
NASA 

‘- , :..; 
.k 

CONTRACTOR 

REPORT 

GUIDANCE, FLIGHT MECHANICS 
! AND TRAJECTORY OPTIMIZATION 

Volume XIII - Numerical Optimization Methods 

by J. E. McIntyre 

Prepared by 

NORTH AMERICAN AVIATION, INC. 

Downey, Calif. 

for George C. Marshall Space Flight Center 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION l WASHINGTON, D. C. l MARCH 1968 



NAFA CR- 1012 
TECH LIBRARY KAFB, NM 

GUIDANCE, FLIGHT MECHANICS AND TRAJECTORY OPTIMIZATION 

Volume XIII - Numerical Optimization Methods 

By J. E. McIntyre 

Distribution of this report is provided in the interest of 
information exchange. Responsibility for the contents 
resides in the author or organization that prepared it. 

Issued by Originator as Report No. SID 66- 1678- 5 

Prepared under Contract No. NAS 8-11495 by 
NORTH AMERICAN AVIATION, INC. 

Downey , Calif. 

for George C. Marshall Space Flight Center 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sole by the Clearinghouse for Federal Scientific and Technical Information 

Springfield, Virginia 22151 - CFSTI price $3.00 





FOREWORD 
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1.0 STATEXENT OF THE PROBLEX 

A problem of current interest in the area of flight mechanics concerns 
the selection of a trajectory along which a particular vehicle should fly in 
order to accomplish its mission in some sort of best fashion. Control over 
the vehicle's trajectory is achieved through control over some of the forces 
that are acting on the vehicle; for example, the aerodynamic forces in the 
case of a conventional aircraft, or the thrusting forces in the case of a 
space vehicle. What is involved, then, in the selection of a "besttt trajec- 
tory, is the determination of the optimum time history of the controllable 
forces. 

The first step in the solution of such a problem involves the determina- 
tion of certain conditions which a trajectory must satisfy in order to be 
optimal. These conditions are expressible in differential equation form and 
can be developed by applying to the problem any one of several standard mathe- 
matical techniques such as the Maximum Principle (Ref. (l)), Dynamic Program- 
ming (Ref. (2)) or the Calculus of Variations (Ref. (3)). The simultaneous 
solution of these differential equations together with the equations governing 
the motion of the vehicle constitutes the solution to the problem. In most 
cases of interest this solution must be developed on a digital computer by 
means of some iterative numerical technique. 

The mathematical procedures to be followed in formulating an optimization 
problem are reasonably straight forward and have been documented in three pre- 
vious monographs in this series. (Refs. (4) to (6)). This monograph is 
concerned with the second step in the optimization process, that of generating 
numerical solutions. Specifically, the three fundamental numerical procedures, 
neighboring external, steepest-descent and quasilinearization, are presented 
and their application to both classical and non-classical problems indicated. 
Only a passing reference is made to any of the other techniques since they all 
represent minor variations or extensions of the three fundamental techniques - 
extensions which may work effectively in some cases and ineffectively in others. 

The numerical procedures used in optimization theory are intimately related 
to those employed in the solution of ordinary maxima-minima problems and in 
the sections which follow some emphasis is placed on establishing this rela- 
tionship. The analysis begins with a review of two numerical methods for 
locating the minimum value of a function. An extrapolation of these methods 
into a function space leads to the three fundamental techniques previously 
mentioned for locating the minimum value of a functional. These techniques 
are applied first to the classical problem of Lagrange and then to the class- 
ical and non-classical versions of the problem of Mayer arising in modern 
trajectory and control applications. Some general remarks are made concerning 
the rate and range of convergence of each technique along with the relative 
ease or difficulty involved in a computer mechanization. 
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2.0 STATE OF THE ART 

2.1 PROBLEM STATEMENT AND GENERAL CONSIDERATIONS 

Most optimization problems encountered in trajectory analysis and control 
theory can be cast in the following form: Given the dynamical system 

1 

i = f (X,O) <-> 

I 
= 

where x is an n dimensional state vector, u is a r dimensional control 
vector and f is an n dimensional vector function, determine the control 
action u from the admissible control set U which drives the system from the 
specified initial state 

x = x,; t = to<=+ 

to the terminal set 

-x,0 
K 

20 

.!I X 
t’0 

. t, f, 
J 

(2.1.2) 

(2.1.3) 

(where $J is an M dimensional vector function) while at the same time mini- 
mizing a scalar function of the terminal state. This scalar function will be 
denoted 

J= #) (XF) = MlNlMUM 
(2.1.4) 
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The preceding problem takes the form of the classical %yer problem in 
the Calculus of Variations (Ref. (7)). Note that equations (2.1.1) to (2.1.4) 
have been written both, in vector and scalar form. In the paragraphs to follow 
both forms of these equations will be used. 

As an example of this formulation, consider the problem of maneuvering a 
vehicle over a flat earth having no atmosphere.. The 
governing equations in this case (see sketch to right) 
take the form 

ii = fT cose 
;i =. 5 sine -8 

Tj7S-T 
-v- 

(2.1.5) 

t 

4 

7- 

e 
- - - 

F? 

I % 
Sketch (1) 

where T is the thrust magnitude, V the exhaust velocity and 6 the steering 
angle. Suppose that the position, velocity and mass of the vehicle are 
specified initially by 

x = x0 

Y - Yo 
i = ic, AT t=t, (2.1.6) 

m = tno 

and that at the terminal point only the magnitudes position and velocity magnitude 
are specified 

(2.1.7) 

where the final time itself, tf is not specified. The problem is to deter- 
mine the steering angle and thrush time history so that the fuel expended during 
the flight is a minimum. 



