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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports
in the series,

Volume I Coordinate Systems and Time Measure

Volume II Observation Theory and Sensors

Volume IIT The. Two Body Problem

Volume IV The Calculus of Variations and Modern
Applications

Volume V State Determination and/or Estimation

Volume VI The N-Body Problem and Special Perturbation
Techniques

Volume VII The Pontryagin Maximum Principle

Volume VIII Boost Guidance Equations

Volume IX General Perturbations Theory

Volume X Dynamic Programming

Volume XTI Guidance Equations for Orbital Operations

Volume XIT Relative Motion, Guidance Equations for
Terminal Rendezvous

Volume XIII Numerical Optimization Methods

Volume XIV Entry Guidance Equations

Volume XV Application of Optimization Techniques

Volume XVI Mission Constraints and Trajectory Interfaces

Volume XVII Guidance System Performance Analysis

The work was conducted under the direction of C. D. Baker, J. W. Winch,
and D. P. Chandler, Aero-Astro Dynamics Laboratory, George C. Marshall Space
Flight Center. The North American program wes conducted under the direction
of H. A, McCarty and G. E. Townsend.
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1.0 STATEMENT OF THE PROBLEM

A problem of current interest in the area of flight mechanics concerns
the selection of a trajectory along which a particular vehicle should fly in
order to accomplish its mission in some sort of best fashion., Control over
the vehicle's trajectory is achieved through control over some of the forces
that are acting on the vehicle; for example, the aerodynamic forces in the
case of a conventional aircraft, or the thrusting forces in the case of a
space vehicle, What is involved, then, in the selection of a '"best!" trajec-
tory, is the determination of the optimum time history of the controllable
forces,

The first step in the solution of such a problem involves the determina-
tion of certain conditions which a trajectory must satisfy in order to be
optimal, These conditions are expressible in differential equation form and
can be developed by applying to -the problem any one of several standard mathe-
matical techniques such as the Maximum Principle (Ref. (1)), Dynamic Program-
ming (Ref. (2)) or the Calculus of Variations (Ref. (3)). The simultaneous
solution of these differential equations together with the equations governing
the motion of the vehicle constitutes the solution to the problem. In most
cases of interest this solution must be developed on a digital computer by
means of some iterative numerical technique.

The mathematical procedures to be followed in formulating an optimization
problem are reasonably straight forward and have been documented in three pre-
vious monographs in this series. (Refs. (4) to (6)). This monograph is
concerned with the second step in the optimization process, that of generating
numerical solutions, Specifically, the three fundamental numerical procedures,
neighboring external, steepest-descent and quasilinearization, are presented
and their application to both classical and non-classical problems indicated,
Only a passing reference is made to any of the other techniques since they all
represent minor variations or extensions of the three fundamental techniques -
extensions which may work effectively in some cases and ineffectively in others,

The numerical procedures used in optimization theory are intimately related
to those employed in the solution of ordinary maxima-minima problems and in
the sections which follow some emphasis is placed on establishing this rela-
tionship. The analysis begins with a review of two numerical methods for
locating the minimum value of a function. An extrapolation of these methods
into a function space leads to the three fundamental techniques previously
mentioned for locating the minimum value of a functional. These techniques
are applied first to the classical problem of Lagrange and then to the class—
ical and non-classical versions of the problem of Mayer arising in modern
trajectory and control applications. Some general remarks are made concerning
the rate and range of convergence of each technique along with the relative
ease or difficulty involved in a computer mechanization.



2,0 BSTATE OF THE ART

2.1 PROBLEM STATEMENT AND GENERAL CONSIDERATIONS

Most optimization problems encountered in trajectory analysis and control
theory can be cast in the following form: Given the dynamical sysifm

5<. £, (x, ¢ W
' ' LU 2.1.1
X = fixtu) == | X | - fo(x20) (2.1.1)
Xy £ (X2,

R _ _

where x 1s an n dimensional state vector, u is a r dimensional control
vector and f 1s an n dimensional vector function, determine the control
action u from the admissible control set U which drives the system from the
specified initial state

— —1 [~ ]
Xl Xlo
X = X, 5 t=t,< . [t %
XZ - XZo )
. (2.1.2)
xn.J _Xhoj
to the terminal set -
4 (X)
W o (Xg) = 0; l=tp <= |}, 0|=051=1 (2.1.3)
ycw (x)

(where ¢ is an M dimensional vector function) while at the same time mini-
mizing a scalar function of the terminal state., This scalar function will be
denoted

T- Cb (X¢) = MINIMUM (2.1.4)



The preceding problem takes the form of the classical Mayer problem in
the Calculus of Variations (Ref. (7)). Note that equations (2.1.1) to (2.1.4)
have been written both in vector and scalar form., In the paragraphs to follow
both forms of these equations will be used.

‘As an example of this formulation, consider the problem of maneuvering a
vehicle over a flat earth having no atmosphere,. The
governing equations in this case (see sketch to right)
‘take the form %

.)E = L cose
m
= T smne -3 (2.1.5)
m x
m = "TfT— Sketch (1)

 where T is the thrust magnitude, V the exhaust velocity and @ the steering
angle, Suppose that the position, velocity and mass of the vehicle are
specified initially by

X = X5
Y = Yo
%= % AT T =1, (2.1.6)
).’ = >./o
m = m

o

and that at the terminal point only the magnitudes position and velocity magnitude
are specified

X = X'F
Y = Y AT T = I
52+ V2 2 o (2.1.7)

where the final time itself, t; , is not specified., The problem is to deter-

mine the steering angle and thrust time history so that the fuel expended during
the flight is a minimum,



To place this problem in the Mayer form as indicated by Eqs. (2.1.1) to

(2.1.1.;.)? define the new variables x;, X,, X; X, X; and u, by

X, =X '

X, =Y

X, = X

S (2.1.8)
Xy =Y

Xs =M

u =6

Also, assume that the thrust magnitude T can vary from zero to some maximum
value TM AX ? and let

T = Twamax é(g

where u, denotes the throttle setting which can vary between zero and unity,
as the thrusting engine goes from the "full off" to the "full on" position.
Using these definitions, the governing equations become

XI = X 3
X, = X4
v = Tmax Uz cosvy
X = —— '
3 X5 (2.1.9)
Xy =-maxls 5Ny -9g
X5
x5‘ = _—_..T,_MA)Sg&
v
with the initial conditions
Xy = X
X, X 20
X3 = X3 AT T = 1T,
(2.1.10)
Xg = Xso



and the terminal conditions

X, = Xig Y o= X, =Xy =

XZ = XZ-F AT T:tf RS VZ = )(Z—XL,‘F = O T = Z.L_F
z

XL +x}p = af ¥y = Xi4xy e 0

The fuel expended during the flight will be minimized if the final mass is
maximized; or alternately, if the negative of the final mass is minimized.
This leads to the performance criterion

T= -Xs =MINMUM
(2.1.12)

where the function ¢ in Eq. (2.1.4) is equal to -x . The minimization is
accomplished through the appropriate selection of the steering angle u; and
throttle setting u-, . Since u,; can take any value at all while u, must
satisfy the inequality condition

(2.1.13)

if follows that the admissible control set U in which the control vector must
lie is given by

0 £ U £

U —>

u, ARBITRARY

(2.1.14)

The development of the optimizing conditions for the Mayer problem given
in Egs. (2.1.1) to (2.1.h4) is most easily accomplished by applying the
Pontryagin Maximum Principle (See Refs. (1) or (5)). This requires the intro-
duction of an n dimensional adjoint or multiplier vector p which satisfied
the differential equation



I _2H ]
. SERET
P =" —> = |-aH
X - P2 3%
P 3 15)
R L oXp | (2.1.15

where H is the variational Hamiltonian given by

n
- T = P, - (X,
H=P'f ;4 fuo (% (2.1.16)
If the final time tf is not explieitly specified, then the additional terminal
condition
n
= 3 3 = O

H Z-'F.-L f—(. (X) t, (1) (2.1.173.)

must hold. <=

An T dimensional constant vector £ is row introduced and
selected to satisfy the terminal conditions

M i
av¥g L 9P
2y\ ., 2% .0y t-t, & Py 4 taxg =0
P+( )AZ+ oX ’ 1 .
aX 4= Z=hn  (2.1.17b)

The optimal control u_,; is that control in the admissible set U which max-
jmizes the Hamiltonian "H at each instant of time along the solution trajectory;
that is, Uspt must lie in U and satisfy

H(X, ¢, P, Uopr) ZH X, tRU); te(t,,t;)
(2.1.18)

where u denotes any other control vector lying in the set U

By way of illustration, the application of the maximum Principle to the
rocket problem of Egs. (2.1.5) to (2.1.14) provides the variational Hamiltonian



,
H=PX3+P, Xqt %(;’*:X- u, cosu,

' - (2.1.19)
+ B (1;.(’%& U, SIN Y —g) + P5( T;{Uz) (2.1.19)

where the p vector satisfies the differential system

P

ho- o

b =

Pa = -P,

P = Py Tmax 4;Cosk, 4 p Tmax U251 Y,

xz X 2 (2.1.20)
s S

Using Eq. (2.1.11) the terminal conditions on the p vector corresponding to
Eq. (2.1.17b) are

P/ = /”/
Py 2.4, X3 =0 AT Z‘:Z‘{

'
0

1.

o
"

(2.1.21)

where the M; are constants to be selected so the boundary conditions in Eq.
(2.1.11) are satisfied, Also, since the final time tf is not specified. Eq.
(2.1.17a) must hold, i.e.,

n
> P fi (X, t,u)= 0 A7 T =1,

24 =. (2.1.22)
A =/
Finally, the optimal control is to be selected to maximize H . Letting
P 5 _ SInZE
P+ A Pt Py

3 4
the H function of (2.1.19) .can be written as



70" ak P X No
= ,‘/Pz.;. p* IMAX "2 ) cos(u,-£)- 505 % + TERMS NoT
H 3 * Xs ’ V,,,,o;+ P: INVOLVING U, OR Uy
(2.1.23)

Hence, to maximize A » COS (Y, - Z) = [/ AND

cosu, =% __ , sing =_Pg
1/,,—;:_,,: W | (2.1.24)

Thus Eq. (2.1.23) reduces to

ul or uo

_ rray %e P = _ A% terms not involving
H = = 2 5 = +
x
5

but, for u, to maximize H and satisfy the inequality in (2.1.13) it follows

that 2
Uh =0; B < 0
a2=/) e > o0
(2.1.25)
where
6:P;+P;' 'plsv'x5
(2,1.26)

~ Collecting results for the rocket problem, it follows that the optimal
trajectory is determined from the simultaneous solution of the state and
adjoint equations, Egs. (2.1.9) and (2.1.20), with the control vector, u; and
u, , satisfying Eqs. (2.1.24) and (2.1.25). Note that the state and adjoint
equations constitute a tenth-order differential system (ten first-order equa-
tions). Hence, ten boundary conditions must be specified along with the time
at which the conditions are to hold, Five of these boundary conditions are
given by the specification of the initial state and time in Eqs. (2.1.10).
Three more come from the state terminagl constraints of Eqs. (2.1.11). Eq.
(2.1.21) provides two more conditions”

X3 Py — XgF = O AT Z-1;

R =1 (2.1.27)

%* Since the p; are not specified explicitly, the five conditions in (2.1.21)
reduce to the two conditions in (2.1.27).



But, since the final time itself is not specified, one additional boundary
condition is needed before a solution can be generated; this condition comes
from Eq. (2.1.22) which requires the Hamiltonian to vanish at the terminal
point.

From the previous discussion, it follows that, in the rocket problem, the
specified state boundary conditions together with the boundary conditions on
the p vector (the transversality conditions) are just sufficient in number
to generate a unique solution to the governing differential equations (Egs.
(2.1.9) and (2.1.20)). Note that the boundary conditions are specified at
Iwo distinct instants of time; that is, some conditions are to hold at the
initial point t = t, and others are to hold at the final point t = tr. How-
ever, to generate a numerical solution on a computer, all boundary data must
be given at one point in time. This requirement is simply a result of the
manner in which numerical integration must be performed. That is, a complete
set of boundary data at some point ti1, and a finite difference approximation
to the differential equations are used to generate a complete set of data at
a neighboring point, say ti1 + At where At is small. Hence, to construct
a solution to the rocket problem, the value of the p vector at time to (i.e.,
guess 2, 7, s 7% s By & ;% } and the terminal time ty must be guessed,
then the equations must’be infegrated numerically to the guessed terminal time
to determine if the six conditions incorporated in Egs. (2.1.11), (2.1.22) and
(2.1.27) are satisfied. 1In general, it is not possible to make the correct
guess on the first try. However, it is hoped that some iterative process of
correcting and recorrecting the initial guesses would eventually converge to
the desired optimal solution.

A similar situation holds in most all optimization problems, that is a
set of differential equations exists for which boundary data are given at two
distinct times. Hence, some iterative procedure must be used to construct a
solution. The technique outlined above, in which the unknown quantities are
selected at one end of the trajectory to satisfy known conditions at the other
end, constitutes a possible iteration scheme, and one that is frequently used
in practice. However, there are several others.

In the general case, the solution to an optimization problem must satisfy
five conditions;:

(1) the differential state equations
x= f(x,t u) (2.1.28)

(2) +the differential adjoint equations

y . -3H
P= X (2.1.29)

(3) the optimization condition

H(x, ¢, P, uopr) Z H (X, PU) Uy, & € U (2.1.30)



(4) state boundary conditions

X = X, AT T=1%t,, Vix,t)=o0 ATt =1, (2.1.31)

(5) transversality conditions

P +(2L) 4 + (22)
AT ¢t = T

*H - PT.,C - o (2.1.32)

To numerically construct a solution to an optimization problem, a solution is
selected which satisfies only some of the above conditions; this estimate is
then iteratively corrected in a direction which tends to bring in the other
conditions. What distinguishes one iteration process from another is the
conditions which are satisfied at the start as opposed to those which are
brought in. The three iterative processes to be discussed in this report are
characterized as follows:

a) Neighboring Extremal - each successive ilteration satisfies conditions
(1), (2), and (3) above, but does not satisfy (4) or (5). (This is
essentially the technique in which unknown boundary conditions are
guessed at one end of the trajectory.)

b) Steepest Descent — each successive iteration satisfies conditions
(1), (), (4) and (5), but does not satisfy (3).

¢) Quasilinearization ~ each successive iteration satisfies conditions
(4) and (5), but does not satisfy (1) or (2). Satisfaction of con-
dition (3) is arbitrary.

Before turning to a detailed consideration of these three techniques, it
is well to consider some other optimization problems which are of a considera-
bly more elementary nature, but which require numerical solution by iterative
techniques very similar to those above., The first such problem is the maxima-
minima problem from the ordinary differential calculus; this problem is treated
in the next section. *he succeeding section deals with the one-dimensional
Lagrange Problem, The numerical methods used in these elementary problems are
identical in concept to those used in the Mayer problem; only the algebra and
the actual numerical computations are more complex,

* This condition holds only if the final time is not specified explicitly.

10



2.2 NUMERICAL METHODS IN MAXTMA-MINIMA THEORY

2.2.1 One-Dimensional Problem

The one-dimensional minimization problem consists of determining the value
of the scalar x which minimized a certain funetion, say

f0X) = miNimum (2.2.1)

The term "one dimensional" refers to the condition that x is a scalar (a one-
dimensional vector).

To solve such a problem either of two methods can be employed; both methods

are most easily described by means of a graph.

2.2,1.1 Method #1 - Steepest Descent (Gradient Method) F(x)

v

LLAssume that the funct::on f has the plot shown Ve SLOPE AT X,
to the right and that the first guess \ller iteration) ~
at the minimizing point is x1 » The value f(x,) and \
the derivative (df/dx) ar= then evaluaten. A second |
value, x,= x,+Ax , is selected where Ax is : Crun /
chosen in the direction in which £(x) 1is decreasing, . \_?/
as determined from the sign of the derivative df/dx. i
In equation form, Sketch (2)

(2.2.2)

where k 1is some small positive constant which is arbitrarily determined., But
to first order in Ax

(x,) = fx,) + 3F (x - = - (ﬁ
f(x, fx, +dX (x=X,) fex,) 3 T (2.2.3)

Now, since k, is positive, f(x ) will be smaller than f(x) provided kl
is sufficiently small., Thus, by appropriate choice of the consbant k , the

process will converge towards the optimum point XMIN characterized by the
condition

df =
(_d_x_ 0 (2.2.4)

X MmN

11

X



2.2.1.2 Method #2 - Newton's Method o
The second numerical approach involves
the iterative adjustment of X until the X, X
minimizing condition d4f/dx =0 1s satisfied. | Xnmn
Assume the derivative df/dx has the plot :
shown to the right and that X, is again
the first guess at the minimizing point.
The i‘unctions( df ) and /yzo\ are then
- - Sketch
) (G5, eten (3)
evaluated, and to first order in AX = X=X,
(CH: (A‘F + .‘&F_) x _X) (225)
dx/x,  \dX/x, dXx¥/x, & ! e
For the second iteration, X is selected as that value of ¥ for which the
first-order approximation to df given in Eq. (2,2.5) is zero. Hence,
dX
- ﬁ)
XZ = X, + &X = X, MdX /X
(a‘; (2.2.6)
d%xZ X\
Thus, to second order in AX ,
~ d 2
F(%) = f(x) + 9L (x-x) + 3(5L) x-x)
If 2
— fc 1 (dx)
- X'> T2 1
d
dx* (2.2.7)

2
Since Ty 7 = 0 at the minimizing point, the value of § (xz) will be lesz than

the valué of §(X,) provided Ax in Eq. (2.2.6) is sufficiently small,

The steepest descent approach is a first-order technigue in that only the
first—order terms in a Taylor series are used to adjust the iterated quantity
X (see Eq. (2.2.3)). In this regard only one addition quantity, the derivative
tive df/dx , need be evaluated at each point. The constant £ ,

which controls the magnitude of the correction AX (the slope df/dx controls the
direction) is adjusted and readjusted at each step in the iteration process.

