ng
Also, » R
m(,:"’ )
3-‘%?-1 nr
pln, 4) = —t
(27) 2 T /ng
‘l
Alternatively,
p(ﬂl J) = Kc-'ér
where
K = 7
m-i m
(2x) % TT /ng
=/
2

This result is often referred to as the "local limit" theorem. _It is impor-
tant to note that p(n, k) generally decreases as (ki - npi) increases and
the maximum probability occurs for k; = np; = E(k;) for all” i. This
implies that in a large number of trials the number of occurrences of each
possibility should equal the expected number np; with maximum probability;
i.e.y as k; deviates from the expected number of occurrences np; then

p(n, k) decreases.
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It is important to note the conditions of validity of the above expres-
sion for p(n, k) for finite n. Two fundamental approximations are made

which require that each k; be "suffieciently" large and that lk - npjj <
np; = E(k:), Usually, if le = 20. +then Q+1~n11na'c formila is nul‘te accurate.

The value of n should be aéequately large such that ki - npj| < np;
for k; & 20 for all ij; hence, the value of n will depend upon pj.
Generally, the expression for p(n, k) 1s adequately accurate in the neigh-
borhood of E(kj) if n 1is such that E(k;) is large for all i.

2.2,6.,3 DeMoivre-Laplace Theorem

A special case of an independent trials process is that of two possible
outcomes which is usually referred to as a Bernoulli trials process. For this
case the local limit theorem shows that the probability density function
approaches that for a Gaussian random variable. This result was first estab-
lished by DeMoivre for the special case of equal procbabilities and was later
generalized by Laplacej; hence, the name of the theorem. This theorem can be
congidered as a special case of the more general local limit theorem as shown
below.

For the special case of two possible outcomes the results of Section

2.,2.6.2 become
4t d o=
BT P =/

o _ /
K"/Zvrw/ﬂzﬂ A V2w n B R

(A - n;o,)z . (%, —n;q,)'z
” 2, hp,

/
7 = (£ - nx,
np P <

|z
nd) = ———= @ 72
PimAL T Jaror

where 0% = npyp, and X = (k; - np). Thus, in the limit as n becomes
large, k; has a Gaussian pdf with mean value np; and variance npypg .
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Now, it can be shown that these two moments are those for k ; for any n

LY

'?‘/ /] '4&41 . n_/ -1

2y £) S ITAT P VTS YR
2ln,4) = c; ﬂ";o,”"' = p,(£)

n
where k =k, and Ck is the binomial coefficient, i.e.,

n

(a*j)” =Z C.‘n a‘l}
#-0

n-4

The moment generating function for k becomes

mofy 6) = £ [e*]

n

=Z e“;o,,(%)

A£=0

n
n n-l
=2, ¢ (e‘;o,)",g
Lo
’”f{l("’) = (e +;g)"
Thus,
£d) =nlemr 5] ge* | = g
A=0
86
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Similarly,
E(#) = nin-1) g° +n 7

oi = £EHA)-ER) = npg

These results have a special and important significance. Let vy be defined
as follows:

£-py
A

i

X
N

Since E(k) = np, and U?<2 = np,Pz » the random variable y has zero mean
value and unity variance., Moreover, using the foregoing results, in the limit
as n increases the pdf of y approaches that for a normal random variable;
il.e.,

F(;) = L e-z’f/

for sufficiently large n. Now define a random variable Z: for the Jth
trial of a Bernoulli trials process such that if the outcomé with probability
Py ocecurs, them Z: = 13 otherwise, Zj = 0, Further, define u as the
sum of Zj for n “trials; i.e.,

It follows that

f/d n
Elul = E(Zz,.) =S Fiz)
Lt ]
F
L
2 _ z
T - Z 0_,
=2/
where 0‘/_.‘2 = variance of .Zj. However, u is simply kj hence,
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From the last expression y can be considered as a normalized sum of the
statistically independent random variables - B(Z3) According to the
foregoing, this sum approaches a normal random varlabie in terms of its proba-
bility density function for large n. This observation leads to the conjecture
that, in general, a sum of statistical independent random variables will
approach a Gaussian random variable in probability density function if each

of the contributions to the sum of each random variable is uniformly small.
This limiting property is considered further in the following section.
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2.2.6.4 Lindeberg Condition, Liapounov's Theorem

The previous 14m'\+1nﬂ Yo
i€ previous L11mivTlng Tneo

independent random variables approach a Gaussian random variable in the limit.

The central limit theorem and the DeMoivre-Laplace theorem are special cases of
this property. It is of general interest and practical importance to consider

the general conditions for which the sum of statistically independent random

variables approach a Gaussian random variable. This problem was first investi-

gated by Laplace and the first regorous proof of the sufficiency of certain
conditions was given by Liapounov. However, a more general set of sufficient
conditions was established by Lindeberg, which includes the conditions consid-
ered by Liapunov; thus, the results of Liapounov can be obtained from the
results of Lindeberg. In the interest of generality, the results of Lindeberg
are considered first., These results are generally referred to as the Lindeberg
condition. which 1s shown to be sufficient for a sum of statistically independ-
ent random variables to approach a Gaussian random variable in the limit. This
condition is discussed below.

+
3
[(}

The Lindeberg condition can be stated in the following forms. Let X be a
statistically independent random vector whose_components have arbitrary prob—
ability density functions, and let m; and oy be the mean and variance of
each component of X , i.e.,

7 £ (xe)

i

of = £ (e -mi)”

-~

Consider a random variable u which is the sum of the components of Z, 1.

i
Z =Z F-
£ =1

where n is the dimension of X and Z . Clearly

Define a random vector Z with each component Zj =Xj -my , i.e., Z2=X-m.
e

£Ww) =0

7

« =25 0%

Define a random variable v as follows:

7 T
= — 1 Z
r/a 0. &

It is apparent that E (v) =0 and(rs =1,

The Lindeberg condition is as follows:
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Lem (L )3 [u-mPfor gre=0

7 —e- 00 0-71 .
< fxy - mif > T op

where o, =0, and 7> 0 . The notation 0'2 is used for 0'2 to deriote the
dependence on n . If this limit is satisfied for a random vector X, then X
is said to satisfy the Lindeberg condition. The following interpretation of
the Lindeberg condition should be considered. It is noted that

f(x,,—, -m.-,)zf(u)dx,; = (YO_n)sz(XL)dXL

Xi -Inpf > 705 /Xi-nul =70
& Ao,

The integral on the right is simply the probability that in - mi] will
exceed 7oy, , thus,

z
P[/Xx',—m;/ >T‘0‘n] < ;z;h?f()é;, - m,;)z'f()é‘;) ax.
/)C_",-?’hb/’ T'O_h

Now, the probability that the maximum of |JX; = my] for all

¢ i exceeds To,
is bounded by the sum of P[JX; - milzq-g-n] , i.e.,

77
P 1Ax. | Xe- rnelz 707 & Z Al/xi -mi)> 705 ]
<=1

where MAX:.L IX:.L - m.ll is taken over all i . Therefore,

2] 2
Al | xi -z 7 o )= T‘/—}n_i Z (i -me) f o) dxe
< Xe-mil>7 Op
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The Lindeberg condition requires that the right-hand member approach zero as n
increases without bound, hence, the Lindeberg condition is equivalent to the
following

£ ol maxe % - ez 7 0n) =0

DN ——— D

Thus, the Lindeberg condition requires that each random variable of the random
vector X be uniformly small. In somewhat equivalent terms, the Lindeberg
condition requires that none of the components of X ‘'"domlnate" in a sum of
the components. Alternatively, if the limit of 0y, exists for n—>w«, then
the Lindeberg condition is not satisfied. Thus, a requirement for the Linde-
berg condition is as follows:

Lim o, =% (Does not exist)

n—>

It is possible to show that if the random vector X satisfies the Lindeberg
condition, then the probability density function of the sum v approaches
that for a Normal random variable. The essential steps in this proof are
discussed below. The discussion given below is rather heuristic; a detailed
rigorous proof is given in Reference 2.

The sum v can be written as follows

vV = / 7 TV 2 .
_0-77 zg—z_—z v:‘/
L =)
where p
o
for i=1, 2, ..., n. It is important to note that v is a random variable

with zero mean value and unity variance, i.e.,
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E(V) =0
E(/U"‘z)= O_: =2

It should also be noted that if the random vector X satisfies the Lindeberg
condition, then the random vector V satisfies the following condition.

. 77
14/7"’2 f/zrjf(m)d'v’p =0

N —e00 e
‘b—l //'U:‘,I77’

Now, the random vector V is statistically independent, hence, the moment
generating function of v is given by

m?fm(»d/) = £ [84’”]5"0722/ 777;‘& (2)

where mgfiQ¢) is the moment generating function of wv; for 1i=1, 2, ..., n.
It is noted that mgfiGd) is dependent upon n since vy = o,Z; . Also, it
is noted that

E(ve) =0

2 2 . O‘;',Z’
Limm EWD)= Lim O, = Lim =z =9
77— O 71—~ 0c0 —o n

Thus, as n increases without bound, the variance of each v; approaches

zero, and the probability density function of wvj, f(vi), approaches a positive
"pulse" of unit area and infinitesimal width, i.e., as n->c, f(vi) approaches
the unit impulse function which is often used in engineering analysis. Now,

the Fourier transform of an infinitesimally narrow unit area pulse at the
origin approaches unity, hence, it is possible to find a sufficiently large n
such that

|772fe car-2]< 22
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By taking the logarithm of mgf,(4) it is found that

L =1
n
= L;—,[] +7?7I?-fj, (A«)—.z]
7 I--) (‘I)* )
PIPNE N
Ly [7?7;7‘” (4) } = Z[Wvgﬂ; (4) —z]+ R,

where

7? oo _ -é /b
Kn :,«;:Z/;z% [777;76; (L) -2 }

It is apparent that Rn is bounded as follows

l/?n‘ sz;z V2 ‘m;ﬂ; (4) -1 ’

<=/

2
ﬁéi [7m afe r4)—1|
ls, z- ]m;ﬁo(@)-ﬂ—

\ﬁ,, ‘ é;t/ [7777@ (A,)—z|z

It is noted that since E(vi) =0,

Tmafe(a) -1 - f[e"””'-z —Awg]

By letting @ = -l@® = Jw it is seen that
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thus,
77 ) 2
E Im;\ﬁ; ) —1'5 _ZE(W;‘)
. 2
<=/ <=l

IA
|
™
™
g
3
e—

< wz

” £ 7 £(»9)
2
Mafi (L)-1| = “”
2.7 :

By multiplying both sides by the maximum of ImgfiQ4) - l| , it is found that

wz
2

|/P77|£ NAX ‘77/;;&; (L) -2

Since mgfi(A) approaches unity as n increases without bound, it follows
that

77— o
Therefore,
Lt ' -
o lh['???;fm-(«]w)] =_f?i7z [?'hfﬂ;(.fur)-f]

< =1

Now, the summation can be written as follows,
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77 27 ' .
- Z[m;ﬂ; ) —1] =z [l: e’ 1o g ]

< =/ S =/

77 .
=Z [(e,Jw”tz - Ja/‘/ar,o)f(/v;-,) qdre

where

Therefore,

L7 - w? | Lim
77--m{ ‘”[”ﬁfmm‘”]} e T w7
However,

Iﬁvlﬁi[fﬁzﬂiffw‘)dw’ +f(wng;)"f (i) o’nr:i/]

< i 1< € Sl > €
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W .
-—-/—— Z jwipl’ f (wi)dwe + Z f(ﬂa;)z Flvi) dws

<=l lil<€ Y w1 >€
7 ) . :
g—/“'/Jer wlt flvi)d vy @ i f”’l f (we) dws
6 2P <= 1> €
k )
P / 2 . y
ol st 22 I [ i
=1 Il > €

where € 1is an arbitrary positive number. Now, by virtue of the Lindeberg
conditiocn, the second term approaches zero for any arbitrarily small e as
n increases without limit, therefore,

Lim
72 ——w00 f?’) =0
Thus,
l“é777‘ Jwr) w?
(Jwr = - T
Alternatively,

L

nZlo [rgpe |- e %

The terms of the right-hand sides are simply the moment generating function of
a Normal random variable where @ = Jw , hence, the sum v approaches a
Normal random variable as n increases without limit.

Liapounov established the foregoing results under a different condition
which was that
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Lim Z 1248
2.,.; [lx“__ 44 =0

where. 8 > 0. To prove that this condition is also sufficient for the above
results, it is only necessary to show that if this condition holds, then the
Lindeberg condition holds. This is easily done by the following inequalities

77

Z f -mu)? f (X)) dxe =

=l > T 0y

7 2+5
< 0F (Tt E f/xj_ me) T f(xe)dxe =

/X.l/ 77’)4//>/ a—h

=< (;ég) 6:7;3?‘ .}{URXP 77Lu/24’$ f‘(ku.) dxX.

/ / <X
=—'——§ E [Xe-mne)???
78 oy, 278 /X< /

“~ =/

Thus, if the condition of Liapounov is satisfied, then the Lindeberg condition
is satisfied. A direct proof of the Liapounov theorem is given in Reference L.
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2.2.7 Determination of Statistical Properties

In the design and performance analysis of Navigation and Guidance systems
it is necessary to have available certain knowledge of .the statistical proper-
ties of random variables, which are usually error sources that adversely affect
system performance, The statistical oproperties of such error sources are
known, then it is generally possible to define "optimum" estimation and control
procedures which mitigate the adverse effects of these error sources. Also,
in order to assess final system performance, it is necessary to know the statis-
tical properties of all factors which influence system behavior. Usually,
optimum navigation and guidance procedures are defined with the tacit assump-
tion that all statistical properties which affect the procedures are known.

A similar situation often exists in system performance analyses. That is,
optimum procedures are usually defined on the basis of certain information
being available concerning statistical properties of error sources, also,
system performance statements are usually made assuming statistical properties
of error sources. Of course, the usefulness and validity of such efforts and
results is dependent upon the possibility of ultimately obtaining the required
information of statistical properties. However, it is generally necessary to
either verify or determine the required statistical properties from a set of
observations of error sources or, generally, from sets of samples of random
processes. In general, the required statistical properties cannot be determined
explicitly, rather, they must be "estimated" from a set of samples of random
variables. Therefore, it becomes necessary to consider the methods of estima-
tion of statistical properties in both the design and performance analysis of
Navigation and Guidance systems.

Generally, there exists two major aspects of the problem of "determining"
or, actually, estimating statistical properties of a random variable which are:
(1) estimating the required set of statistical moments which specify the proba-~
bility density function; and (2) the determination of the particular type of
probability density function for the random variable. Usually, the type of
probability density function is assumed and the statistical moments which
specify the probability density function are estimated from a set of samples
of the random variable. It becomes apparent that two areas of concern exist
which are: (1) the accuracy of estimating statistical moments from sample sets;
and (2) the validity of assumptions concerning the types of probability density
functions. These two aspects of determining statistical properties are
considered below.

The problem of estimating statistical properties can be considered as
equivalent to the problem of parameter estimation which has been considered in
detail in a previous monograph concerning state estimation (see Reference 15).
However, there exists a fundamental difference between the two problems which
essentially changes the approach. 1In the problem of parameter estimation it is
assumed that the randomness of the observation process is specified statistically
which represents a'priori information that is available for estimation of the
parameters of interest. In the present situation, it is this a'priori informa-
tion which is being sought and there is usually no a'priori information avail-
able; that is, the randomness which is usually assumed known must now be
determined. It should be pointed out that in parameter estimation as considered
previously, the parameters were usually physically identifiable '"state" quan-
tities such as position and velocity deviations of a spacecraft from a reference
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trajectory. Optimum estimation procedures for these state parameters require
the use of the statistical properties of the observation uncertainty or random
errors and, also, those of the parameters being estimated. The required sta-
tistical properties are usually the statistical moments of various error
sources. For example, in the case of Gaussian error sources, the mean vector
and covariance matrix are used in the optimum state parameter estimation pro-
cedure. These statistical parameters, i.e., means and covariances of error
sources, must be determined ultimately from sample data sets of various error
sources. That is, the statistical properties of the randomness of the state
observation process must be determined to perform an optimum estimation of the
state parameters, also, those of the state parameters must be determined.

It should be apparent that there exists a salient distinction between
state parameter estimation and the problem of estimating statistical properties
of a random process or variable. In the latter, a sufficient set of moments is
usually sought, or estimates of, which specifies the random process. 1In the
present discussions, parameters usually refer to statistical moments. For-
tunately, most random processes are specified by only first and second statis-
tical moments, e.g., Gaussian random variables, and the problem is often
reduced to estimating these two moments.

2.2.7.1 Estimation of Statistical Moments

The most often encountered problem in the estimation of statistical
moments is that of estimating the first moments and second central moments of
a Jjoint Gaussian probability density function; i.e., the elements of the mean
vector and the covariance matrix must be determined in order to specify the
probability density function. In general, there exists n random variables
and n sets of samples are available to estimate the required parameters or
moments. The general problem can be considered in terms of a fundamemtal prob-
lem which involves only two random variables. It should be noted that in cases
of non-Gaussian random variables, the first and second statistical moments are
usually sufficient to specify probability density functions. That is, in the
case of non-Gaussian random variables, the corresponding probability density
functions are explicit functions of parameters which are not necessarily the
first and second moments of the random variables; however, the first and second
moments are unique explicit functions of the parameters which specify the
probability density function and, hence, these moments implicitly specify the
probability density functions. It can be stated that, generally, the first
and second statistical moments are adequate to specify known probability density
functions of practical interest. Usually, the first moments and second central
moments are adequate.

Let x and y be two random variables with the following moments which
are assumed to be a sufficient set of parameters to specify the joint pdf of x
and y ; e.g., in the case of Gaussian random variables.

FrX) = 7y

E'C?J 777;#
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£(y - my)* = O
f[(x-my)(;u-M;D] ke

E(X-y)?
2

The correlation coefficient, , for the random variables is defined as

Ay

e
Feg Fa‘%

In general terms, x and y denote two random variables that are gener-
ated from two random processes which have marginal probability density functions
f(x) and f(y), respectively. The means and variances of x and y specify
f(x) and f(y), respectively. If x and y are statistically independent
random variables, then Mxy = 0 and the joint pdf of x and y is simply
£(x) f(y). In this case, the moments m, m,, of and o2 specify f(x, y).
However, in the more general case the two first moments” and the three second-
central moments are required to specify f(x, y). Generally, the problem of
determining these statistical moments, or estimating these parameters, is con-
sidered in terms of two problems being: (1) the analysis of mean and variance;
and (2) the analysis of correlation. It is generally assumed that sets of
sample data are available from which the required moments can be estimated.

The sets of sample data for the random variables will be denoted by the vectors
x and y, respectively, of dimensions n, where n 1s the number of samples. There
exist two basic problems in estimating statistical moments which concern: (1)
the functions of x and y to be used as estimates for the required moments; and
(2) an assessment of the accuracy of the estimates.