To place this problem in the Flayer form as indicated by Eqs. (2.1.1) to 
(2.l.L+), define the new variables x 1’ x2’ xcj X4’ x5 and u, by 

$1 = x 

(2.1.8) 

% = 8 

Also, assume that the thrust magnitude T can vary from zero to some maximum 
value TMAX, and let 

where u2 denotes the throttle setting which can vary between zero and unity, 
as the thrusting engine goes from the "full off" to the "full on" position. 
Using these definitions, the governing equations become 

6 = x, 

$2. = x, 
. 

x3 = 
T w4x 4 cos u, 

x5 

. 
x4 = 

T MAX u, 

x5 

SINU, -1 

i, = zL!m& 
lf 

with the initial conditions 

5 = &o 
5 = x10 
X3 = Gl AT t-t, 

x4 = ho 

x5 = &o 

(2.1.9) 

(2.1.10) 
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and the terminal conditions 

Xl = Xl+ Y, = x, --X/f -0 

5 = 5s AT t=t, -<& y2 = x, - X,6 = 0 t =’ t+ 

x’3 i-x; =w; Y/3 = x:+x; -A$! =o 

(2.1.11) 

The fuel expended during the flight till be minimized if the final mass is 
maximized; or alternately, if the negative of the final mass is minimized. 
This leads to the performance criterion 

J= -x5 = MINIMUM 

(2.1.12) 

where the function 4 in Eq. (2.1.4) is equal to -x5 . The minimization is 
accomplished through the appropriate selection of the steering angle u1 and 
throttle setting uz . Since u1 
satisfy the inequallty condition 

can take any value at all while u2 must 

0 L_ u, f I ) 
(2.1.13) 

if follows that the admissible control set U in which the control vector must 
lie is given by 

I 

0 4 u, L I 
UM 

U, ARBITRARY 

(2.1.14) 

The development of the optimizing conditions for the Mayer problem given 
in Eqs. (2.1.1) to (2.1.4) is most easily accomplished by applying the 
Pontryagin Maximum Principle (See Refs. (1) or (5)). This requires the intro- 
duction of an n dimensional adjoint or multiplier vector p which satisffed 
the differential equation 
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where H is the variational Hamiltonian given by 

/j = P’f 

(2.1.15) 

(2.1.16) 

If the final time tf is not explicitly specified, then the additional terminal 
condition 

/-/ = 2 P.i f; (x, k, ul = 0 
must hold. 4.z I 

An TX dimensional constant vector f is r.ow introduced and 
selected to satisfy the terminal conditions 

(2.1.17a) 

M 
.*+aQ 

t=tg 64 P;+z+paXi aXi’* 
a+=’ /& I,0 (2.1.17b) 

The optimal control uopt is that control in the admissible set U which max- 
imizes the Hamiltonian H at each instant of time along the solution trajectory; 
that is, uopt must lie in U and satisfy 

where U denotes any other control vector lying in the set U 

By way of illustration, the application of the maximum Principle to the 
rocket problem of Eqs. (2.1.5) to (2.1.l4) provides the variational Hamiltonian 
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I - 

H= P,x3fP2 x, $ pj TmAx 

X5 

u2 SIN 4, - q + ps - TMAX UZ ( ~ ) (2.=9) 

where the p vector satisfies the differential system 

Using Eq. (2.1.11) the terminal conditions on the p vector corresponding to 
Eq. (2.1.17b) are 

AT t = t/ 

(2.1.21) 

where the ,uui are constants to be selected so the boundary conditions in Eq. 
(2.1.11) are satisfied. Also, since the final time tf is not specified. Eq. 
(2.1.17a) must hold, i.e., 

H ;k pk. fi (X,t>U) = 0 AT t = t, 

A’=1 (2.1.22) 

Finally, the optimal control is to be selected to maxjn5ze H . Letting 

3 

+ - fy 4 iy 
- cosz j d& = Srn* 

the H function of (2.1.19).can be written as 
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H = dm 7y; u2 COS(U, -t)-;;;& TERMS NOT 

4 
INvoL V/NG U, OR ff2 

(2.1.23) 

Hence, to mze jf 2 COS (U, -El = / AND 

(2.1.24) 

Thus Eq. (2.1.23) reduces to 

but, for u2 to maximize H and satisfy the inequality in (2.1.13) it follows 
that 

(2.1.25) 

where 

8 ‘/m 
(2.1.26) 

Collecting results for the rocket problem, it follows that the optimal 
trajectory is determined from the simultaneous solution of the state and 
adjoint equations, Eqs. (2.1.9) and (2.1.20), with the control vector, u1 and 
u2, satisfying Eqs. (2.1.24) and (2.1.25). Note that the state and adjoint 
equations constitute a tenth-order differential system (ten first-order equa- 
tions). Hence, ten boundary conditions must be specified along with the time 
at which the conditions are to hold. Five of these boundary conditions are 
given by the specification of the initial state and time in Eqs. (2.1.10). 
Three more come from the state terminal constraints of Eqs. (2.1.ll). Eq. 
(2.1.21) provides two more condition2 

5 5 - x45 = 0 AT t-t, 

ps =J (2.1.27) 

* Since the ri are not specified explicitly, the five conditions in (2.1.21) 
reduce to the two conditions in (2.1.27). 
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But, since the final time itself is not specified, one additional boundary 
condition is needed before a solution can be generated; this condition comes 
from Eq. (2.1.22) which requires the Hamiltonian'to vanish at the terminal 
point. 

From the previous discussion, it follows that, in the rocket problem, the 
specified state boundary conditions together with the boundary conditions on 
the p vector (the transversality conditions) are just sufficient in number 
to generate a unique solution to the governing differential equations (Eqs. 
(2.1.9) and (2.1.20)). Note that the boundary conditions are specified at 
two distinct instants of time; that is, some conditions are to hold at the 
initial point t = to and others are to hold at the final point t = tf. How- 
ever, to generate a numerical solution on a computer, all boundary data must 
be given at one point in time. This requirement is simply a result of the 
manner in wh= numerical integration must be performed. That is, a complete 
set of boundary data at some point tl, and a finite difference approximation 
to the differential equations are used to generate a complete set of data at 
a neighboring point, say tl + A t where At is small. Hence, to construct 
a solution to the rocket problem, the value of the p vector at time to (i.e., 
guess X0 ., Pz , P3 J 79 & p ) and the terminal time tf must be guessed, 
then the equa&ons"mustObe integrated numerically to the guessed terminal time 
to determine if the six conditions incorporated in Egs. (2.1.11), (2.1.22) and 
(2.1.27) are satisfied. In general, it is not possible to make the correct 
guess on the first try. However, it is hoped that some iterative process of 
correcting and recorrecting the initial guesses would eventually converge to 
the desired optimal solution. 

A similar situation holds in most all optimization problems, that is a 
set of differential equations exists for which boundary data are given at two 
distinct times. Hence, some iterative procedure must be used to construct a 
solution. The technique outlined above, in which the unknown quantities are 
selected at one end of the trajectory to satisfy known conditions at the other 
end, constitutes a possible iteration scheme, and one that is frequently used 
in practice. However, there are several others. 