In contrast, Newbon's method is second order and requires the calculation
of both the first and second derivatives at each iteration. However, the
correction (both magnitude and direction) is completely determined by the
iteration process itself (see Eq. (2.2.7)) and no constant £, need be guessed.

12



As a general rule, the one-dimensional minimization problem is so easy to
solve that little consideration need be given to the particular numerical
method employed. Almost any method will suffice including a direct search
procedure, This situation changes drastically as higher dimensional problems
are considered, While the techniques employed are essentially the same, much
more computation is involved and considerable attention must be paid to the
rate and range of convergence in order to effect a solution.

2.2.2 n =Dimensional Problem

In the n -dimensional problem, the value of X which minimizes a certain
function must once again be determined, i.e.,

£ (X2 = MiINIMUM

(2.2.8)
However, in this case, X is an n ~dimensional vector
zl
x = z.! (2.2.9)
with Zp
FCX) = F(X, 5 Xy o s Xp) (2.2,10)

Under the assumption that £ (X) is a sufficiently smooth function (at the
very least, the third derivatives of f with respect to all its arguments must
be bounded) it is well known that at the minimum point the n equations

3f

2 ¥

2

lo}
-+
1l
»
i
O

2

Y
ped

(2.2.11)

af

i BX“_

ar: satisfied and that the matrix of second derivatives must be positive semi-

definite, i.e., I~ .
*f af ...
Ix? LS X, 3K,
2 2 LY a

2 'Fz_ = | 2% 3f .. ';—X'st = POSITIVE SEMI-DEFINITE

a X ", axl axl Bxl 2 Ofy,
2 f f ... 2% (2.2.12)
9 X, 3X, AXpdX, Xy2

13



A direct solution to this problem can be achieved only if Eq. (2.2.11) can be
solved directly (as opposed to iteratively). This, in turn, is possibly only
in one very special case,
Assume that the function takes the form
n n
= XTAx + x40 a—> £ = @ XX X '
f 42(:7 TR +; beXi € (2.2.13)

where A is the N x n symmetric matrix,

Q,, a.,z « .. an
A = Qzy Q,, Qzn
2.2.1
Qyn, Ay, Qpn ( 4
b is the constant vector
bl
b = b,
bn (2.2.15)

and C is a scalar. In other words f is the sum of a quadratic function in
X, a linear function in x and a constant. For convenience, such a function
will be referred to as a "quadratic cost" funetion. In this case the minimiz~-
ing conditions of Egs. (2.2.11) and (2.2.12) become

Ax+b+°<::>230‘4'd'xé+ by = 05 £ = /1,n

o (2.2.16)
a,, Q,'1 o . . a,,,,
A = az, Qup » ¢ a._?_n = POSITIVE DEFINITE
(202017)
a—m a,,,_ ‘ a'nn

Note that Eg. (2.2.16) is linear in X =17 hence, it can be solved directly to
yield the minimizing point - m

xl MIN
<!

Xuiw = Xzmn]| = -Ab

(2.2.18)

N MIN

14




In the general case in which ¥ is not a quadratic cost function, the
minimizing condition of Eq. (2.2.11) yields a set of nonlinear trensemdental egquae-
tions to which no direct solution is possible. Hence, some iterative techniques
must be employed to determine the minimizing solution. The basis of the two
iterative technigues presented below consists in approximating the function to

be minimized by a series of quadratic cost functlons, in which case the minimum
point is found by solving a series of linear problems of the form of Eq. (2.2.18).

2.2.2.1 Method #1 - Steepest Descent (Gradient Method)

Let x, denote the first guess at the minimizing point where
I

X n
AN
and let ¥ (X,)denote the corresponding vhﬁue of the function to be minimized.
Now expand ¥ in a Taylor series about x, and truncate the series after the

first term; that is

£(x) ~’C(X)+(ax> (X=-X,) @F(x)”ﬁxnz a' (X=X, )

(2.2.19)

where the superscript T denotes the transpose. The problem is now to find
%, 5 the second lterate, such that

£ (%) < Fx)
(2.2.20)

Hence, if X, is required to be reasonably close to X, , the approximation
given in Eq. (2.2.19) can be used to develop a value of X, for which the
inequality in (2.2.20) will be satisfied. Specifically, for |Xz - X;I small,
the best result (the smallest value for f0X,) ) would be achieved by
selecting X, 1o minimize the approximate expre531on in (2.2.19).

Putting this idea into mathematical form, it follows that the quantity
X, is to be selected to minimize the expression

n
;
£ .
T = £x +(—gfi) X=%) = f(x) +Z: %‘. (X;=Xiy) (2,2.21)
Lzl

subject to the constraint condition

1 2 2
(X_X|)T(x-x|)='k,Z <—__—_———>Z (X“—XLI) = &,

ey (2.2.22)
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where -l is some small pos:Lt:Lve constant, This new problem is easily solved
by ad301n1.ng the constraint in (2. 2 22) to the function to_be minimized by
means of a Lagrange multiplier %\ ; that is, the function J is formed where

2

— a{_T T
J = f£x,) + <§X| (X-Xx)+ Ai (X=-x) (x-X,) = ®] (2.2.23)

and where the multiplier A is chosen so that (2,2.22) is satisfied. Minimiz-
ing J then yields the desired results; this minimization is accomplished by
setting the derivative aJ' to zero, That is,

X
of - - 0O
But, the second derivative condition requires
azj- - Ao o .. .0
X% OANo ...po| = POSITIVE DEFINITE
©0o0 .- A (2.2.25)

from which it follows that A is positive. Thus, substituting (2.2.24) into
the constraint condition of (2.2.22) yields the value of X\ as

= .
LA = #‘ (%c— %) = 245. ‘\/ g: %%-)2 (2.2.26)

and combining Egs. (2.2.24) and (2.2.26) provides the new value of x as

X =% - * ax

X
af \T/3f
/ ) % (2.2.27)

Several observations regarding this iterative vrocess are in order.  The
function which was minimized to provide the value of Xy (the quantity J is
(2.2.23)) is a quadratic cost function and it is this condltlon which allows
for the analytical determination of x, as given in Eq. (2.2.27). Similarly,
each successive iterate of x is determlned by minimizing a quadratic cost
function. Note also, that the method is the M -dimensional analog of the 1-
dimensional steepest descent technique; this fact can be seen by comparing Eq.
(2.2.2) with Eq. (2.2.27). 1In both cases the magnitude of correction (the
quantity # in (2.2.27)) is not determined by the process, but must be selec-
ted by the user., However, substituting Eq. (2.2.27) into (2.2.19) provides,

to first order,
- rex) - B, [(3f T(ﬁ
FUX) = £X, ' (ax.) aX> (2.2.28)
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from which it follows thatf (X,)will be less thanf (X, Jprovided only that
is sufficiently small,

4,
2.2,2,2 Method #2 - Newton-Raphson Method
As in the method of steepest descent, let X, denote the initial value of

x and expand f(x) in a Taylor series about x, . This time, however, the
second terms in the expahsion are retained providing

U a
£00 = fix) +(—§§— (x= %) + + c-x (ZE) x-x,)

2
< 0T B Cum et T By o oxa) Oy )
L £ z,j

(2.2.29)

Once again the quantity %, 1s to be selected so that

F(X,) <« £(x)) (2.2.30)

If x, is sufficiently close to its minimum value, then the approximate expres-—
sion in (2.2.29) can be used to determine an x, satisfying (2.2.30). Specif-
ically, z, is selected to minimize

%f
axX®

-
J = F(X.)+<—2—;—) (x—x,)-f-‘;_-(x—x,)T ( (X = X,)

Since J is again a quadratic cost function, setting the derivative to zero
provides the linear system

(% + (g%) (X-X,) = O

which has the solution

3e N ot
X, = X1 - (axl> EY3 (2.2.31)

Thus, if x is a l-dimension vector (a scalar) then Eq. (2.2.31) reduces to
the l-dimensional result given in Eq. (2.2.6). Unlike the steepest descent
method, both first and second derivatives are needed at each point in the
iteration. However, the magnitude of correction is not guessed, but comes
directly from the iteration,

In regard to convergence of the Newton-Raphson method, it can be shown,
as in the l-dimensional case, that the error decreases quadratically with

2

Xnt™ Xnoz

X - o~
n x“"l (2.2.32)

1



Also, sufficient conditions for convergence are easily developed (see Ref. (9)).
In contrast, no general statements regarding the convergence of the steepest-
descent technique can be made since the convergence depends on the marrer

in which the magnitude of correction (£ in Eq. (2.2.27)) is determined at
each iteration, '

The effectiveness of the two techniques depends on both the problem (the
functional form of f(» ) and the starting point. If the first guess on X is
"close" to the optimal point x,.,, then the Newton-Raphson approach will
usually provide the most rapid convergence since it yilelds both the magnitude
and direction of correction. If the starting point is not "close," then the
second-order technigue will diverge and it is necessary to resort to the first-
order gradient method. In this sense, the term "close" might be arbitrarily
defined as any point from which the second-order theory will converge. Hence,
it appears that some combination of the two techniques will provide the best
results,

In most problems in which the dimension N is three or larger, the selection
of the constant i, in the steepest descent procedure proves very difficult.
Inevitably, some estimation or calculation of the second derivatives, 2%f/dx*,
are needed in order to appropriately adjust the correction magnitude., For this
reason a modified version of the Newton-Raphson technique is frequently used
in which the magnitude of correction is guessed, but second derivatives are
used in the calculation of the direction of correction. This modification
extends the range of convergence to points that are '"not close”" to the minimum
point.

2.2.2.3 Modified Newton-Raphson Method

Let %, denote the first guess at the minimizing point and expand f in
the truncated Taylor series as

T %f
£ 00 = Fo) ) (x=x) + L x=x,)" (55) (x-xp

(2.2.33)

Now Xz is to be selected so that this approximation of £ is a minimum, but
subject to a restriction on the magnitude of correction; that is, the quantity
IX,-X,] is to be constrained. This constraint can take any one of several
forms, For example,

(x-x)" x-x) 2
2 - Ry (2.2.344)
where {z is some small positive constant; or alternately
(x-x)T A (x-x) = R}
' ‘ 2 (2.2.34B)

2

where A is any nxn positive definite symmetric matrix*. It is algebraically
convenient to use the constraint in (2.2.34B) with A set equal to the second
derivative matrix ?‘»‘7 #?x, . If the point X%, is not too far removed from the
minimizing point, x,,, , then(?*¥/3x*)will be positive definite and Eq. (2.2.34B)

* The quantity (y - x‘)T A(X-x)> O for  (x-X) ¥ O

18



(with A replaced by (?*#/7#9) will serve as a proper magnitude constraint.
Thus, the quantity

T = ch.)’r(}‘f‘\T""'*-)*-’- X \gxe '
2x z (2.2.35)
to be minimized subject to
1ox-x)T 2 (x-x) = R
X=X)" 55 B (2.2.36)
Preceeding formally, the function J is formed where
J = f(x) +(—3—) (x- x)+J-(x x)7 -B-:F-(x-x.)
. L2 2
i A - -
+'A{ (x-x,) (axz (X -x,) ’E“"}
and where A is a Lagrange multiplier, Thus, setting g;(] to zero provides
3’—’; + (402 (x-x0 =0 (2.2.37)

Substituting (2.2.37) into (2.2.36) y:.elds the value of A as

(1 +2)°

lkz.
and combining this expression with (2.2.37) provides the value x, as
x, =X, - ke ( )
-1
i T 22

For 4, sufficiently small, the approximation in (2.2.33) can be used together
with (2 2.38) to show that

f(x2) < fexp

The process is repeated until the minimum point is founded.

There are many other modified versions of the Newbton-Raphson method, all
of which vary only as the form of the constraint equation varies. (Egs. (2.2.34))
The advantage of this modification is that by controlling the magnitude of
correction (the quantity -1 ). the radius of convergence can be substantially
increased.

One of the disadvantages of the Newton-Raphson approach, as compared with
the steepest descent method, is that considerably more computation is required
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at each step. This extra compxitation consists primarily in the evaluation of
the second derivative matrix 7 ¥/dx*, ‘However, in many practical problems,

it suffices to compute this matrix . only occasionally (that is, not at every
point) and to use some approximate procedure for updating the matrix., Three
such approximations are illustrated in Ref. (10).

2.2.3 n ~Dimensional Problem with Constraints

This section will demonstrate the application of the Newton-Raphson and
steepest descent methods to the n -dimensional problem in which equality
constraints have been included,

Again let £ (X) = f(X,, X,, ... X,) denote the function to be minimized.
This time, however, the minimization is to be accomplished subject to the M
constraint condition

[, (0]
Gix) = |e,0} = ©

Gpm(X
M )J (2.2.39)

where M is some integer which is less than n , the dimension of x , If f
and G are sufficiently smooth it is a simple matter to show (see Ref. (5))
that the minimizing point must satisfy the conditions

-a_F- -
3. %'%‘ (2.2.401)
oF dF | = o ;
oF . |3E AF =|2k | =o0
X %, ) 072
: : (2.2.40B)
: ;
9F aF
EY] EXS
| %) A
where F 1is given by
M
F=F@&A=f+6"™r = 1), 2; 6, (2.2.418)
=1 o

and A is a M —dimensional Lagrange multiplier vector. Using Eq. (2.2.414),
the necessary condition in (2.2.404) becomes
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B I A SN N
7%, x, 7%, I '1
w G 2f 726, 76 G
—r— 20| — + | = —2 - Ay = O
Jx Iz dx, Iz, 7z, 7z, .
w 6 24 | |,
\-k. 1 Loz, oz, 7 2%, - " (2.2.41B)
while (2.2.40B) takes the form —éii 1 -CB.T
37,
EY) o2,
oF G
LB;{M L (2.2.410)

Note that this last equation is simply a restatement of the constraint condi-
tions, Egs. (2.2.39). The M—dimensional multiplier vector A is introduced
for the explicity purpose of satlsfylng these constraints. Thus the n+M
quantltles x (L =l,n) and A; ( -l, M) are to be selected to satlsfy the
conult.lons conBalneu 1n \4 4 Lq._LD} and \( L.L|..LL;). in aQQ.l'Dlon, "C-Ile SeC nd
derivative condition takes the form

. N 2°F Sx;dx; = O
Sx’ (g;) S x —ZJ 3X,5; %%
< (2.2.42)

where

Sx = X=Xmn (2'2.1‘_3)

and is constrained to satisfy the differential version of the constraint con-
ditions

T

3G
_t X =
X by o
3G, Y o

‘: T
(aGM)éx = 0
ax

(2.2.44)
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As in the unconstrained case, both iterative techniques for solving this prob-
lem consist in solving a succession of gquadratic cost minimization problems

but subject to linear constraint conditions,
2.2.3.1 Method #1 - Steepest Descent

Let %, denote the first guess at the minimizing point, and require that
x, satisfy the M constraint conditions of Eq. (2.2.39); that is

G, (X)
G (X,} = |G, (X)) = O

G,, (X,) (2.2.45)

Now, expanding the function F = f +GTA  in Taylor series about x, and trunc-
ating the series after the first-order terms yields

.
(3 SRR N

F(x,2)% F(x,?()+( )(X X)) = F(x)+G(x)2+ (2.2.16)

where N 1s as yet an undetermined guantity. ihe second iterate, %, , is
determined by minimizing the approximation in (2.2.46) subject to a constraint
on the magnitude of correction., This constraint takes the usual form

n
T 2
(X=X (X=X ) = 2 (x;~x, ¥ = &
= (2.2.47)
where again 1@, is some arbitrary but small positive constant.
Proceeding formally, the scalar multiplier M is introduced and the

function J is formed where

T=F )+ (55 ox- X4 O (o) - v (2.2.18)

Note that J is a function of both x and A (by wirtue of the fact that
F= F(x,2) . Hence to minimize J , the derivatives a0/2x and 2J/aAare set

equal to zero providing [~ SF
J i oF ol B 2x,
24d X 2 &> |[x,-Xx, |==—|3E
X ,XX,-Z 3 2" A, 2.4 | 9%,
Xn=Xn, 2F (2.2.494)
L i | 9%n
- - - = -
G (x) | |25 26, ... 36 %),
OX, Xz  axp
S5=0; Go3R) (-xd=0 <= 6,0 |+ g—;— FxiwalXaXyyl= O (2.2.498)
n
Gm V| | 36m 236n, 26m|IXy=Xn,
L Xy axz 9Xn




Eg. (2.2.494) is essentially the same as that encountered in the unconstrained
problem. Also, since G (X)= O, Eq. (2.2.49B) reduced to the M conditions

3G 3G .
aX(xx)o ax>(x’()3 I, M

which is simply a requirement that the second iterate, x,_ , satisfy the first-
order approximation to the constraint condition G (x) = . The M —-dimensional
multiplier A is to be selected so that these equations (the linearized version
of the actual constraints) are satisfied. This-selection is denomstrated next.

(2.2.50)

Substituting (2.2.49A) into (2.2.50) yields
-1 a6 J9F _ o
24 X X
which, from (2.2.41A) reduces to

26 _f &(BG)T ;
ax ax T ax \gx/) A =0 (2.2.51)

-|@es] 3 3 2.9

In scalar form, this equation becomes

or

- - - - 5
rz, /’-as....% [_a_e,...as,.. \f-aG....aGl h{
dhl 2X, Xy [[ax, 3X, Xy axy, || 38X
A= =) 19G. .- a6, |36, - - 36m 36, ...36G, ||af
{ 3% Xy ||3%; axz | 33Xy Fxa ||
A 3G,,  3GM|36, ... a6, 36m.. .26,||2f (2.2.53)
] \_37" 3Xn|| 9%n ax,,_j/ Xy 3an X,

Thus, with A selected to satisfy (2.2.53), the linearized version of the con~
straint equation (BEgq. (2.2.50)) will be satisfied and to first order

G(xz) = G‘(X;)"‘ (X X)
Once ) 1is known, the function F(x) =F(x) +G<z)77\ and the derivative (3F/ax)

can be evaluated at the point x-x, . With this result, the quantity u« can
be determined by substituting (2.2.49A) into (2.2.47) to yleld

_|_ T
A - / (ar aF (2.2.50)
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Hence, the second iterate satisfies the equation
SF
X, =X - % 3
2EYTaE
x) ox (2.2.55)

The similarity between this result and Eq. (2.2.27) (the unconstrained result)
should be noted,

Summarizing the results for the steepest descent technique, the second
iterate x, is selected using Eq. (2.2.55) where #, is a positive small con-
stant which regulates the magnitude of correction as indicated in Eq. (2.2.47).
To evaluate the derivative 2£ - 3’ 35;' A, the A vector must be determined
by means of Eq. (2. 2. 53) to Zhsuts that the first-order approximation to the
constraint equations is satisfied, The process is repeated until the minimum
point is found.