In general, the estimates of the required moments are denoted by ﬁx(g),
02(x), ﬁ&(z) ,f}%(x) and #ky(ﬁ’ y) , which denote that the estimates are
functions of the sample sets x and y. Often, the functional dependence of the

estimates and the sample sets is understood and it is not explicitly denoted.
It is important to note that the estimates for the required moments are func-
tions of random variables and, hence, the estimates are random variables.
There exist two basic criteria for the estimates which are: (1) the expected
value of an estimate for a moment should be equal to the moment, e.g.,
E{My(x)] = my , etc.; and (2) the statistical variation of the estimates from
the moments should decrease as the sample set size increases. These criteria
are usually referred to as: (1) unbiasness and (2) consistency. The basic
concern in assessing the accuracy of the estimates is to determine or assure,
if possible, that the error in an estimate will be limited to a prescribed
value with a certain probability. This usually requires consistency in terms
of the estimate variance decreasing uniformly as sample size increases. This
is considered in further detail in the following sections.
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2.2.7.1.1 Statistical Analysis of Mean and Variance

Let the random vector x denote a set of n samples from a random process
with probability density function f(x) which has mean and variance as follows:

+00

£(x) T/'f (X)dx =

- 0o

+00

£ (x-m)?] =f(x—m)'2f(z)dz = g%

Also, let s and A2 denote the sample mean and variance as defined below:

L=/
2 / : /
N = —Z (x,-5)*== (v’
n n - -
=/
where V =x - s 1 . It is seen that there exists two means and variances

which refer to the random process x and the random sample x. It is necessary
to differentiate between these two means and variances. By convention m and ¢
are usually referred to as the '"population" mean and variance, respectively,
whereas s and A% are referred to as the Sample mean and variance, respectively.
The essential difference is that s and A" are random variables, whereas m and
0% are not.

Consider the expected value of the sample mean s, i,e.,
/ n
£(s) = n—z Elx) = m
i=/

Thus, the expected value of the sample mean is equal to the expected value of
X, or the population mean, m. On this basis, the sample mean 1s used as an

estimate for the mean value of x or the population mean, i.e., ™= s where m
denotes an estimate of m, the expected value of x. Now consider the variance

of s 2 i.e,
> T8 e s = £ [ts-m?]

i}

£ [ (275 - 0 9)?]

L[ 17 cx-m 1))

N
1l
I~ 3
-
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where [; is the covariance matrix for the sample set x. The variance of s,

oé, represents a measure of the accuracy of the sample mean_s as an estimate

for the population mean m. It is important to note that 0§ is the variance
of the sample mean s and not the population variance o¢<. If th sample set
is statistical independent, or uncorrelated, then 1° [} 1 =no®, where o
is the population variance, and

2

Os =5 ©%

8]\

In this case, it is apparent that

Z.L?‘n O_Sz =0
7~

Thus, for an uncorrelated sample set x the sample mean is a consistent estimate
for the population mean, m. It should be noted that an uncorrelated sample set
is a sufficient condition for the consistency of s as an estimate for m. The
necessary condition is that, uniformly,

—

Limm (0'52) = [im (;’)z zT/'; g)' =0
Newco

N—e0

From the foregoing, it becomes apparent that if s is a consistent estimate
for m, then it is possible to determine a sufficiently large n, number of samples,
such that the sample mean is as close to the population mean as desired with a
specified probability. This follows directly from the "law of large numbers"
a5 discussed previously. Consider the uncorrelated sample set such that
o5 =(l/nﬁ72 . From the weak law of large numbers, it follows that

Freos [I5- < €] > -7

where 522{ Z(l/nﬁr2 . Thus, for a given € and 7 if the number of samples n
is given by
772 _ai.

EZQ

then |s — m|< € with probability 1 - m . It is apparent that if the popula-
tion variance, 02, is known, then the required sample size n could be directly
determined without knowledge of the particular probability density function f(x).
However, in the general case, the population variance o©“ is not known and it
must also be estimated from the sample set x, which is considered below. None-
theless, without explicity knowledge of the probability density function of x,
f(x), or the population variance o<, it is known that the sample mean s is an
unbiased estimate of the population mean m, and if 1/n< lT I, 1 converges
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uniformly to zero for increasing n then s is a consistent estimate for m, which
is true for an uncorrelated sample set.

In a similar manner, consider the expected value of A2, i.e.,

E(8%) =2 £(yTY)

- 7_; 5[(3—5!)7(5‘51)]

[}

/
nEl(x-m2rm1-52)(X-mz+mz-57)]

1l

é,_c{[(;c 1) -ts-r 2] [ex-m 1) - (s-mm 1]}

)
- ;5[{z-mzf_s—m1) - 2(5-m) (¥ -m1)is (5?4 ]

g[i (Xy -2 - 2(5-m) (NS -nm)+n (S-M)Z]

= ;/7 5[2 (X, -7)% - 77(5—7?7)2‘]

2_ ! T
E(N)= 0= = 2" 7% 4

Now, if the sample set is uncorrelated, then 1 T]" 1= no-2 and

¥~

E(f) = -~ o*
»

/ 2
=() -~

( 7_,)cr

E(R) = (177“/} o ¥

2
It is seen that E( A2) is not equal to 0-2, i.,e., A? is a biased estimate of O ;
however,
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Thus, 9‘2 is an unbiased estimate for &< , wWhere
»
0-—2 - 2
77 /A

-s)

=/
The consistency of 62 can be considered in terms of the variance of A2, 0-2(A2),
which is given by

o%(4?) =¢ [Az - E(AZ)]Z
£, (Wy) -]
;

LEWTVIE-E *

For a statistically independent sample set, it can be shown after considerable
algebraic manipulation, that (see References 1 and 6)

_ 27
(ZEZ IR

oM

,—;3[(7»2—27”/)/% - (nZ%-4nr3) o-#]

o - (%)[(77-/) Ay ~(7-3) 0,4J

where p; is the fourth central moment of x, i.e.,

My = E[(y,- 77—;)"]

Thus,

2,22y _ 72
O (0 ¢) _(—7‘)-/)2 O‘z'[d)
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=71/T._,)[[7)-/)/{44 -(n-3) 0‘4—]

SIS AT

It is apparent that if the sample set is statistically independent then

Lo . z('a_€)= 0

7Y — o0

32 is a consistent estimate for o2,

In this case
Th . £ A2 2(A2Y . . .

e variance o s O gr ) is a measure of the accuracy in estimating the
population variance @< by #<. The law of large numbers can be applied to show
that a sufficiently large sample size, n, can be found such that the error in
estimating the population variance o“,can be bounded with a specified proba-
bility. Of course, the variance of & is needed which is found to be a func-
tion of the higher-order central moment, w,, of the population, or of the
probability density function f(x). However, if the basic assumption that the
mean and variance of x are sufficient to specify f(x), then the higher-order
central moment K is a function of the lower-order moments. For example,
consider the case of a Gaussian random variable. In this case, the higher-
order central moments are all expressible in terms of the second central moment
i.e., for f(x) a Gaussian probability density function

’

Ao
- ; 0%
Mew = (28) ! o,

where “2k is the (2k) th central moment. It follows that

Ay =0 %
Aty 70 %

Using these results o2(#2) becomes

02(02) = —’[30"4— 7723 0'¢J

77 =7
Lo =3
7 (77—/
R

-7/
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2,42 2 2,2
o“(0’) = (77_/)(0_)

Althougho'2 is unknown, it becomes possible to determine the variance of the
ratio of 82 to 0'2, i.e.,

~2 / 2 A
2 a - 2
g l:?—‘l:l o) o (07

2 A
ol el R 2
oz 71-1
It becomes apparent that bg maklng n sufficiently large crzf“zﬂrz] can be made
arbitrarily small. Now, o [ is, in turn, a direct measure of the error

made in estimating o=, i.e., lete —'\2 -0< and let the relative error be £ ﬁS
i.e.,

Thus,

€

o

=

z=o.z

The variance of the relative error is the same as crzﬁ}zﬁrz] , l.e.,
A2
2

o (%)=02[j0 —]
g a
7 A
= o_z o2
o2

5 -1

Thus, the varlatlon of §2/oc% about 1 is the same as the variation of € /p-?
about O.

2.2.7.1.2 Statistical Analysis of Correlation

Let x and y be two random variables with covariance K xy given as follows:

/‘47(.? = E{[Y— -£ (XJ]I:7 -[(?)]}
=£(x;¢) —E(X)E(;.)
ﬂpf = 777);? - 2Ny 7’)7;_
If x and ¥y are statistically independent, then my, = my, m, and = 0, however,
K. =0 does not imply statistical independence in the general case. If ”)cy =0

the random variables x and y are statistically uncorrelated random variables.
The correlation coefficient, Py s is defined as
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Fx—y :g-ﬂx_);?

¢
It has been shown that '

1= fry =

The correlation coefficient is a direct measure of the correlation between x and
¥, however, p is not a direct measure of statistical .independence of x and y.
Nonetheless, P is often used as a measure of dependence between x and y. This
is motivated by the following considerations.

Let y = ¥ ax, where a is a positive constant, then MUy, =T a 0%,(72 = 2202
and =1 . Thus, if one random variable is completely determlned by another
then their correlation coefficient is I 1. Moreover, if two random variables
are statistically indepependent then their correlation coefficient is zero. It
should be noted that the correlation coefficient is a direct measure of statis-
tical correlation and only an indirect measure of statistically independence.
However, the correlation coefficient can be considered a direct measure of
functional dependence of two random variables.

On the other hand, if the fwo random variables are Gaussian, then zero
correlation and statistical independence are equivalent. That is, if x and y
are two Gaussian random variables and if # = £_. = 0, then x and y are statis-
tically independent. In the case of Gaussian random variables an analysis of
correlation is sufficient to measure both functional dependence and statistical
independence, This can be seen from the joint probability density function for
two Gaussian random variables,

In addition to the foregoing, if the conditional exrectation of y, or x,
fgiven x,or y, is independent of x, or y, respectively, then Hyy = xy = 0. This
can be shown as follows. Let E(y/x) =, then,

/7 f(”a,f/x)df‘/f %)

- f/T\')/fﬂx’f)df

Thus,

L’f(x)i/ F(X,q4)d
ST
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and
C./‘f(X)dX i// f(l,;)d;d)(:é‘/’)

Therefore, C = E(y). Using this result M,y becomes

i \

ellx e[y -e

11}

Ay

= £(Y4) -CECX)

- {

&
4
=/ Xy O roxdiy = £

-0 -0

+ 0 + o0
_ 'f(X,Z) _
_/x,c(x-)/-i £ 00 o’za’;« LE(X)

f/x Fx) E(7/X)a’x ~CE(x)

+ A

=c:/x fFX)IX -¢ £(%)

-0

1

CECK) -CE(X)

n
Q

Ay

The foregoing is used as a basis for correlation analysis. In general,

the conditional expectation of y, or x, given x, or y, as a function of x, or ¥,
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respectively, is referred to as the "regression" curve of y, or x, on x, ory,
respectively. More explicitly, E(x/y) as a function of y is referred to as

the regression curve of x on y. Similarly, E(y/x)as a function of x is referred
to as the regression curve of y on x.

A special situation arises if x and y are Gaussian random variables. In
this case, the conditional expectations are linear functions of the given random
variable and, hence, the regression curves are linear in their arguments. This
can be seen from the conditional probability density functions for Gaussian
random variables. In Appendix B, the conditional expectations are given for a
general Gaussian random vector. For the special case of two random variables,
the results become '

E(X/;)—)?')x-f- (;- 7?7;-)
E(//)é) 777/+/£ Xp (K- )

=
Alternatively,
E(X/4)= »n +.__
E(g/X) = 7
// %X/O)(f(l'?’hx)
Tt is seen that if P __ = O, then E(x/y) = my and E(y/x) = my which is the case

of constant regre551xg curves as noted above. On the other hand, if P # 0,
then the regression curves for x and y are linear. This is a partlcular case
which is referred to as linear regression.

It is important to note that if two random variables, in general, have

linear regression curves, then the coefficients are the same as those for the
Gaussian case. That is, let x and y be two random variables such that

E(f/x) =Ax+8

E(x/;) = c’/w

where A and C are referred to as regression coefficients of y on x and x on y,
respectively. Then the regression coefficients are given by

A=ﬁ(f %4(’*_

B:&?’;—L
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This follows by simply using the conditional éxpectations to determine the total
expectation of y and x and xy, i.e.,

4+ oo

£(7) =f£(;/1)f(x>0'x

-0

4—%
=f (Ax+8) fixyd ¥

[(7) = ARE(X)+F

£(x) /f/x/;) f(;)c/%

:f (07+0) f(7)d7

-0

E(x) = 4’5(?) +D

E(xy) f5(7/x) X Fox) Ix -fE(x/f)ffr?;df

+m +eoo

_//7‘7—7‘ (7/74) fox) dxy

+ ocotoo
= IX7 f ()</7)1“17)a’f

+004C0

E(z;() =ffz;( f(z,f)a’xd;(
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Thus

E(Xg) =f(/7x*3)7"f(X)dX '1(37+0)7f(?)d7

AE(X?)+BE (x) = Axy + ML My

]

5(147)

5(747) 05(72)+D£(7) =/£/xr + Ty mie

It follows that

Amyx +8
my my =A(0%* ML) +E my

777
/

/Mxrr"‘

7’)’37(, = £ 77’);-[-0

/Ux7 + My 7)1; = 8(0‘7‘_z + 7n72)+0 7—)—7.

Solving these equations, it is found that Bm, = m, m, - A m% and, hence,
e 402 ; therefore,

aF
and
B= = 7 _Pz ﬁ 7)’7},
777—,47,,% / 7 Ox
Similiarly,
C =/(’/le —_ O-X
a‘i —/"? o-’
and
= O~¢
© —/?7 0 x mﬁ”

Thus, if for two random variables x and y their regression curves are linear,

then,
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EY;h/X) ZZ? */27.523;(7¢"777¢)

E(/y) = mx /e, ;‘_;‘ (= mg)

Of primary concern in regression analyses of correlation is the possible
deviation between observed values of random variables and their conditional
expectations. That is, in a set of samples of y and x, consider the random
variables §, and By defined as follows:

57' =fx '5(7/}4)
Sx =Xg - 5(74/7)

where y, and denote corresponding pairs of the random variables x and y.
Tt is easily sten that the expected values of 8y andi §, are zero, i.e.,

Sy e (sy/n))- o
E(s")zf[f(&/;)} 0

Thus, the variances of Sy and &, are given by

o (S;)=£(572) =/f[7x “5(7/X)]2f(}67)a’x0’7
o (Sx):E'(SxZ);/_Z [77 -E(X/;)]Zf(xji)dx 7%

Therefore,

0'2(57) =£(72)-£ [6‘2(7/)4)]
0sx) =£(xY - £ [Ez(x//)]

For the case of linear regression, the variances of 8y and &, become
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0'2(57)
0'2($x)

2, L2
0'7- (7 57)
X (’"/‘3(17)

[}

In a regression analysis of correlation, it is required to estimate the
regression parameters from a set of samples of the random variables x and y.
This can be accomplished by the method of "least-squares" curve fitting in the
following manner. Consider the case of linear regression between x and y wherein
E(y/x) and E(x/y) are linear in x and y, respectively. In this case y and x
can be written as follows:

/

1
]

oC, +eC, X +é'7.

5(7/75) 7 <§f
£(X/7)7‘5x

b4
"

Ao -/-/9,7 > §x

where

For a set of samples y and x, these equations become

éﬁ =[_/J)_<] «o_cv#grbt =4 x + &,

x =[_/;§L]§+§x=5/§+§z

where al = (&, &) and BT = (B,, By) . It is apparent that both @ and 3 can
be estimated from the sample sets of y and x. However, these regression
parameters are not independent and only @ or B are estimated using either equa-
tion., Consider the equation y = A @ + 8. The "least-squares" estimate for

a , @, is given by (see References 5 or 15)
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& =(ATA) AT.J%
Therefore,
.—, /
777 T -
g2l w27, [ 1¥] [y
x7 T x% oy Xy

Tt is easily shown that @ is an unbiased estimate of & , i.e., E(&) = & . This
follows from

E(X) = £] (4 TA)_I/)%]
#)

=(A74)"'A7 £
:(AT/’)_,ﬂrE(A x+e,)
£(X) = o«

A . . . .
Thus, the error € = (@ - @) in estimating & can be assessed in terms of the
covariance matrix of ¢ , i.e.,

e = £le€” | = £[& &T]
The covariance matrix for a "least-squares" estimate is given by

-/
Ve =71 = (A74) (aTaA)(a74)"

For the case of1;= 0'5 I, 1; becomes

72 =7 =0t (aTA)”

(=~
-/
171 2% .
7. -
e = xp x%| e
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It should be noted that o2 = 02(5,) =02 (1 - Pey) .

The second central moments of the sample sets x and y can be used to esti-
mate the central moment M. and the correlation coefficient P, . Let sy and

Sy be the first sample moments of x and y defined as follows:
/ T
/
S¢ = z’;;‘f
”

2
Similarly, let the second central sample moments Ax , A§ and Axy be defined as
follows:

Az" L h( -5 )Z
tom 2.

n
Az# = ”/—Z (X —Sx)(?‘; —Si)

2 (Xe-5x)(gc-5¢)

_ A=}

/[Z:Ow -5,<)2}[§(7,; —Sy)b]'

By an analysis similar to that of the previous section, it can be shown that
Axy is a biased-consistent estimate for H , i.e.,

£ (Axg) =(7‘%/)/"X?