In the general case, the solution to an optimization problem must satisfy 
five conditions: 

(1) the differential state equations 

(2) the differential adjoint equations 

(3) the optimization condition 

(2.1.28) 

(2.1.29) 

H tx, t, p, UOPT > z N (x, t, P, I?), UopT) E E zf (2*1*30) 
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(4) state boundary conditions 

X=X, AT t=t,; jk(X> t)=O AT t= t$ (2.1.31) 

(5) transversality conditions 

AT t = $4 

*H = P’+ = 0 (2.1.32) 

To numerically construct a solution to an optti5zation problem, a solution is 
selected which satisfies only some of the above conditions; this estimate is 
then iteratively corrected in a direction which tends to bring in the other 
conditions. What distinguishes one iteration process from another is the 
conditions which are satisfied at the start as opposed to those which are 
brought in. The three iterative processes to be discussed in this report are 
characterized as follows: 

a) Neighboring Extremal - each successive iteration satisfies conditions 
(l), (2), and (3) above, but does not satisfy (4) or (5). (This is 
essentially the technique in which unknown boundary conditions are 
guessed at one end of the trajectory.) 

b) Steepest Descent - each successive iteration satisfies conditions 
(l), (2), (4) and (5), but does not satisfy (3). 

c) Quasilinearization - each successive iteration satisfies conditions 
(4) and (51, but d oes not satisfy (1) or (2). Satisfaction of con- 
dition (3) is arbitrary. 

Before turning to a detailed consideration of these three techniques, it 
is well to consider some other optimization problems which are of a considera- 
bly more elementary nature, but which require numerical solution by iterative 
techniques very similar to those above. The first such problem is the maxima- 
minima problem from the ordinary differential calculus; this problem is treated 
in the next section. 'he succeeding section deals with the one-dimensional 
Lagrange Problem. The numerical methods used in these elementary problems are 
identical in concept to those used in the Mayer problem; only the algebra and 
the actual numerical computations are more complex. 

* This condition holds only if the final time is not specified explicitly. 
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2.2 NWGRICAL KETHODS IN MAXlXA4lINi3~ THEORY 

2.2.1 One-Dimensional Problem 

The one-dimensional'minimiimieation problem consists of determining the value 
of the scalar x which minimized a certain function, say 

f (Xl = M IN/MUM (2.2.1) 

The term "one dimensionalt' refers to the condition that x is a scalar (a one- 
dimensional vector). 

To solve such a problem either of two methods can be employed; both methods 
are most easily described by means of a graph. 

2.2.1.1 Method #l - Steepest Descent (Gradient Method) WI , 
I 

Assume that the function f has the plot shown 
to the right and that the first guess (first iteration) 
at the minimizing point is x1 . The value f(xl) and 
the derivative (df/dx) are then evaluzterl. A second 
value, x2 = x tAx is selected where Ax is 
chosen in the direction i;'which f(x) is decreasing, 
as determined from the sign of the derivative df/dx. 
In equation form, 

%z = X, t AX = X, - k d* 
'dX 

Sketch (2) 

(2.2.2) 

where k is some small positive constant which is arbitrarily determined. But 
to first order in Ax 

(x -x,1 = UX,) - 4($ )2 I (2.2.3) 

Now, since k, is positive, f(xZ) 
is sufficiently small. 

till be smaller than fixI) provided kl 
Thus, by appropriate choice of the constant kl , the 

process will converge towards the optimum point xMIN characterized by the 
condition 

= 0 (2.2.4) 
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2.2.1.2 IJethod'#2 - Newton's Wethod 

The second numerical approach involves 
the iterative adjustment of X until the 
minimizing condition df/dr=O is satisfied. 
Assume the derivative d$/dr has the plot 
shown to the right and that X; is again 
the first guess at the minimizing point. 
The functions. 

evaluated, and to first order i; AX = x2-x, 

Sketch (3) 

(2.2.5) 

For the second iteration, XZ is selected as that value of x for trhich the 
first-order approximation to df given in.Eq. (2.2.5) is zero. Hence, 

d)c 

( ) d4 
X2 = X, + AX = X, - dX XI 

Thus, to second order in AX , 

dx' 

(2.2.6) 

(2.2.7) 

d=f 
Since -jTp ' 0 at the minimizing point, the value off (XZ)~&ll be lrss than 
the value of gX,> provided QX in Eq. (2.2.6) is sufficiently small. 

The steepest d.escent approach is a first-order technique in that only the 
first-order terms in a Taylor series are used to adjust the iterated quantity 
X (see Eq. (2.2.3)). In this regard only one addition quantity, the derivative 

tive df/dr , need be evaluated at each point. The constant R 
which controls the magnitude of the correction AX (the slope if/& controls the 
direction) is adjusted and readjusted at each step in the iteration process. 

In contrast, I'lewtonls method is second order and requires the calculation 
of'both the first and second derivatives at each iteration. Ho&ever, the 
correction (both magnitude and direction) is completely determined by the 
iteration process itself (see Eq. (2.2.7)) and no constantA, need be guessed. 

12 



As a general rule, the one-dimensional minimization problem is so easy to 
solve that little consideration need be given to the particular numerical 
method employed. Almost any method will suffice.including a direct search 
procedure. This situation changes drastically as higher dimensional problems 
are considered. While the techniques employed are essentially the same, much 
more computation is 'involved and considerable attention must be paid to the 
rate and range of convergence in order to effect a solution. 

2.2.2 _n -Dimensional Problem 

In the n-dimensional problem, the value of F which minimizes a certain 
function must once again.be determined, i.e., 

$ c%) = MINIMUM 
(2.2.8) 

However, in this case, F is an n-dimensional vector 

with 

G(X) = f(%,,Xz )“‘X,) (2.2.10) 

Under the assumption that f (x) is a sufficiently smooth function (at the 
very least, the third derivatives of f with respect to all its arguments must 
be bounded) it is well known that at the minimum point the R equations 

arT< sati.sfir~d and that the matrix of second derivatives must be positive semi- 
definite, i.e., a’-f 

1. 
a-f . . . a'4 

2X, a x,.3x2 ax,ax, 

a'f a'f a'f 
7 **'- 

ax,ax, ax, ax,ax, q QOSI~VE SEMI- DEFINITE 

a-F - -- 
2% 

af 
axI 
af 

I 

aX, 
. 

a+ 
a>c, 

= 0 
(2.2.11) 

1 a'f a'f .., aF 
a X)$X, ax+, ax,2 

(2.2.12) 
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A direct solution to this problem can be achieved only if Eq. (2.2.ll) can be 
solved directly (as opposed to iteratively). This, in turn, is possibly only 
in one very special case. 