2.2.3.2 Method #2 - Newton-Raphson Technique

Let x, denote the first guess at the minimum point and let A, denote
the first guess at the correct value of A\ . Expanding the funetion
Flx,A)=F+G A about the point x,, A, in a Taylor series truncated after
the second-order terms provides

F(x ,2) = F(x.,2)+(x) x-X,) + )(a 2,

L)y T 3°F 3*F
+ 2{(x X Sy (Xt 2(x-x,) 31 (A 20+ (2-2,) 3;1 (2—2,)}

(2.2.56)
If the point x,, A, is sufficiently close to the correct point, them selecting

¥, and X, SO as to minimize the second-order approximation to F{( xz,1)
should provide improved values of x and A .

Proceeding with the minimization, let J be defined by

.
T = F o)+ oex)+ (35 )(R a0+ 4 {(x XY ‘ZXF; (X))

T °F ) Y 22F aoa }
+ 2(X-X,) (2-2)+(2-2) = ) (2.2.57)

BT

Now forming i—‘;: and == 871 and equating the results to zero yields
2F e F
5x ¢ axe (X-X) + (R a,) O
2
oF
KeAn - = O
7Y (?\ 7\.)+ ST (%-X,)
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In view of the definition of the quantity F , these two equations reduce to

3F  [3F
°F 4 o
ax T \aran (2.2.584)
G + ‘;—f’ (x-%X,) = O
(2.2.58B)
or in the scalar notation
oF | |3°F 9*F ...3%F 36, 36, .. .36,
ax,| |ax* axax, axax, X=X ISy 3, X, Ay
aF
=K X,-X,, H A-2,, |=
axz * 2 2y . 2 2‘ (2.2.59A_)
3F | |3°F 3 I*F <X 96, 36, 3G A=
3Xn| |3¥ndX, MpdXye e AXn [T M BY, X, AXpl™ M
1 1T 1r 7
3G, 36, ... 36, _
AL B T ar, | [© X
G, (x,) : X2=Xy
. +1. X = O
3G, 3G, ... 3Gm
Rk B ol T oy | Y] (2.2.598)

Egs. (2.2.59A) and (2.2.59B) constitute a set of n+M linear eguations in the
n+M  unknowns, (%;-%:.), <¢*Jyn and (-h,«:_)j )y j</oM . This system
possesses the solution ' !

1}
H
|
CDL
Q
<
]

| 7™ ] (2.2,60)
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where B is the (m+ M) x (h+ M) matrix

3%F ae)r
3 x* ax
B = (nxn) (hxm)
3G
X 0
(2,2.61)
(Mxn) (Mx ™M)

The process is repeated until the minimum point(=x,,,.) and the correct A are
reached.

As in the unconstrained problem, a modified version of the Newton-Raphson
technique can be developed in which a magnitude constraint is placed on the
size of the step to be taken. As in Eq. (2.2.34B) this constraint would take
the form

_é_[(x-x,)*,(?«—),)TJA x-x| = &,
A-2,
(2.2.62)

where A is some positive definite symmetric matrix. The minimization of

in (2.2.57) subject to this constraint would lead to an iteration equation
similar to that resulting in the unconstrained ease (see Eq. (2.2.38)). By
such a modification, the range of convergence can be considerably extended.
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2.2.4 Discussion

The fact that only two numerical procedures have been presented for solv-
ing maxima~minima problems is not meant to imply that the methods of steepest
descent and Newton-Raphson are the only two methods available., Indeed, there
are many other techniques for numerically finding an extremum value of a func-
tion. However, all of these techniques are local in character; that is, they
depend completely on the behavior of the function in the vicinity of current
estimate of the minimizing point (or in the vicinity of the current estimate
and the preceding estimates of the minimizing point). This behavior of the
function at the current estimate of x,,, is determined through the evaluation
of the first few terms in a series expansion of the function about the current
point. (Recall that in the steepest descent procedure this behavior was
evaluated through the computation of the derivative %g while in the Newton-
Raphson technique, first and second derivatives were used.) Thus, while there
are many numerical procedures, they are conceptually very similar to the two

presented here - although the differences may be very important computationally
for certain problems,

As has been shown, only "quadratic cost" functions can be minimized
directly since in this case the first derivative condition leads to a set of
linear equations. Hence, the basis of both iterative techniques consists in
approximating the function to be minimized by a quadratic cost funection, and
then solving a succession of linear problems.

A similar situation occurs in variational problems (for example, the
problem of Mayer in Section 2.1). Only a certain type of quadratic variational
problem can be solved directly (the variational analog of the quadratic cost
problem in maxima-minima theory). In this case, the first variation condition
(the Fuler equations) leads to a set of linear differential equations which
have a closed-form solution, Hence the basic approach of the numerical itera-—
tion techniques used in variational problems is to approximate the functional
to be minimized by a quadratic cost functional and then to solve a succession
of linear problems. If only the first variation about some current estimate of
the minimizing solution is used to compute the next estimate, the numerical
method is referred to as the gradient or steepest descent procedure and is
essentially a function space extrapolation of the gradient technique in maxima-
minima theory. If both first and second variations are used in the calculation
of the next estimate, then either of two numerical procedures can result,
neighboring extremal or quasilinearigzation, Both constitute the variational
analog of the Newton-Raphson technique.

In the next section, the use of these three techniques, neighboring
extremal, quasilinearization and steepest descent, are illustrated in connec-
tion with the one-dimensional Lagrange problem., As in the one-dimensional
maxima-minima problem, the one—dimensional Lagrange problem is rather easy to
solve and hence, does not warrant extensive numerical treatment. However,
this elementary problem clearly demonstrates what is involved in the applica-
tion of each of the three numerical procedures. The complexity in the exten-
sion to these techniques to the problem of Mayer is then a matter of algebra
and computation, rather than concept.
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2.3 NUMERICAL SOLUTION OF THE ONE~DIMENSIONAL LAGRANGE PROBLEM

The one-dimensional Lagrange problem consists of determining the function
for which the integral
X,

s
7= [Fxpg
. x° y (2-3.1)
is a minimum, The minimizing arc is required
to satisfy the Youndary conditions Vi — — — —— — —
74
|
s |
Y=% AT X=X, 7 !
’ (2.3.2) / e,
’ = y‘ AT X=Xg y / sr v S
Yo
° |
The physical situation is pictured on the |
graph to the right. Typical problems of Y,
this type are the shortest distance and Sketch (k)

brachistocrone problems. (see Ref. (7)).

Setting the first variation of J to zero provides the first necessary
condition (the Fuler equation)

dfN 2 _,
AN A (2.3.3)
while the second variation requires, in part, that
’f > o (2.3.4)

24"

In addition, three other conditions must be satisfied by the minimizing solu~-
tion g (0 ; the Jacobi condition (see Ref. (7)), the Weierstrass condition,
which takes the form
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F g YD) = FOx 4,40 - (V=g4) _:E(x,y,;)

24 = °

& = Frmn s 4= Yuin (2.3.5)

and the corner condition, which states that across a slope discentinuity

+ £ ,
ag’ (*, #4 ”) = 533' (X’7’7 “) (2.3.6)

In the analysis which follows, use will be made only of the Euler and Lagrange
conditions (with occasional reference to the Jacobi condition). Also, it will
be assumed that the minimizing solution ~ (X 5 has a continuous first

derivative (i.e., ¢, is continuous This last assumption is rather
weak and is made é(ly to 51mp11fy the analySis.

The minimizing solution is to satisfy the Euler condition (2.3.3)

This
is a second-order differential eqpation and can be wrltten as
d /af ) O L _2F
=0 ; =Q
ax ,) 3y (:#? 92’ T RTCANEY
(2.3.7)
In addition, the boundary conditions
y = 70 AT X = X,
g = g; AT X = Xg (2.3.8)

must hold. Thus, equations (2.3.7) and (2.3.8) constitute a two-point boundary
problem and, as indicated in Section (2.1), such problems must be solved
iteratively, except in one special case,

Suppose the funetional to be minimized takes the form

X
lz ff(a.#’ﬁ 2by'y +cyttady + zey) dx
Xo

(20309)
where a, b, ¢, d and e denote functions of the independent variable x ;
that is

a = a(x)
b = b {X)
c = C(X)
d = d )
e = e (2.3.10)
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Analogous to the maxima-minima problem, functionals of this form, will be
referred to as "quadratic cost" functional. Again the boundary conditions
are of the two point type with

yf-y, AT x:x‘

= e AT X=X (2.3.11)

In this case however, the Euler condition of (2.3.7) takes the linear form

?” a(x) + 3’ (@ )+ g (b)) -cx) = ex)-d 0

(2:30]—2)
At this point, letting
- - oyt
v Je =
(2.3.13)
allows it to be noted that Eq. (2.3.12) is equivalent to the two first-order
equations
/
I #( o
7/ = G 7 + e- I/
yl z a (203011'1—)

where the matrix G is given by

* g 9, 0 I
G =

G200 $,, K0 —Q:’(X)—-c(xz —a’x)
a (x) a (x) (2.3.15)

This system has the solution
X
? , (%) Yo 0
= @ (x) + ¢ dX
/
Yo () Y24 e -d
! xo

(2.3.16)

* From the Lagrange condition in (2.3.4), alx)20 all xe¢ (xo,zr) for the minimi-
zation problem to make sense., In writing the G matrix, it is assumed that
the strong version of this condition holds with @ (x)>0 .
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where y’o = f/ (Xo) - fo
Fro0 = $2 %) = 4,

(2.3.17)
and where ¢ is the fundamental matrix
. . b’ . ¢) ¢'
¢ =G¢ By Ba|= |80 3 "o
é ; L¢z, ¢zz Fu 922 4)2.1 (pz.z
r¢" (xo) @ (x,) I O
pix,) =1

° L¢z: (Xo) ¢zz(xo) O | (2.3.18)

Note that the development of the ¢ matrix is an initial value problem (all
boundary data is available at x =x, ). Hence, the solution to (2.3.18) can
be achieved in one run (one integration) on a digital computer.

Since the minimizing arc has the general form indicated in (2.3.16), all
that is :anolver} in c¢ompleting the solution is the selection of the initial

slope 20 = = ¢'(X,) so that the terminal condition 4y = o at z
is satisfied. But rom (2.3.16)

_ P2 _d’
;’F = ¢ Xs) g?’o j Ilj¢“ bz - ¢:z¢z:_I| ea,d dxf
+ ¢1z (X-f) 510 + 5 [¢ "¢ ¢ ] [e_;d_] d X }

Thus .
Xg
% / . 95: /
G20 * - ¢u (x¢) ( o — <|:-z [&%dx)
¢u X Ig f £ 7 j ¢“ ¢': ¢,L¢z] a
Xo

- [ le-a’] 4y
(L¢~ ol w519

% It is assumed that . @,, (xf) #0D, a condition which will be satisfied provided
the strong version of the Jacobi condition holds (see Ref. 11).
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Substitution of this expression into (2.3.16) now provides the minimizing solu-
tion for the quadratic cost functional J in Eq. (2.3.9).

The quadratic cost problem of Eq. (2.3.9) can be solved directly (without
iteration) because the Euler equation is linear. In the general case, the
Fuler equation is nonlinear and the resulting two-point boundary value problem
must be solved iteratively on a computer. As in the maxima-minima case, the
iterative procedures presented below consist in approximating the functional
to be minimized by a quadratic cost functional and then solving a succession
of linear problems,

2.3.1 Steepest Descent (Gradient) Technique

The problem under consideration is the determination of the arc which
minimizes the functional

*¢
J = f’c x, 4,4 dx (2.3.20)
’0

and goes through the boundary points

¢
¢

Let 4,(x) denote the first guess of the minimizing arc and require that 4
satisfy the boundary conditions of (2.3.21) with

7, (Xo) = ;o
7, (Xg) = J-F

"

?o AT X=X,

AT X=X
#f f (2.3.21)

(2.3.22)
In addition, let .T(z) denote the corresponding value of the functional J .
ter

Then, if the second ate ¢, (%) is to be more nearly minimizing, it must
be selected so that the inequality

T (42 T(¢1) (2.3.23)
holds.

Expanding the functional J in a Taylor series about the arc ¢ (0 and
truncating the series after the first-order terms provides

Jp = Jig) + §7 (4-4.)
X5

Xg
:f"F (X, 7/) 7[’)d/\’ ’f'J‘[g_; 5¥+%;Jé('de
Xo Xo . (2-302h)
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where

§4 = J?(X) = 7(x)- %, (X)

5#’ = S»Jq’(x) = 7/(X)— 7,’ (x)
(2.3.25)

oFf '
Integrating the term 234’ J? in (2.3.24) by parts and noting thath (Xe)
and d4 (X.) must be zero for the new solution to satisfy the boundary
conditidns, it follows that

Tey) = Tig) + 6T

=V f(x, 4,4/ )dx +J‘[ﬂ - a_;]g dx
‘g i 3% dx ay|°¥
° %o (2.3.26)

Now, if g (x) is "sufficiently close" to 2;,{:) { i.e., Sg (x> is
small } , ther( the first-order approximation in (2.3.26) will be reasonably
good. Hence, selecting g, (x) to minimize the expression in (2.3.26) subject to
a magnitude constraint in the separation |8, ()] = by o) -4, (2] should
provide an improved second iterate, 'y () (i.e., one which satisfies the
inequality in (2.3.23)). There are two different types of magnitude con-
straints which can be imposed. Both lead to slightly different versions of

the steepest descent technique.

Method #1

In this method, the quantity &g(x) 1is selected to minimize the expression

(«4) +8J
J(4) e
af d of
= J(#.)-rf 5;'5;—3};' 5? dx (2.3.27)
Xo
subject to a magnitude constraint
X5 2
j‘(&#()‘))z dax = &I (2.3.28)
Xo

where -l, is some positive small constant. Such a constraint insures that
3? (x) Will be sufficiently small at all values of  in the interval

(Xpe ¥)
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To minimize the expression in (2.3.27) subject to the magnitude constraint,
the quantity J is formed where

Xg Xe
_ : £ 2 e B2
v gepef [5-2 3] spene | [logof ox- 8
Xo- - “Xo (2.3.29)

and where A 1s a constant multiplier to be determined so that the magnitude
constraint in (2.3.28) is satisfied, The quantity 57(1) is now chosen to
minimize J which can be rewritten as

Xg
= 2
T(S4)= Tld- ARk* + {)F (8 4)dx

(2.3.30)
where
- |2f _ 8 af
Hence, 5# must satisfy the Euler equation
5F _ d (3F \_,
o(§y)  dX 6(54°) (2.3.31)
Since F is not a function of 5}’ , 1t follows that
IF { |of _d af
-— = 0 <= zZ - | - —
aég Sy za[a# dx 37,] (2.3.32)

This final equation allows the multiplier A to be determined by substituting
Eq. (2.3.32) into (2.3.28) to yield

Xg 2 %
SR U I O - B
)\ - ZQ' a# d)( 37' (2.3033)
Xo

Collecting results for this method, the quantity S#(x) is selected to
minimize the first-order approximation of the minimizing functional J subject
to the magnitude constraint given in (2.3.28). This leads to the expression

#* Note that the positive square root 1s taken in this equation. This choice
follows from a second variation test which requires A to be greater than zero.
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X

Be-a 2i],
3# dx 8#'

Yo (2.3.34)

at points x interior to the interval (%,, z,) . At the boundary points,

57(,‘) must satisfy 57()(0) -6
o4 (Xg)=0
7 (2.3.35)
The second iterate, %z (xX) , is then determined from the expression
Y, X) =4, (X) + 84 (X)
7 4 (2.3.36)

Substitution of (2.3.34) into (2.3.26) leads to the first—order approximation
1

X‘F 2 -é
of d oaf
Jg)=d( )- B J-—-———d
2 ’ [} a d 1]
¢ ¥ XY (2.3.37)
o
f _d af
where the quantity o dX 94' is evaluated along the first iterate
4, (x) . Hence, lg2) « TCg) and g (%) will be an improved

approximation to the minimizing solution provided the constant 7‘, is suffi-
ciently small.