Limn 0 (Axy)=0

77—
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Thus, an unbiased-consistent estimate for K, Ky becomes

Sry - ( )Axr

Based upon the consistency of ZS%"Ai and Axy’ it follows that

LLmm LLm |Ax
N—»oo (jL)=“h——a: (ZX%T)
é,;‘;_zz (Axy)

[;»-méﬂ ]B;E::Cdzi]
Lem

N—o (/l) :/Oxy'

Thus, an estimate of o

Xy is the sample correlation.coefficient r , i.e.,

N
,ﬁx = JU

t

The use of A, and r as estimates of K, and Pyy should be considered on the
basis of the§¥ accuracy. This can be accomplished in the case of Gaussian
random variable, which is considered in a following section,

The general problem of regression and correlation analysis involves more
than two random variables as considered above. However, the methods of analy-
sis are effectively equivalent with appropriate extensions. The methods for
more than two random variables are discussed in appropriate detail in Refer-
ences 1, 5, 6, and 11,

2.2.7.1.3. Confidence Intervals

0f primary concern in estimating moments from sample sets is an assessment
of the accuracy in the resulting estimate., Alternatively, it is of coneern to
determine a sufficient sample size in order to assure that an estimate of a
statistical moment possesses a required accuracy. In general, an estimate
based upon a set of samples of a random variable is also a random variable,
Thus, the accuracy of such an estimate mustbe specified in terms of two entities
which are: (1) a region which will bound the estimate or error in the estimate;
and (2) the probability that the estimate or error will lie within the stated
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region. These two entities are usually stated as a “confidence interval® which

contains a stated probability and a description of a region. In general terms,
a confidence interval is a bound placed upon the error in an estimate in terms

of a region and the probability that the error will be contained within the
region,

In general, a particular estimate of a statistical moment which is based
upon a sample set is referred to as a "point" estimate of the moment of the
population. The point estimate is, in general, not very meaningful unless an
assessment of the possible error in the point estimate is made. If a point
estimate is to be useful, it should be specified in terms of some interval
about the moment being estimated such that the true value of the moment will
be within the interval with a specified probability. This is the purpecse of a
confidence interval. In order to have meaning a confidence interval must have
a probability associated with the interval given. It is usually desirable to

hawe a amall aonfidence interval wit+th 2 hich nrohahilityr +hat +hae dinterval 1311
ave 4 Olidddr CUNLAGTILT 4divSlvdlr Waull d lldgil pivlaililvy viidu uLiiC 4livCi'vdd wiidl

contain the moment being estimated. This is equivalent to an estimate with a
high degree of accuracy. However, it is characteristic of estimates which are
functions of random sample sets that the confidence interval and the

associated probability cannot be stated arbitrarily. Usually, for a given
sample size and population characteristics, the smaller the confidence interval
the lower is the probability that the moment being estimated will lie in the
interval. There exist two extremes for confidence intervals. One is that the
modulus of the error in an estimate will lie somewhere between zero and infinity
with probability one.  The other is that the error in an estimate will be infi-
nitesimally small with vanishing probability. These two extreme confidence
intervals are generally true, but they are rather meaningless since they convey
little useful information. It is seen that confidence intervals are not unique
and they possess various degrees of meaning depending upon the information con-
veyed. The most meaningful confidence interval is not explicitly defined for
all situations, an implicit definition of a useful or meaningful confidence
interval depends upon the particular application that the estimate is used for.
In general terms, a useful confidence interval is one which determines the prob-
ability that the error in an estimate will be contained within a required bound.

A confidence interval can be given for any unbiased estimate which has a
finite variance. This follows directly from the Tchebycheff Inequality which
states that

/

where € is the error in an estimate. It is seen that the higher the probability
that J€lwill lie within the interval kog , the larger the interval., Of course,
if og is sufficiently small, then the interval kog can be an adequate assurance
of the required accuracy of the estimate. Consider the case of estimating the
mean from a set of uncorrelated samples, The variance for the sample mean is
l/ncr2 . By taking K2 = 10, it is found that the probability is at least 0,9,
or 90 percent, that
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Alternatively, it could be stated that the probability that e? will exceed
(10/n)e* is less than 0.1, or ten percent. The quantity (10/n)02 is essentially
an estimate error bound, however, this bound can be used to determine an inter-
val in which the true value of the population mean should lie. This is,
€?=(s-m)* , where s and m are the sample and population means, respectively,
thus if e®<{k?/njo-? then (s-m*<[k?/njo® , or Js-m] <(k/vr)a and

[3_(%)0-3<m< [s+(|$ﬁ\)o‘_] . Therefore,

FPro (.5'-’L ) < ————K 7
8 WT 777<(S-/.‘/——7)—.G~) >/_;_z

If %= 10, then

Peog [(5 ~fpo/ 7 &)< < (s# fos% a‘)] > 09

The interval from (s- ¥/o/7 o) to (s +yv/0/n o should contain the
population mean m with a probability of 0.9. Thus, for each particular esti-
mate of m, given by the sample mean s, it is possible to state an interval
which contains the true value of m with a probability of 0.9. Of course,
other intervals exist for other specified probabilities. In this »articular
case the interval from (s — /o/n ) to (S +Yio/n o) is the confidence
interval and the probahility of 0.9 is usually referred tc az the confidence
~2onfficient.

In'determining a confidence interval all of the available information
should be utilized in order to obtain the most meaningful confidence interval
possible. The use of the Tchebycheff Ineguality essentially ignores any
information concerning the probability density function of the population or
of the estimate itself, hence, a confidence interval derived ftherefrom is
vsnally ouite conservative. That is, the confidence interval for a stated
prohability is larger than that which is obtained if information concerning
the estimate prob=zbility density function is used. Consider the case of
estimating the mean of a Gaussian random variable. 1In this case the sample
mean s 1s also a Gaussian random varisble with mean and variance given by
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whefe m and 62 are the mean and variance of the vopulation, respectively. MNow,
for the Gaussian probability density function, it is found that (see Appendix C)

PN+ 1 6e5 0"

/ exp-

2 o ®

2~
0.9 = /02 (X -m)d X

2
Mm-rie5 o

where m and 02 are the mean and variance of X, respectively. Using this result
for the sample mean s, it is found that

/. 645
PA’UB [}5'777/ <“V77—' o—jl = 0.9

Therefore,

Frog [(S — /. 645 W’U% 7’n<(5+/.(,45#0*)]= 0.9

The confidence interval for 0.9 probability is seen to be significantly smaller
than that which would be obtained using the Tchehycheff Inequality. Thus, the
confidence interval obtained using knowledge of the probability density function
of the estimate is essentially more meaningful than that obtained from the
Tchebycheff Inequality in that it contains more precise information concerning
the accuracy of the estimate in terms of specifying the true value of the

moment being estimated.

In general, a confidence interval can be regarded as a statement of the
degree of certainty which is contained in a statistical inference., It is always
desirable to determine the smallest confidence interval for a particular proba-
bility since this tends to give the most precise information concerning the
uncertainty in the inference., In general, this requires use of the probability
density function of the estimate when it is available. The construction and
use of confidence intervals is discussed in further detail in References 5, 6,
and 11.
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2.,2,7.1.4 Estimating Moments for Gaussian Random Variables

_ If x and y are two Gaussian random variables, then there exists two first
moments and three second-central moments which specify the joint probability
function of x and y, f{x, y). These moments are as follows:

E£(X)

i

mx

n

E(y) 7777_

E(')C '77’7)4)'2:0')'(2

5(7 -Yn?)z -‘0‘52

e[t -0y (4-m4)] = phey =y o

Two sets of independent sample sets are usually used to estimate the moments
which specify f(x, y). Let the vectors x and y denote independent sample sets
of the random variables x and y. The following estimates are used for the
moments of f(x, y).

~ /
Mx=5x= 5 (17X)

A /

7 =57 :; (17_#)

A2 - T’. 2 _ i 7
oK Tl A% 7n-1 (v." %)

>
N(\J
"
N
1
-
N
A
il
3‘ -
-
~~
§‘1
N
S—

X

>

-5

1 "
[N

=

ag

n

_ _\_//__VL
/0X7 Axdi (v (% V)

120



where V; =x - 1 s, and V -1ls The accuracy of these estimates can
be assessed by con51der1ng %he probalelty density functions of the estimates,
")

Although the varlancescrx and<r are unknown, it is possible to obtain
confidence intervals for the mean va Xues of x and y as a function of the sample
data sets x and y. This is accompllshed by showing that for a Gaussian random
variable the sample mean and variance for an independent sample set are statis-
tically independent and the ratio of (s-m) to q|1¥y/n(n-l)] has a Student's
probability density function (see Section 2.2.4.5.3), which can be used to
determine a confidence interval for m., That is,if

then

/yT_v [ vy '
P/POB 5-¢, ——77(77-/) LN S+E, ——?7(77-/)

Pﬁoe[“ 1,2€ = tz:l

Now, if the probability density function of t can be determined, then a confi-
dence interval for m can be determined in terms of the sample set x only, i.e.,
the population variance is not needed. It is possible to show that t has the
Student's pdf in the following manner. First, t can be written as follows:

— (5-7
L e .

| o () 5o v

where 7//?—'
UV = — (s-m)

a

and

/
2 _ r
Vi vy

Second, it is apparent that U is a normal random variable, Third, it is
necessary to show that the pdf of V< 157( (see Section 2,2.4.5. 4) and is inde-
pendent of U. This step is accomplished by ¢onsidering an orthorgonal trans-
formation of the sample set x, i.e., let z = C(x = ml) where
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It is not difficult to show that cle = lﬁrzl therefore, z is a Normal random
vector, i.e., E(z) =0 and I; =E(z z Ty = 1.” It is apparent that zp = U, i.e.,

77 »
/ v
O MR R 01) MR

i
z :F(S‘n’))zu

Now, it can be shown that Vg = l/o‘2 X?E is not a function of z;. Consider

2 2
2 ! ;
V.= !fiyz'—'z : Vi

o o * bt
A=
> 2 -
= x""s‘: -
( 0_) E h~7ﬁ s+m)
- | o
- ”(XL-M 5-m \2
= =)
el



- Z(Xw?ﬂ)z_yz’":m-m) 1,2
et o 7 4;=/k o f_ v
= g2 (X-m1)(X-m1) -2
= Zrz _ZIZ
2 el
Ve= 22
Lz 2,

Therefore, V is only a function of z,, 235 eess Zpe It now becomes apparent
that 4 and V< are statistically independent and that V2 is a Chi-square random

variable with (n - 1) degrees of freedom. This follows from the fact that z

. i
is a normal random variable for i =1, 2,

eeny I

Based on the foregoing, it is possible to determine a confidence interval
for the mean of a Gaussian random variable without knowledge of the variance
of the random variable. The confidence interval is

Yy St vy
St Siny ST 3Tt ma
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where t7 and t, are obtained from the pdf of "t" for (n - 1) degrees of freedom.
The values of t; and t, are selected for the particular confidence coefficient
or probability desired. Thus, 1f the sample mean of an independent Gaussian
random variable sample set x i1s used to estimate the population mean, then a
confidence interval can be determined in terms of only the sample set x.

In a similar manner a confidence interval for the variance of a Gaussian
random variable can be determined in, terms of the sample set x. This follows
directly from the fact that V< = l/c'rz VIV has a Chi-square pdf with (n - 1)
degrees of freedom, therefore,

/
Fros [X/Z < = Vv < XZ] = /c/;?OB{xIZ< x*< Xﬁ]

Alternatively,
T T,
04 vy
ﬁ’os[xz <O_Z<_‘—2—X_ J= Fova [xf<xz<x§]
2 /

It is apparent that a confidence interval can be determined for a probability
PROB [X2< x°< x2 ] by simply finding two values of x5 and x% which bound the
probabIlity fo¥ a Chi-square random variable with (n - 1/) degrees of freedom.

It is possible to determine the joint probability density function of the
sample moments A;, A;, and Axy (see Reference 1). The result is

hp -2
N1 A2 A2 2 2
2,2 7 [AxA}'Ax7] » [O"x sz‘Z/L/x A +0‘2[]2
f(Ax)A?,AX7) = 477\(77_3):///”/,%, ex,o —ZW 7 X? i i:l
where

A;'JA; >0 AND A§7<A2x A’} AND [M] = 03¢ 0}’“ (/"/ax72)

The joint probability density function fqr the sample moments involves the
moments of x and y, which means that f(A;, AZ, Ax ) cannot be directly used to
determine confidence intervals for the centrdl mo%ents of x and y. However,
using i‘(AJzC, A, A.,), it is possible to determine the probability density func-
tions of certdin ﬂnctions of the sample moments which result in confidence
intervals. Consider the following functions of the sample moment Ax’ A; and Axy'
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U =Axl

2 a2 2
7/-=A"\§?zﬂ7_
X

_ Ay A x
w57t - 5

Now, the joint pdf of u, v, and w can be found by a transformation of variables

(see Reference 6). The results are

n:z  pu n-d N _nw®
flur,w) = K[a ‘e "xz] [/Z/' “e Z”}Z(""W}[e i a ("P”‘J”J
where u, v >0 and
> 71

K =
477 (7-3) ! [oF 0-72 (/—fx"?)]ﬁz'—’

Thus, u, v, and v are statistically independent, i.e., f(u, v, w) can be written

as follows

fllow, w) = feu) £v)flw)
where

Fluwy=ku * e

n
Ka
3
o

f ()
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F@W) =k e Z0E(-Ag)

k/KZ K3 = K

By taking K3 = [217172] ;Q whereo-.W l/n¢r (1 - ;), it is seen thatw is a
Gaussian random variable with var:Lanceo:W and mean valye of zpro. Slmlllarly,
by an appropriate selection of K5 it is seer that nv[b% (1~ ng)]g is a Chi-
square random variable with (n-2) degrees of freedom. Also nuﬁxx is found
to have a Chi-square pdf with (n-1) degrees of freedom. This follows from the
following factoring of K.

7,)7’)/

2 (7-3) [0 0“77- (/-/ox7

K =

( 22t) (5 %) o
2 (77-3)! (03%) E [0’72 (/%)) e

27/ (-3 (o) ni"[o*;f(/70)(72)]7%‘Z (Vzm o—a,"“)

o = (7 2) (5, =32) e
2 (et @) oy AT

Thus,

and
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A’,/Q:(??ZZZ_—I)(??Z’-FZ)_, _
27257 (n-231 (05 -217{0‘72 (1-A¢)) 2

Since (n-3)! =I(n-2) and IT'{(2n) = 2en-1 I'(n) I'(n + %) (see Section 2.2,3.2),
it follows that

27 (o)l = 27 P2 = (V2 7(3-1)7 (%)

Therefore,
K, Kl = z { \ / 2\ 2 / 2 Z
(v2)272 7 (32) 7 (=g oxd) 2[5 o 0md)]*
e
(%) 6 ox) N SO
and
/(I=(‘/Z)77—177 ”_f (/ O_Z)Z?_LL
(ZZ') (5 o
Ke= »-2 57,7-2 1/ z 2] 5%
VEV 75 [ ot vead]
Thus, the pdfs for u, v, and v become
m-3 77
Fruy = —% = e’ 7 U (w



o Dt - %}72)
) = N -2 € U(U)
STEs o R e
| 7 wr?
flw) = ; L =— & 20y Pay?)

Now, with the following simple changes of variables, the following probability
density functlons are determined:

2 ¢
vV = oz
27 -

Rt

vy T -7z v°
F(V°) = /_,(7%)(/27),,, e
2 (r2) 725! -2 R*
A
few) = / -7z w2
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Thus, it is seen that V2 and R2 are Chi-square random variables with (n~1) and
(n-2) degrees of freedom, respectively, and W is a Normal random variable, Of
course, this result for V<~ agrees with that previously obtained. DNow, since W
and R? are independent with W being Normal and R< bein Chi-square with (n~-2)
degrees of freedom, it follows that the pdf of W/AR< 1/n-2 " is the Student's
pdf, i.e., the pdf of t is a Student's pdf with (n-2) degrees of freedom where

/ 2
;/% Oy (/%4

(JL_ ) 7 v
- - 2
7-2 0772(/ /,7)

where

129



Using the Student!s pdf, it is possible to determine a confidence interval for
Afx in terms of the sample moments only. The procedure is similar to that
used before for the mean m. The resulting confidence interval is as follows:

I>L!>
wh X

_ A;) (1) My Bxy Ag\ (-2
£ /(A§ -z S Az T4 (Z}:—) (n-2)

The confidence coefficient is, of course, dependent upon the values of i and
to and it is equal to PROB [~ 1=t =ty ].

The oprobability density function for the Sample correlation coefficlient
r can be determined from the JOlntpdfofA » A Axyw The procedure is to
first determine the joint pdf ofA > and r by a change of variable and then
determine the marginal pdf for r. seg Reference 6). Thée result is as follows:

n-l
7n-3 2 N-2 = -
2 (1AR) 2 02 A L2 77+/z-/)
for = == o (7Y Z % (2rr) r ( 2
A=0

The probability density function for r is seen to be only a function of the
correlation coefficient P, and is independent of the other moments of x and y.
Unfortunately, f(r) does not give a direct measure of the accuracy in r as an
estimate for p,. since f(r) is a function of P,,. However, an important use
for f(r) is to test for statistical independence of x and y which is considered
in a latter section. Thus, if pxy = 0, then f(r) becomes

-3 Z
fon- 2, 25
7T -3)7

2.2.7.2 Hypothesis Testing

In determining statistical properties of random variables, two basic
assumptions are often made concerning statistical independence of random varia-
bles and the type of probability density function that a random variable
possesses. In general, these assumptions can have a significant effect upon
results and the validity of such assumptions should be assessed. It is possible
to make an assessment of the validity of such assumptions by methods of hypoth-
esis testing. In such methods assumptions are treated as hypotheses which are
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accepted or rejected depending upon the outcome of certain tests which are made
on sets of sample data. It is apparent that the tests must be designed to

yield information concerning the hypotheses being tested and criteria of accept-
ance or rejection must be defined. In general, the tests are functions of
samples of random variables and the results of such tests are also random varia-
bles; thus, there always exists some degree of uncertainty concerning the accept-
ance or rejection of a hypothesis based upon c¢riteria of tests on samples of
random variables., Therefore, it is necessary to specify a measure of accuracy
in testing hypotheses. This measure of accuracy in hypotheses testing is
usually referred to as the "level-of-significance'" and it is, in general terms,
the probabllity of being wrong in the decision of rejecting or accepting the
hypothesis being tested. That is, the level of significance is either the
probability of accepting a hypothesis which is false or rejecting a hypothesis
which is true. Usually, the lower the level-of-significance, the better is

the test of the hypothesis.

The method of hypothesis testing can be described in the following manner:
There exists a hypothesis, denoted by H, concerning a random variable x, e.g.,
the hypothesis could be "the expected value of x is zero," which is usually
denoted by

H: E(x) =0

Let x denote a set of samples of the random variable x, Wow certain properties
of the sample set should be dependent upon the hypothesis H. Thus, it should
be possible to design a test on x, denoted by T(x), which should be dependent
upon the validity of H and certain results of the test would indicate that H
should be accepted and certain results would indicate that H should be rejected.
For example, if the hypothesis concerns the expected value of the random varia-
ble x, then the test could simply be the sample mean, i.e.,

7
/ .
7 (X) =;)“E KL

PN

Obviously, if E(x) = O it is not expected that T(x) = 0, i.e., T(x) is a 5
random variable with expected value equal to that of x and variance of l/no-X
for an uncorrelated sample set. It is apparent that the result of T(x) is
dependent upon the expected value of x, and if the hypothesis that E(x) = 0 is
true, then certain results are expected for T(X), whereas if H is false, then
other results are expected for T(x). For example, if x is a Gaussian random
variable with(T% =1 and E(x) = 0 and if n = 9, then T(x) should lie within

T 1.0 with a probability of 0.9974, or 99.7. percent of the time (see Appendix C).
Also, T(x) should lie within ¥ 0.6533 with a probability of 0.95, or 95 percent
of the time. That is, if it is true that E(x) = 0, then |T(x)| will exceed
0.6533 with only a probability of 0.05. Thus, if it is found that T(x)> 0.6533,
then the hypothesis that E(x) = O would be rejected with a probability of 0.05
of being wrong. In this case, the level of significance is 0.05. Also, the
interval of + 0.6533 is referred to as the acceptance region for the hypothesis.
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In general, the method of hypothesis testing requires that the statistical
variation in the test, T(x), be known or at least an adequate amount of infor-
mation be available to determine the acceptance or rejection region for a
desired level of significance. Usually the probability density function of T(x)
is required and the acceptance region for a hypothesis at the level of signifi:
cance, denoted by @, is an interval or region which contains T(x) with proba-
bility 1 ~a. In general, if H is true, then T(x) lies within the acceptance
region with a probability of 1 - &, where o is the level of significance, i.e.,

Fos (’To_() e,?/yf = /- oc

In a particular test, if T(x) is found to lie within R, then H is accepted and

if T(x) dres not lie in R, then H is rejected. Generally, R varies with @ and,
thus, acceptance or rejection of an hypothesis is dependent upon the level of
significance used. Also, for a particular level of significance, the acceptance
region is not unique since several regions can be found such that the probability
of T(x) lying within the regions is 1 -«. Usually, the smallest region is used.