Assume that the function takes the form 
h 

a 
4/ 

id. Xi .X8 fC bi X; + c 
4’ (2.2.13) 

where /j is the n x nsymmetric matrix, 

A = 
au 
4 

[: 

21 

. 

Qnr 

a Iz 

4 22. 

. . . 

b is the constant vector 

. 
Q/n 
Q2n 

Qnn 
w 

(2.2.14) 

(2.2.15) 

and C is a scalar. In other words f is the sum of a quadratic function in 
%, a linear function in ;r and a constant. For convenience, such a function 

will be referred to as a "quadratic cost.1' function. In this case the minimiz- 
ing conditions of Eqs. (2.2.11) and (2.2.12) become 

Axtb+o w %a+. xd' -b b, = o; i = /,r) 
+=I (2.2.16) 

A= = POSITIVE DEF/NIlE 

I (2.2.17.) 

is linear in % F.I!~‘ hence, it can be solved directly to Note that Eq. (2.2.16 
yield the minimizing point 

x 1 MIN 

X M/N = X2 MIN 

I 

. 
X n MIN 

14 

I 
= -A-lb 

(2.2.18) 



In the general case in which 4 is not a quadratic cost function, the 
minimizing condition of Eq. (2.2.ll) yields a set of nonlineartranserdental equa- 
tions to which no direct solution is possible. Hence, some iterative techniques 
must be employed to determine the minimizing solution. The basis of the two 
iterative techniques,presented below consists in approximating the function to 
be minimized by a series of quadratic cost functions, in which case the minimum 
point is found by solving a series of linear problems of the form of Eq. (2.2.18). 

2.2.2.1 Method #l - Steepest Descent (Gradient Method) 

Let %, denote the first guess at the minimizing point where 

I I XII 

x, = x2, . . . 
of the function to be minimized. 

Now expand f in a Taylor series-about- 7c, and truncate the series after the 
first term; that is 

n 
f (X) 2 fop -$ -r i > (X- X,) d fcx>z fcx,,+~ g 

I, I i 
txi-xi,) 

(2.2.19) 

where the superscript T denotes the transpose. The problem is now to find 
%2 ' the second iterate, such that 

c tx,> 4 f (X,1 
(2.2.20) 

Hence, if x, is required to be reasonably close to X, the approximation 
given in Eq. (2.2.19) can be used to develop a value of '%, for which the 
inequality in (2.2.20) will be satisfied. Specifically, for IX2 - X, 1 small, 
the best result (the smallest value for $CX,) ) would be achieved by 
selecting X, to minimize the approximate expression in (2.2.19). 

Putting this idea into mathematical form, it follows that the quantity 
x2 is to be selected to minimize the expression 

J = Cc',' +~~)T(X-X,) = f(x,) +~, ~~ (X; -Xi,) (2.2.21) 

subject to the constraint condition 

(x-x,)T(x-x,)“%: <- >k (Xi -X&f = 4: 
A’= I (2.2.22) 
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where 1, is some small positive constant. This new problem is easily solved 
by adjoining the constraint in (2.2.22) to the function to be minimized by 
means of a Lagrange multiplier X ; that is, the function ris formed where 

;r= CC%,) + 0(-x,) + a (x- xy (X-X,) - a: I (2.2.23) 

and where the multiplier x is chosen so that (2.2.22) is satisfied. MiIliIlliZ- 
ing 3 then yields the desired results; this minimization is accomplished by 
setting the derivative 33 to zero. That is, 

ax '- 

4 ) 3-f t 22 (x-x,) = 0 ax 
But, the second derivative condition requires 

ho0 . . .o’ 

Oho...o 

. . . *. ,a 

000 - ** h 

(2.2.24) 

I = POSITIVE DEFINITE 

(2.2.25) 

from which it follows that x is positive. Thus, substituting (2.2.24) into 
the constraint condition of (2.2.22) yields the value of X as 

(2.2.26) 

and combining Eqs. (2.2.24) and (2.2.26) provides the new value of % as 

(2.2.27) 

Several observations regarding this iterative process are in order,The 
function which was minimized to provide the value of xZ (the quantity J is 
(2.2.23)) is a quadratic cost function and it is this condition which allows 
for the analytical determination of xt as given in Eq. (2.2.27). Similarly, 
each successive iterate of IC is determined by minimizing a quadratic cost 
function. Note also, that the method is the R-dimensional analog of the l- 
dimensional steepest descent technique; this fact can be seen by comparing Eq. 
(2.2.2) with Eq. (2.2.27). 
quantity 4, in (2.2.27)) 

In both cases the magnitude of correction (the 
is not determined by the process, but must be selec- 

ted by the user. However, substituting Eq. (2.2.27) into (2.2.19) provides, 
to first order, 

(2.2.28) 
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fyrn which it follows thatf (X,)WKLL be less thanf(X,)provided only that 
, is sufficiently small. 

2.2.2.2 Method #2 - Newton-Raphson Method 

As in the method of steepest descent, let %, denote the initial value of 
JC and expand f(r) in a Taylor series about z, . This time, however, the 

second terms in the expansion are retained providing 

(2.2.29) 

Once again the quantity Tg is to be selected so that 

(2.2.30) 

If x, is sufficiently close to its minimum value, then the approximate expres- 
sion in (2.2.29) can be used to determine an z.. satisfying (2.2.30). Specif- 
i=U, n, is selected to minimize 

J = f CX,) + $g(X -x, ) -t * (X- X,f ( > c > -g$ (X ‘- x, > 
Since J is again a quadratic cost function, setting the derivative to zero 
provides the linear system 

which has the solution 

-’ af x,.x,-J& ax c ) (2.2.31) 

Thus, if % is a l-dimension vector (a scalar) then Eq. (2.2.31) reduces to 
the l-dimensional result given in Eq. (2.2.6). Unlike the steepest descent 
method, both first and second derivatives are needed at each point in the 
iteration. However, the magnitude of correction is not guessed, but comes 
directly from the iteration. 