Some comments on the form of the solution are in order., First, the opti-
mizing condition for the problem of lLagrange (the Euler condition)

2f _d of _,
2y dX 94/

is the analog of the first derivative condition

2f _ o
oYX

in maxima-minima theory. In fact, the Euler operator( £ 'ad; 5; ) , may be
considered the function space equivalent of the derivative operator EYE:
which operates in the space of the vector ¥ ., From this point of view, the
iteration process incorporated in Eq. (2.3.3L) is essentially the same as that
used in Eq. (2.2.27) for locating the minimum of a function.
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The magnitude constraint of Eq. (2.3.28) requires only that the solution to
(‘ () be sufficiently close to é{, (%) ., If 4 {x) 1is taken as a
straight line connecting the points (%, %) E——— - — —
and (z;.,#) s then it is not unlikely
that PAE) will take -the form shown in
the skéfch to the right; that is, starting
with a smooth iterate (%) , it 1is %
entirely possible that the second iterate

may be highly unsmooth and contain several 422
corners. The reason for this behavior is that B
the magnitude constraint in (2.3.28) requires /e

| Sketch (5)
only that 4, (x) be close to g ¢x) , but | |
allows the derivatives gj (%) and g/ (%) to % %

differ considerably., The second steepest descent approach which is presentea
next avoids this difficulty and leads to iterated arcs which are as smooth as
the first arc %(x)

Method #2

As in the previous method, the quantity Jd¢c¢x) is to be selected to
minimize the first-order approximation to be functional J which takes the
form

Jn = J(g)+ 3T (4-4)
£
= Tg) + f—“‘d éf,]cr?dx

o4 dX ag
Xo
(2.3.38)
In this case, however, a magnitude constraint of the form
Xe
"x))% dx = &}
f(’%’ ) 2 (2.3.39)

Xo

is imposed where 7’; is some positive small constant. Since <§¢ (x) must
satisfy the boundary conditions

O
o

g-g (Xo)
J# (xg)

(2.3.40)

and, since ?' must be small in order to satisfy (2.3.39), it follows that

dy will also be small. Hence, the problem encountered in the previous method
in Which dy was small but Jy’ was not (that is, % (%)  was not smooth),
is not present here.
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To minimize the expregsion in (2.3.38) subject to the constraint in
(2.3.39), the functional J is formed where

Xg

— d of
T- :r(y,)fj[% ax —] S dx
A j?fs’ '(X))Z dx- &,
+ -
. 2 7 2 (2.3.41)
and where A is a constant multiplier. Rewriting this expression as
i
J= -AR? .
° (2.3.42)

with

_ et - d af ,2
F= Eg ax agJ Sy + Adygy
(2.3.43)

it follows that the minimizing arec & y (X) must satisfy the Euler equation

SF ) n_ o, of —
T\ )= 0 =
together with the boundary conditions
5‘7 (X,) =0
&y (X§)=0 (2.3.45)

Equation (2.3.44) has the solution

o /
Sy ) = %/(xo)+(x—xo)é'7 (Xo)

X X
! af - daf ‘- )j at-d
+2_7( S(X.o'x)[a# dxay]dx-‘.( X 3 dx
Xo %

37

Q

Q)

{=] \
(2.3.46)



Thus, using the second condition in (2.3.45), it follows that .«Sy’ (xX,) must
satisfy

£
’ -l ( . af )
sy < o | Joon 5575 %]
X,

Xe
of -4 3f

¥o

Finally, substitution of this expression back into (2.3.46) provides the desired
solution. The constant multiplier A is then evaluated using Eq. (2.3.46) and
the magnitude condition of Eq. (2.3.39). While these calculations are alge-
braically involved, they are easily accomplished on a digital computer once

4, (X) has been specified, The second iterate satisfied

4,00 = 4. (x) + &4 X)
* 7 7 (2.3.48)
where 5«? is evaluated using (2.3.46).

2.3.2 Quasilinearization

Again, the problem is to determine the arc Y (x) which minimizes the
functional

Xe
J(;) = ‘[i(x,?,y')dx = MIN

(2.3.51)
subject to the boundary conditions that
7 = 7, AT X=X,
= AT X=X
£ f
71 (2.3.52)

Let 7. (x) denote the first guess at the minimizing arc (with ¢ (x)
satisfying the boundary conditions in (2.3.52)) and expand J ¢ ;5 in a Taylor
series about 7,(1) . Truncating the series after the second=order terms
provides
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2

J'(,?) "—.:J'(ﬁ,)+JJ'(y-»y,)+ ——LLS J (44

2
Xe Xg
_ 5f 2F . .
= j.F(x, 45 4 dx+ J[a_j S4+ @, Sﬁ] dx
Xo Xo
Xf
£ sy 22E ¢ o'f
+ + 8
5 o1 ﬁ 77" " S50 (25539
[]
Thus, for (x) sufficiently close to rmin (X) , selecting yra_,(%) to

minimize ¢ s approximation should provide an improved arc with

J(yz) < J(g,) (2.3.5L4)

Before proceeding with the minimization, rewrite Eq. (2.3.53) in the form

Xg
Jep = Tyt JFw Sy, Sg0dx
Xo

(2.3.55)
where
of F . 1 |37 2°f *f o 2
= Ep &3 +8g’ §49°+ 7 [3‘0‘12 6;{ 3;]37 g ,_57 j!
(2.3.56)
Hence, for 57 (X) to be minimizing, the Euler condition
3F _d 3aF  _
By dX g4 (2.3.57)

must hold., This equation, in turn, reduces to the second-order equation

S4” a0 +8y(a'®) +84 (b’ -C0)= @ 00-dx) (2.3.58)

where the coefficients a, b) <, d and e are given by
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31'2 g - ﬁl_
‘g.. _ a:._F | a#
Ark -1
c - 'F 3y

(2.3.59)

Note that this differential equation is linear and takes the same form as that
given in (2.3.12). Hence, its solution is identical to that developed in
Egs. (2.3.13) to (2.3.19) but with the specific boundary conditions

S4 (X)= 84 x yo
/ 7700 (2.3.60)

Thus, the correction § (x) and the second iterate
’ ¢

b XD = Fo X+ 87 (X) (2.3.61)

are easily determined., The process is repeated until the minimizing solution
is found.

One disadvantage of this technique is that its range of convergence may
be small in comparison with the steepest descent procedure. At any one point
the correction magnitude is determined which will remove all of the error based
on the quadratic approximation to the minimizing functional J . This approx-
imation will be poor if the first guess y,(x) 1s not close to the minimizing
arc and in such a case the iterative procedure will diverge.

To extend the range of convergence, that is, to allow convergence for the
case in which 4, (X) is not close to Ymminm (x) , a modification can be
used which is essentially the same as the modification introduced in Section
2.2.,2 to extend the range of convergence of the Newton-Raphson method. This
extension consists of minimizing the expression in (2.3.55), but subject to a
magnitude constraint on 5%,(x) of the form

2

é—!(gg’; 5 (W)(81) ox - £,

i

(2.3.62)

where /\ is the positive semi-definite matrix,
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a, (x) @, (X

@,, (X) G,y (X) (2.3.63)

For example, letting <, =/ and Qg = @,,=@,, =0 reduces (2.3.62) to

Xg
2 fesq*dx = B
z;({ r 3 (2.3.6L)

which is essentially the magnitude constraint used in the steepest descent
approach of Eq. (2.3.39). The problem of minimizing the expression in Eq.
(2.3.55) subject to such a constraint is still a "quadratic cost" type problem
and hence possesses a closed-form solution. As the minimizing arc is approached,
the magnitude constraint in (2.3.62) can be relaxed and the unmodified quasi~-
linear technique used.

2.3.3 Neighboring Extremal

Neighboring extremal, like quasilinearization, is a second-order iterative
process in the sense that second-order terms in a Taylor series expansion are
used to develop each succeeding estimate of the minimizing arc. Thus, ;, (x)
is selected to minimize a quadratic approximation of the functional J'

However, unlike quasilinearization, it does not follow that Y., provides a
smaller value for J than gy, . In fact, it is equally likely that

T(g,) = J(7 . The reason for this is that both J (x) and 4, (X)
are chosen to Satisfy the optimizing condition (the Euler equation)

of _d of _ 4
°f & 2
and the initial condition
x,) =
7% = 4. (2.3.65)

The iteration consists of "bringing in" the terminal condition

7D = 4, (2.3.66)

Hence, the termlnal values, 'y (X¢) and 42 (X;) , may be such that
2) 7 J¢ !Z ;5 but this is of no consequence. What is important is that
the p ocess of minimizing a quadratic approximation to J~ (7 ) leads to
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successive iterates which more nearly satisfy the terminal constraint of Eq.
(2.3.66). The name "neighboring extremal" comes from the fact that each
iterate satisfies the extremizing Euler condition.,

Let -4/ (X) denote the first iterate which is generated as follows:
Require that ¥, (X,) satisfy the initial condition of (2.3.65) and guess
some value for the initial slope (4 (x,) - This guessed slope will be
denoted by ;{,, g‘?—* Integrate the Euler equation

a_F "i lr. =0
94 dx 24’ (2.3.67)

from X, to ¥y  with the initial conditions

'7/ () = 7,
g‘)’r v ALOAE M (2.3.68)

and record the value of 3’/ at Xg as

7K = g, (2.3.69)

If ¢ satisfies the correct terminal condition indicated in (2.3.66),
then !,/, (x) is in fact the optimizing arc (since it satisfies both the Euler
equation and the boundary conditions). If ¥f, does not satisfy (2.3.66),
then a second iterate is generated with the new initial conditions

7’. %) = 70
d - 4 s 4! + 84
o BE = T T (2.3.70a)
The change in initial slope § ;«, is to be determined so that Ff, = Fe X¢)

more nearly satisfies the terminal constraint.

Note that 4, (x) depends on the choice of the initial slope }5, as
indicated in (2.3.68). Thus, 4 (x¢) is a function of J; and this is
written as 1 5 f !

Fe, = 75 (f,’) (2.3.70b)
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Similarly, » is a function of 5 . Expanding Y¢ 1in a Taylor series
about Y £ and retaining only first-order terms provides
!

Fe 24 PO =+ —r‘f— 4 - 45)

44+ 5 J:/»
(2.3.71)

where the derivative dg /d;’ denotes the rate of the change in terminal
value to the change in 1n1t1al slope evaluated at 4 . Hence, to first
order, the correction in the initial slope should satisfy

/

S‘jo - Fr 7f " df

(Hj_> (2.3.72)

and it is this value which is to be used in (2,3,70a) for the second iterate,

In the slope correction process just outlined, the derivative J‘yf is
required. As will be shown next, the neighboring extrema.l technique 1ys essen-
tially a method for generating th:n.s derivative,

Let $,0%) denote the initial iterate generated by means of Egs.
(Re3.67) and (2.3.68) and let J'C},) denote the corresponding value of the
functional T~ . Expanding J in a Taylor series about U‘(;,) provides (to the
second-order terms)

Xg
J(g)zJ(ﬁ,)+J|:§4c§? +2‘; 57]«:1)(
g Xo 7
L1]2F sy7, 23 susyr, 2§
Z.J 87" by 3737’ 7°% 4 # j dX (2.3.73)

where Xo

87 =y x) - 7II(X)
8q' =5’ X~ 4,x) (2.3.74)

Now, integrating the second term under the integral by parts and noting that
é'? (X,) = © provides
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X
of _ d af of
3'(7) z 3(7,) +j!|;—7 Ix a;-’] cfgd)( + [—a%,]gﬁf-

Xo
X5
v L]o%F 4 25% S48y, o*F Sy
+= - q 4 T 77-}-———’2 ¢ 1 dx
z j[af d424 O (2.3.75)
Xeo

But, since g,, (x) satisfies the Euler condition, the first integral expres-
sion is zero leaving

e
- + of 53 + ; f 3 dx
I(j) - J(j 2 <a7l>)(f f (x, gﬁ) #') (2.3.76)
XO e

where

3*F Su7 , 23F S48y . *f ,2
E ___12_[3?2 4, 7 453" 4 P Sy ] (2.3.77)

Now, &4 1is to satisfy

S#,c = ?-F "g#‘l
(2.3.78)

that is, § M¢ is equal to the difference between the specified terminal
value of Y- and that value use on the first iterate, . Urder this
condition? the minimization of the expression in (2.3.76) is accomplished by
requiring 87 (x) to satisfy the Euler condition

oF _d/F
a(sy ~ dx{agyy) T ° (2.3.79)
together with the boundary conditions
8? (xo) = 8?0 = Q
Sy (X)) = § - .
7 Te = Y5 ¥ (2.3.80)
Substituting (2.3.77) into (2.3.79) provides
S4 @) + 847 (a'w) +84 (4’0 - cw) = o (2.3.81)
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where

(2.3.82)

At this point, comparison of this expression with Egs. (2.3.12) to (2.3.18)
indicates the solution

Sq0 = b, )8y, + ¢, () 84/
7 # / (2.3.83)

where the calculation of ¢%r and ¢&L is given in Eq. (2.3.18). Finally,
evaluating (2.3.83) at xr and using the boundary conditions of (2.3.80)
yields the result

87: = Z-F B g‘Fl
¢/2. (@) (2.3.84)

Hence, the second iterate ¢, (x) is chosen to satisfy the Euler condition
of (2.3.67) but with the initial values

A
2 (X5) = o, = e !
(AR AT AR (2.3.85)

where 6fﬁl is given in (2.3.84). A comparison of (2.3.84) with (2.3.72)
indicates the identify

(ﬂ_) i, (Xg)

dgs (2.3.86)

2.3.4 Discussion of Results

The steepest descent technique is a first-order technique and, like the
equivalent procedure in maxima-minima theory, requires that the user guess
the magnitude of correction at each step (the quantity 4, in Eq. (2.3.28)).
The process has a relatively wide range of convergence in that it can be made
to converge from starting solutions, that are far removed from the minimizing.
solution. However, the technique breaks down in the vicinity of the optlmal
solution since the correction mechanism, the Euler operator /af —

a_:}— dx 37>
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approaches zero, thereby, making the selection of the constant,Aé/ extremely
difficult.

In contrast, both quasilinearization and nelghboring extremal are second-
order methods and converge rapidly in the vicinity of the minimizing solution,
However, both techniques tend to diverge if the starting condition is not
sufficiently close to the minimizing sclution since both technigues attempt to
remove all the error in one step - a procedure which works well if the error
is small, but fails if the error is large. Fortunately, by the inclusion of a
constraint on the magnitude of correction, the range of convergence of both
techniques can be extended. Such a procedure for the quasilinear approach
was outlined in Section 2.3.2 (see Eq. (2.3.62)). An equivalent condition for
neighbo;ing extremal would simply replace the terminal constraint of Eq.
(2.3.80).

W e -7 (2.3.87)

by

Sp¢ = Fa Gr-pe) (2.3.88)

where /ég is some number between zero and unity. By this device only a part
of the terminal error would be removed on each iteration and an enlargement
of the range of convergence would result,

In the neighboring extremal technique it was noted that the second iterate
a_(){) did not necessarily provide a smaller value for the functional T
than ,()c) . The reason for this observation is that the value of the
functional J is not a proper measure of closeness of a particular iterate to
its optimum value. A better measure is the difference between the specified
terminal condition and the terminal value provided by the particular iterate.

A similar situation occurs when both quasilinearization and neighboring
extremal are used to solve the generalized Bolza problem which was formulated
in Section 2,1; that is, successive iterates do not necessarily decrease the
functionagl which is to be minimized. The reason for this is that in neither
method do successive iterates satisfy all the constraint conditions (just as
the terminal constraint was violated in the neighboring extremal approach of
Section 2.3.3). Thus, here also, the value of the functional to be minimized
is not necessarily a proper measure of the closeness of a particular iterated
solution to the desired extremum. However, the correctlons are still chosen
to minimize a quadratic approximation to the minimizing functional, since by
this device the errors in satisfying the specified constraints are automati-
cally "brought in.,"
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2.4, CLASSICAL MAYER PROBLEM

The Mayer Problem consists of minimizing the functional

J:ﬁ(/\’{.‘) (2.4.1)
subject to the differential constraints
X=f & ut) === X; =f; Ut); <=/, 1 (2.4.2)
the specified initial state
X = XO AT t = tﬁ (20Ll-¢3)
and the M terminal conditions
[, x)
Y, (X)
V(X): . = O AT t:‘t.f:
| Y x) | (2.4.4)

This minimization is accomplished through the appropriate selection of the y~
dimensional control vector y_  which is required to lie in the control set /.

As indicated in Section 2,1, this problem is solved once a solution has
been generated to the 2n equations

X = fx,u,t)=> )E/; = f; OGu, t)
= -9H =—=> Py =-2H
X X,
n
H =pTf == H = ZP‘-‘F“
- (2.4.5)
which satisfies the boundary conditions
X=X, AT t=1

’ ° (2.4.6)
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T m
p 4 (P¥ op | . /AN
*(ax 4t 3x °®&+:4;"'d iyl A

(2.4.7)

If the final time f;F is not explicitly specified, then the additional
condition

113
o~
-

(2.4.8)

must also hold. The optimal control is chosen as that control in the set 1
which maximizes the Hamiltonian; that is

Hizsa,, > P, t) = H(x, &4, P, t) (2.4.9)

where Ugpr denotes the optimal control and 22 is any other control both
of which must lie in 72— .

In this section the three numerical procedures, steepest descent,
neighboring extremal and quasilinearization, will be used to solve this problem
but under two additional assumptions,

1, It will be assumed that the control set 2/~ is the entire Y~ dimen-
sional control space; that is, no bound is placed on the control and each
component «, (/= / r ) can take on any value between - o and # co. Under
this assumption the optimizing condition in (2.4.9) reduces to the
equations

O
| b
LY
S| <
[

IH (2.4.10)

These equations are the classical Euler equations for the control action (¢ )
and are Just sufficient in number to determine the w control components at
each point along the optimal trajectory.
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2, It will be assumed that the final time +{; 1is explicitly specified.
An extension to the case in which the final time is allowed to vary will be
indicated in Section 2.5.

As in both the maxima-minima and Lagrange problems, only a very special
form of the problem of Mayer can be solved directly. This class is referred
to as the "quadratic cost" problem and will be treated next.

2.4.1 Quadratic Cost Problem

Let the state equations and boundary conditions take the convenient linear
form

)'(. Q“ alg'--a'lr] -xj -3“ 3»1." "3!1'- -ul—l

XA ey« =%, = |ay 0 |[Xa|t[8s 42 9ar ||42

. . : (2.4.114)
Xn @ny nz Qg Lx'\_ Fn, ﬁ'ﬂ- 3oy LL(T
){=¥o At t=t,
W: rC." Cll C"l_ (x; ’-dl-
W:‘. % =0 = CX-d:O———‘—,> Cz, C., C;n Xaf - dz = O
W’“J Cu Chz -+ Cpp| Pin d
R A nfPr]  [n) (2.4.11B)

Note that A and G are hxn and nxr time dependent matrices, respec—
tively, while € and d are Mxn and MX/ constant matrices. The
admissible control set 7/~ is the entire control space with each component
, (< =1/ r) allowed to take any value between - oo and + oe=. The
problem is to select the control history which minimizes the functional

% it
J =bT x¢ +f(x'Q,x +uTQ, u)dt
t

h ° £
Lesner [ Y spnge o
=) biX; +f 3"~X'X-+2 Ve u-uldt
‘:5’ f % "Ij:l -‘é “ 4_/3’,/ g -‘JJ < j (204 -lJ_C)
(]

" It should be noted that linear terms in X and & can also be included in the
integrand of this performance index without destroying the "quadratic cost®
property of the problem.
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where &; 1is a symmetric #7X /2 positive semi-definite matrix (i.e.,

X7 x,x =z © )and @5 disan rxr positive definite matrix, The
quantity 4 is an # dimensional constant vector., This problem is frequently
referred to in the literature as the "linear dynamics - quadratic cost" problem,
Note that the performancé index J  is a linear function of the terminal state
(Xr ) and a quadratic function of X and « of the interval (% , %¢).