Hypothesis testing can be based upon confidence intervals, Consider a
confidence interval with a confidence coefficient of 1 —a@. The true value of
a parameter lies within the confidence interval with a probability of 1 -«
hence, the probability that the true value lies outside of the confidence
interval isa. The confidence interval is a function of the sample data set
which can be considered as the test for the hypothesis beine considered. In
this manner, the confidence interval 1s an acceptance region for the hypothesis
and o is the level of significance., TFor example, the confidence interval for
the mean value of a Gaussian random variable can be written as

/ /
P/?OB :[5-/-545 1,-7—7—"0"2' < JFw <5+/.645,|(—7‘7' 02}507-‘/"0-/

where s is the sample mean of an independent sample set of size n and 02 is the
variance of the random variable. The hypothesis "H: m = my" would be accepted
if the sample set mean s ylelds a confidence interval which contains mg. The
level of significance is O.1l.

It should be pointed out that rejecting a true hypothesis is not the only
error that can be made in testing hypotheses. It is also possible to accept a
false hypothesis, thus, the probability of making an error in hypothesis testing
is the probability of rejecting a true hypothesis or accepting a false hypothesis.
Generally, the probability of rejecting a true hypothesis is referred to as the
probability of "Type I" error, and the probability of accepting a false hypothe-
sis is referred to as the probability of "Type II" error. Also, the probabil-
ity of rejecting a hypothesis when it is actually false is often referred to as
the "power of the test." In general, the probabilities of Type I and Type II
errors can be determined in testing alternative hypotheses, i.e., there exist
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two hypothesis, Hj and H,, and it is required to make a decision concerning the
validity of Hy and H;. The case is usually referred to as a simply hypothesis
and a simple alternative. The best test to be used in hypothesis testing is

11111 allr Aanandant 1rvan Fhe Aannca~iannas Af hadrno wrmanoe i7n Farme AF ad+han Mornma T
U.DU.G-L.L.Y \J.Ul.lvll\.l.cl..ll.l U.le. il UULLDU\{-QGLLDUD i U‘»‘Llls WJ.UA].E Lll LCLULID VA CLUIIGL L.)’Pc 4
or Type II error, The general problem of hypothesis testing is discussed in
detail in References 1, 5, and 1l. Some particular cases of present interest

are discussed below,

5 , s
> 2 7 7 Q¥ ntiaticral Tndenandencrae af (Ganecedian Randoam Variashlace
Koka|eoekeod vidloullal LIS PENUCIICES U1 vaussiall Aglilblill valldoliss

let x and y be two Gaussian random variables and let x and y be two sample
sets of x and y. A test of the hypothesis that x and y are statistically inde-
pendent can be made using the probability density function for the sample corre-
lation coefficient, r, That is, if P, = O, then the probability density function
of r is as follows: (See Section 2.2.%7.1)

Zn—.? /_,z(n_-l)
2

rea) o) E

= e
where

A ;[(x‘-—sx)(%-—s,)]

Xy =

© A, \J[Zn:(z[-sx)z][; (4, -s,)‘]'

=l

Now, consider the following function of the sample correlation coefficient.

The inverse transformation becomes

v

< Yurt+(n-2)

The pdf for v is found as follows
-/ U?
Sy Y
2 2 \:/ v ] 2 (v2+n-2)
)

—(tr2+n-2 Y2+ (n-2)

o) = sy
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) e

U'ZJ
= ]+ —— :
o) = (-3l [ iy
n3 o (n-f\ _(n! _/n=
2 () (5) [/+ _V_,] 7)
Ywln-2) y7 /(n-2) »n-2

S

=
7/(”-2)717/"(—;—-/) H”"Z]

flv)

Thus, it is seen that the pdf of v is the Student's "t" pdf for (n-2) degrees
of freedom. Using this result a confidence interval can be found for v using
the "t" pdf. That is, for a given o, two values ty and tp can be found such

that

PROB [-¢4 <t <¢,]1= /-«

2

where O<a < 1. Alternatively,

PROB [-¢ <uv<t,/H]= /-x

where H is the hypothesis that x and y are statistically independent, i.e.,

HE oy =9

The values of t, and t_, are determinad from the "t" pdf for n-< degrees of
freedom. If for two sample sets x and y, v as determined by r is not in the
interval -t <v<t, for a particular «, then the hypothesis emy = 0 is rejected
at the level of signifizance of o,

2.2,7.2.2 Goodness—of-Fit Test

In determining statistical properties it i1s common practice to assume that
the type of probability density function is known and only a set of parameters
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which specify the probability density function need to be estimated from a
sample set. For exumple, if it is known that a random variable x has a Gaussian
probability density function, it is sufficient to estimate the mean and variance
from a sample set x. However, there remains an uncertainty concerning the type
of probability density function assumed. Fortunately, it is possible to assess
the validity of assumptions concerning types of probability density function by
a rather general method which is referred to as the "Goodness-of-Fit Test."

This method is a method of hypothesis testing wherein the approximate density
of the sample set is "compared" with the hypothesized density function and a
decision is made to accept or reject the hypothesis. The "ecomparison” which

is made is, in general terms, the actual deviations betwsen the sample set
density and the assumed probability density function. The actual test is based
uvon a particular measure of the observed deviations between the sample set
density and the hypothesized probability density function. This measure of
deviations can be expressed as follows:

@)’ o
T’Z; £; _§ i

In the measure, or test T, the term O; denotes the number of ohserved occurrences,
F; is the expected number of occurrences, and Dj is the deviation between the
observed and expected number of occurrences. The occurrences are simply the
number of observations, or sample set points, which fall within an interval Ij.
That is, for a total of n samples there can be constructed a set of m intervals,
I;, each of which will contain a certain number, say kj. of the total number of
observations. The expected number of occurrences within I; is determined from
the assumed probability density function, i.e., E; is the number of occurrerces
within I; given that the hypothesis is true. Of course, if the hypothesis 1is
true and a sufficiently large sample size is used, then it is expected that T
should be '"relatively'" small., However, some explicit measure of T is required.
This measure is provided through the limit behavior of T for a general proba-
bility density function, It can be shown that under rather general conditions,
the pdf of T approaches the Chi-square pdf. Thus, a confidence interval for T
can be determined using the x? pdf, i.e.,

Feog 77 < T<73]= /-

approaches

Fﬁae["‘f‘ xt<x? ]
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where

The proof of this result is based upon the local limit theorem (Section 2.2.6.2).
The significant steps in the proof are discussed below,

Using the results of the local limit theorem it is found that

olnd)= ke ¥
where
n
K = —
(2w) % 77/"fﬂ;q-
m 2 m 2
(% -np) (0; - £;)
7 =E g, —?-_; £

(=

and m is the number of intervals Ij, k; i1s the number of outcomes within Ij,
and n is the total number of outcomes., It should be apparent that O; = ki
and E; = npy.

It is seen that the maximum probability occurs for T = 0. Therefore, T
as defined is a reasonable measure of the deviation from a set of expected
results. In general, as [0y - F;| increases p(n k) decreases.

The probability density function for T for large n approaches that for
Chi-square for (n-1) degrees of freedom. This can be shown as follows. Con-
sider T as a function of x; where

AL - pl
Xe = Wf—

and

= P«
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Now, since the kj are not independent, the xj are not independent, i.e.,

m ”
Z,/e;, =77 A/voz:x,; =0
L=

L=

-

Therefore,

-1 X_f p 27 -1 )2
A= f/k f’m A=/

-/ 2 / YeaBd) =) Ih-/

A =1 fk /bm < =/ m A;f-; /:I

where A is a symmetrical positive definite matrix of ordsr m-1 with diagonal

terms (1/ pp + 1/py) and all off-diagonal terms 1/py, and x is a vector of x3
for i =1, 2, ..., m=1 . The moment generating function for T becomes

m. (s) = E[eﬂ]’—‘; e‘T,o(n, £)
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where the summation is taken over all k such that ;?g = n and, of course,
O=k;. However, for sufficiently large n, the summation can be replaced by
continuous integration over x with a change of variable of Ax; = 1/71Aks;
hence, as n—> « , mp(s) becomses

="/ m 4 .
tostmian = am T e [cew0502] Yo
n —>® ey

Dez)

Using Io(s) of Appendix A and noting that |Al = j% (pi_l), it is found that

i=1
Lim ”, (,4)]= —/m
7 >0 4 (/‘,2,4)7

Therefore, as n—» o, T has a Chi-square pdf distribution for m-1 degrees of
freedom.

With the foregoing, a test of "goodness" of fit can be constructed which
assesses the validity of assumptions concerning types of probability density
functions which random variables possess. A test of the hypothesis that a set
of sample data is generated from a random variable with a particular probabil-
ity density function is made by simply computing T and comparing the result
with the 1 - @ confidence interval. The hypothesis is accepted or rejected at
the level of significance a ,

It should be noted that the foregoing test does not consider properties
of the assumed probability density function which are estimated from the sample
set x., That is, usually the type of probability density function is assumed
with the first and second moments equal to those of the sample set x. However,
in such cases the method of the Goodness—-of-Fit remains essentially the same;
only the number of degrees of fresdom change., Generally, the number of degrees
of freedom 1s simply reduced by the number of statistical moments which are
estimated from the sample set x and the test is the same, The method of
Goodness—of-Fit is discussed in detall in References 1, 4, and 6.
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2.2.8 IMU Error Model and Analysis

In the evaluation of the performance of a G&N system the analysis of
the Inertial Measurement Unit (IMU) is of prime importance. The function
of the IMU is to provide a self-contained reference coordinate system and
a means of measuring accrlerations of the vehicle. The measured accelera-
tions determine gyro torquing signals to maintain the orientation of the
coordinate system and are used to determine the trajectory of the vehicle.
The objective of an IMU error analysis is to evaluate the effect of errors
inherent in the manufacture and installation of inertial platform components
on the measurement of accelerations and the uncertainty in orientation of
the coordinate system. Generally, IMU inaccuracies result in measured
acceleration errors and their effect is ultimately related to trajectory
computation errors.

The development in this section employs the inherent assumptions of
the state variable linear systems approach to the solutions of the perturbed
equations of motion of a space vehicle. Equations are derived which relate
tre effect of IMU gyro and accelerometer errors to position and velocity
errors. The equations are presented in a form which is indepenient of a
particular platform and may be applied to a variety of Inertial Measurement
Units. A discussion of platforms using single degree-of-freedom or two
degrees~of-freedom gyros and the corresvponding error equations is presented.

2.2.8.1 Perturbation Equations

Inertial Measurement Unit errors will be in the form of acceleration
measurement errors from the accelerometers and acceleration errors due to
misalignment of the platform gyros. It is desired to relate these errors
in the sensed acceleration of the platform to errors in position and velocity
of the vehicle. The motion of the vehicle in the influence of a gravity
field and an applied thrust is given by equation (8.1.1)

Ao+ G0 () = A, (8.1.2)

Where .é; is the second time derivative of the position of the wvehicle,

7 (7,) is the total gravity vector, and 4, is the applied thrust acceler-
ation as measured by a perfect IMU. A similar equation may be written in
which the quantities of equation (8.1.1) are interpreted as the acceleration
sensed by an IMU with sensor errors present, A , and the resulting "error-
corrupted"” computed value of the second time derivative of position, N .

/'?: ff- (/_b) - j (8.1.2)
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The variational, or perturbed equation, is the difference of the guanti-
ties in (8.1.1) and (8.1.2).

- A +[(7‘ (%) - 4)| =4 -2,

§ % "5[;2 &) =54 (8.1.3)

or

Equation (8.1.3) gives a relationship between the IMU measurement errors, sA
and their affect on the computed value of Z , d2

Before the solution of the equation may be completed the form of & %(ﬁ)]
must be determined. As the term appears in eguation (8.1.3), it reoprese

a general expression for the gravity field and may represent the influence

of more than one attracting body. In most cases of interest the vehicle is

in the influence of a single attracting body and a simple form for the gravity
term may be derived. To solve (8.1.3) it is necessary to express the gravity
term as a function of variations in &F

For a gravity field of more than one attracting body an approximation
of the term is made by a Taylor series expansion about (7,) in which terms
involving derivatives higher than first are neglected (heference (18)
For the central force field of a spherical homogenous attracting hody the
evaluation of the gravity term as a function of 87 assumes a simple
analytical form.

In any case the quantity g (7Z) may be written as

?(ﬁ) =;[7/ (X,;,Z,t),/z (XJﬁ/zjﬁ)ij(y);{j th)] (8.1.4)

where X , , and Z are the components of Z expressed in an inertial
three-dimensional Cartesian coordinate system.

The differential of g’(/i) is then

5;_(/1):V;/~§/-i5'+V;.z-6'E7'+V;_;'Sﬁzzké'

(3 sr 2B 0 2 4) s

o x <37
+(%2)2— s+ 2f2 it %?zi/é) § &



and in matrix form

SFM= 23 233 33| |sx
8 X 67 3z

o
72 %2 s 3 7 (8.1.5)
ax 67 oz

94 923 9@ Sz
ax a; Az ]

and

- _ (8.1.6)
§ 4(4) = [6]s &

The form of the elements of the [G] matrix in equation (8.1.5) is the same

if the truncated Taylor series exnansion of Reference (18) or the method of

Reference (19) is used to evaluate 6[ (ﬂ)] . Using vector:operational
symbolism, eguation (8.1.5) may be exnressed as

54 (1) = éf_:—/fbﬂ sx=ls] 5 & (6.1.7)

Substituting equation (8.1.7) in equation (8.1.3) gives

. 8.1.8
Sn +[6lsr =684 (8:2-8)

To specify the time history of the affect of IMU errors on the computed
trajectory the errors must be related to the position and velocity errors.
Errors in the computed position are &7 = AZ-4, and the first time deriva-
tive of position errors is

(8.1.9)

S

S =S i

and time derivative of velocity is

S =8i = - A, (8.1.10)

Using equations (8.1.8), (8.1.9), and (8.1.10), the linear differential
equation, is state vector form, relating position and velocity errors is
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| - - (8.1.11)
-Gl o s 8§A
2] bXo 6Xi éXI

or
(8.1.12)

SX () =B(t) §X (£) + & (¢)

The matrix B 1is a function of the gravitational forces acting on the
vehicle and the matrix & , the forcing function of the differential equa-
tion, represents the errors in the control vector. Subsequent sections will
give the solution of equation (8.1.12) and specifications of & in terms
of the IMU model.

The & matrix of equation (8.1.11) assumes a simple form when the
gravity field may be renresented by

M

?"(1?) = —5 (8.1.13)

Va4

Using the operational vector identities

gﬁ. = [I] (IDENTITY MATRIX) (8.1.14)
and
n
5
5—1} =(nn7"%) 57 (8.1.15)

the © _(/Z‘) may be evaluated as follows:
=

32 (n) e -3 -
- - [ B un A

KNP .
“QuaT) SE AR 5%

- r? I:I]+/é/(—3) il
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a‘(/Z)_ _—/l/ _ 2 .2y _ (8.1.15)
._(;sz\_(q]__ 3X7 g2 37) 37;!

-3X2 —3;:! m!-;z?_J

For the derivation above it was assumed that .z = (xX,4s2) in an inertial
Cartesian coordinate system with the origin at the center of the attracting
body. Derivations resulting in equation (8.1.15) by different methods may
be found in References (15) and (19).

2.2.8.2 Solution of the Perturbed Equation

The solution of equation (8.1.12) may be accomplished by a variety of
methods of which two are most frequently used - the adjoint technique and
variation of parameters. The variation of parameters method is the more
direct method and is used here. In each case the solution of the homogenous
part of equation (8.1.12) is the "Pundamental Solution Matrix'" or "State
Transition Matrix"; and the solution of the differential equation is deter-
mined in terms of a transition matrix, the initial conditions of the state
variables, and the forcing function.

2.2.8.2.1 Variation of Parameter Solution

The homogenous part of equation (8.1.12) is

SX (L) -B(t) SX(E) =0 (8.2.1)

The solution - of (8.2.1) [References(15) and (20)]is given in terms of
the state transition matrix ¢/z,4) relating the state at time # to the

state at time £, as

SX(t) = @ (¢t,¢,)8 X(t,) (8.2.2)

GLXI oXp

g (et = [Z]
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The variation of parameters solution proceeds from equation (8.2.1) by
assuming a solution of the form

SX(t) = B (¢, ¢t.) 7‘ (¢) (8.2.
vhere @(¢,¢,) 1s the fundamental solution matrix and g(&) is a function
to be determined. The first time derivative of equation (8.2.3) is

& D - K2
§Xct)= e eng (ﬁ)+¢(f,f,)f (¢) (8.2.
Substituting equation (8.2.4) into equation (8.1.12) gives
¢(flfo)?" ({,)+{ﬂ?(t,t,)—5(6)%(@&,)}=d—,(t) (8.2.
Since g4, &) is the fundamental solution matrix of the homogenous
part of equation (8.1.12), @¢¢, 4,) must satisfy the homogenous egquation.
o 8.2.
Bt t,) =B(£) f(¢,¢,) (
This relationship shows the quantity in braces to be identically zero
and
P, L) 7‘ (¢) =& (¢) (8.2.
or . :
_( _ _/ -
7{ t) = F 7 e,) a2 (¢ (8.2.
The integral of equation (8.2.8) is ¢
> _ -7 -
7@ = #ne)d (ryar
®, (8.2.