In regard to convergence of the Newton-Raphson method, it can be shown, 
as in the l-dimensional case, that the error decreases quadratically with 

(2.2.32) 
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Also, sufficient conditions for convergence are easily developed (see Ref. (9)). 
In contrast, no general statements rega,rding the convergence of the steepest- 
descent technique can be made since the convergence depends on themanner 
in which the magnitude of correction (g, in Eq. (2.2.27)) is determined at 
each iteration. 

The effectiveness of the two techniques depends on both the problem (the 
functional form of f(n) and the starting point. If the first guess on % is 
IJcloseJl to the optimal point %,,U then the Newton-Raphson approach will 
usually provide the most rapid convergence since it yields both the magnitude 
and direction of correction. If the starting point is not llclose,ll then the 
second-order technique will diverge and it is necessary to resort to the first- 
order gradient method. In this sense, the term llclosell might be arbitrarily 
defined as any point from which the second-order theory will converge. Hence, 
it appears that some combination of the two techniques will provide the best 
results. 

In most problems in which the dimension rl is three or larger, the selection 
of the constant 4, in the steepest descent procedure proves very difficult. 
Inevitably, some estimation or calculation of the second derivatives, a'f/Jwf, 
are needed in order to appropriately adjust the correction magnitude. For this 
reason a modified version of the Newton-Raphson technique is frequently used 
in which the magnitude of correction is guessed, but second derivatives are 
used in the calculation of the direction of correction. This modification 
extends the range of convergence to points that are *not close11 to the minimum 
point. 

2.2.2.3 Modified Newton-Raphson Method 

Let %, denote the first guess at the minimizing point and expand f in 
the truncated Taylor series as 

X-X,) + i w-X,V (gi.) (X-X,) 
(2.2.33) 

Now %* is to be selected so that this approximation of f is a minimum, but 
subject to a restriction on the magnitude of correction; that is, the quantity 
p&x'1 is to be constrained. This constraint can take any one of several 

. For example, 

o(-x,)T~cx-x,) 
2 = sg: (2.2.34A) 

where dz is some small positive constant; or alternately 

(2.2.34B) 

where A is any nxn positive definite symmetric matrix*. It is algebraically 
convenient to use the constraint in (2.2&B) with A set equal to the second 
derivative matrix Jz//3%a . If the point %, is not too far removed from the 
minimizing point, %m,hl , then(aL//3rz)will be positive definite and Eq. (2.2.34B) 
3 
x The quantity (x - x,)~ A (x-x ,) 7 0 fOK (X-X,) f 0 
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(with A replaced by@'F/1a) will serve as a proper magnitude constraint. 
Thus, the quantity 

J = fCX,) +(~y(X-X,l -I- ; (X-VT g (X-XJ (2.2.35) ( 3 

to be minimized subject to 

* (X-X‘P 5% (X-X,) = azz -z- (2.2.36) 

Preceeding formally, the function r is formed where 

and where x is a Lagrange multiplier. Thus, setting -- 
ax 

to zero provides 

(X-X,) = 0 (2.2.37) 

Substituting (2.2.37) into (2.2.36) yields the value of X as 

and combining this expression with (2.2.37) provides the value n, as 

(2.2.38) 

For dr sufficiently small, the approximation in (2.2.33) can be used together 
with (2.2.38) to show that 

f U,) < f tx,> 

The process is repeated until the minimum point is founded. 

There are many other modified versions of the Newton-Raphson method, all 
of which vary only as the form of the constraint equation varies. (Eqs. (2.2.34)) 
The advantage of this modification is that by controllkg the magnitude of 
correction (the quantity #$ ).the radius of convergence can be substantially 
increased. 

One of the disadvantages of the Newton-Raphson approach, as compared with 
the steepest descent method, is that considerably more computation is required 
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at each step. This extra computation consists primarily in the evaluation of 
the second derivative matrix a*f/&'. 'However, ,in many practical problems, 
it suffices to compute this matrix only occasionally (that. is, not at every 
point) and to use some approximate procedure for updating the matrix. Three 
such approximations tie illustrated in Ref. (10). 

2.2.3 n-Dimensional Problem with Constraints 

This section will demonstrate the application of the Newton-Raphson and 
steepest descent methods %o the n -dimensional problem in which equality 
constraints have been included. 

Again let f (Xl = f(Xt, X,, _.. x,) denote the function to be minimized. 
This time, however, the minimization is to be accomplished subject to the M 
constraint condition 

Go> = 

G, (Xl 

G, of) 
. . 

G,.,(X) 

= 0 

(2.2.39) 

where k? is some integer which is less than n the dimension of % . If f 
and G are sufficiently smooth it is a simple rktter to show (see Ref. (5)) 
that the minimizing point must satisfy the conditions 

aF, 
dX 

. . 

% 

a; 
ax, 

. 

. 
. 

aF 
ax, 
. . 

where F is given by 

=o; E, 
aa 

(2.2.4OA) 

= 0 

(2.2.40B) 

(2.2.4l-A) 

and X is a M -dimensional Lagrange multiplier vector. Using Eq. (2.2.4l-A), 
the necessary condition in (2.2.4OA) becomes 
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while (2.2.4OB) takes the form 

aF= 
a’h 

Gl 

Gz 

% 

(2.2.4x3) 

,G,O 

(2.2.4.x) 

Note that this last equation is simply a restatement of the constraint condi- 
tions, Eqs. (2.2.39). The M-dimensional multiplier vector A is introduced 
for the explicity purpose of satisfying these constraints. Thus the n+M 
quantities xL[; =l,h) and Xic;t .-I,M) are to be selected to satisfy the 
conditions contained in (2.2.4.l.B) and (2.2.4.X). In addition, the second 
derivative condition takes the form 

where 

sx = X-XenN (2.2.43) 

and is constrained to satisfy the differential version of the constraint con- 
ditions 

(2.2&J+) 
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As in the unconstrained case, both iterative techniques for solving this prob- 
lem consist in solving a succession of quadratic cost minimization problems 
but subject to linear constraint conditions. 

2.2.3.1 IIethod #l --Steepest Descent 

Let E, denote the first guess at the minimizing point, and require that 
x, satisfy the M constraint conditions of Eq. (2.2.39); that is G, (X? 