As will be shown next, the solution to this problem can be developed without
iteration. '

The problem stated to this point can be put in the standard Mayer form by
introducing the new state variable Z defined as

t
s

Z = f(xTQ'x_,_uTQzu)dt
to

(2.4.11D)
Hence,

Z = XTQx+UQ,u (2.1.128)
z (té) =0 (2.4 12]3)

Thus, using the new state variables X;T

X2

Xn

|~

which satisfy the differential constraints of Egs. (2.4.114) and (2.4.12A)
together with the boundary conditions of (2.4.11B), the problem becomes one of
selecting the control ¢ +to minimize the functional J where

n

J = ¢(X-F’Z‘F)= Z'F+Z b; X

b, CE (2.4.12C)

This problem is now in the standard Mayer form to which the Maximum Principle
conditions of Eqgs. (2.4.5) to (2.4.9) can be applied.

This solution is facilitated by introducing the 4 7»/ dimensional

> ad
vector (f}) ) P
=|P
(7)< [ -
Pn
P |
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where the first A components of p are the adjoint variables associated
with the state X, (css/,,) and the »# #,/°%  component, % , is asso-
ciated with the state variable Z . Thus, the Hamiltonian becomes

n

H-_-_PT).(+Pzé:. zpi)(.i-"PZz
=1

- Pt T X +u' u
P (AX +Gu) + Pz (X'Q, Q,u) (2.4.138)

Using Eq. (2.4.7) with % and ¢ given by (2.4.11B) and (2.4.12C), it follows
that the (;) vector must satisfy the boundary conditions

Zz
P E‘,, Cy v - -Cm D(, rb,
T
P+Cﬂ+b:o§> Pz + Clz czz CHz "{2 + bz =0
P C c,. ...C
AR I L " _//'U _b"_J (2.4.13B)
RT ¢-=1
f
Px+l=0 ; AT t=t
i ’ f (2.4.13¢C)
Also, the vector (;) must satisfy the differential equations
2z
SOH .
p = vy AN
< Xy o (2.4.14)

Further, since from (2.4.13A) 4’ is not an explicit function of the state Z ,
it follows that

> = -—.QZZ-:_'O
2 SF

Combining this last result with (2.4.13C) yields the first of the multipliers
as

Under this condition, Eq. (2.4.14) reduces to
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. [ o o ][
P' Q-" Qu -..ay" Pl %:l ZI;"'%‘HI xﬂ

Y 0 f
PATP+20 ¥ =P~ g, an|[R|+2] 55 4090 |%,

21

-

a0 «) )
_an _aln Q,, a'"“J _P"IJ _%m %nz"'gmu ¥n

(2.4.154)

Finally, to maximize the Hamiltonian, the control must be selected so that

AH oH .
— = = p =1,r
PYT, (O au, O « v

This condition leads to the optimizing control

ul Pl

=@ 7P ul= (@) () |,
T . 2 -

U'r Pn

(2.4.15B)

Combining results for the quadratic cost problem, the state and adjoint
vectors satisfy the differential equations

X =AX + GU
P =-A"P + 2QX

(2.4.164)
and the boundary conditions
X =X, AT t = ta {1
g
Cxd =0
} AT -t
P+cU +b=0
(2.1+016B)
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The optimal control satisfies

U = Q;_' GTP

(2.4.16C)

Substituting (2.4.16C) into (2.4.16A) leads to the &N linear system

X = AX+ G@ GTP
p)
P=-AP+2Q,X
(2.4.16D)

and since the boundary conditions of (2.4.16B) are linear, this system has a
closed-form solution.

Let A (£) denote the 2N Xa N matrix solution to the
differential set

2Q, —A
(2.4.174)
and let 1. be partitioned into the four nx 4 matrices
0]
At WA A
R /8
Then (2.4.16D) has the solution representation
X (t) X
=At) |°° (2.4.17B)
P(t) P

Thus, the terminal point can be evaluated as
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X
NN
% g

or using the partitioned form of /LU this equatiun becomes

0]
Xg = A (t¢) Xo T -/\-Q(t’c) F

€]
Pe = N(2X, +/\@(t;)p°
(2.4.184)

Combining this expression with the terminal constraints of (2.4.16B) provides

®
et o |al | da-cPax,

/@(1‘{) cT| |« —/@(z‘;)xo_b
(2.4.18B)

Now, since X, is known, this equation can be used to determine A .
Substitution of A4 back into Eq. (2.4.17B) then provides the solution to
the quadratic cost optimization problem,

As in the maxima-minima and one-~dimensional Lagrange case, the gquadratic
problem yields to the solution in one run on a digital computer (no iteration
is required). Hence, the numerical procedures used in the solution of non-
linear problems consist of approximating the problem by a series of quadratic
cost type problems. The particular iterative technique used is a function
only of the type of approximation which is made., In all cases, the procedures
used are essentially the same as those used in connection with the maxima-
minima and Lagrange problems,

2.,4.2 Steepest Descent

The starting iterate in the steepest descent technique, which is denoted
by &, (¢¥) , must satisfy all the problem constraints; that is, it must
drive the system

X = fx,u,t) (2.4.194)
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from the initial point

(2.4.19B)
to the specified terminal set

y/:%:o ATt:t'F

(2.4.19C)
Y

However, ¢, (¥) 1is not the optimal solution in that it does not minimize the
funetional

J =@ (Xg)
The problem is to select the second iterate

U ()=t () + Suce)

so that it will also satisfy the constraint conditions of Egs. (2.4.194) to
(2.4.19C) and more nearly minimizes the functional J .

Rewrite the functional J as

Jd = ¢ (X,g) + WL« + IPT()&—F (X,U)t))th J (2.4.204)

where £ and A4 are multipliers to be selected so that the constraints of
Egs. (2.4.194) and (2.4.19C) are satisfied. Since each solution will start at
the point o at time Zo , there is no need to expllc:Ltly include the con-
straint condition ofEq. (2.4.19B). Note that since F is equal to J (only
terms equal to zero have been added on), minimizing the functional F in
(2.4.20A) is equivalent to minimizing the functional J , and in what follows,
attention will be focused exclusively on the functional F .

Now, ¢, (£> denotes the first iterate which drives the system from the
fixed-initial point to the terminal set #=© at the fixed-terminal time
tg . Hence, let J“Cd ) denote the corresponding value of the fungtional

in (2.4.20A). Expanding 5 ¢ &) about (¢ u,) in a Taylor series, and truncating
after the first-order terms provides
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Tw-Twy= 83
13

-
2 ¢ of t
= g_)‘f +-§-§’51,4:|<§x+ StPT[Sx- > X~ 54 S%d

But the first term under the integral can be integrated by parts and combined
with the definition of the Hamiltonian

to yield
4

T Yoo ov’ ’ . N T
sJ ={-a—x+g—x/( +P}5x—f [@+~§;j 6x+(—gg)§u]dt
t,

o (2.4.20B)

Now, noting that the # dimensional vector ,p satisfies the differential
equations

7 (2.4.218)
and the boundary conditions
M %
o7 _
p+§;’i+iﬁr/4:0@/§'7‘%ﬁf > My bx-—o
dX X « /=’ “  (2.4.21B)
l‘:,; ”

allows Eq., (2.4.20B) to be written as

T ) F(u) = §T= fi(-};—/)rorq L2

to
(2.4.22)

Now, minimizing J is equivalent to minimizing J ; thus, if the amount
by which the control can change is limited, then minimizing the first-order
approximation to J should provide a second iterate A, = #4, 7 4 which is
more nearly optimal. Hence, require that
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¢
I;Sa’df = 4‘:2
é‘

(2.4.23)

where 4 , 1s some small positive quantity, and that S f is to be minimized
subject to this condition.

Proceeding formally, the scalar multiplier R is introduced and the
functional § T formed where

i ‘f 7

= - 2 o
§J = 8 + A faa‘df-i, =f ASa‘-(;—)J« dt ~A4*
(74
‘.

éb

Again, requiring the first variation of §JF  to vanish provides

2 -
o# |
f 2X8u - a;.;—) 8k ot =0 (2.4.2L)
(D
which is equivalent to
2H A 2%
ZAdu - du F0 = —2/\ du; 2 2; %1 du, (2.4.25)
} [= /,r

Now, the adjoint vector # must satisfy the differential and boundary condi-
tions of Egs. (2.4.21A) and (2.4.21B). For an integration to begin, however,
the M dimensional vector 4 must be known, Recall that 4 is selected so
that

8
I\
o

vix) = !
¥

or to the first order these constraints are

[y | [, ]
azl ;xz 91,, '
£=¢ dy, Iy %,
au\ ‘ —= = = Sx
[(—i) Sx = 0:, & 7z, Ix, 7x, 1 =0
2h, W Tu, sx (2.4.26)
| 7z, 9, 2z, 1 L "™
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The selection of 4 to satisfy Eq. (2.4.26) is accomplished by integrating
the system

>~ . 2L
£ = aX
from €

+ ‘to €, Mt/ times with the M+/ different terminal conditions

o % w _ 7y . \
p = 7 — gz 7, i=/ynm
2y, Y,
e L o 2
P Ix = Fx;
; > At it
p(M)= . _a_gé}'_ @ p‘-(M)=_ awm
x Iz,
2¢ o
ey 77 oy 7
» e & P P ) (2.4.27)
Now, let
tme1) ad
plt) = b + 35w p P8 (2.4.280)
;':I

Since the linearized form of the state equation is given by

F 7
x = — Sx*+ — Su (2.4.28B)
Ix u

it is a simple matter to demonstrate the identity

Lhorad (2ol B aom

for any vector 2 satisfying the differential condition in (2.4.214).

Hence, integrating this expression between Zfa and L‘f and noting
that § X, =0 provides

T -
% Sz, —f {pr 34(} dee ot (2.4.30)
%
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Now, substituting each of the vectors £ &7 (L=/ A7) into (2.4.30)
and using the boundary conditions of (2.4.26) provides the M equations

_ (%Y i ¥ wr )7
(;;_) Sx =0=/ {p ) ;‘:} dudt ; E=/y M (2.4.31)

fﬂ
Combination of this result with the expression for § ¢ in Eq. (2.4.25) yields

& r
at.)r ] / L F i N IF
- | — dz = 0 ﬁ (2 (Mrs) (;)) il =0
(ax » ; P (;o :.Z, Ay P u at
- ]
(2.4.324)

This set can be used to determine the appropriate values for the /4‘;'_ (}:4"7).
Specifically, these equations are equivalent to the M 1linear equations

2, 2, R, pm /“/' b’
A/“ = b Ay Qe Zem Az = | &
Gry Bpo - 2, ) L, b., (2.4.328)
where
Ly FF )T o OF
- w? 97 T 77 (2.4.338)
a‘/ (p Ju (P u )
b. - -( w7 2_{.) ( re) T 97‘:‘)
' 7 u P Ju (2.4.33B)

With the multiplier A determined from these equations, the exact value
of the 2 vector can now be computed using Eq. (2.4.284). The scalar multi-
plier A is then evaluated using Eq. (2.4.25) and the constraint condition of
(2.4.23). This operation yields
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! ¥ IFN\* "
A= g |
273{:/ (p 9“') df} (2.4.34)

Finally, combining Eq. (2.4.30) with Egs. (2.4.27), (2.4.32) and (2.4.34)
yields

s y7 |7 34 ¥ 2
PrJZJ=-(—+—— )JZ =.-(_)5x = -4 / af
/4 = ¢= —_ T —

Z",. dx ax t{ x t; 2 Aé ( aa )d t

(-]

Thus

¢ y
d¢ = -4 {/(pr i’)zdt}z (2.4.35)
. Ju

l
and for .A£, sufficiently small, the new value of the performance index
& 4 xf) will be smaller than the previous value,

The step by step calculation procedure to be used in the steepest descent
method is as follows:

(1) Select an initial control program, ¢, ( £),
which wil% drive the system
X = ‘F(X,“)f)
from the initial point X, to the
terminal set Z;CY;)ro(i=4ML

(2) Integrate the state system
X::‘FCXI“Jf')
forward from £, to L

(3) Integrate the a%ggint system

== 2
backwards M+, times with the terminal
conditions

60

SR T

L R TT T T R ERT

BRI, Sy i,

P



F ’x

w = - %

% 2%

oo . I

% ax

7é

mel) -

BT ok
(4) Compute A& from Egs. (2.4.32B) where the
quantities 4y and 4; are evaluated

from the resulfs of Steps (1) to (3).

(5) Compute p and X from Egs. (2.4.284) and (2.4434).

1 I

(6) Use Egs. (2.4.25) to develop the control correction du =.§'—Ap I

(7) set ¢, (¢) = ¢« () + Suld)

(8) Go to Step (2)

The iteration continues until additional changes in the control program
produce no improvement in the performance index., At this point the optimizing
condition

(224 = 0 => é!{ =0 ; = /4y n
ou K

has essentially been reached and the process is terminated. Additional details
of the steepest descent procedure are given in Refs. (12) and (13).

In this iteration process the second iterate is chosen to minimize the
first-order approximation to the modified functional J (defined in (2.4.204))
subject to the magnitude constraint of Eq. (2.4.33). This first approximation
is a quadratic cost problem of the type discussed in Section (2.4.1). However,
in the approximation and minimization processes conducted in Egs. (2.4.20B) to
(2.4.25) inclusive, the quadratic nature of the problem is somewhat obscure.
Hence, it is worthwhile to give an alternate derivation of Egs. (2.4.20B) to
(2.4.25) in which the quadratic nature of the problem is more apparent, and
the solution developed in Section 2.4.1 can be applied directly.

The quantity
J = #(x,) (2.4.36)

is to be minimized subject to the differential constraints
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X =flx,u, ) (2.4.374)

and boundary conditions

X = X at z‘=zfo

]

wilx) = 0 at t=1¢ i=/y M (2.4,.37B)

The first iterate satisfies the constraint conditions but does not minimize
the functional J in (2.4.36). Hence, to first-order terms, the second iter-
ate is to be selected to minimize

J 9d\7
(u) - J(U,} = 4] = (27) 5)4{_, (2.4.38)

subject to the linearized differential constraints

2Fy (ny'
¢ =|— )6x +|—)ou 2.4.39A
o (a"x E» (2.4.394)
the linearized boundary conditions
6)%, =0 at t=¢,
i a_y’: 9_% ‘ZT [ Sx ]
ax, 212 (9)5” ¥
2 )
(fzzt)g =) &> éLi % v )%; =0
ax f 31, 312 3%/,
w, 2%,
i v .. | bx, |
| 9x, ax, dx, _ "¢ (2.4.398)
and the magnitude constraint
(5u)ct = &7 (2.4.39C)

’,

o'*\
\N
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If the constraint in (2.4.39C) is adjoined to the linearized functional in
(2.4.38) through a constant multiplier A , then the problem becomes one of
minimizing the quantity

A 2 A\T %
= (22 24t - £%
35S (ax) Sz, * A [ Su?at - £ (2.4.40)

~ subject to the differential constraints of (2.4.39A) and the boundary condi-~
tions of (2.4.39B).

This problem is the quadratic cost type problem of Egs. (2.4.11A), (2.4.11B)
and (2.4.11C), but with

- 2 () ()

ox Ix u
2w
€= 57 V97035 9 =0, @ =21 (2.4.41)

Hence, the adjoint equations and boundary conditions (see Egs. (2.4.13B) and
(2.4.154)) take the form

5 = M
X
ié (a;//)
F — = 0
with the optimal control satisfying
54( = .L ( T ﬁ) 2
72 \Z (2.4.43)

The methods of Section 2.4.1 can now be used to develop the solution.

Note that the required conditions in (2.4.42) and (2.4.43) are identical
to those used in Egs. (2.4.214), (2.4.21B) and (2.4.25). (These equations were
used in the calculation of the steepest descent correction.) This discussion
establishes the quadratic nature of the auxiliary minimization problem used in
the steepest descent procedure. More important, it also establishes that
minimizing the first-order approximation to the modified functional J
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oy
T = 0 ) rylu+ [ o) ot (2.4.434)
to

is equivalent to minimizing the first-order approximation to J =(b(xf)
subject to linearized versions of the boundary and differential constraints.