L4 €
=f;zf"(r,f,,>czmdr+ 4602 (a7

Substituting (8.2.9) into (8.2.3};~% £,

£ "
SX (e =/d(t/to)‘/‘¢_/(7;éo)d_«(7')0’7'7‘%(&,t,)‘/.ﬁ"(lj'to)a:(r)dr (8.2.
4 4
and equation (8.2.10) evaluated at ¢=¢, gives
t,
SX (&) fﬁ_/(Ct,) a(rydr (8.2.
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and

- _ ¢t
SX(t) = J(t,t,) §X (¢,) 4://(:&,::;)/”(7; t,) a (1)dT (8.2.12)

t‘

A further simplification in the integrand of equation (8.2.12) may be
accomplished through the use of the properties of the transition matrix.
However, the simplification of the form of the equation may not give a corres-
ponding simplification in the evaluation of the integral. The properties of
the transition to be used are indicated in Figure 8.1. 1In the figure the
time 7 is shown to fall between times ¢ and ¢, although the relation-
ship is valid for the case in which 7 1lies outside the interval indicated.

b= (t¢,)
AN

£=(t,¢,) g=¢,7)
Figure 8.1
Pt ) =g g e,) (8.2.13)
and
/(f:, ) = /(tjﬁ—o)%"(fjt’) (8.2.14)

Substitution of ecuation (8.2.14) into (8.2&12) gives

SX(t) =F (e, 8,) §X (¢) +f,d(e,:rnzmdr (8.2.15)

t‘
Equation (8.2.15) or equation (3.2.12) is the desired solution of the
perturbed equation.

2.2.8.2.2 Statistical Evaluation of the Perturbed Equations
In order to make a statistical study of the errors &X (i) the first

and second morents are completed. For these ecuations the symbol (cece )
represents the expected value of the quantity involved. The first moment of
dx (L) is

PP ¢t
£ [a’X(t)] =m x (¢) =g e,) 5)?'(1&,)+f¢ (6,7) (o7 (8.2.16)
€

o
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and the covariance matrix is

A A A A i nns tns (8.2.17)

A At A A A
Iy (6) = [5)? (t) -7y (t)][ai (¢) - 27y (e)] T

For a zero mean
¢ t
Pete) =4 (et,)Fxie,) g7 2 7
, L) Ox (e, ) (e 6,) +an | o N| Bse,)d(riam) ¢(t,r)]dr
€, ¢,

t e (8.2.18)
+f[ﬂ(¢,to) SX (t.)a T(t)%(t,f)]df
to

R t
+fl deemyace)sice)”
J X (&) (E¢,) or
€
The last two terms of equation CB?Z&lB) are ordinarily zero.
2.2.8.3 Platform Error Equations

Presented in this section are the gyroscope and accelerometer error
equations used for defining the IMU error model. The equations are presented
in general form applicable to inertial units using either single degree-of-
freedom or two degree-of-freedom gyros. The platform errors are related to
measured acceleration errors thereby specifying the form of the forcing
function of the perturbed equations of motion.

2.2.8.3.1 Inertial Measurement Unit and Transformation

The inertial platform of an inertial measurement unit is a sensor which
provides acceleration signals resolved along known coordinates. Conven-
tionally, the platform is supported by a set of gimbals, the inner gimbal
serving as z stable member supporting the gyroscopes and accelerometers.

The function of the gyroscopes is to maintain the orientation of the platform,
and the function of the accelerometers is +0 measure the total acceleration.
The physical orientation of the gyros input axis and accelerometer alignment
on the platform is determined by the specific apnlication for which the TMU
is designed. Generally, a three-dimensional orthogonal coordinate system is
constructed through the use of three single-degree-of~freedom gyros or two
degree-of-freedom gyros. A gyro input axis and an accelerometer may be
aligned along each coordinate axis.

The derivation of the perturbed equation of motion for the trajectory
computation coordinate frame assumed an inertizl coordinate system. Further,
the expression for the [G] matrix for the central force field assumed the
coordinate system to be centered a2t the center of the attracting body. The
alignment of the platform coordinate axis with respect to this inertial
coordinate system is also dependent on the specific application of the measure-
ment unit. A discussion of the advantages and disadvantages of a particular
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platform alignment is given in Reference (21). For the different platform
alignments a transformation between the trajectory computation coordinates
and platform coordinates may be defined and assumes the form

7, T2 T3

[TJT; T T2 T2 (8.3.1)

T Tz Ty
L |

The subscript "PC" indicates the transformation fTrom the trajectory to the
platform coordinates. The elements 7, will be constants if the initial
platform orientation is maintained or finctions of time if the platform

coordinates are changing with respect to the trajectory frame.

2.2.8.3.2 Gyroscope and Accelerometer Error Equations

The acceleration measurement errors from the platform gyros, in platform
coordinates, are determined by use of equations of the general form

. . . 2, ., 2
€, =L.K,t i K AxT LKy &7-/'4//(3 Az +L Ky Ax" 70 K5 4.7.

. . . . 8.3.2
+,olc(aa,x"'+,¢l(7d,xd,7+,o Ky Dxdz +4Kg d;ﬂi (8.3.2)
(/6'=XJ /Z)
where €¢ represents the total drift rate of the gyro during the acceleration
of the vehicle about the "i" platform coordinate axis. The terms (4. are

the drift rate cocfficients and are dependent on the construction of %he
gyros. It has been tacitly assumed that a gyro input axis has been aligned
along each platform coordinate axis. In general, the drift rate coefficients
may be functions of ftime but are usually expressed as constants representing
average values. The terms @y, , a4 , and 4a; are the components of the
applied accelerations along the platform coordinate axis. The particular
error sourc=s represented by the (k coefficents are:

Kq

K1,2,3

bias coefficient (non-g sensitive)

mass unbalance coefficients (g-sensitive)

]

anisoelasticity coefficients (gg—sensitive)

Ky,5,6,7,8,9

Analysis of a specific inertial unit in which the orientation of the
spin, input, and output axis is specified, arnd the drift-rate coefficients
given, will allow a reduction of number of terms used in equation (8.3.2).
Terms may be eliminated by comparison of the relative magnitudes of the
coefficients and by proper orientation of the platform coordinates with res-
pect to the trajectory plane. In such cases, the number of terms retained
may be reduced to six or seven. The particular terms which may be neglected
can be determined only through an analysis of the gyros in conjunction with
platform orientation and the trajectory.
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Althousgh the gyro characteristics are specified by the drift rate
characteristics, the acceleration errors due to the gyros arise from the
angular misalignments of the gyvros with the platform axis. The total mis-~
alignment along the platform axis may be found by integrating the drif+s rates.

- h~
Y (¢t) i/é (TVdT + Y (¢&,)
. (8.3.3)

vhere ;?(é) is the angular misal smment vector asbout the vlatform axis
and  e(7) are the drift rates in vector form. The acceleration error in
platform coordinates is then given by

) _ i, (8.3.1)
SA (W) = —’yr(t)XA

vhere A is the ccceleration in platform coordinates.

The error model for the accelerometers mounted on the platform is of
the form

i = ik, Lk ay * i, a,7+,5,éj Az +.ikya® (8.3.5)
+,o,éjd,x_d,f+x;,é‘¢xaz LA, A3
(/0 :X7£
The term Ve (£ =Xg#2) is the acceleration measurement error along the
indicated platform axis, assuming an accelerometer aligned along each axis.
The terms a, , a > and  a, are the thrust acceleration components
along each Hlatforr! coordinate axis. The coefficients z‘lf' are defined

below and are dependent on the construction and accuracy of alisrment of the
accelerometers on the platform.

ikp = Dbias cornfficient
i%X1 = linear scale factor coefficient
ikp 3 = bias sensitivity to cross-axis acceleration
ikl = 2nd-order nonlinearity coefficient
ik5,6 = scale factor sensitivity to cross-axis acceleration
ik7 = 3rd~order nonlinearity coefficient

Equations (8.3.4) and (8.3.5) mey be combined to give the total accelera-
tion measurement errors from gyro misalignment and accelerometer errors, A%(tk

Ap(e) =V -V XA (8.3.5)
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If the initial alignment of the platform remains fixed with respect to
the inertial coordinate system, elements of the transformation, equation
(8.3.1), will be constants. This platform coordinate system is referred to
as either "platform inertial® or "launch point fixed.” The initial align-
ment of the platform determines the transformation for all points along the
trajectory, and the acceleration measurement errors in inertial coordinates
are given by

uﬂ‘:{t) - rT-] r— ~7r

4&(4) as determined above are the acceleration errors required for the
evaluation of equations (8.2.15) and (8.2.25).

Determination of & (&) is more complicated if the platform orientation
changes as a function of time. The elements of the transformation matrix
become fun~tions of time, and terms involving the coordinate system angular
rate and engular rate derivative, with the inertial position and velocity,
appear in equation (8.3.6). Letting & represent the vector rate of change
of the platform coordinates with respect to trajectory coordinates, the
position and velocity in the two frames are related by
— T _
s 2[7]” e (8.3.7)

- - — ., = (8.3.8)
Vp = Vp t WXy

The time derivative of equation (8.3.8) gives

- - - - = — 8.3.9

The subscript "T" symbolizes the trajectory inertial frame, "C" the platform
rotating frame, and the "*" time derivative. Eaquation (8.3.9) may then be
solved for a,

An alternative to the use of the time varying transformation matrix is
the solution of the perturbed equations of motion in a rotating coordinate
frame. The sclution of the perturbed equation proceeds in the samc manner
as in Section 2.2.8.1. The angular rate terms in this case are explicit in
the formulation of the "B" matrix of equation (8.1.12), and are a part of the
fundamental solution matrix. As such, they again appear in the integral in
squation (8.2.12).
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3.0 RECOMMENDED PROCEDURES

In Section 2,1 the general problem of systems performance analysis was
defined in terms of two parameter sets and a known functional dependence., That
is, the general problem involves a vector function of random variables denoted

by
= 6(x)

where y is a vector of performance parameters, x is a random vector of causal
parameters and G( ) is a known vector function.” Of course, y is a random
vector since it is a function of the random vector x. Now, for each mission

or mission phase there exists a region in the space of the vector y which is
conducive to mission success. This region can be defined as the "Tregion-of-
success' or success region for y and is denoted by Rg. That is, if y lies in
Rg then the mission or mission phase is successful, hence, y € Rg is equiva-
lent to mission success. Unfortunately, due to the random or uncertain nature
of y, as caused by x, it cannot be stated with certalnty that y € Rg or that
mission success will be achieved. On the other hand, if the probability
density function of y is known, then it is theoretically possible to determine
the probability that y will lie in any region in the space of y. In particular,
the probability that y will lie in the success region Rg could theoretically

be determined. This probability can be considered as the probability of success
for the mission, denoted by Pg, i.e., generally

Ps = Ply € Rg] = -[ f(y) dx
s

where f(y) is the probability density function of the performance parameter
set y. It is characteristic of space flight missions that a relatively "high"
probability of success is required which reflects a high loss in the event of
mission failure. Thus, in order to maintain a low risk it is necessary to
reduce the probability of failure to negligible proportions.

Nonetheless, it is the general purpose of system performance analysis to
determine or assess P_ and to ultimately determine the system configuration
and system function rgquirements which will fulfill a specified lower bound
constraint on Pg or a minimum requirement for P_. The general tasks involved
in this effort consist of (1) determining the sgatistical properties of the
causal parameter set x, i.e., specifying the nrobability density function of
the random vector x; (2) transforming the ndf of x into the probability density
function of the performance parameter set Y, which is dependent upon G( ); and
(3) determining P, as required. However, it is wusually required that these
tasks be accomplished such that the dependence of Pg upon G( )} and the statis-
tical moments of x is known. This is required in order to facilitate the
definition of the optimum system configuration and the requirements of system
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functions. Theoretically, the problem of system performance analysis is
readily solved, i.e., the tasks involved are easily stated. Unfortunately,

the tasks are generally not as easily accomplished First, even if the
probability density function of y is determined it is not usually easy to
determine an explicit evaluation of P_ as a function of the statistical
properties of x. Second, even if the probability of x is known it is not
always easy to determine an explicity form for the probability density function
of y. And, third, the explicit form of the probability density function of x
is not generally known, rather, only estimates of the statistical moments of
x are known and a limiting form of the probability density function is assumed.
Notwithstanding this, the general objectives of system performance analysis
can be accomplished through appropriate use of the statistical methodology
discussed in the previous sections. Some general applications of the proce-
dures are discussed below.

It is generally possible and often convenient to define the success
region R_ with respect to a "point" yg in the space of y which assures mission
s - - - - = . .

success,  This point is often referred to as "nominal" conditions which are
usually directly representative of mission objectives in terms of system

state quantities, In this manner, it is understood that both x and y = G(x)
are variations about nominal conditions. This, in turn, implies a nominal
system configuration or system design and requirements which usually represent
gross, requirements. However, final and/or complete system requirements must
be determined such that y lies in Rg with the required probability of success.
The use of nominal conditions often provides a linear relationship between the
parameter sets y and x, i.e., ¥y = G(x) = A x, where A is a constant matrix.

If the relationship between y and x is linear, then the statistical analyses
involved in system performance analysis are greatly simplified. The use of
nominal conditions is generally useful and particularly convenient if a

linear relationship between the parameter sets y and x is obtained. However,
linear relationships obtained in this manner are usually first order approxi-
mations and the effects of inaccuracies of such approximations upon the results
of system performance analysis must be assessed.

It should be apparent that there exists a particular, and perhaps hypo-
thetical, situation where the tasks of system performance analysis can be
easily accomplished. This situation is characterized by (1) a linear rela-
tionship between the parameter sets y and x, i.e., ¥y = A x which can often
be obtained using nominal conditions as discussed above; (2) a Gaussian
joint probability density function for the causal parameter set x, with possibly
statistically independent subsets; and (3) a relatively convenient region of
success Rg defined in the spvace of y, i.e., an Rg for which Pg = [y € Rg] can
be determined. In this particular situation the joint probability density
function of the performance parameter set y is also Gaussian with its statis-
tical moments easily related to those of the causal parameter set x, as dis-
cussed in Sections 2,2.2.13 and 2.4.4. The marginal and conditional probability
density functions for the performance parameter set can be easily determined
as discussed in Appendix B. The evaluation of probabilities for the parameter
set y for certain regions can be made as discussed in Appendix C.
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Frequently, the performance of a navigation and guidance system is
evaluated in terms of a quadratic form of vehicle state quantities. That is,
optimization criteria and performance indices are often quadratic forms of
system state parameters, In particular, loss functions are often quadratic
forms and an optimization criterion is often the minimization of the expec-
tation of a quadratic loss function. In this case, there exist two questions
which concern, first, the actual minimum expected loss and, second, the
relationship between the minimum loss and system design parameters., Generally,
the loss, L, can be written as L = yT 0 y where y is a set of vehicle state
parameters, The loss is a scalar random variable which is specified by its
probability density function, Usually, the explicit form of the pdf of L
is not easily determined, i.e., a closed form expression is generally not
possible. However, if y is a linear function of x, y = A x , and x is a
Gaussian random vector then an explicit form can be obtained for the first
and second moments of the loss L which represent the actual minimum expected
loss and a measure of its variation., In Section 2.2.4.5.5 these moments are
shown to be an explicit function of the elements of the matrix O and the
co-variance matrix of y, which is easily related to the co-variance matrix
of x, since y = A x. TIn particular the expected value of the loss is equal
to the trace of the matrix product of Q and the co-variance matrix of y.

It is noted that the selection of system design parameters which minimize the
trace of this product leads to an optimum system configuration,

As noted above, it is not always possible to obtain an explicit form
for the probability density function of the parameter set y or functions of y
which are used in the evaluation of performance, For example, as noted above,
even if y has a known Gaussian probability density function, the probability
density function for a quadratic form of y is not easily determined. On the
other hand, the lower order statistical moments can generally be determined
as discussed in Section 2.2.4, These moments, in turn, can be used to deter-
mine probability bounds as discussed in Section 2.,2.5. Thus, in cases where
the explicit form of the probability density functions of performance functions
cannot be obtained and, hence, an exnlicit evaluation of the probability
of success cannot be made, it is possible to bound this probability by using
only lower order statistical moments which can usually be obtained.

In the foregoing it is tacitly assumed that the probability density
function of the causal parameter set x is known and, hence, that of the
performance parameter set y can be determined, which is generally possible for
a linear relationship y = A x and a Gaussian probability density function for
x. However, a complete statistical description of x is usually not explicitly
known. That is, only estimates of lower order statiIstical moments are usually
available and assumptions are made concerning the type or form of the proba-
bility density function of the set x. The accuracy of such estimates and the
validity of such assumptions directly affect the accuracy and validity of
statements concerning system performance, It must be recognized that statements
concerning system performance are, at best, statistical inferences which must
be based upon the available information of the statistical properties of the
parameter sets y and x, which is usually not complete and/or explicit. The
methods of estimating statistical moments are discussed in Sections 2.2.7.1.1
and 2,2,7.1.2, wherein methods of assessing the accuracy of the estimates are
considered. A somewhat "universal" assumption concerning the form or type of
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probability density function when definite information is not available is that
it is Gaussian. The general validity of this assumption can be based upon the
limiting theorems discussed in Section 2.2,6. These theorems provide a rather
general basis for the validity of the assumption of Gaussian probability density
functions, however, there always exists some question concerning the conver-
gence of the limiting form and the existence of the proper conditions for con-
vergence to the Gaussian form. Most experience indicates that the convergence
is rather rapid, but, each situation encountered should be considered upon its
own basis. In general, the validity of assumptions concerning probability
density functions can be assessed by the means of hypothesis testing as dis-
cussed in Section 2,2.7.2,

It becomes apparent that the particular procedures to be utilized in
systems performance analysis depends upon several particular aspects of the
problem involved which concern (1) functional dependence of performance
parameters and causal parameters, (2) functional forms used in the evaluation
of system performance, (3) type of probability density functions involved,
and (4) available information of statistical properties of the parameters.
Generally, no particular set of procedures applies to all problems involved
and the particular procedures utilized are dictated by the nature of the
aspects stated. The procedures discussed in the previous sections comprise
a set of methods which are usually adequate to treat most problems of naviga-
tion and guidance systems performance analysis, however, often extensions of
the methods are required, which are adequately discussed in the references
cited.
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APPENDIX A
SOME USEFUL MULTTPLE INTEGRALS

In statistical analyses the following multiple integrals often arise.

Z,(S) :/ exp [57% -xTax]ox

D(X)

Z () -—f 6 (s7x exp-[xTx]dx
OX)

D(x)

o0
vwhere J' G(u) du exists, A is an nxn symmetrical positive definite matrix,

- C0
J = +7~-1 X 1is an arbitrary vector of dimension n, and s is a con-
stant vector of dimension n. It is understood that the integrals are
multiple integrals over the domain of x. It is noted that the integrals are
always encountered in statistical analyses which involve Gaussian random
vectors.