G (X,) = Gt tX,? = 0 [ 1 . . km (X,1 (2.2.45) 

Now, expanding the function F = f + GTA in Taylor series about Z, and trunc- 
ating the series after the first-order terms yields 

F(x,;1)3 F(r,,A)+ ($$,_,,, =f(X,)+d(X,)A ‘(x 
(2.2.46) 

where X is as yet an undetermined quantity. 'ihe second iterate, I$ , is 
determined by minimizing the approximation in (2.2.46) subject to a constraint 
on the magnitude of correction. This constraint takes the usual form 

(X- X,)T (X-X,) = ~ (xi -Xi,)2 = ~: 
i=l (2.2.47) 

where again d, is some arbitrary but small positive constant. 

Proceeding formally, the scalar multiplier/u is introduced and the 
function J is formed where 

J= W,A t(gh-x,l+p { w-X,Y (x-x,)- AZ} I (2.2.48) 

equal to zero providing r i 

Note that J is a function of both X and X (by virtue of the fact that 
F = Foq) . Hence to minimize J , the derivatives aJ/2% and aJ/G$are set 

x 
3x1 
i-E 
ax2 
. 

k 

I 

(2.2.49A) 
L axn 

-0 (2.2.49@ 



Eq. (2.2.49A) is essentially the same as that encountered in the unconstrained 
problem. Also, since G(Xi)= 0, Eq. (2.2.49B) reduced to the fl conditions 

$x-x,) = C-J <=$$$x-X,); j -1 , M 

(2.2.50) 

which is simply a requirement that the second iterate, %z , satisfy the first- 
order approximation to the constraint condition G (*) =O . The PI -dimensional 
multiplier X is to be selected so that these equations (the linearized version 
of the actual constraints) are satisfied. This.selection is denomstrated next. 

Substituting (2.2.4qA) into (2.2.50) yields 

I &X z. 
-22 ax ax 

tiich, from (2.2.4111) reduces to 

or 

In scalar form, this equation becomes 

. . . aG, 
Kn 

/ 

(2.2.51) 

(2.2.52) 

ar: 
axr . 
. 

ac (2.2.53) 
ax, 

Thus, with x selected to satisfy (2.2.53), the linearized version of the con- 
straint equation (Eq. (2.2.50)) will be satisfied and to first order 

G (XL) = Gh,) -t s (x-x,) = 0 

Once h is known, the function F(x) =f(x)tG(x)'h and the derivative (W/a%), 
can be evaluated at the point X-X, With this result, the quantity ,u can 
be determined by substituting (2.2.49Aj into (2.2.47) to yield 

(2.2.54) 
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Hence, the second iterate satisfies the equation 

(2.2.55) 

The similarity between this result and Eq. (2.2.27) (the unconstrained result) 
should be noted. 

Summarizing the results for the steepest descent technique, the second 
iterate zZ is selected using Eq. (2.2.55) where #, is a positive small con- 
stant nhich regulates the ma3Titu$e o&$orrection as indicated in Eq. (2.2.47). 
To evaluate the derivative - = - t h, the A vector must be determined l 

by means of Eq. (2.2.53) to %su% th'ai the first-order approximation to the 
constraint equations is satisfied. The process is repeated until the minimum 
point is found. 

2.2.3.2 Method #2 - Newton-Raphson Technique 

Let JC, denote the first guess at the minimum point and let A, denote 
the first guess at the correct value of X . Expanding the function 
F(x,A) = f +GZh about the point &,,A, in a Taylor series truncated after 
the second-order terms provides 

+$ 
t 

w-%JT -$g (X-X,)t z(x-Xy g (2- a, > 
(2.2.56) 

If the point %,,A, is sufficiently close to the correct point, them selecting 
%Z and X, so as to minimize the second-order approximation to F'( r,X> 

should provide improved values of x and X . 

Proceeding with the minimization, let J be defined by 

J= F (X,, 2,) +($(X-X,) + ($+i),)+ i 
1 
(x-&f $$ (x-x,) 

-r a’F + ww) axa 
(2.2.57) 

Now forming ai? 
ax 

and g and equating the results to zero yields 

g+ 63*F ah’ (h-h,) + g2 (x- %,) = 0 
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In view of the definition of the quantity F , these two equations reduce to 

g+ ( ) g.. T(A-hl) •t $$ (x-x,) = 

G t 5; (x-x,) = o 

or in the scalar notation 

a’F azF . . .a=F 

ax,’ ax,ax, c, 

; 

. 

a’F a’f a=F 
ax,ax,au,ax,. . * ax,L 

G, (X,1 

G, 0,) 
. + 
. 

G,., of,, 

x,-x1 

G-X,, 
. 

wn, 

ac, a6, ,. .E, 
ax, ax, ax, 

dG, 
ax, 

0 (2.2.5&I) 

(2.2.58B) 

- 
1 

(2.2.59A) 
=o 

Eqs. (2.2.59A) and (2.2.59B) Constitute a Set Of nTM 

= 0 

(2.2.59B) 

linear equations in the 
n+M unknowns, (Zi- X1;) 9 1-a I,R 

possesses the solution 
and 'aj -hi ) , Q- J,M . This system I 

x-x, x,-x, 

[1[ 1 
= = 

a- 1, 22 -2, I 

af 
-*-’ -z 

G 
L 

L 

(2.2.60) 
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where 8 is the (II+ M) X (htm) matrix 
a=F 

a 

6 = tn x n) tnxrd 

ac 
ax 

0 
(2.2.61) 

(Mxn) (MXM) 

The process is repeated until the minimum point(&,,) and the correct X are 
reached. 

As in the unconstrained problem, a modified version of the Newton-Raphson 
technique can be developed in which a magnitude constraint is placed on the 
size of the step to be taken. As in Eq. (2.2.34B) this constraint would take 
the form 

(2.2.62) 

where A is some positive definite symmetric matrix. The minimization of 
in (2.2.57) subject to this constraint would lead to an iteration equation 
similar to that resulting in the unconstrained ease (see Eq. (2.2.38)). By 
such a modification, the range of convergence can-be considerably extended. 
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&2.4 Discussion 

The fact that only two numerical procedures. have been presented for solv- 
ing maxima-minima problems is not meant to imply that the methods of steepest 
descent and Newton-Raphson are the only two methods available. Indeed, there 
are many other techniques for numerically finding an extremum value of a func- 
tion. However, all of these techniques are local in character; that is, they 
depend completely on the behavior of the function in the vicinity of current 
estimate of the minimizing point (or in the vicinity of the current estimate 
and the preceding estimates of the minimizing point). This behavior of the 
function at the current estimate of xMlrJ is determined through the evaluation 
of the first few terms in a series expansion of the function about the current 
point. (Recall that in the steepest descent procedure this behavior was 
evaluated through the computation of the derivative ?& while in the Newton- 
Raphson technique, first and second derivatives were used.) Thus, while there 
are many numerical procedures, they are conceptually very similar to the two 
presented here - although the differences may be very important computationally 
for certain problems. 