In the quasilinear and neighboring extremal techniques to be discussed
subsequently, a similar procedure will be used. That is, second iterates will
be developed by minimizing some approximation to the functional J in Eq.
(2.4.434), This approach is algebraically cleaner than minimizing an approxi-
mation to J subject to linearized constraints. However, in taking this
approach, the guadratic nature of the auxiliary minimization problem is
obscured,

2.4.3 Neighboring Extremal

The optimization problem is solved once a solution has been generated to
the 2n  system of equations

z = Flx,u,t)

;- 2 (2.1 1)
p ax . ®
which satisfies the 2n boundary conditions
x=x at ¢ =4 (2.4.45)
3¢+ 2y’ o
J— —_— bad = =
Er e at ¢4, (2.4.46)
where the multiplier u is determined so that
¥ (x,)
(x,.)
¥ (x)= 7/5, 4 =0
Y%, (x,) (2.4.47)
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This optimal control is determined from the condition
24 ]
22,
oH _ | o#
u 74,
IH

J (2.4.48)
» aa’

Note that Bgs. (2.4.46) and (2.4.47) constitute a set of n+M terminal
conditions. If the matrix (8y; /0x;) has maximum rank (i.e., if the constraints
l,lli = 0 are not redundant) then the.vector u can be eliminated from this
set providing a system of n equations in theverisblesp, and =x . For

example, Eq. (2.4.46) can be rewritten as f £
B } [ 2 a 2
ax, dx, ax ox,
A 22
a
L I I U N R 0 D s
ox dx x dx : :
i s S| b LR
¢ 2y Ay 2%,
[ 9x,, ] Loz, dx, = ax,]

which is equivalent to the two sets

—ﬁ - — g—%. a_@ %— — /4(, - — ﬂ -

2% ok, Ix, 0% || A Pa

. * + = 0

7z e I e 2 (2.4.494)
7%, | LaxM 7x,, ax,, J L/M_ | M ]
e | [or m mT A A

axM + axM +! J xMﬂ a’sz/ /”.z ﬂnrz

. + ) -+ . = O

o¢ Y 2y, 3%, : .
_92:” J -a—x,, 31,, T 3xn _ _/aM | _pn J (2-l+.ll-9B)




Solving the first set for the vector u and substituting into the second set
leaves a system of n- M equations in the variables p and x_. ,
Combining these equations with Egs. (2.4.47) then provides a system of n
equations in the 2n unknowns, p and x. . In what follows, it will
be assumed that such a procedure has been folldowed with the multiplier wu
eliminated from the n +M constraints of Egs. (2.4.46) and (2.4.47). The
resulting n equations in %; and ;} will be denoted by the expression

7, (x¢,;%)
7,(x, ., 0)
(x.,p)=|"% *°7F =0 at ¢t=¢
7 % % : “ 4 (2.4.50)
7w (Xes )

Thus, the terminal constraints of Egs. (2.4.46) and (2.4.47) have been replaced
by the equivalent representation given in Eq. (2.4.50).

In the neighboring extremal technique, each iterate satisfies the opti-
mizing condition of Eq. (2.4.48) along with Eqs. (2.4.44) and (2.4.45), but
does not satisfy the required terminal conditions in Eq. (2.4.50). The itera-
tion consists of correcting and recorrecting the initial value of the vector,

P, » so that Eq. (2.4.50) are satisfied. The method by which this is accom-
plished isas follows: Since the initial value p, completely determines a
solution (a particular iterate) in the neighboring extremal ecase, both ¥

and p; are functions of p, . Hence, the terminal constraint of (2:4.50)
takes the form

7, (%)
7, (1)
( ) = 7ig) 2 %0 =0
7% nm) = 7R : (2.4.51)
7a(5)
let » denote the first iterate (i.e., the first guess of the initial

vector)'and expand 7 in the truncated Taylor series

o ERCVEE e S

7
7in) = 7(m) ¢ (%)(,q, -7, )

(]

The second iterate is taken as that value of p for which the above approx-
mation is zero. Hence,

7 () (2.4.52)
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In the initial application of this method (see for example Ref. (1)) the
derivative matrix (6711 / Op: ) was approximated by the finite difference matrix
(A7 /ApJ ) with the latte? generated by numerically integrating the original
system but with a slightly perturbed set of p vectors., Later on, a method
was suggested (see Refs. (15), (16), and (l’?))ofor a more precise evaluation
of this derivative using the theory of the second variation in the Calculus
of Variations. This method is now generally referred to as the neighboring
extremal technique. An account of this method is given next.

Minimizing d)(xf) subject to the state equations
X =Fflx,u,t)
and the terminal conditions

;k(zf) =0

is equivalent to minimizing the functional J where

2
— f .
T o= ¢ sylur [ pGi-Flot = T (2.4.53)
Z‘C)
Let Po denote the first iterate and 31 the corresponding value of J .

Expanding J in a Taylor series about p and truncating the series after
the second—-order terms provides

J—%’J_f-a:‘f,_éé.z(]—

7

where
_ o8 oy ¥ a#  oF
R R L T P
ox 2 “
4
+ [ 7o) ot (2.4.54)
2
2 F 2 2 T 2 T
_B_J_ = (a ¢ > a ol )5)5,: # SX %5
Z dx? ax* Z f Jdx
¢ oF I
* Sp (3x——5x-——6‘/,() ot
% dx
% PLI N I b's % Su*
* T 7_(__— — 5 J e ) 2-l+o55)
f » Ix* 2 Fxduw xa+9u2 V4 dt



Now, the nominal trajectory (the first iterate) will satisfy all the optimizing
equations but the terminal condition of Eq. (2.4.50); that is, Egs. (2.4.44),
(2.4.45) and (2.4.48) are satisfied by the nominal trajectory. Hence, Egs.
(2.4.54) and (2.4.55) reduce to

2
= = §%J
J J,'~<FJ+ P
_ (22 , ¥ ) oo T (929” ”y’ \Sx%
(&’x ox Ity dus a”xz+3xz/a)2

a T
z L Sw todx

’f S e 7% 2
f/v( %" susu + 27t ‘Si)dz

* 574;

x? &'z?u ur 2
Iz
f sp” (Sx - —3}5 ey é’a) dt (2.4.56)

Now the second iterate is to be selected to minimize the second-order approxi-
mation to J as given in Eq. (2.4.56). Proceeding formally, the first
variation of the expression in (2.4.56) with respect to the variables &x(t) ,
du(t) , oplt) , 8x£ and 6u 1is set equal to zero. This leads to the
equations

of . % N 9%
Sy = 970 Sy + — Su <> Sx, ""‘Z — dx; "Z T 5“1 (R.4.57)
du : 9uy

2)4 ‘ J= 92:,/ ! L=/
s hisd i 7 S
= - - u
7 dpdx dx* X u <>>
@) ooy o oW Y
°f T 7 5z 2. IR Suy  (2.4.58) ,.;
‘/z/: Iz, az,/' ¢ Iz ! e Ix; 94y d
. . ; e oy |
77 pfz—/-/&( — Sx =0 <= 3;3‘. |
udp Ju* Ju T duy 9y
r I n 22#
3 . ka 52 ;= H { =/, e 2. .
i z,: ety Ju; “ ; Jduydz, 1 ’ (2.4.59)
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¢y % Pl Py
—+ T S Z * Sx +— § =0
T {pf Vi GET Gua HO% T T it
wr X 52 =0 (2.4.60)
ox

Egs. (2.4.57) to (2.4.59) are the linearized approximations to the state,
adjoint and optimizing equations given in (2.4.44) and (2.4.48); the boundary
condition of (2.4.60) is the linearized version of Egs. (2.4.46) and (2.4.47).
In view of the assumption that the multiplier u has been eliminated and Egs.
(2.4.46) and (2.4.47) represented in the form of Eg. (2.4.50), it can be shown
that the linearized result in (2.4.60) is equivalent to

? 2
7, 0 )+ 0 s+ 20 545 =0 (2.4.61)
7 7, ﬂlf T ”& I3

Thus, the second iterate is generated from

R, =% "R

R

where 8p is to be chosen so that Egs. (2.4.57), (2.4.58) and (2.4.59) are
satlsi‘led, subject to the boundary conditions of (2.4.61).

Under the assumption that la H/auzl# 0 along the first iterate, Eq.
(2.4.59) can be solved for O8u yielding

FHN'Y 77 2
Su =‘( ) : Jp > diad dx (2.4.62)
Jdudp dudx

Substitution of this result into (2.4.57) and (2.4.58) provides the
linear system in &8x and O&p

(;5;) - (2: —Cc@:’)(:o) (2.4.63)

(k) (k=1,3) are nxn matrices with the elements given by

where the C
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di. ,].-:/ 91{41 9411 32:%- 4 /,J

D[ [a247"

{

W4,
2 z 72 7% [aH]”
O _° :;_ o [ 21 )¢ @o6n)
of ;ZL, Jl;. 77/ Iz, 242 Fup 21{ du s

The solution to this system can be represented by

51(&)) _ Sx,,)
(Sp(é) AL (Sﬂ,

fundamental matrix solutions

where A 1is the 2n by 2n

. c® ¢°®
/L=(C@ el Ay A =T

Let A be partitioned into four n by n matrices of the form

A, /L,)

4=
A, A,

Then, since &x is zero, it follows that

5%, = N, (&) g,
Sg =N, () 8n
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(R.4.66)

(2.4.67)
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__(27 7 N
8g = (fo A L)+ ;/;; A, (tr)) f(z{l, 3,‘) (2.4.68)

The second iterate is now generated from the initial p vector as

Ao = A, * Sp

where 5p is evaluated using (2.4.68). If the first solution comes

reasonably close to the correct terminal set

7 (% 97} =0

then the second solution should be even closer, In fact, if the method con-
verges to the correct terminal set, the convergence will be quadratic with

|2

N+

-nl ~ la-n|"

It is again emphasized that the neighboring extremal technique is simply a
device for solving the transcendental equation in (2.4.51) for the unknown

vector p,

A step by step account of the calculations to be performed at each itera-
tion is given below:

uess a vecuor
(L) ¢ Py t

(2) Integrate the 2n system

. } 2+
z = Flx,u,t) S 2
from t to with u satisfying
(o] f;ﬁ ) 0

24(
(3) Test to see if the n terminal conditions

7( ’& = 0

are satisfied. If they are not, continue.

(4) Determine the 2n x 2n fundamental matrix solution

A =CA 5 AL =
where the C matrix is given in Eq. (2.4. 614.). Note that since only
A, and A, are used (see Eq. (2.4.67)), only half of the

1



calculation required in evaluation A need be performed.
(5) Evaluate 83} using Eq. (2.4.68) and set
A, T F T ém
(6) Return to Step (2)
The process is continued until the required terminal conditions
V(Zf,@)zo
are satisfied.

2.4.4 Quasilinearization

Stating the problem again, the solution to the system
Z= flx,u,t)

. 72+
P= (2.4.68)
axX

is to be determined which satisfies the initial conditions

x =2, ot t=4¢ (2.4.69)
and the terminal conditions
yz.) =0
Z &= ¢
”? w’ ©Z =0 ’ § (2.4.70)
- - 1‘ = . .
7x 91”/%
and where u 1is selected so that
a4
- =0 (2.4.71)
Ju

It is also assumed that a procedure similar to that indicated in Egs. (2.4.49)
to (2.4.50) has been used to eliminate the multiplier u from the n+M
terminal conditions of Eq. (2.4.70). This approach results in a set of n
equations in the 2n variables X¢ and P; which will be represented by
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ZV{ ’7%
7 (x ; ;7)

|
o

7( %5/

7, ( ’& (2.4.72)

Thus, the multiplier u no longer appears in the boundary conditions that are
to be satisfied.

The method of quasilinearization is frequently referred to in the litera-
ture as the generalized Newton-Raphson technique. As indicated in Refs. (18)
to (20) the technique is conceptually the same as the Newton-Raphson procedure
employed in maxima-minima theory. For this reason, the latter name may be
more appropriate. The use of the technique in trajectory optimization problems
is demonstrated in Refs. (21) and (22).

Like neighboring extremal, quasilinearization is a second-order iterative
process in that second-order terms in the series expansion are used, In con-~
trast, each successive iterate satisfies the boundary conditions of (2.4.69)
and (2.4.72), but does not satisfy the governing differential equations of
(2.4.68). The iterative process consists of correcting and recorrecting the
starting solution in a direction which tends to "bring in" the differential
constraints subject to the constraint that the optimizing condition of (2.4.71)
is satisfied. This condition can either be satisfied exactly by each iterate
(the usual procedure in the literature) or can be "brought in" by the iteration
process,

Again, let the functional to be minimized by written as

_ ¥
J = #*ryu +f P72 -F) dt (2.4.73)
%

and let the first iteration be denoted by

X = ZI(LL)
n= A () first iteration
u = (¢)

(2.4.74)
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where x; and p are required to satisfy the boundary constraints of
Egs. (2. b, 69) and (]2 L4.72) but not the differential constraints of (2.4.68).
Now, expand J in a truncated Taylor series about the first iteration as

2 F

7 &7—'*?

a”ﬁ) ( dy” ) 720 2Ry Py
Sx, H|— w]Sx ( * 2 » —=
o) % oy W% N T it 7% gx A

Tl
l
n

F
fo"p (x,-+)dt + ;o (Jx‘z é‘x-if Ju)dé
2 ax Ju

P P I Sul
S 57.-—5 -——; azf 2 S v X
f;o x “f p{ = 2 }

(2.4.76)

and select the second iteration so as to minimize this second-order approxima-
tion. Proceeding formally, the.first variation with respect to the quantities

ox(t) Su(t) s op(t) 8xf , and Ou is set equal
to gero providing the differential expressiorns

Sy = — § — S
I X * ey S {Z/ £( X%, U, ,L‘)} (2-14--77)
el P2+ 224 PYyy
é‘p_—;g Spo - Su — é‘z—/v'fﬁ
Z3p Fx Ju Inr A W (2.4.78)
wH W 5 2% %
—_ x,{- + =
ou u ¥ Juipo P Fu? su g (2.4.79)
and the boundary conditions
76 QZT e 7% 7
— £ # > S + J =0
ax X H“TH Jx? g o« «

(2.4.80)
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Since the first iterate must satisfy the terminal conditions of Eq. (2.4.72)
(which is equivalent to (2.4.70)), the boundary equations can be shown to
reduce to the & conditions

7 oy
Sx s L5 =
P4 ,77? £

(2.4.81)

In addition, the initial condition

sz, = 0O (2.4.82)

must hold since the first iteration satisfies Eq. (2.4.69)..

The required boundary conditions of Egs. (2.4.81) and (2.4.82) are the
linearized from of the actual boundary conditions in (2.4.69) and (2.4.7Q).
Also, Egs. (2.4.77) to (2.4.79) are simply the linearized from of the con-
straint conditions in (2..4.68) and (2.4.71). Note the appearance of the terms
(x,— %) and(£*(4)) in the Egs. (2.4.77) and (2.4.78). These terms
aré present since the fi%st solution does not satisfy the differential con-
straints. For example, define Z by

z = x-f(z,u,t) = Z(E, 2, u, t) =0

and expand Z about some first solution 2, =Z (X, > u, ) f), which does
not satisfy the zero condition. This procedure yields

Jz i 72 Iz
Z =0 = B + — S+ —O6xX + — Ju
2% ax du

which is exactly the same as Eq. (2.4.77).

Once the quantities §, , &p and S« have been computed using Egs.
(Re4,s77) to (2.4.79) and the boundary conditions of (2.4.81) and (2.4.82), the
second iterate can be determined from

% = X, + %

P At op
u, = « + Su (2.4.83)

However, it is computationally more convenient to substitute (2.4.83) into the
governing equations, Egs. (2.4.77) to (2.4.79) and (2.4.81) to (2.4.82), and
then solve for the second iterate directly; This approach avoids any trouble
which the presence of the derivatives, >, and 2 in (2.4.77) and (2.4.78),
may cause. Thus, substituting Eq. (2.4.83) into Eqs. (2.4.77) to (2.4.79)
provides

75



=(if)zz * (E{)a‘ # f(z,,u,,z‘)—(?—f)?:, ‘(zf)”/

x.Z
al ! ;‘(’ 072: ] u

(2'1+081l-)

. 4 _.( - _ (?zh') _(é!i)

7%= (217;027?2 azaa)"‘ 722) %2 \axl,

F4 2 2
() (25) 4 (5 )%
7zdp 1/ dx Jul, Ju*

(2.4.85)

2

24\ [ 2H . 7% 2%
(9«)+(2a9,z), (2 %) +(;zo";a), B-m) e (52) 4u) =0 e

Similarly, the boundary conditions of (2.4.82) and (2.4.81) become

(;Z)(zz—;g)v* (%) (g,-xg) =0 a2 z‘=&‘{.
2, (2.4.87)

&
Thus, under the assumption that ]3 f;/ does not vanish, Eq. (2.4.86) can
be solved for «¢ and the result substituted into Egs. (2.4.84) and (2.4.85).

This substitution provides the linear system

) _ (C® c® |
(@ ) (c@ <) (;) - (:;)' (2.4.88)

where the Cm are given by Eq. (2.4.64) and where JC) and d9 are 4 vectors

given by
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p) I I\ aU M N
d®= flz,,u, i)'iz —{-‘( {

72 2 9w\ 72 ) Vwde “ uae P 3
Jo- (), I, 7% (72//)"{ 7H %4 aH
(c?x) 922 xdu \our! \udx T Judp T u
(2.4.89)

This system has the solution

z, (¢) x, (4) ¢ a®
= A (%) [ +fA'I(r) dr

(¢) (t) ? a®
€ P2 ° (2.4.90)

where the quantity X, (£,) = x, and 4 (%,) is to be chosen so that
Eq. (2.4.87) is satisfied. The matrix A lS the fundamental matrix solution
given in (2.4.66).

The step by step iterative process takes the following form:

(1) Select the time histories of the three functions x,(#¢) , 4 (z)
and «, (¢) so that the boundary conditions

x(t) = X at ¢ = ¢,

[4

Vg, t)=0 et £=2¢

(2) Compute the matrices ¢ o s C@, C_@ R d@ and C/@using Egs.
(2.4.64) and (2.4.89)., From these matrices determine the fundamental
matrix /L. where

./i = CA; A (&,) =7
(3) select P, (%,) so that the terminal state given by
z, (4) Jd®
= AN () //1. (%) d7
4 g ®
7 (L) 7 (¢,) Z

satisfies the linearized terminal conditions

J
_Z(zz 74)'—7(723'7”):0 a? Z(-zsz

7%
’(‘
L) Use E.q. (2.4.90) to compute the second iterate: ><, and

(5) Use Eq. (2.4.86) to evaluate Q,l ),

T




(6) Go to Step (2).

The process continues until additional iterations produce essentially no
change in < (¥¢J , p(¢) or ‘((Z‘) . At this point, the solution has been
achieved.

2.4.5 Discussion

The three techniques which have been presented in the preceeding sections
are those most commonly used to solve optimization problems of the Classical
Mayer type (i.e., a Mayer Problem in which no constraints are imposed on the
control action ¢ ). It is to be emphasized that these are not the only
techniques that are available. However, all other techniques are simply minor
variations on the above three. While these variations may be of considerable
importance when it comes to solving specialized problems, they are of limited
interest as far as general methods of solution are conserned.