The evaluation of Il(i) is facilitate% by a linear transformation
of coordinates such that the gquadratic form X~ A X is diagonalized, thus,

let X=My where M is the modal matrix for A, i.e., MIAM = A. vwhere

~A. is the diagonal matrix of the eigenvalues of A, MM = I and
|IM] =1 . In this manner, I;(8) becomes
z = 8 T
L (5)= ex,o[s Mr-r_/Lf]a'!
o(y)
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A second linear transformation can be made such that XT.A._Y_ = _Z_TZ_ ,
which is essentially a scaling of coordinates, i.e., let Y =DZ where
D =AT2 , or D is a diagonal matrix with elements equal to the
reciprocal of the positive square root of the corre sponding elements of

A . Thus,

Z,(5) =f exp [._STMD_;_: - g%][_ﬂ_]"/‘

b(2)

- fexp SMDZ zz]dz
D(g)

Ip(S) =]./L[‘V‘fex,o[z’0/wr§ —grg]dg

O(2)
By a translation of coordinates the exponent in Il(_g) can be expressed
in terms of a ''square', i.e., if Z =0 + ¢ , where c is a constant

vector, then the exponent becomes

=3 D‘fﬁ then 20'c = oToMTs, o'pu’s = 4 ST woouTs,
MDDM"s and the exponent becomes

~wTw + Yo 5" #700m7s =
Y 8T ADMTS - w T =

Y STAr N 75 - T wr
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Thus, I, (8) can be written as

I 5) JT? exp [Ze ST A nr7) §] / exp [— w 7@] dw

O

A V”ex,o ['/4_57(/1") _ij exrp [i:‘ ur;f] dwr

pw)

) 3 2 7
: - 12 - wr

7 -/
Al exp[tsTad o aw

-00
” -/
” / 7 S
1,65 = [TaT %P [/49 A —]

00 w2
‘The last step follows from f e dw =7 and that if MIAM =_A_ and
Ml =1 then A1 2 wlalrT  or MATL M = 471 anajAl= 1Al .

The integral Io(s) can be evaluated by using the two linear

transformation x =M and Y =DZ as defined above. In this

manner I5(g) becomes
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Z, (5) =f G(sTx)exp [—57/?5]0/,5

D(X)
>
=fq(§ AMy) 376/7 [—I,TA_f]d Y
D(Cy)
A2 [ z7omT 7
Zp(8) = 1A G(2'OmM'S) exp |-2"2|dZ
o (2)
Now, let Z = Qw whe re Q is an orthogonal matrix which rotates the

coordinates such that one axis is co-linear with the vector pMT s )
i.e., Qis a set of orthogonal vectors & which span the n dimensional
space with one vector, say gy co-linear with DMT s ; therefore,

o om’s = (e, 00, -+, 0)

and

o
N
!
1
R
0
lw]
R
U
{
3
R

where

Thus, 12(§) becomes

- %
Z, () =1|_l fﬁ(@’p’oMr_s)exp [—ﬂ/’z/]daf
D(w) -

d wj

00
- - w »
=I-/L,//z G(xuw) € uc;’an exp [—Z:wf:]—dé

D(W-wy)
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"//Z - 7~ r~
=| A| [/ex/; [-wzjdw] fq (cw) e~ %" Ju

-0 _oo

2

=l_/1_\’z | ”’f@ (<) e % du

Z,(8) =‘/77}:;l—ifq[(\/§74"_5 )cc:l e qu

The integral 13(_8_) can be evaluated as a special case of Il(_s_),
i, e., simply let s = Jow in Il(§) given above. The result is

77"7’ / 7 =1
Ty (w) :(T_A—l— exrLp —[Azcg A c_u]

Thus, the integrals Il(_s_) , I5(s) and IB(Q) become
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z,(s) =%— exp| Ve s
-/ _
,(8) = ITFI— G (ocuye™

n
I3(ew) =J—,7;,— exp —['/4—9_07_/4"6_9]

where
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APPENDIX B
MULTIVARIATE GAUSSIAN PROBABILITY DENSITY FUNCTION

Joint Probability Density Function

Let f( x ) be a pdf for the random vector x which has the following
general form

f(x) = Kexp~ (x"Ax)

Where A is a symmetrical positive definite matrix, If

D(x)
then f( x ) has the basic property of a pdf for x Now
gl
/f(é)dé = A’f exp-(x"Ax)ax =kI, (5 =0) :K/”“T
O (X) O CX) } I

» 1 -1T72
where I; (s) is given in Appendix A. Thus, if A :[7?"Af :r
then

A
Fix) 75,—9’7 exp ~(x'4 x)

is a pdf for x The moment generating function for x becomes

mMaf(s) =£ [exp (57x)]

=/ €xp (57X) f(x) d x

DCx)
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—fﬁgf exp[sTx -xTAx]Ix
w

O (X)

A
=J%£1? z, ()

g fx3) = evp[ta 5747 5]

The first moments of x are found to be zero, i.e.,

=g
5=0

o
£ (¥) = 33

7777{)( (s)

Since E(x) = O the covariance matrix, I ,for x can be found as follows.

2
Yon

d
A2 s TR @

1

s=0

-1 -7" - g7y~
Thus, noting that # =2 /'x AND lA|= 2 /71

f(x) can be written as follows.

1 -/
- _/ 777

If the random vector X has the pdf r(x) then E(x) = O, however, iy z = X+n

then E(E) = m and 1; = l; . The Jaccbian of the transformation

2 =x +mis simply "one" and; hence, the pdf of z is simply £(z) = £f(x = z-m),

i.e.,
—.—_L____ _/ 7'_7—/
fz)y =qzm”Z]) erp-t (2-m) 7% (2-m)
The moment generating function for gz is given by

775 fs (5) = E[exp (_st‘_i)]

1 ,,

O(z)
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exp(s'm) Wy
= z,r)?‘) /-;7 B/-Cxp [§T(§“_7’,’)'/2@-p)7/;' é-_Jdg

@

exp (s'm)

= ex S X ad
Wzr)"’/é/b/(;() 'D[— 5 —J :

7 57
mafy (s) = expls™m + 2% 577 5]

It is easily seen that

£(z) =25 2fz(3) | =2

= o3
5=0

Therefore, the pdf f(x) can be written for a random vector x with E(x) = m # 0.

Thus, if x is a random vector with a pdf given by

Fex) = Tl exp - 12 7!
¥ JemmTR] PR X mm) Sk (-m)

then E (x) = m and the covariance matrix for x is Jfi . This pdf is defined
as the "multivariate" Gaussian pdf and f(x) is the joint pdf for the components
of x. The moment generating function for x is given by

ety (S) = exp[sTm+ Ve S 7k 5]

Marginal Probability Density Functions

Let x be composed of two subvectors X and X, such that
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£ (X,) = m, £(X) =720,

R
~
n

/7 £[(_l\_’l =222 ) (’_\,I —7_”1)7-]

~N
N
1

"5[(2‘2 '7272,)()_‘1'7272)7]
/2 =£'[(K:—7Z71)(’_(2 '72.72,)7- ]

: - .
720 55[()52‘27_72)()_0-7_?_7,) ] = 77,

It is easily seen that

;01 //zJ
e = £lex-m) (x-m)7 )= |-mm ==
-7 77
l2) | /22

where

Now, if f(x) is a multivariate Gaussian pdf, as given above, then the marginal
pdfs of xy and x5 are also Gaussian as given below:

f (x,)

1l

AN _
b2rP] 7] €XP =22 (x,-22,) 7 (%, - 392,)

/
(X;) = 7
f(X3) I/(Zﬂ‘)h"/EJ./ 375/3‘%2()52_7_?72.)/2,2, (X2-22,)

where ny and n, are the dimensions ofl)_cl and X,, respectively. This can be
established as follows. Let M = [7~ where
|
|
My oy M2

__..__._'—.___—.

=
]

Mpy ! Mpp
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and where Moy _=I~'112T since 1;: is symmetrical. Now ];'( M becomes
I

-7 ! —
— 75 | Dz | (M M 77 /wﬂ/+-22 /VGJ: 7y My, + ZZJ”Q;
/XM::,—I-—_-; —_——d—— = —=—————_’———}————--_7———
| ! l
since Ifu = IT [;‘1 - 1 it follows that
T My + Ty My = I
7)) Mg # Ty May =0
- -7
/Z/M, 7L/22MZ,I =0
-7 -1
log Mg+ 13 M2z =1
thus,

7
-7 =7 -
M= =72 Jay 731) g
77 -1 -/
Marzll32-77 7 775)
-1
Mg = =70 "772 Mgy

-1
My == 7Zz, 73, A,

The joint pdf of x can be written as follows

/) %

FX) e ek Y (X-200"m (X -72)
/] %2 r

(X) = exp -

f (X o CKP V2 2'm 2

where, for convenience, z = x-m. Now, zIqz can be written in terms of
21 = ¥ - mand zp - xp-mp, i.e.,
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—— —— m— —— =

7 r 7 r
= Z My B, FE) Mg Zpt Zo My Z, 23 Ma £,

B}
2] i, 2+ B (Mg # M) Bo# 2 M2z Ea

N
2Tz =2 M, 2, + 28 My Bt B Mt

The marginal pdfs of x; and xp are given by

fexo =ff (X,x%,) dx.

D.(_X;)
fae = f £0x18) 9%,
(X))

Thus,

A1l 2
FOx) = 227)/52 exp -1 (2) M, 2 ) exp- (22 My &+ E My2,)d,,
D (Z;)
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P .
f(x,) 5(2/;ﬁ; exp -7z (2 M2 ?zye%f (22 My 212 M, 2,) d 2,

D(Z)

The two integrals can he -evaluated using Il(g) o7 Apnendiv A with 8 = -Mpp
resnectively. The results avre as

ard =My, , and A = My, and %Mll s
follows:
- Il % y 7,
—F(-)—(') 87’/"/3(&(1‘?27,7 1, ‘MzMz_L'le)(ﬁ\’)'@:)

Im| e (2rr)%
2%

/vl % 7 -1 -
FO0) = T oy 7 €Xp - o (X2 72 Y (Mg s Wi My~ 72)

Using the above eounatinns, it is found thnt
- -1 -l w71
(M ~Myg Myy My ) = (Z#M Ma3' T3 734) M,
-1 -1
_ -7 -1 77 -7

-1 '
— 57 -1 _ 77 -l
= Yy (/// /12 122 /21) ANy,
./,—[

(M1 -1, /”’z},/"’zl) = 1y

Similarly,
-

-1 -7
Mzz"Mz, M,y My = /2

Therefore, f(x;) and  f(x,) become

_ 7 -1
{(Z’) :\—/44,/1———{;;’4— EI/D-//Z (Z/_Z?Jl)r/// (XI'Q?,_)
I

M.,
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/a1)% 7 "

. !
FEI= g & (arryrms C7P ~ 72 Xz -22)" 7o (% -25)

Now, consider the following matrix product.

Using the rules of determinants it is found that

lel = IMHMzzl_/ I/"’z/, /o= ,M.ZIHM/I My M3, My

or

I%Zl,, - ,M’ =M, /V/;_;// A7, ' - ,7:' y

Similarly,

Therefore, f(&l) and f(§2) become

-1

1 1 r
fix) =7——— exp-35(x,-m) [} (x,-m,
Jzm® ] P2 LE £ - m)
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e)ﬁp ‘Ze (Zz "7_772,)7- 732_1(2_(2 '7_272)

In particular, the marginal pdf of any component x; of x is as follows

f.(Z}. L (Xe -no)%
o:_JZ,

"Nz o B CFP - 72

fori=1,2, .. ., n.

It is important to note that the marginal pdf for any subset of a set of
Gaussian random variables is also a Gaussian pdf, i.e., if the random vector
x has a joint Gaussian probability density function then any subvector of x has
a marginal probability density function which is Gaussian. The elements which
specify the marginal probability density function are simply the corresponding
elements of the vector E(x) = m and the covariance matrix  [f. Thus, the
marginal probability density function for any subset of x can be specified
directly from the joint probability density function of x.

Conditional Probability Density Functions

Let x be composed of two subvectors x; and x, with my, m,, ]]'_'l, Lo,

Iip) and B as defined above. If T x) is a multivariate Gaussian pdf
as defined above, then the conditional pdfs f(xl/x2) and f(x2/xl) are Gaussilan
as given below.

/M, [#%

-1 7 ot
f (X /%x3) T2 exp '/3[?1 =75 7% gz] /t/,,[_z, “Tn 7 gl]

{V . -t
f(-)-(;?,/-)fl) —(éﬂ;T Exp - /’[ 7;_7/ 7o IZ/JMIJ. [gz 'Zl T g::}
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where

o 4 -/ -
My = (T, - 77 77 7,

.M-‘JZ':(./_,ZZ‘/_Z/ '/””""/—/jrz)—i

These results can be established in the following manner.

The conditional pdfs f(x;/x5) and f(xp/x;) can be expressed as ratios of
f(x) to f(xp) and f(x3), respectively, i.e.,

£ £, x)

(X, /X)) =

f(X2) f (X3)
f (X, /)_{]) = fx) = 'F()—(IJ_).&)
f().(.)) f()_(,)

Substituting the previous results, it is found that

- /1 . -7
Fx/xa)= SNl eyy 1 (2Tarz -2] 73 2.)
(277) "%

- /M/”/ 7 _ ral -1
fXa/x)= G exp -V (2'mz-2] 7,7 2,)

It was shown that lMI’ri]_' = o | and JMHB2| = [i,4]
The exponents can be expanded as follows.
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r oo’ 4
ZMz-2, Ths 2, = B/ My 2, 422 My 2,4 2] M2y 25 +
7 -
- g;, (Mz,z —MZI /V///IM/Z,) Zz,
> 2!
=E/N1, B, 22 My 2,4 2 My MM, 2,

7 7y,
Z - — _ -/ a -
EME -2, 1y B =(E rr1 M, 2,) 1, (2, + 17, IM/z Z;)

Similarly,

R 7 — / s —_
z M_-z -‘_Z/./// _.Z/ = (gz, td M,Zz M,Z/ _ZI)/MZZ (A_E_z,'f'Mz:z'lMJ_/ A_:—_/)

-1 -1

Since M1z = - 11 0, Mpo andl My = 22 By My,

it fOllOWS that Mz = -.l" 1" and M— M = - s R
%%come 12 12 22

Thus, f(x;/x,) and f

I,/ %

y va -
f(X1/%:) (_W exp - /2 [5_5/ - 72 % Zz,] My, [i: -7z /Zzli-‘z,]
- /MZL///"' / -/ 7 -1
f("vl//—\,’) T () % ex/o‘/a[?z'zz 7/7/ .".E/] /WZZ[ZZL_—/Z/ 7 z,-’J

where the terms are defined above.

It is seen that if the joint pdf for a random vector ~s Grussiar
then the conditional pdfs f(x3/xp) and f(xp/x]) are also Gaussian with
covariance matrices Mli] and M22 , respectively.

It should be noted that the first moments of the conditional pdfs are
not the expected values of x; and x ,. Rather; these moments are the con-
ditional expectations of x;, given x5, and X5, given X;; i.e.,

176



£ (X /Xz) = f(X, /X)) dX;

O Cxy)

F(X2/X) =f F X/ X1)d X,

D(X2)
Using I,(s) of Appendix A for s = 0, it is found that
1 5 =Y

EX/52) = 72220 + 77 T3 (X2 - 7722)

E(X2 /X)) = 222+ 7, 77X, - 2m2,)

Note that

Elx)x, = m) = m
E(z_fz/?_‘, = __/) = .,_7-?2

Also, it should be noted that M=t

and Mgg_l are the conditional covariance
matrices for xj, given Xp, and x5, given Xxj, respectively.
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APPENDIX C
SPECTAL GAUSSTAN RANDCM VECTORS

Gaussian random vectors are invaribly encountered in statistical analyses.
In system performance analyses the two cases which often arise are those of
two and three dimensions; i.e., two or three random variables have a known
joint Gaussian pdf and it is desired to determine the probability that the
vectors will lie in some specified region. Also, the special case of a single
Gaussian random variable often arises, even in the cases of higher order
Gaussian random vectors. The three special cases of dimensions one, two and
three are considered below.

One Dimensional Case

Let x be a Gaussian random variable with mean value and variance of m
and (72, respectively. The pdf of x is as follows:

The probability that x lies in the interval a=< x<Db is given by

b
P[‘LéKﬁbJ =ff(x>d;4 = e'%'——)—vf‘zz
a Lx

b
[
g V2T

An explicit expressed for P [a< x < b] cannot be determined. since
the integral cannot be evaluated in closed form for arbitrary a and b.
Therefore, Pla<x =< b] must be determined by numerical int=gration
of the integral. The integral has been tabulated extensively for the Normal
random varisble, i.e., for the case of m = 0 and o2 =1, Thus,

Ple = y=p8] can be determined from a table for a Normal random
variable y. Now y can be expressed in terms of the Gaussian random variable
x as follows:
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Therefore, Oy = X-m or X = oy + m and

p [d_ezﬁ—b]zP[rxﬁffe/?]

where

Thus, the method for determining the probability that a Gaussian random
variable will lie within some interval is to simply translate and scale the
random variable and use a table for a Normal random variable with zero mean
value and unity variance. A few values of P[|y|=<k ] are

given in Table C-1 below. It is noted that P[|y|<k] = Pleml<ko] .

An extensive tabulation of the Normal random variable probability is given in
Reference 1L and useful tables are given in References 1, 2, 5 and 6.

3 Pyl = 4]
0. 500 0.383
1.000 0.683
1.500 0.866
1.645 0.900
1.960 0.950
2.000 0.955
2.576 0.990
3.000 0.997
3.291 0.999

Table C-1: Probabilities for a Normal Random Variable

Two Dimensional Case

Let x be a Gaussian random vector with two components Xy and X, such
that

£ (X))
£(%2)
E(X,-mm)* =0;"
£ (Ky-mp) = o3t
£k -7m) (X2~ m3)| = A

77,
7772

|}

1}
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The Joint pdf of x is as follows:

- __;l__ _4 - 7_[’1'/ -
fee) = 2 ;’l//_),g exp /3(% __) ¥ (}f )

where

2
o M 7
f} = and m =
M Oﬁz “

It follows that [Fy| =ayah -u? and

2 -
r,_/_ / 0z AL
¥ I
olu op
The covariance matrix /[ has two eigenvectors Ql and Qz such that
I Ql = A Ql and 1, Qz = X, QZ Wwhere Ay and A, are
the elgenvalues of I'x which are determined by (I'y - AI") g =0 or,

equivalently, by

'I'} —hz’ =0

Thus, the eigenvalues are roots of the following quadratic equation.

(O}L-—"h) (7 -) UA/Z =0
M—(clr o)A 020 - =0

It is easily shown that the eigenvalues for Iy are given by
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1 2 2
2 2 z“ 2 2 [/
A‘=°_’;0-‘—[(O-’ &o-z ) +/uz] %

g = (x - m) where M is the modal
where @, and g, are the eigenvectors of
M = A where

Consider the random vector such that M
matrix for M., i.e., M =[g,, éz

- Thus, E (x)= 0 and [‘,I_ = A

The pdf for y becomes

/ - iy’
f(#):z-;fﬁ——/ e%,o—Zz (# L %)

R LA
Fp) = £ £ (5)

where

- 2
')C( ) = / e 27, 7,
i" 277 A,
4 z
f’y'z) =1/2_77—(T' </ AN 7"
2
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Thus, the random variables y, and ¥y, are statistically independent
Gaussian random variables whose probability of occurrence for certain regions
can be readily determined. It will be shown that Z [# € €¢g)] can
be readily determined for rectangular and elliptical regions.