As has been shown, only "quadratic cost" functions can be minimized 
directly since in this case the first derivative condition leads to a set of 
linear equations. Hence, the basis of both iterative techniques consists in 
approximating the function to be minimized by a quadratic cost function, and 
then solving a succession of linear problems. 

A similar situation occurs in variational problems (for example, the 
problem of Mayer in Section 2.1). Only a certain type of quadratic variational 
problem can be solved directly (the variational analog of the quadratic cost 
problem in maxima-minima theory). In this case, the first variation condition 
(the Euler equations) leads to a set of linear differential equations which 
have a closed-form solution. Hence the basic approach of the numerical itera- 
tion techniques used in variational problems is to approximate the functional 
to be minimized by a quadratic cost functional and then to solve a succession 
of linear problems. If only the first variation about some current estimate of 
the minimizing solution is used to compute the next estimate, the numerical 
method is referred to as the'gradient or steepest descent procedure and is 
essentially a function space extrapolation of the gradient technique in mexima- 
minima theory. If both first and second variations are used in the calculation 
of the next estimate, then either of two numerical procedures can result, 
neighboring extremal or quasilinearization~ Both constitute the variational 
analog of the Newton-Raphson technique. 

In the next section, the use of these three techniques, neighboring 
extremal, quasilinearization and steepest descent, are illustrated in connec- 
tion with the one-dimensional Lagrange problem. As in the one-dimensional 
maxima-minima problem, the one-dimensional Lagrange problem is rather easy to 
solve and hence, does not warrant extensive numerical treatment. However, 
this elementary problem clearly demonstrates what is involved in the applica- 
tion of each of the three numerical procedures. The complexity in the exten- 
sion to these techniques to the problem of Mayer is then a matter of algebra 
and computation, rather than concept. 
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2.3 CLERICAL SOLUTION OF THE ONE-DWNSI~NAL LAGRANGE PROBLEM 

The one-dimensional Lagrange problem consists of determining the function 
for which the integral 

(2.3.1) 

isaminimum. The minimizing arc is required 
to satisfy the boundary conditions 

y-p0 AT x-x, 

$z#+ AT X=X( 
(2.3.2) 

The physical situation is pictured on the 
graph to the right. Typical problems of 
this type are the shortest distance and 
brachistocrone problems. (see Ref. (7)). 

Sketch (4) 
X 

Setting the first variation of J to zero provides the first necessary 
condition (the Euler equation) 

while the second variation requires, in part, that 

(2.3.3) 

l3"f 
Fj- 

30 (2.3.4) 

In addition, three other conditions must be satisfied by the minimizing solu- 
tion #n,NW ; the Jacobi condition (see Ref. (7)), the Weierstrass condition, 
which takes the form 
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2 = TMIN ; j’= y:m (Z-3.5) 

and the corner condition, which states that across a slope discontinuity 

(2.3.6) 

In the analysis which follows, use will be made only of the Euler and Lagrange 
conditions (with occasional reference to the Jacobi condition). Also, it will 
be assumed that the minimizing solution has a continuous first 
derivative (i.e., 

1 
LrN l;z) is continuous '"I*: '%Ls'last assumption is rather 

weak and is made nly to simplify the analysis. 

The minimizing solution is to satisfy the Euler condition (2.3.3); This 
is a second-order differential equation and can be Tjritten as 

In addition, the boundary conditions 

Y = 70 AT x = X0 
7 = jc AT X = Xc (2.3.8) 

must hold. Thus, equations (2.3.7) and (2.3.8) constitute a two-point boundary 
problem and, as indicated in Section (2.1), such problems must be solved 
iteratively, except in one special case. 

Suppose the functionalto be minimized takes the form 

(2.3.9) 

where a, b, c , d and c denote functions of the independent variable z ; 
that is 

Q = cl(x) 
b = b(X) 

C = c tx> 

d = d(4) 

e z. e(x) (2.3.10) 
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Analogous to the mazima-minima problem, functionals of this form, will be 
referred to as "quadratic cost" functional. Again the boundary conditions 
are of the two point type with 

In this case however, the Euler condition of (2.3.7) takes the linear form 

(2.3.12) 

At this point, letting 

(2.3.13) 

allows it to be noted that Eq. (2.3.12) is equivalent to the two first-order 
equations 

where the matrix G 

* 
G = 

is given by 

-2 I, (2) g,, cc1 

221 cf) j,, (*I 
I- 

This system has the solution 

\, 

= 
I 

X 0 + J 0 -I i 1) dX 

e-d’ 
x0 

0. 

(2.3.I-4) 

I (2.3.15) 

(2.3.16) 

" From the Lagrange condition in (2.3.4), a(% all x6 (%,,;r,)for the minimi- 
zation problem to make sense. In writing the G matrix, it is assumed that 
the strong version of this condition holds with a Ix) ~0 . 
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and where # is the fundamental matrix 

(2.3.17) 

(2.3.18) 

Note that the development of the $ matrix is an initial value problem (all 
boundary data is available at % =X,, ). Hence, the solution to (2.3.18) can 
be achieved in one run (one integration) on a digital computer. 

Since the minimizing arc has the general form indicated in (2.3.16), all 
that is involved in completing the solution is the selection of the initial 
slope ?3.- = g', = 4 (X,)so that the terminal condition y+ = yc at xF 
is iati%ed. 'But %om (2.3 

Y 'f = $1, (X$ 

Thus 

(2.3.19) 

* It is assumed that $,2 (~~1 f 0, a condition which will be satisfied provided 
the strong version of-the Jacobi condition holds (see Ref. Xl.). 
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Substitution of this expression into (2.3.16) now provides the minimizing solu- 
tion for the quadratic cost functional J in Eq. (2.3.9). 