Fach of the techniques has certain advantages and disadvantages when
compared with the other two. An assessment of the relative merits and utility
of each method is offered in the following paragraphs.

A. Amount of Computation Required for Each Tteration

As a general rule, the steepest descent methed requires less computation
for any one iteration than either neighboring extremal or quasilinearization.
This advantage is the result of the fact that steepest descent is a first-
order method and only the first-order terms in a series expansion need be
evaluated to compute each succeeding iterate. The evaluation of second-order
terms, which are needed is neighboring extremal and quasilinearization, causes
a slight to moderate increase in the amount of computation required.

The fact that steepest descent requires less computation at any one step
does not mean that the overall amount of computation is minimized by using
this method. Possibly more steps (more iterates) may be required to generate
a solution by steepest descent; or possibly, the method itself may diverge.
This, of course, would depend on the particular problem being solved and the
exact value of the starting iteration.

B. Storage on the Computer

In general, the neighboring extremal technique requires the least amount
of storage and gquasilinearization, the most.

e P e S

The computer storage is directly proportional to the amount of information
required to completely specify a particular iterate. In neighboring extremal, i1
this information consists of simply 4 number, the initial value of the 2 T
vector. In the steepest descent method, the required information is the time il
history of the control vector 4« , while in quasilinearization, the time
history of the X , &« and # vectors are needed.

C. Difficulty to Program for the Compuber

As in the case of storage, the programming difficulty is proportional to
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the amount of information that must be retained in order to specify a particu-
lar iterate. For this reason, neighboring extremal is considerably simpler
to program than steepest descent (considerably less information is needed to
specify the iterate) and quasilinearization is significantly more difficult.

D, Selection of a Starting Iterate

To begin the numerical process, a starting iterate must be selected, The
difficulty in making this selection is a function of the number of conditions
that the starting iterate must satisfy., In neighboring extremal, the starting
iterate is specified by the value of the initial # vector and this vector is
not required to satisfy any condition whatsoever. Hence, the difficulty here
is zero, In quasilinearization, the starting iterate, ><,¢%J , A (¢) and

&, (¥} , mist satisfy certain initial and terminal conditions (Egs. (2.4.69)
and (2.4.72)). However, since these functions need not satisfy the differen-
tial constraints, it is an easy matter to make this selection. (The difficulty
here is very close to zero.) On the other hand, the starting iterate in
steepest descent must satisfy both the state boundary conditions and the state
differential constraints (Egs. (2.4.19A) to (2.4.19C)). For this reason, the
selection of a starting iterate in steepest descent is an order of magnitude
more difficult than that encountered in either of the other two methods. In
fact, the program must generally have a special subroutine (which is itself
iterative) for calculating a satisfactory starting iterate.

E. Rate and Radius of Convergence

As a general rule, second-order iterative techniques converge rapidly, if
the starting point is close to the optimal point, and diverge rapidly elsewhere.
On the other hand, first-ordermethods can be made to converge from points far
removed from the optimal point but the rate of convergence tends to zero as
the optimal point is approached. For this reason it appears that some combin-
ation of both the methods might produce the best results., Of course, the
radius of convergence of both neighboring extremal and guasilinearization can
be extended by using a procedure similar to that employed in Eq. (2.2.34) for
extending the radius of convergence of the Newbon-Raphson method. By this
device the second-order technigues attempt to remove only a part of the error
(rather than the total error) during any one iteration. In papers dealing
with optimization problems which have been solved using a second-order method,
such a procedure is almost always used.
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2.5 NONCLASSICAL MAYER PROBLEM

The previous section dealt strictly with the Classical Mayer Problem in
which the admissible control set U is the entire r dimensional control
space and the individual control components satisfy the Euler equation

L
% |
H
.3_’2—_—_ 3—(1; = 0
u :
Lﬁi | (2.5.1)

In many applications, these conditions are not satisfied. For example, in the
vehicle problem of Section 2.1, the control component up (corresponding to
the throttle setting( had to satisfy the inequality condition of Eq. (2.1.13)
with the control set U limited by Eq. (2.1.14). In this case, the optimal
value of u (the value which maximizes the Hamiltonian H ) does not
satisfy Eq. %2.5.1) as is indicated by Egs. (2.1.25) and (2.1.26).

The extension of the three iterative procedures to nonclassical problems
is a relatively straight forward matter. Unfortunately the exact form which
this extension takes depends strongly on the exact form of the admissible
control set U and the number of control components which are constrained.
Hence, it is not possible to develop a set of equations which completely
describe the iterative process and which are also generally applicable., For
this reason, the attention will be focused on one particular type of nonclassi-
cal problem; namely, the "bang-bang" problem., For convenience, it will also
be assumed that only one control component is constrained. The approach does
not change if additional constraints are included. However, the algebra gets
unwieldly.

The state equations for the problem under consideration are

%=l ud) => % = £lx,u,t); (=/yn (2.5.1)

where u 1is an r dimensional control vector which is required to lie in the
set U . It is assumed that the control components have been numbered so that
U 1is described by

- o £ «, £ 3 oo
- < 3
- UZ ~ QO
ue | < :
-e0 % Y £ +o0
(]
U, L u o, (2.5.2)
Mips mMAx

TwE b
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that is, only the rth  control component, uw. , is constrained; this com-
ponent is to lie in the region [L&L4 , Ur . The other components
can take on any values whatsoever, %ﬁ?nmathﬁéfiows, it will be convenient to

let v denote the constrained component 3 that is
v,
&, = C v ot o, = u (2.5.3
"MIU AIRS rMAX ’/.WAX . )

with the control vector given by

(2.5.4)

In addition to the form of U , it is required that v appear linearly
in the governing state equations with (2.5.1) taking the expliecit form

flz, uynr,t) = Flx,wu, ) + v G(x,u, ¢)

o)

Flx,u,t) * v G (x,u, t) ; E=1,n (2.5.5)

It is this latter requirement that causes the problem to be '"bang-bang" - a
term which indicates that v is either on its upper or lower bound and that
transitions from one bound to the other are made discontinuously. Note that
the vehicle problem of Section 2.1 (see Egs. (2.1.9)) took just this from
with v equal to u, and with v satisfying

as indicated by (2.1.13).

While this problem is not completely general, it does occur rather fre-
quently in trajectory applications. More important, the manner in which the
iterative techniques are modified to handle this particular problem should
serve to indicate similar modification procedures for other nonclassical
problems.

2.5.1 Problem Statement and Necessary Conditions

The state of the system is given by
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Z'" = 6(1,“,”,5) =/f-(z,u,l‘)+,er£(Z,é(,L‘) - (2.5,6)

L =/yn
where &4 is an r-/ dimensional control vector
d,
u
U = f
.,

and where A/ 1is a one-dimensional control variable required to satisfy the
inequality

Vs < V75 (2-507)

Again, the control action, &« and ~ , is to be determined so that the ter-
minal constraints

¥ (x)
(x)
i ¥ =0 at t=4 (2.5.8)
¥, (%)
are satisfied and so that a function of the terminal state is minimized; that i
is v
J = #lx) = minimum (2.5.9)

Applying the maximum principle of Section 2.1 (which requires that the
control maximize the Hamiltonian) leads to the condition that 4 be deter-
mined so that

_QH 1
2,

oH IH
—_— = qu = 0

w | (2.5.10)
[ 9,
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where

//=p7f'

L}
R
~h
1
A
~ A
=
<
S
9]
o —

and that &~ be selected so that

W = Wppe » @ 70
o=, s 60 (2.5.11)
where
n
6 =»"G =2, 2 G (x,u,t) (2.5.12)

iz

The adjoint variables for this problem satisfy the differential system

. a+ )
A =" T ’ t=/yn (2.5.13)
2x;

and the transversality conditions

9¢-)T ¢ i by, I#

}O*(— + ——-=0®p£+ L e — =0 2.5.14

/a Z,/(} 32‘. Jz‘. ( )
7 at ¢-= Z.

where x4 is selected so that Eg. (2.5.8) holds. Note that the multiplier u

can be eliminated from the terminal conditions of Egs. (2.5.8) and (2.5.14).

This elimination leads to a system of n independent equations in the 2n

variables p and X, . As in the preceeding section, this system will be
represented by

4 (’¥’7%)
V(% )=0 | 7l%,8) | 0 o i-%
: (2.5.15)
A (zr,;})

Once again, it is assumed that the final time is explicitly specified. An
extension to the "final time open" case will be given in Section 2.5.5.
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2.5,2 Neighboring Extremal Technigue

Assume that an initial p vector, pq s has been selected and that an
optimal trajectory has been computed which does not satisfy the terminal con-
straints of Eq. (2.5.15). As in the classical case of Section 2.4.3, the
neighboring extremal technique seeks to correct the initial value of p so
that the terminal conditions are met., The process of correction is the Newton-
Raphson technique contained in the iterative equation

a .
7(n) = 7(r) * (;Z)&Oﬁo (2.5.16)

where 6‘3 is the difference between the first and second values of the
initial , vector; i.e.,

3 "% *%n

As pointed out in the previous section, the rate of convergence of Eq.
(2.5.16) is quadratic if the partial derivative matrix 2/d0  is calculated
exactly. It has been this investigator'!s experience that finite difference
approximations to this matrix are sometimes inadequate unless a great deal of
care 1s taken in the approximation process such as performing the calculations
in double precision on the computer. The advantage of the neighboring extremal
technique is that it allows for a precise evaluation of the derivative matrix
without resorting to the double precision calculations.

Denote by the subseript ; the trajectory and control action resulting from
a certain choice of g , say g 3 that is
1

z(¢) = =z ()
u(t) = ¢ (¢)
wilt) = w(t)
p(t) = gt (2.5.17)

Now, write the perturbed state equation in the form

. _ oy aF) sy
Jx = (37)6x,«- {5; 6‘“7"(5) é‘/l/' (2-5.18)
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where

Sz = =z, (¢) -z (¢)

and where the trajectory =z, (#) is that resulting from a new choice of

0, s 58 P, » It is tacitly assumed in Eq. (2.5.18) that &8x , &u and
f-y are small (infinitesimal). This, however, is not the case. If the two
control programs, w;(t) and wy(t) shown in Sketch éé) are compared, then
it follows that &~ is finite on the interval (tf’ y t9) and the validity
of Eq. (2.5.18) on this interval becomes questionable. Now, in the quasilinear
and gradient techniques to follow, the behavior of the nominal and neighboring

WViand —_————
.
vl — T
|
- | ¢
I{;'@
I
|
|
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!
vy |
]
L A
| I
Jm to i

Sketch (6) - Possible Control Programs

solutions specifically on this interval, (t?, f’) will be of prime
interest; thus, the description contained in Eq. (2.5.185 is not correct. In
the neighboring extremal technique, however, the derivative matrix is calcu~
lated by considering the limiting case in which the interval goes to zero. In
this case the description contained in Eq. (2.5.18) is adequate since, though

Sv is finite, its effect becomes infinitesimal as the interval shrinks to
zero. However, to be consistent with the quasilinearization and gradient
techniques which follow, a different perturbation method will be used from
that employed in Eq. (2.5.18) even though Eq. (2.5.18) is adequate for the
neighboring extremal case.

Suppose the perturbations éxz , &8p and &8u are calculated by comparing

the nominal set and neighboring solutions at different values of time, For
example, let
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Sx(t) = z, (t+ 8¢) - % (2)

Sult) = &, (¢+ 8¢) -« (&)

Spld) = g (¢+ 88) -~ g (t)

Sw(t) = ap (¢t 8¢) - #; (2) (2.5.19)

where 6t is a small time variation which in itself can vary with time; i.e.,

¢ = SE(E) (2.5.20)

Further, require that &8t(§) Dbe selected so that at the switching times,
( tgb along the neighboring or second solution and t? along the nominal or

first solution) the equation

@
£2 = 4% r 5002°) (2.5.21)

¢ 3
holds. In this case,
o, _ ® ®
J/z/(z“.} = /”;(ti ) - () =0
and since 6v differs from zero only in the vicinity of the switching times

t; , it follows that

Sv = O (2,5.22)

By this device, the difficulty arising from the finiteness of év in Eq.
(2.5.18) is eliminated.

From Eq. (2.5.19), the perturbation equations take the form

aFr\T ar N\ .
§x% =(—)§x+(—)6a+f&‘
ox u

. 22H I %K dH
dp = - 2 2
dxdp Ix Ix Ju x
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where the quantity &« is computed from Eq. (2.4.59) to be

Py AN WLy a2
= - Sx * J 2.5.2
bu (Ju‘) {94(3;' * dwe dp ” (2.5.25)

Note that the matrix (9*4/2u*)is again assumed to have nonvanishing determinant.

Substitution of (2.5.24) into (2.5.23) provides the system

S c%t) @) Ex Z] .
z @ or + at
§p c9t) -c®wdLsp A, (2.5.25)

o
where the C are n by n matrices given by

c® = (%) =[a7‘2 Y (azf/)" az//}
! N {,,[ 3&(_‘ du? 0, 4 t?l{[ 3)5{-

RN LA A

Fu*lp 4 up ap;'

z 20\ z
o8y [Ty () o]
dx, dz "y dz, duy \ou” g4 94, :?x/-

2

®
)

(2.5.26)

The solution to (2.5.25) takes the form

8 % 5z, K / Z(t7) - % (47)
= A(L) s * Z A7) 8L (2.5.27)
2d ey

Sp, B(E) ~ g (¢))

where A (¢) is the fundamental 2n by <2a matrix solution to the system
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A= clhA ; A() =T

where C(#) has the components given by Eq. (2.5.26), where the summation in
Eqg. (2.5.27) is over the number of switches and where J¢; indicates the
difference in the ibh switch time between the neighboring (second) and nominal
(first) solutions. It is assumed that the nominal solution contains K
switches. For any time ¢ between the j N and J+ 1th switch, the solution
to (2.5.25) takes the form

[5 zm] {aza] 2 [73, (&) - i,u;)] [z',wJ
= N + Teafti | + §i(2) .
5 B ) -5 (&) 5 (4)] (2:5.28)

JP (¢) Sfo =t

Now, the values of 467, can be calculated from the condition contained in
Eq. (2.5.11) that the switching function vanish at the switching times; that

is
9[’5“1)7 » (¢, U(t‘[)]= O ;c¢=/ K

o
Expanding & about the nominal solution at time £, provides

-/
Ay 26 N 26 o

— . . + -———6‘ =0 z‘ £=[ ; L=/ 2. .
59; (B,zi- 3’/ ’ o7 5’?) ; Puey “4 a : 1K (2.5.29)

and substituting Eq. (2.5.24) into (2.5.29) yields the

K conditions

) (2.5.30)

x-62(22)+ - 8p(40) =0

by 7 row matrices given by

S 0] @y _ . /k
@Z o Sy (47) 2By Bry (47020 5 = s
£

where o« and & are /
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( 29 [am a*H )
x = (cx )= z‘- & oy 119,,1 3;:,-

-1
a8 36 [9‘//] 7*H
= ) = _— 2.5.31
A (/5,) (;’p’ E suy utr 413%( 371) ( )

which are evaluated at the XK switching points #° .

Now, at the switch point £° it follows from Eq. (2.5.28) that

| o - (4 <% (4 ])
[6"(‘ ]M%@){ ] Z st ML) [ T ’H]}

8p (27 RN 7ilt) -7 (4]

£, (47
+ [ . 6i‘ (2.5-32)
s (¢;)

Thus, Eqs. (2.5.30) and (2.5.32) can be used to evaluate the changes in the
switching times, &¢, . By straightforward algebraic manipulation, it can
be shown that

Il 7]

dx,
§¢. = "5745) [a(t AL )]/l(z‘@): 77 (7+ 7 @)) (5}0) } (2.5.33)

where I is the 2n by 2r unit matrix, 2'¢¢®) is the 2n» by 2n matrix
given by ¢

0y _ .
7(t0) =0 ;-0

Z(¢7) - 2,(¢7)
@ - @ ] / (4 , o o
rt) = 3 AT(LS) [ ) J x (s ), A0 )/l(z‘
7 9(:;.@) / 7 (57 5 (47) [ ] (2.5.34)

Y2
7

and with & a scalar given by

6 (D) - [ (t?) ,E(f,? (x, (ﬁb))
[ ’ )] 7 (e2) (2.3.35)

* Note the additionalkrequirements on the nominal solution that & ( tL.") #0
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Substitution of (2.5.33) into (2.5.27) yields the desired result

SXF K ° Sx
(Sff) = /\ (tf)% H(I +7 (fj,)). 57@0 (2.5.36)

Recall that the objective of the neighboring extremal technique is to
correct the initial o vector, , by an amount 6'3 so that the terminal
conditions of Eq. (2.5.15) are satisfied. The correction procedure of Eq.
(2.5.16) requires the evaluation of the derivative matrix(37/7, ) and the
last few paragraphs have been concerned with the development of .Eq. (2.5.36)
which i1s needed in this evaluation. The derivative matrix (37/3;0°) can be
represented by

on \_ [BTL\ [BLF\ . [0 [2Xf
£ 3 £l (940 Xt | 9,0 (2.5.37)

Note that the matrices(77/dg ) and (37/ 7%;) can be evaluated analytically from
Eq. (2.5.15). Further, the matrices(dx /dg)and (22 /g )are easily computed
once the 2r by 2n matrix (A () ‘].7,'[z+)‘(t‘.°} ) has been found.
This step is accomplished by partitioning this 2, by 22 matrix into four

n by » matrices as
% a®

K
Q =./\_(tF)W{I+ z(t?); =\ g@ q@

Now, since dJx, in (2.5.36) is zero, it follows that Eq. (2.5.37) takes the
form

(2.5.38)

on

87@0=

which is now easily evaluated.

on
aff

@
Qo+ ﬂ Q® (2.5.39)
aX{

The step by step calculation procedure is as follows:

(1) Guess g and integrate the system
(]

i’f()(,l[,/yjzf):a ay
> IH 5L "0 VT e 970
7 ox S A
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(2) 1Integrate the system j\_ = C(ﬁ)_/\_j _/\_(éa) =1

from 4 to % . (Note that since Jdx is zero only a portion
of this integration need be performed.3

(3) Compute 7 (4%  using Egs. (2.5.34) and (2.5.31).