It should be apparent that the determination of the probability of
occurrence for y essentially determines the probability of occurrence for x.
That is,

F’[;t er] =Pz erw)]

where the regions R(y) and R(x) are related by the transformation

y = MT(x - m). This transformation is simply a translation and rotation of

coordinates as depicted in Figure C-1. The translation is simply along the

mean vector m as shown. The rotation is determined by the eigenvectors of
/"< or, equivalently, the modal matrix M; however, it is possible to define

the angle of rotation, &« , directly in terms with the elements of /'x.

That is, let

(e o
4 _[CM oC

where 7, B, = A, g,. Ths,

072}425L/CC * M Gpd) o =N, L) oc
U din ot 03 e o€ =7V, 0o o

and

0, den)oc + 4 2ot oc
U L oc # 0% ere oc
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Solving, it is found that

Zan oc 7 ,
= = — Jfan/2oC
/- Zarw?oc OF -052 2
Thus,
/ 2
oc = Zz Zar ( pans 7..)
o5’ - o7
1 2 -m
£ 'z X
4 72 1
7
2, 2 &
ry e ———— 2
I
|
I
of |
|
1
0’0 ” -"ZI

Figure C-l:. Transformation of y = MI(x - m)
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Consider, the rectangular region R shown in Figure C-2, which is defined
by
a, = 7, = @,
Ay = 72, = 4,

The probability that y lies in R, p[%ee] , 1s given by

p[7 € /P] = [j}(ﬂ")df’][fbf(?‘z)dfzv"

Now, if the limits are expressed in terms of 4 A, and Az the
integrals can be determined from a table for a Normal random variable and

this determines P[Z «R]
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Figure C-2:

Rectangular Region
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If an elliptical region A

closed form solution for P

region enclosed by an ellipse which is defined by
It is noted that the vectors r; and r, are the

as shown in Figure C-=3.

semi-principal axes of the ellipse.

is used, then, it is possible to obtain a
Yy e A] Let A denote the elliptical
T A" % = -21/ s

The lengths of ry and r, are related to

/ll and are found by setting Io and 1 equal to zero, respectively; to wit,

W2l ™
\V2.l, n,

where a and b are the lengths of ry and r, , respectively.
that the area, A, of the ellipse is given by

i

a

L

1

It is also noted

A =ma b =27, £,
%2\
#2
-1 _
.%TA #/2/(/
r ?;
L r, N
m\— — T [ T g —_—
|
|
|
!
4 I
|
|
I
| -
0,0 m”, 1
Figure C-3: Elliptical Region

186



The probability that y will lie in A , P [;[ € A] , is given by

p[%eA] =/f(17.) Iy
A
/ / 7 !
El O
P[%gAJzzzr/m,nb e %o , das
e ff e oy

It is apparent that the probability density is constant along an ellipse
defined by !#T-A-'#: =24 , thus, it is convenient to change the
infinitesimal area dy, dy, to dA = 27 ¥ X, iz d& , where dA is the
infinitesimal area lying between two ellipses defined by 4L and £+ AL

In this manner,

/ )
P[;ga]: 2#,__7\’7\2/@ aA
o

Ly

:f etoe

o
e’l’

P[%éAJ = Z-

Thus, the probability of occurrence for the elliptical region enclosed by
?;TJ':'#-= 2 L, , is readily determined in terms of 1. Several
values are listed in Table C-2 below, where .

Ply ca] = P(a)
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EaN

Pla)

0.3935
0.5034
0.593L
0.6988
0.7769
0. 8347

HFHHOOCO
00V N0 T\

Table C-2: Probability of Occurrence 3 P(»)

It should be noted that for each value of éa the lengths of ry and
. . -
r, are given in terms of ,21 and A, e.g., for Ly =1/2,a= vJA
and b = ‘V;ig- The probability that y will lie in the corresponding ellipse
is 0.3935 as noted in Table C-2.

Three Dimensional Case

Let x be a Gaussian random vector with three components Xy, %5 and Xq
with pdf as follows:

f _(t/z_‘rr_)’j/ﬁ— erp Y x-m) 7 (¢ -m)

where
0= £(X)
7= e[ -mo-m7
The covariance matrix /7x has three eigenvectors Qi corresponding to three

eigenvalues ;\i’ for i =1, 2, 3; i.e.,

Z; éfb = 7\é.£tb < = 52,3
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The eigenvalues are solutions of /7, - arxl = 0 where

2
OG- A, Ays
|77’L‘7‘~I' = | Mz 07" N ALz

Z

A A2z 03" - N

i

[(52-7) (07-7N) (0F D) #2 Myp feos 5]+
(@27 el + (07 n) % 4 (02-m) a2]

Setting I/".,d - 21" equal to zero the following cubic equation is
obtained.
2NN+ K, N+ Ky =0
i 2 3 -
where

_ 2 2 2 _2 2
Ky = 02 0L +0505 +0°0F - (L2 + 4f +u?)

= 2z 02 2,2
Ky = 0 Mz + 05 U5 + 0F 42 +

- 2 2 z
(0708 0 + 2 by ey Ayz)
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The roots of a cubic equation can be solved by a change of variable
A= W¥W- /3K, which yields the following reduced cubic or

normal form in )V o

5 .
V +K4 V*K_r, =0

where

K4_ =//_;(3K2—A/IZ)
Ks =727(2K7-9K, K, +27K;)

In general, the reduced cubic has three roots which can be real or complex,
positive or negative; how§ver, since lix is a real symmetrical matrix, its
eigenvalues are real and, hence, only real roocts of the reduced cubic need be
considered. These roots are as follows:

Ve = 2 [-—5 o (T%)

|
P
X
™
|
W
Y
S
<

Y =

Tor i = 1, 2, 3 vhere
o, = /5 x
g, = /5 (oc+2TT)
D_-'] = Zf(o(‘+47r)
vhere
2 R
oc = epg™! _| K5 [ é!i)
A K

if K5 > 0 ord
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if K5 < O. Thus, the eigenvalues of /™ become

Ne =24/K%-3K, o (0)

for i =1, 2, 3.

The eigenvectors can be determined by solving /% Q,. - A ¢ =Q
for each Q; . Let each eigenvector be given by

%&/
Q/L = ﬂbz

Bis
iﬁgti =1, 2, 3. Substituting into 7;(, Q’L N B =0 it is found

(07 -T) dor # 4y, Bz + 43 His =0
My By + (%3—7\1,),@;2 7‘/4(23/@3 =0
A3 Pi * A3 Bz +(0}z—7\4;)/¢4;3 =0

Any two of these equations can be used to solve ¢i and ¢i in terms of ¢i .
Using the first two equations 1 <

1

(072‘ ™) }dl.y Ay yf,;z A3 %o‘.a
Az %o'/ *+ (qf-m) ﬂ'z = M2z ,dx;j
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Solving for @#: and @.
il 12’

¢ (e - 0F) Mz + Moz A 23

YT 2o zZ__N_ 4,2 Bes
(07 -n) (a7 -1) - %

(Mg = 0% Moz + iy M2s 4
(@) (0 - 7))~

o

for i =1, 2, 3. It is seen that the first two components of each eigen-
vector are proportional to the third component which is essentially arbitrary;
i.e., the directions of the eigenvectors are determined with arbitrary
magnitudes. If the eigenvectors are normalized to unity magnitude than an
addition equation specifies the normalized eigenvectors, i.e.,

2+ 4 +gi =2

The foregoing equations define a set of normalized eigenvectors which con-
stitute the modal matrix M for [T %+ It should be noted that for actual use
it is not necessary to normalize the eigenvectors since the directions of the
eigenvectors are of primary concern. However, the modal matrix M implies a
set of normalized eigenvectors.

Using the above results, it is possible to define a statistically in-
dependent random vector y by a linear transformation; i.e., consider the
transformation

7 M7 (X - 7m)

where m = E(x) and ¥ = [ g;, &5, Qs] . The transformation is simply a trans-
lation and rotation of coordinates as depicted in Figure C-4. It follows that

E(y) = 0 and /‘% =M777ZM - A where
n, 0 o

A =0 n, o0

© o nyg
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The pdf for y becomes

Z ) -1
o = G TaT o Hg

2 2 2
xp | s ot
NNz T

4
T (2N P

Flp) = f (g0 £ (o) £ (g

where

f(},) :1/27;_7\:' e g%
-’C(?Z) :1/277/‘7\3 e—ﬁf\a

! -
f(7ﬁ —¢ZE;73 € 22;

Thus, the components of y, y;, are statistically independent with zero mean
values are variances Aj fori=1, 2, 3.

Consider the solid rectangular region, R, defined by

4/*%/ =y
,Z/s7l é/d’,a
e, 5/33 =¢,
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2 = T

N
3

1
N

Figure C-4: Transformation of y = MT (x - m)
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The orientation of R is such that opposite sides are perpendicular to an eigen-
vector Qi of ' .. The probability that y lies in R, P [ € R] , is given

p[?e/? [[ fc?,)d?.][f f(7z)dfg[/ f(ya)d73]

Ay
Now, if the limits are expressed in terms of A A ' N A, and N A, the
integrals can be determined from a table for a Normal random variable.
Consider an e111p501dal region, A , which is enclosed by the ellipsoid
defined by @ =T ¢ =L2 , as shown in Figure C-5. It is noted
that the vectors r., r, and r., are the semi-principal axes of the ellipsoid.

The lengths of these axes are)found by setting y, and Y35 Y1 and Y35 and
¥y, and y, equal to zero, respectively; to wit

~
b o= /X 4
i,

where a, b, and c are the lengths of r;, r, and rg , respectively. It is
noted that the volume of the ellipsoid, V, is given by

V=Y ase = B fnTTg e

The probability that v will lie in R, P[g eR] , 1s given by

a

c

p[?ea] =ff(7) dy
A

=(27”§mff/e¢p-’/z(%%"{¢)df d;;z 4/73

[ e ] cezr)%mfff %W g o
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. . . . ro, - 2
Figure C-~5: Ellipsocidal Region y A Y =j
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It is apparent that, theJ?rdbablllty density is constant along an ellipsoid
defined by AT 5 thus, it is convenient to change the infini-

tesimal volume ¢4, dff-z deggto dV = 47432 X3 1, vhere 4V is
the infinitesimal volume between two ellipsoids deflned by and L +AZ .

In this manner,
£ -sel

P[fe‘l] (2/?)%./7\,7\—z7x_,‘f

/7 'é‘ VA7
=J7§:f Z'e-l/zzb,t’dz
[/
P[;geA] =,/—-f;f2dqf

U = ¢
d?’ :—8-%2‘48de

where

Integrétjng by parts,

Z [ /"m ]
- -F[/, kel ! ‘/du]

—z[ \/*f -/z‘ldz) 2, (;/erF e'zzz'&)]

P[;LeA] z[/f(z)dz 2, f(z)]

P[]ALGA]
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vhere

/. - Y22

Fe) = Zr ©

Tt is seen that £(£) is the pdf for a Normal random variable. Thus,

P [#54] can be evaluated with a table for a Normal random variable which
tabulates both the pdf and the area enclosed sbout the mean value. Several
values of P[#ﬁ A] are given in Table C-3 below.

£, PA)
1.0C 0.1987
1.41 0.4251
1.50 0.4886
2.00 0.7385
2.50 0.9000

Table C-3: Probability of Occurrence P [l#é'A] = P (4D

Tt cheould be noted that the "size" of the ellipsoid is given by the
lengths of the semi-principals axes a, b and ¢, e.g., for =1 a=VZA
b= NAz andc =V A3 with the correcvondiing probability of 0.1987. The
orientation of the ellipsoid is given by the eigenvectors of fx , i.e.,
the principal axes of the ellipsoid are 2o-linear with the eigenvectors
given above.
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APPENDIX D

SOME EXTREMAL PROPERTIES OF QUADRATIC FORMS

In the design of optimum navigation and guidance procedures criteria of
quadratic forms are frequently used. The selection of various design parameters
directly affects the resulting performance of the optimum procedures, Thus,
in the selection of design parameters and in the analysis of performance the
behavior of the extremal properties of quadratic forms is of considerable
interest, In this appendix several properties of the extrema of ratic functions
of quadratic forms are considered, The results are presented in two parts.

Part I presents the basic results in terms of three theorems related to a par-
ticular ratio of two quadratic forms., Part II extends these basic results to
more general cases,

PART 1, BASIC THEOREMS CONCERNING THE EXTREMAL PROPERTIES OF THE RATIO OF TWO
QUADRATIC FORMS

The subject matter of this part is concerned with a real function, denoted
by £(X), of n independent variables which is the ratio of two quadratic
forms. The function f(X) is expressed in matrix form as follows.

N

74
flx) = — £

lll
5y (1.1)

I\

where A and B are real symmetrical matrices of order n X n and X 1is an
n dimensional column vector. The superscript T is used to denote the trans-
pose of a matrix or a vector. The problem to be considered is that of
determining the extremal properties of -f(X), i.e., what, if any, bounds exist
on f(X) as X varies throughout the range of all real n dimensional vectors
excluding the null vector. The most general case where the matrices A and B
are not related in any way is not considered in this partj; rather, the less
general case where A 1s equal to B raised to some integer power is con-~
sidered. In this case, it is shown that if B 1s a positive definite matrix,
then the extremal properties of f(X) are readily expressed in terms of the
eigenvalues of B, Actually, the basic theorems are slightly more restrictive
in that the degenerate case where the matrix B has a zero eignevalue is not
considered, i.e., the eigenvalues of B are also positive definite. This is
no severe restriction, it simply precludes the situation where the n space
degenerates into a space of lower dimension, where the basic results apply.

The basic theorems are based upon the following three (3) lemmas.
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Lemma 1
If f£(X) is given by Eq. (1.1), then the critical points of £(X) occur

for those X which satlsfy the following vector equatlon for arbltrary A
and B such that X*BX 1is positive definite.

(x"Ax) Bx =(x"Bx)Az (1.2)

Lemma 1 is readily established by taking the partial derivative of f£(X) with
respect to KF and setting the results equal to zeroj to wit,

I 7 -
= —-—._-r-(zﬁx)f/zr/?l) . 7(.3:7'3;) /

X' Bx Jx
Ax z'Ax

2Bz CizTBz)%

(1.3)

:2 BE

Setting Eq. (1.3) equal to zero and multiplying through by (K?BK)Q, Lemma 1
is established.

It is noted that Lemma 1 is somewhat general in terms of A and Bj; i.e.,
no particular relationship between A and B is assumed. However, the
quadratic form XIBX is assumed positive definite such that the partial deriv-
itive of f£(X) ‘exists. This is satisfied for a real symmetrical positive
definite matrix B which is of concern in this discussion.

Lemma 2

If A= BN in Eq. (1.1), then any eigenvector of B multiplied by any
arbitrary scalar constant is a critical point of f(X). To establish this
lemma, let V; represent the eigenvector of the matrix B which corresponds
to.the ith eigenvalue of B, denoted by Ai . Letting A =B" and X = a!i
in Eq. (1.2), the following equation results.

(o VB a ¥ )BaV, = (aV BaV.)B aV, (Lm)

Since V; 1is an eigenvector of B, Ba V = on V. and BNa Vi =R
i,e., the vector transformation represented by the matrix B when app iﬁé to
an eigenvector of B simply multiplies that eigenvector by the qorresponding

eigenvalue of B, Hence, Eq. (1l.4) reduces to

7-V-) = « A4/1»/(V‘ )

2 Al
o™ XY, =¢ (1.5)

3 L =¢ [}
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Note that the eigenvectors of B form an orthonormal set of vectors, i.e.,

where 635 =1 for i =3 and $;55 0 for i # j. It follows that Eq. (1.5)
could be written as

L = a l. (la7)

0f course, either Eq. (l.5) or (1.7) establishes Lemma 2.

Lemma 3

If A =BY in Eq. (1.1) and if the eigenvalues of B are distinect and
positive definite, then the critical points of f(X) occur only for those X
which are the eigenvectors of B, multiplied by an arbitrary scalar. The
difference between Lemma 3 and Lemma 2 should be pointed out. In effect,

Lemma 2 establishes the "if" portion of an "if, and only if" conditionm.

Lemma 3 establishes the "only if'" portion of this conditiocnality. To establish
Lemma 3, the eigenvectors of the matrix B are used as a basis for the

space; any any arbitrary vector X 1is wpitten in terms of this basis, i.e.,

z:(x,_, +a2-2+' 'I‘an_vn
n
x= Z 0(;. y;’ (1.8)
/':I

The transpose of X 1is given by
n
-
= x. V.
; ; _/ (1.9)

By using the eigenvectors of the matrix B as a basis, the product BNK is

expressed simply as
n

N
o2 =Z/ N (1.10)
7 .

The product BX 1is the vector obtained by applying the trﬁnsformatlon repre-
sented by the matrix B to the vector X+ The product 3 is the vector
obtained by N such transformations applled in successionj “the resulting

vector is expressed simply as n

Ix&
i
Q
>3



By pre-multiplying Egs. (1.10) and (1.11) by Eq. (1.9) and recalling that the
eigenvectors of B form an orthonormal set of vectors, the following expres-
sions are obtained for the quadratic forms X°BX and K?BNE.