® and .Q@using Eq. (2.5.38).

(4) Evaluate N
(5) Calculate (97/3s)from Eq. (2.5.39).
(6) set og =~ (2p/38) y(z%, &)
(7) Update g by &g

(8) Go to step (2).

The process is continued until the correct g vector is found.

2.5.3 Steepest Descent

The steepest descent technique as applied to the nonclassical problem of
Egs. (2.5.6) to (2.5.9) is much the same as that used in the classical Mayer
problem of Section 2.4.2. The iteration starts with an admissible control
program, « and w , which satisfies the terminal and transversality conditions
of Egs. (2.5.8) and (2.5.14) but which is not optimal. This program is then
corrected in the direction in which the minimizing function, gex,) is
decreasing most rapidly but with the requirement that the corrected program
continue to satisfy the problem terminal conditions. Since changes in the
control variable 4 (denoted by &+ ) will not be small over the entire tra-
Jectory, a resort must again be made to the perturbation method described in
Egs. (2.5.19) to (2.5.23) in which the nominal and corrected solutions are
compared at different values of time., By this device, the problem of
successively adjusting the variable o~ is transformed into that of successively
adjusting the switching times at which »#r jumps from one extreme value to
another,

From Eq. (2.5.23)

r

_
i = (-a—"— Sx + gi) Su+£8E (2.5.10)
[74

ax

where 6t is a function of time and is required to satisfy the conditions

¥ @ Q@
t, =¢ +8t(ti); £=1,K
The quantities, t?) and if’ denote the i®h switch time along the second and
first iterations respectively. But, the adjoint equations are

oH

P ow
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Thus, the identity

tr

L T
” .
P Sxp - Fo §%o fr{a%) Su dt +/Hcftdt (2.5.41)

(] ]
immediately follows. Since the state of the system is specified initially
and since 2 is required to satisfy the transversality condition of Eqg.
(2.5.14); that is

.
29 (Qlf) 0 ;t=t (2.5.42
+<97L + 3= M Jj f )

Eq. (2.5.41) takes the form

tfe p tf

d¢ +(0'"y)7_/¢/=- —i—JudtfﬁJtdt
Ju J (2.5.43)
to o
Now, in the neighboring extremal technique of the previous sect:l.on, only

the values which §&¢ took at the K distinet switching times ( t gy £l K )
entered into the analysis. The form of J¢ on the intervals between switches
was of no concern. In the steepest descent technique, however, the functional
form of &#(¢) must be specified beforehand. For simplicity &F will be
taken to be a constant on the intervals between switches. Specifically, on
the interval between the i-1tR and ith switch, (£,2 , 2P) , let

Jece) =t +a,, (¢-t2 ) (2.5.44)
with
St;, -, -dt,
d_(’._, t® ®"‘ ! j a, = t—f‘—f;@ j cf'éf =0 (Re5.45)
b 1

Substitution of Eq. (2.5.44) into (2.5.43) provides

dp (¥, f Y fude - E Teo (K- K,) (2.5.46)

where
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t,(DH e
_ ¥ =f dt
ko —f - ¢, o T te =t
Z, ' . €
té?:
4l dt
K, =f e}P, +, @ (2.5.47)
(0)
¢

Now as in the classical treatment, the quantity J¢ is to be minimized
subject to dy¥ =0 and subject also to some additional constraint on the amount
of correction to be made. In the classical case, it was regquired that

23
/ Suldt =Af (2.5.48)
%o

Here, however, a restriction must also be placed on the amount by which the
switch times can change; i.e., the 6&¢; . There are several ways in which
such a restriction could be included. For example, in addition to (2.5.48),
it might also be required that

K
Z th - 4* (2.5.49)
<=/ 2

Alternately, the corrections in &% and Jdu might be made sequentially,
rather than simultaneously, by first correcting Jd« under the conditions that
&¢; = 0 and then correcting &4 with é&u=0, However, in the ireatment to
follow, Egs. (2.5.48) and (2.5.49) will be combined into the single condition

t_)c K
fJuzdé D DL = £° (2.5.50)
to <!

Introducing the additional multiplier A , the optimizing condition of
(2.5,46) becomes

°f K £f K
a4 +(a’7”)/2 = - gg Jadt—z:éé‘.(/g._l - K, )+n fé’w"a’échéf—éz
L=/ to =/

?,
° (2.5.51)

93



Thus, equating the first variation to zero provides

2A ou
/
th’ =2— (KI.-I-K"’) (2-5.52)
and it follows that
tr
2
a¢ +(0’7Qu =2n f( )df"z (K, K) (2.5.53)
L/

o

The multiplier, XA , is determined by substituting Egs. (2.5.52) in (2.5.50).
The u, are determined by integrating the adjoint equations backwards M»/
times ‘where M is the number of terminal constraints of the form % =0. The
terminal value of 2 for each integration is

)

73 -a%/az

g?ﬁ) ='9?0../«7z aif:é
pfumr) = - 3’/3»‘.’

il

From Eq. (2.5.42), it follows that the adjoint vector to be used in the calcu
lations has the terminal value

0w+/) :E:‘/%f 7%

and that
4

W"” bt

This solution represents a system of M equatlons in M unknowns (the Y )
and can be evaluated numerically. The «, , so determined, are then dséd to
evaluate the adjoint vector, o , where

(r1+1) (£
P e M P
This vector then allows the control correction ( Su ) and &% to be computed.

The step by step computation procedure takes the following form:
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L

(2)

(3)

(&)

(5)

(6)

(7)

(8)

(9)

(10)

/

o

Select ¢, (¢) and w;(t) for which the terminal conditions

Vixg) =0

are satisfied,

Integrate the state system

L g - m‘t
from 4, to ¢ x f(x”u" 5¢)

F *
. : oH
Integrate the adjoint system fz = - ——

ox
backwards Me¢/ times with the mM#! terminal condition

((}]

= - s,
2 2w /%
‘emtd - - ar /7#
trael) s o 9#/5%

AR

Set
(M+/)
where /u are determlned from Z /Mf 7@
&f
yaak af) )dt+2 (/« #_ .(f))(/g_,—/g) =0

and where the &, are g:Lven by Eq. (2.5.47)

Determine X from
Pre {f |52) 77X () -
tg L-‘-/
Determine dJ4. trom
/
= (KK
Compute gq,, from
- t, - drt,d—/
AT f-CD t'c?l
Compute “
o= 24 (¢)
where
St () =8¢ _+a, (¢-t2) ;P <e®
Compute the new switch @‘f,:i_mes(D
t, =t +5¢,
Update the control
/ OH
u = U, (t)+ — ——
L, () = 4, (¢) 77 3
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(11) Go to step (2)

Note that in the process, the number of switch times may decrease, but
may never increase. If the starting control program is selected so that
~(t) has kK switches while the optimal program has A~/ , then it is not un-
likely that the process will converge to the correct solution., However, if
the optimal solution contains K +#/ switches, the iteration process contains
no mechanism for increasing a starting guess of K switches to K+#/ . Hence,
the iteration process will not converge on the optimal solution. Most likely,
the process will converge on the solution which is optimal under the additional
restrictions that »r¢#) contain X or fewer switches.

2.5.4 Quasilinearization

As in the classical Mayer problem, the iteration starts with the functions
L) 5, x (¢ , « (¢)and w; (t) which satisfy the boundary conditions

X =X, AT € =¢,

72(7@6,;&):0 AT ¢ =¢¢ (2.5.54)

but do not satisfy the differential equations

X = f(x,dme)

, _.9A (2.5.55)
F =3z

or the optimizing conditions

oH

QU

= Ypax 5 6 =0
”M/N ; g <0

Subsequent programs, g (& , & (& and Z,(¢) are computed so as to minimize
the second-order approximation to J where

tr
J =¢+7rjvffr(x' Sor
to

Using the device of comparing the two solutions at different values of
time, the perturbation eguations take the form
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. . o .
Sx =f-X, +j—; Jx+&—£ du +fd¢

2 2
. O + OH O H A gH -
_ 97 4 (y .27 27 su-Lsi(a.s.
‘Iﬁ ax T Taxe dx opdx ¢ Suar o (2.5.56)

where &2(¢) is to be determined so that the it! switch along the second and
first solutions are related by

¢ @ = Qs de (¢Q) (2.5.57)

v = 0

The change in control J« is now determined from the equation

aH  ow

_/—__
U ' ou?

o°H
adap

oA
Ju,+5a—ax dx + Jp=0 (2.5.58)

Substituting (2.5.58).into (2.5.56) and noting the identities

du = U(t+ft) — &, (¢)
Sx = xX(@E+85¢) —x, (¢)
S = pETSt) Sy ) (2.5.59)
provides
X, (M) Xp (T) (G’@(t) fy o
(7@2 fﬂ) e P2 ('r))+\a'®(+_))+ "3—7—’1) It (2.5.60)

where C@ and o9 are given by Egs. (2.4.64) and (2.4.89), respectively,
and where % and ¢ are related by
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T =¢ 3¢t (¢) . (2.5.61)

Eq. (2.5.60) is to satisfy the boundary conditions

X =X, AT %,

(xfz, xf,)+ (7042, P ) =0 (2.5.62)

The time history of J&4(2) is arbitrary except for the corner condition
f Eq. (2.5.57) which requires that the updated switching function, & , vanish
at the new switching times; that is

849 .
e(x(t))7az(¢),a,(t))+—&+ qu Su =0;4i=IK
(2'5-63)

where A is the number of switches, This condition, which determines St(é@),
can be rewritten as ¢

Q @[ X, -%
[oc e, Pee)| T2 -0k, pow) =D £k (2.5.60)

pa
where o and & are given by Eq. (2.5.31).

Egs. (2.5.60) to (2.5.64) can be solved for x, and m as soon as the
form of &#(¢) is specified on the intervals between sw1tches. Since this
function is arbitrary, it should be chosen to augment the iterative process
in both the rate of convergence and computation required. Undoubtedly, the
simplest choice in regard to the amount of computation is to take &t as a
series of delta functions such that &f is zero on the interval between
switches while taking on the appropriate value at the switching corners. In
thls case, however, the behavior of %, , ,5 and «, on the intervals
( 2, qe’ ) would be lost since the time variable, 7 in Eq. (2.5.61), would
Jump discontinuously from 2% to e .

L3

W

u;s,é;' AR
B o T B I
. P G AL D

Alternately, &Z(¢) could be equated to some smooth function closely
approximating a sequence of step functlons. By this smoothirg process, the
behavior of z, and ,5 on ( &% , Z2 ) would be retained. But, unless con-
siderable care were taken, these values would contain errors which would influ-
ence the switching time adjusiments on the next iteration as indicated in Egq.
(2.5.63) (i.e., the change in switch times is a function of the state and
adjoint values at the previously iterated switching points).

o
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In the development here, 5¢ will be taken to be constant. As in the
steepest descent method, define 5¢(¢) by

st(e) =8e, +a_, (¢-69) ;60220 (2565
with
@ [o; - S
St -dt, tk
a, ,= —E—*= Ak T 0 2.5.66
“ 0 48, temef 0

With B8£({) defined, the variables =z, and p, can now be determined.

The solutions to Eq. (2.5.60) can be represented by

€

XZ (1) ( d f é_o
= A (t) f ® |dt + A -9H |9tdt (2, 5.67)
# (T 7@% d %

This solution involves #n+K  parameters, the initial p» vector, g, , and
the X distinect but constant values of the derivative &#¢ on intervals between

switches (i.e., from Eq. (2.5.66), these constants.take the values @, , @, ,---

a,, ). These p+k parameters are to be determined to satisfy the n

terminal conditions of Eq. (2.5.62) and the X corner conditions of Eq. (2.5.64).

Since these equations are linear and since the parameters appear linearly in

Eq. (2.5.67), a closed-form solution is possible. The step by step calculation

procedure is as follows:

(1) sSelect an z¢&), (&, « ) and (¢ which satisfy the boundary

conditions
Z'laé £=£0

7( Zrs )= ; L= l[,'.-
(2) Develop the fundamental matr:x solutlon

A= CIA ;3 AW =T
where the C matrix has components given in Eq. (2.5.26)

(3) Compute the quantities & (t,;o) and 8¢ L“-Q) using Eg. (2.5.31)

(4) Compute the value of the 2/? x / vector

fA a_H at
=i (2.5.68)

(5) Using Egs. (2.5.66) to (2 5 68), evaluate 2z, and ,, at the corner

and final times as “
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X, (77) Xo ;l \ . '
=A D) +/J\. ° "N T, S,

-1
7z (1) Pozl . \9 7 f {2.5.69)

L=0LK
X, (&) Xo\ ff 149 k3!
: = (tf) 't/-jcl ol 9t +Z a‘f'-/ 5f" 12.5.70)
ﬁ (£f) %21 % d { '

Use the # terminal conditions of Eq. (2.5.62) and the K corner
conditions of (2.5.64) to evaluate the #+K constants, %, and
a (705 K~7) appearing in Egs. (2.5.69) and (2.5.70). From Eq.
(2.5.66) the constant 4, is given by

/ K . ,0
K = ék'—é-F E: a',(;—/ ({:4; - txJ—/)
A =/
(7) Calculate §4(¢) from Eq. (2.5.65) using the values of a; computed
- above. 3Set

~~
o~
~~

K

T =4+ ¢ (%)

(8) With &4(¢) and H& known determine the solution
X2 (€)= X (r(€)) =x, (¢S ¢)

P2 =P, @) =0, (¢rS¢(E))

where x,(%) and g (%) are computer using Eq. (R.5.67).

11

(9) Go to step (2).

The process is repeated until additional iteratives provide essentially
no change in the time histories of x, » and « . At this point, the solution
has been achieved.

2.5.,5 Final Time Open

In the development to this point, it has been assumed that the final time,
¢, , is specified. In many cases, such as the vehicle problem of Section 2.1,
the final time is open and is to be selected so that the total system perform-
ance is optimal. As discussed in Section 2,1, this selection is accomplished
by requiring that the final time satisfy the additional transversality condition

n
#=), Pcfe =0 ; t=2tf (2.5.71)
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(see Eq, (2.1.18b)).

When the final time is not specified, the three iterative technigques must
be slightly modified to allow for adjustments in the value of ¢, . One such
modification for the steepest—-descent procedure is offered in Ref. (13) and
another, which can be used in both second-order techniques, is offered in Ref.
(23). 1In the technique to be presented here, adjustments in the final time
are made in exactly the same manner as adjustments in the switching or corner
times; that is, successive iterates are compared at different values of time.

Let

Sx =X (t+dt)-x, (¢)

§7ﬂy ::7a<ﬁffxft)-)f2,(f)

Su =uWL(Er5L) -, (¢) (2.5.72)

where 8¢ is itself a function of time, that is

St =35¢ (%)
At the final time d&¢ (Z.) - 5ér is selected so that
gtp=¢2¢+0 (2.5.73)

The criterion for selection depends on the particular iterative process being
used,

In the neighboring extremal or quasilinear techniques, the quantity di¢;

would be selected so that the linearized version of the transversality condition
in Eq. (2.5.71) holds, That is,

o H
H(f,J)é,)cL)+— 0(761:+ 6’7a7c — Suf 0 (2.5.7.)

Thus, the terminal time would be treated exactly the same as a switch time
except that instead of a linearized switching condition being used to determine
the correction &§# , Eq. (2.5.74) would be used.

In the steepest descent technique the magnitude constraint of Eq. (R.5.50)
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ty K 2 2
f suPde vy, St; =
£a L =]

would be replaced by

r p
/ Su’dt ’LZ 5’52*5*,::*1 (2.5.75)
'é.o .=/

The quantity &4 would be chosen as are the other &4 , so as to minimize
the first-order approximation to the performance index but subject to the above
magnitude constraints.

In both first and second-order techniques, the final time open situation
is treated in exactly the same manner as a switching corner in the "bang-bang"
problem. This holds for classical and nonclassical Mayer problems, Note that
in the neighboring extremal technique, only the value of &4 at %49 enters
into the analysis with the functional form of &8t¢t) immaterial. This is due
to the fact that in the calculations tec be performed &%, is treated as an
infinitesimal. In both the steepest descent and quasilinear methods 8% is a
finite quantity and the behavior of the solution on the interval (¢, @) is :
important. Hence, the form of &§#¢¢) does enter into the analysis and it is
important to choose this form so that the best accuracy is achieved while keep-
ing the computation required to a minimum,
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3.0 RECOMMENDED PROCEDURES

It has been shown that the iterative numerical procedures used for solving
nonlinear optimization problems consist in approximating the problem by a
succession of linear problems. The three techniques presented, steepest descent
neighboring extremal and quasilinearization are essentially extrapolation into
the variational domain of techniques that have been used for over two hundred
years in ordinary maxima-minima theory. The step by step calculation procedure
to be used in each of these techniques has been tabulorized in Sections 2.4.2,
2.4.3, and 2.4.4 for the classical Mayer problem and in Sections 2.5.2, 2.5.3,
and 2.5.4 for the nonclassical problem. Also, the relative merits of each
technique were discussed in Section 2.4.5. All other techniques represent only
minor variations or combination of the three, Since there exists at the present
no nonlinear theory, there is very little more that can be done in this area
in regard to the development of new and improved procedures. However, there
is much practical work which should be pursued.

3

It would be of considerable value to extensively experiment with the three
iterative procedures in connection with a variety of problems currently of
interest in flight mechanics and control theory. Information relating to the
effectiveness of each of these techniques on typical problems in regard to
range and rate of convergence, programming difficulty, computer time required,
etc., would be highly useful and valuable, Work of this type is currently
underway and as more and more numerical experimentation is conducted and
disseminated in the literature, the numerical solution of optimization problems,
will become more tractable.
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