T _ ¥4
z'Bx = o A;
- ,Z=, ¢t (1.12)
~N n
2 8"k ’E oaf X (1.13)
=/

Now, by substituting Egs. (1.10) through (1.13) into Eq. (1.2) for A = BV,

the following expression is obtained.
n

< Z N - Vv =|:iaz7\i|ZaR“V'
[z; o /\L.]fz‘;a;.zf._/ IEEAPILRAY

L=/ i.=/ (lc lu‘)

By transposing the interchanging the order of summation, Eq. (1l.1l4) becomes

n n n
X X - a. A My - (1.15)
;;[a”‘;/aLAL % 3 ey -o

The values of «j which satisfy Eq. (1.,15) determine the vectors for which
critical points of f£(X) occur. Since the eigenvectors of the matrix B ‘are
linearly independent, each multiplier of Vj in Eq. (1.15) must be zero in
order to satisfy Eq. (1.15). Thus, determining the values of &j which yield
critical points of £(X) is equivalent to determining values of oj for which
the following equation is satisfied for all j.

n n
-1 2 _ w]
o, A, l:,\;. 2ol =Y« ai]— o) (1.16)

{=f &3/

Writing the terms within the parentheses as one summation, Eq. (1.16) becomes
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n
IRy [E o;’.' x ( A;'"—x:’"):] =0 (1.17)
&=/

In order to establish Lemma 3, it is necessary to show that if Eq. (1.17) is
satisfied for all jj; then only one &7j c¢an be selected arbitrarily non-
zero. To this end, let the eigenvalues of B be ordered such that

VRS VE S NSRS S A A% (1.18)

Next, for convenience, let N = 2 and write Eq. (1l.17) as the following system
of equations. Note that nothing is lost in generality since the following
argument applies for all N greater than 2.

o [0 F af a4 A 0l A O Aol A A, ) Pl a0, -2,)] = O

a, i, [oc,z WO WY R 1 Wo VeV WP IINNEEE S TR CUED WD £ X 1ap W0 e )] =0
A 2y [O‘;z'?l (2,-2,) +a§ A, (ZJ-RZ)*' Or.. s * a;-/ Ans (2 - "n-:)*d; A, ( R_,-l,,);]= o

b e o
" r0e &y

% Aj_a,z R., (k;. -2)¢ oz: A, (2}.-22) t.o.+r0 + L +a:_, A, (AI.—A,,_,) +aj§ 7(,,()‘/-&,7 )] =0

F L .
B 2 |8 O N 7 (R, R ) #@F A (3, A e O v iR, 2,0 | = 0

[
[ ]
.
,

2 _ 2
a, A, [cr, 2,2y -2) * o] Az(kn-21)+a.’2)t_,(a,,-xd) oo "'“nt//\.n., Mn'ﬂm.,)*O]= o

[System of Equations (1.19)]
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An examination of the above system of equations shows the following to be
true, If o4 1is nom-zero, then all other «j's (j =2, 38, * * ° * n) must
be zero in order to satisfy this first equation, which also satisfies the
entire system of n equations. This is true since each term within the
bracket of the first equation is positive and this sum must be zero if oy is
non-zero. Therefore, all other a«Jj's must be zero if @3  is non-zevo.
Thus, if oy is non-zero, then @] must be zero; moreover, if @] is zero asd
e 2 is non-zero, then all other &« j's must be zero to satisfy the second
equation of the system which also satisfies the entire system of n equations.
This is true since if @; 1is zero, the remaining non-zero terms within the
bracket of the second equations are all positive and their sum must be zero.
Therefore, if @5 1is non-zero, all other aj's must be zero. The same
argument can be applied generallv. That 1s, let any combination of the xj's be
assumed to be non-~zero. An examination of the equation in the above system
which corresponds to the first non-zero aj's shows that the remaining «j's
cannot be non-zero if the entire system of equations 1s satisfied. In this
manner Lemma 3 1s established.

It is noted that the argument is valid for N greater than 2 since the
terms which are positive remain positive for N>2. The case of N = 1 is of
no interest since f(§) is a constant. If N is an integer such that N=0,
the argument remains valid with a simple change of sign in all of the equa-
tions., Thus, Lemma 3 is true for all integer N, excluding 0, which is of
no concern.

Theorem 1

If B 1is a-real symmetrical positive definite matrix and if f£(X) is
defined by

278" x

Flz) = :
£ 278 x

then a critical point of f(§) occurs if, and only if, X 1is equal to an
eigenvector of the matrix B multiplied by an arbitrary scalar constant. The
proof of this theorem follows directly from Lemmas 1, 2, and 3 given above.

Theorem 2

If the eigenvalues of the matrix B are distinct and positive definite,

then
7 AN
e B E e
! 8 x " (1.204)
and
qg”
A=t z p 4 -
s ,1:' MeO (1.20B)
x 8 x
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where A, and A _ denote the largest and smallest eigenvalues of B, respec-
tively. ~ Moreover, the maximum and minimum values occur for X equal to the
eigenvectors of B, which correspond to the largest and smallest eigenvalues
of B, multiplied by an arbitrary scalar constant,.

Generally, in order to determine which critical points of a function
define the extremal points the second partial derivatives are examined. How-
ever, in the present case ‘it is easier to simply evaluate f£(X) for A =B
at all of its critical points. By Theorem 1 it is known that the critical
points of f(z) occur only at the eigenvectors of Bj thus, it is a simple
matter to evaluate f£f(X) at all of its critical points in -general. To wit,
let X be an eigenvector of B multiplied by an arbitrary scalar constant,

i.e.,

X =a V.
- §F ¢ (1.21)
Substituting Eq. (1.20) into Eq. (l.1l) for A = BY it is found that
N-l
Fly = & Y/) = Aj (1.22)

where A\, is the eigenvalue of B which corresponds to the eigenvector Vij.
Note that Eq. (1.21) is actually Eq. (1.13) divided by Eq. (1.12) for the
special case of @i equal to zero for i # j. Eq. (1.21) is all that is nec-~
essary to establish Theorem 2. From Eq. (1.20) it is seen that no matter
what X 1is taken as in the n space, f(X) is constrained to the bounds of
Eq. (1.20).

It is seen that when N>1, the maximum and minimum values of f(X)
oceur for. X equal to oy y%. and o !n’ respect%vely, where vy and !n
are the eigenvectors of B which correspond to the eigenvalues X\j and Mg ,
respectively. Of course, when N<0, the opposite extremal value occurs.
This establishes Theorem 2.

Theorem 2 has been proved for the case in which the eigenvalues of the
matrix B are positive .definite and distinct. For the case where the eigen-
values of B are positive definite but not necessarily distrinct, the follow-
ing theorem is established.

Theorem 3

If the eigenvalues of the matrix B are positive definite but not
distinet, i.e., multiplicities of various orders exist in the eigenvalues of
B, the extremal properties of f(X) given in Theorem 2 are unaltered. That
is, the extremal properties of £(X) are not affected by multiple eigenvalues
of B,

Assume that the eigenvalues of B have a single multiplicity of order k
in an eigenvalue Aj , i.e., in the array of n eigenvalues of B there are
k eigenvalues equal to A j. For this case, the system of equations
Eq. (1.19) becomes
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o

o d [0rafn (-2 2aZ A (a4 4) +. ..+ af A, (22,0 ]

[

-

2
a, 2, [a, 2,2, -2,) +0+af Ay (=) * ot d, (2 -/\,,)_] =0

. . .
° [ 4 [
. ] »
a. 2 [gr Z() -2)f .. o A (A.-A. ) +0 +0 #
P L P RS B
2 2 - -

* 0 +cxi.’4 a;.d (/’l’ 2} 2 ), A, (1,4' Rn)] =0
] - '
L] r] .

¢
: +0+<}“‘ o (A{.—A;.M)f...a; A”(xj-x,,)] =0
s . :
P .
o d Rp,{ [a A (2 \rod A) #.oo . _{_/ Rf'**"/ (A’.A—,z;.'{_,) X ZJE P

]*“" ;f{/ (2 2,'vwl-/) RIREE “: Afl(’\j‘,,( —R,p)] =0

L
L 4

x, h”[cx,‘/\, (A =2,) + &2 (A, -2) *af 2, (2,-2) ... +OJ= o

[System of Equations (1.24)]
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Comparing the two systems of Eq. (1.19) and (1l.24) shows that if all multi-
plicities of the eigenvalues of B are of order one, i.e., the eigenvalues
are distinct, then a single zero occurs in each of the n equations which
determines the possible aj'sj whereas, if a single multiplicity of order k
occurs, then those equations which correspond to the multiple eigenvalues each
have a total of k zeros. The effect of having additional zeros in these
equations is that more than one non-zero aj is possible in satisfying the n
equations., This, in turn, means that for multiple eigenvalues of B the
critical points of f£(X) occur for certain X other than the eigenvectors of
B. More specifically, if the eigenvalues of B have a single multiplicity of
order k, then critical points of f(X) occur for any linear combination of
the k eigenvectors of B which correspond to the k multiple values of the
eigenvalues of B. This is verified by an examination of the system of equa-
tions (1l.24). If @; through @ Jj_; are selected as zero, then aj through
aj + k - 1 can be selected arbitrarily non-zeroc. However, the remaining
aj's, @¢j + k through a, must be zero,

From the foregoing it is seen that the effect of multiple eigenvalues of
B 1is that critical points of £(X) exist for X other than the eigenvectors
of B. However, the additional critical points of f£(X) occur only for linear
combinations of those eigenvectors which correspond to the multiple eigen-
values of B. This is important because for this reason the values of f(X)
at these additional critical points are all the same. To show that this is
true, let !i through X_j + k - 1 represent the eigenvectors of B which
correspond to the multiple eigenvalues A j through Aj + k - 1 of B, Let
X Dbe any arbitrary linear combination of these eigenvectors, i.e.,

+A-1
X =/}: o« Y (1.25)

Now, the products BX and BNE_ become

/'fl-/
BE = E & li L
2=y (1026)
by, X.-l-/ N
Bz = Z a A Y (1.27)

However, since the Ai's are equal for i =3j, §+1, * * * , 3 +k-1,
Egs. (1.26) and (1.27) become

A/
Lz = A 2 @ V. (1.28)

¢ =/'
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v i (1.29)

. T
Hence, the two quadratic forms X BX and X B X Dbecome

i+ A/ 2
2Bz =>‘/Z;4 % (1.30)
vy
=

Therefore, £(X), which is the ratio of Eq. (1.31) to Eq. (1.30), is equal to
AN-1  at all Of the critical points defined by Eq. (1.25). The value of

f(X) at these critical points is independent of the order of the multiplicity
of A: 3 and, furthermore, the value of f(X) at these critical points is the
same "as its value for a multiplicity of order one. Thus, the effect of a
multiplicity in the eigenvalues of B 1is that additional critical points of
f(X) exist; but the values of f(X) at these points are all equal to the
value of F(X) for a multiplicity of order one. Therefore, the extremal
values of f(&) are unaffected by a multiplicity in the eigenvalues of B.

Strictly speaking,  the foregoing argument has been given for the case of
a single multiplicity. In the interest of generality, the argument should be
extended to the case of m multiplicities each of order k . By extending
the above argument it is found that the results are the same for m different
multiplicities in the eigenvalues of B. The important factor in this exten-
sion is that no more than k_ aj's can be selected arbitrarily non-zero which
must correspond to eigenvalues’ in the mth multiplicity. To verify this, note
that for m multiplicities the set of equations (1.19) has m sets of equa-
tions which have more than one zero. In fact, the set of equations which cor-
responds to the mth multiplicity has k zeros. However, if L aj's are
selected arbitrarily non-zero on the basis of the mth set of equations, the
remaining aj's must be zero in order to satisfy the entire system. Therefore,
no two sets of @j's corresponding to different multiplicities can be taken as
non-zero and satisfy the entire n equations of system (1.19).

The foregoing argument shows that the extremal properties of f£(X) are
unaffected by multiplicities in the eigenvalues of B. The remarkable result
is that in spite of the fact that a multiplicity in the eigenvalues of B
greatly increases the number of critical points of £(X), the values of f£(X)
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at these critical points are all equal to the value of £(X) for a multi-
Plicity of order one, This is the essence of the foundation of Theorem 3,

Summary of Part 1

The essense of the above three theorems can be summarized in more precise
mathematical terminology as follows., If B is an n xn positive definite
matrix whose n eigenvalues have. m distinct values, m = n, yielding a total
of m multiplicities of order kg, respectively, including all multiplicities
of order one, and if f(X) 1is given by

r M
flx) = é,—q’é (1.32)
= x Bz

vectors X for which eritical points f(X) occur c & collected
intc m different sets of vectors, denoted by Sm(X) Each set Sm(!) is
linear manifold of dimension k,, and is spanned by the k_ eigenvalues of B
which correspond to the k, eigenvalues of B contained in the mth multi-
plicity of the eigenvalues of B. The sum of the dimensions of these m
linear manifolds is equal to nj the dimension of the space. These m mani-
folds Sm(X) are invariant with respect to the linear transformation
represented by the matrix B. Also, the values of f(X) for X in the manlﬁo}d
Sm(X) is independent of the dimension of the manifold and is equal to
for all X in Sm(X), where AJ is the value of those eigenvalues in th@
mth multiplicity. Thus, the values of f(X) for all X in the n space lie

in: the range

i
o
or

N
%
v
ey
R
N
N
S
g
R
v
~

-1 n-/ (1.33)

»
[N
b
~
N
-
1N
pY]
I
O

The maximum value of f£(X) occurs for all vectors in the manifold Sl(Y),
where S;(X) is the manifold which corresponds to the largest eigenvalue of
B. Likewise, the minimum value of f£f(X) ocecurs for all vectors in the mani-
fold Sn(X), where Sn(X) is the manifold which corresponds to the smallest
eigenvalue of B, -

The meaning of the foregoing is that the variation of £(X) 1is deter-
mined solely by N and the largest and smallest values of the eigenvalues of
B. If the difference in the smallest and largest eigenvalues of B 1is small,
then the variation of f£(X) 1is likewise relatively small; and conversely, if
the difference in these extremal eigenvalues is large, then the variation in
f(X) can be large. Of course, 'relatively" small or large in terms of the
variation of f(X) is a function of Nj i.e., the variation of £(X) can
exceed the difference in the largest and smallest eigenvalues of B. One of
the most important results of the foregoing is that the extreme values of
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£(X) are not uniquely determined with respect to the vectors X. That is,

in the case of distinct eigenvalues of B the extremal values of f(X) occur
for those X equal to the two eigenvectors of B which correspond to the
extreme eigenvalues of B, multiplied by an arbitrary constant. In the case
where multiplicities occur in the extreme eigenvalues of B, then the extreme
values of £(X) occur for all vectors X in the manifolds which correspond
to these extreme eigenvalues., As an interesting example of this situation,
consider the case where all of the eigenvalues of B are equal, then f£(X)

is equal to a constant independent of X. This constant is ¥ | where A
is the value of the n eigenvalues of B.

PART 2, EXTENSIONS OF THE BASIC RESULTS

The basic results of Part 1 are extended in the following theorems. An
immediate extension concerns the reciprocal of f£(X) as defined previocusly.
Other extensions of important concern include the situation where the matrices
A and B are not related by a particular function as considered previously.
In extending the previous results, it is convenient to consider the basic
results of Part 1 in the following matrix notation.

Let M be the modal matrix for the real symmetrical positive definite
matrix B, 1.e., M 1is the matrix of orthonormal eigenvectors of B. The
modal matrix M has the following properties.

MM =17
m'=m
MBM = A (2.1)

where A is the diagonal matrix of eigenvalues of B. Let any vector X be
expressed in terms of the orthonormal vectors of M; i.e., the eigenvectors
of B are used as a basis for the n dimensional space. In this manner any
vector X can be written as

where @ are the components of X in the basic vector M.
Theorem 4

If B is a real symmetrical positive definite matrix, then

,
ATe EZE LN s
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r
- 1-nt
RIAI = £ éi% z A, N£O
-3
It is noted that Lemma 1 applies to g(X) =$ (X) for A= BN

where E?Bz_ is
positive definite, Thus if

75,3:
TBM&:

t

;(z_c) =

14

then the critical points of g(X) are determined by

(2z78Y2)Bx = (¥"Bx)Bx

Therefore, Lemmas 1 and 2 apply to g(X), ,and the critical points of g(X)
are the same as those of f£(X) for A =B . The arguments of Theorem 2 and 3
also apply to g(X) and Theorem 4 follows immediatelv.

Theorem 5

Let B be a positive definite matrix and let £(X) be defined as
follows:

N
3

>

N

pry)= 2%
% z"B x

If the eigenvalues of € =B A are distinct, then the critical peoints of
£(X) occur for X equal to the eigenvectors of C multiplied by an arbitrary
constant. From Lemma 1, the critical points of £(X) are determined by

(27Ax)Bx =(x"Bz)Ax (2.2)

Letting X=Ma , (_}_(_T A X)BX = (_CETMTAM o) BM and (§_TB2(_)A_)£ = (EY_TMTBM (a)AM o =
(g_TA_C_Y_)Akd_g_; hence, Eq. (2.2) becomes
T T, ,7
('’ Na) AMx = (a' M AIMx) BMX (2.3)
Therefore, the critical points are determined by

(MAM&)

-l = M
(B A M (" L&) 124

(2.4)
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Alternatively,
(B AIMx = Hlay A, L) M&x (2.5)
where H( a, A,A) is a scalar function of ¢ 4 A and A given by

("M AMa)
(0(7/).0<) (2.6)

”(g,AaA) =

It is seen that Eq. (2.5) is the characteristic equation which determines the
eigenvalues and eigenvectors for the matrix C = B~1l A, i.e., the equation

Cg =g (2.7)

determines the eigenvalues N\ and eigenvectors § of the matrix C. Eq. (2.5)
is the same as Eq. (2.7) where C = B~1 4, Mo = X ]
It is easily shown that if Ma = ¢, then H(ax , A, A) = X; to wit:

Hlx a4, M) = MM\W
(2N )

I

aTMA G
a’ L

"M (X 8d)
a’ /N«

"M BMx
™/l &

(x" N )
(x" N )

H(Q(,A, A) = A

The foregoing can be verified directly from Eq. (2.2); i.e., if X=oaf
where A ¢ = AB @, then Eq. (2.2) becomes

A" Bg) Bg =l A (g Bg)Bg
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Theorem 6

If B is a positive definite matrix and if the eigenvalues of C = B-lA
are distinet, then

-
x Ax
A, z ?—5_)_2_ z 2, (2.8)

wvhere Ay and )\, are the maximum and minimum eigenvalues of B~YA, which
are given by

//4"/13/ = 0 (2.9)

This follows directly from evaluating £(X) at its critical points which are
X = wg vhere

Ap = ABS (2.10)

Hence, for X = af, f£(X) becomes

F N
Flx) = X2 g

az érgg
. Ag’8¢
g’ 8¢
Flx) = 2
Therefore, at each critical point X = of, f(X) is simply equal to the

eigenvalue corresponding to the elgenvector g which defines the critical
point. The bounds of Eq. (2.8) follow from selecting the critical points for
the maximum and minimum eigenvalues.

Theorem 7

If B is a positive definite matrix, then

>
v
f
AN
N

z ) (2.11)

W™
~
&

N

)

213




where Ay and Ap are the maximum and minimum eigenvalues of C = B™1 A. The
bounds of Eq. (2.11) are seen to be the same as those of Eq. (2.8) in
Theorem 6, However, it is noted that the present theorem does not require
distinet eigenvalues of C = B~1 A,

The present theorem can be established by an argument similar to that of
Theorem 3. It is easily seen that if several eigenvectors of C = B™= A
exist for a particular eigenvalue, then there exists a manifold of critical
points for f(X). That is, let @j denote a set of k eigenvectors which
corresponds to the eigenvalue M. Let X be an arbitrary linear combination

of the set Q_J-; i.e.,

Since A glj =Ak B gj , it follows that

4
/93_5 = 4 o - .
x‘:/ ; ?Ii

A
==
"%/J 0(}.,4?}'

Pe
£
= Ay Z a, Bg.
=/ ; ";
#

Thus, X as defined satisfies the equation for the critical points of £(X)
since X' A X = Ax _X_TB_)S_. It is easily seen that f£(X) at each critical point

is simply ,\;; i.e.

214




fFlx) = Ay

Thus, the results of Theorem 6 are not changed by multiplying eigenvectors

for an eigenvalue of C = 3~1 4,

215

CR-1016 NASA-Langley, 1968 —— 30