The quadratic cost problem of Eq. (2.3.9) can be solved directly (without 
iteration) because'the Euler equation is linear. In the general case, the 
Euler equation is nonlinear and the resulting Wo-point boundary value problem 
must be solved iteratively on a computer. As in the maxima-minima case, the 
iterative procedures presented below consist in approximating the functional 
to be minimized by a quadratic cost functional and then solving a succession 
of linear problems. 

2.3.1 Steepest Descent (Gradient) Technic+2 

The problem under consideration 
minimizes the functional 

J = $ tx, 

% 
and goes through the boundary points 

is the determination of the arc which 

Let$:z!) denote the first guess of the minimizing 
satisfy the boundary conditions of (2.3.21) with 

(2.3.20) 

(2.3.21) 

arc and require that 1, 

(2.3.22) 

In addition, let JC ,) 
Then, if the second !iY 

denote the corresponding value of the functional J. 
terate y'(r) is to be more nearly minimizing, it must 

be selected so that the inequality 

holds. 

Expanding the functional J in a Taylor series about the arc g(x) and 
truncating the series after the first-order terms provides 

(2.3.24) 
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where 

Integrating the term a;y 
and d 

f 

in (2.3.24) by parts and noting that&$ (X,1 
($1 must be zero for the new solution to satisfy the boundary 

conditi ns, it follows that 

'J(j) = Jr@ t 6-J 

%f 

= 

s 

f (x, -y,., ;r,')dx + 

x0 

fig- 5 $-&dX 

X0 (2.3.26) 

Now, if 
small 1 , the If 

is "sufficiently closel' to 
<h:) first-order approximation in ( l 

good. Hence, selecting fA 
:;.2:6) will be "r'Baz:ab:; 

i i.e., 

tz) to minimize the expression in (2.3.26) subject to 
a magnitude constraint in the separation should 
provide an improved second iterate, 
inequality in (2.3.23)). 

ydr) 
I$w -#,(%)I 
one which satisfies the 

There are two different types of magnitude con- 
straints which can be imposed. Both lead to slightly different versions of 
the steepest descent technique. 

Method hcl 

In this method, the quantity s#(xJ is selected to minimize the expression 

(2.3.27) 

subject to a magnitude constraint 

(2.3.28) 

where d, is some positive small constant. Such a constraint insures that 
by [Z) will be sufficiently small at all values of *iin the interval 

t;rb, Yf) l 
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To minimize the expression in (2.3.27) subject to the magnitude constraint, 
the quantity fis formed where 

and where X is a constant multiplier 
constraint in (2.3.28) is satisfied. 
minimize 7 which can be rewritten as 

to be determined so that the magnitude 
The quantity $flr) is now chosen to 

where 

Hence, 3 must satisfy the Euler equation 

(2.3.30) 

(2.3.31) 

Since F is not a function of Sy' , it follows that 

This final equation allows the multiplier x to be determined by substituting 
Eq. (2.3.32) into (2.3.28) to yield 

(2.3.33) 

Collecting results for this method, the quantity S# w is selected to 
minimize the first-order approximation of the minimizing functional J subject 
to the magnitude constraint given in (2.3.28). This leads to the expression 

* Note that the positive square root is taken in this equation. This choice 
follows from a second variation test which requires x to be greater than zero. 
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at points ;r interior to 
6 

f 
($1 must satisfy 

’ x0 (2.3.34) 

the interval (x0, +) . At the boundary points, 

&;;y CX,) = 0 

a;y ix,) -0 

The second iterate, j$ (%) I is then determined from the expression 

(2.3.35) 

(2.3.36) 

Substitution of (2.3.34) into (2.3.26) leads to the first-order approximation 

(2.3.37) 

daf af 
where the quantity a 

Hence, J 
cl% a-f is evaluated along the first iterate 
d Jlf,' and (*I will be an improved 

a$&%nati.~n to the rk%uizing solution provqded the constant 1, is suffi- 
ciently small. 

Some comments on the form of the solution are in order. First, the opti- 
mizing condition for the problem of Lagrange (the Euler condition) 

a$ --=o d af 
a;y- dX ay 

is the analog of the first derivative condition 

in maxima-minima theory. In fact, the Euler operator($ -,$ $, ) , =Y be 
considered the function space equivalent of the derivative operator a/gr 
which operates in the space of the vector Ir . 
iteration process incorporated in Eq. (2.3.34) 

From this point of view, the 
is essentially the same as that 

used in Eq. (2.2.27)'for locating the minimum of a function. 
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The magnitude constraint of.Eq. (2.3:28) requires only that the solution to 

d 
i (Zl 
raight line 

be sufficiently close to # CX) 
s 
and cr,,gJ 

connecting the pox&s (&,p) 
, then it is not unlikely 

. 1;' 8 LX) is taken: a 

that 9 1%) will take the form shown in 
the sketch to the right; that is, starting 
with a smooth iterate Ix3 , it is 
entirely possible that t IT e second iterate t 
may be highly unsmooth and contain several 
corners. The reason for this behavior is that 
the magnitude constraint in (2.3.28) requires to - 
only that )/t Ix) be close to 4(rcz) , but 1 Sketch (5) 
allows the derivatives #i tx) and y,'(%J to & 
differ considerably. 

5 
The second steepest descent approach which is presenteu 

ne,ti avoids this difficulty and leads to iterated arcs which are as smooth as 
the first arc 

$ (Xc) 

Method& 

As in the previous method, the quantity Sp) is to be selected to 
minimize the first-order approximation to be functional J which takes the 
form 

(2.3.38) 

In this case, however, a magnitude constraint of the form 

(2.3.39) 

is imposed where 4 is some positive small constant. Since 
satisfy the boundary conditions 

J/ (x) must 

42 
CX,) = 0 

62 txfJ = 0 
(2.3.40) 

must be small in order to satisfy (2.3.39), it follows that 
the problem encountered in the previous method 

was not (that is, 4/r~z) was not smooth), 
is not present here. 
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ho minimize the expression in (2.3.38) subject to the constraint in 
(2.3.39), the functional r is formed where 

J- J(,,+f&-g gp.e 

dx- 4: 
I (2.3.41) 

and where x is a constant multiplier. Rewriting this expression as 

3= J(pka + s*' 

%I 
Ftx, +, $‘, dx 

(2.3.42) 

with 

it follows that the minimizing arc 6$f 1%) must satisfy the Euler equation 

together with the boundary conditions 

J-f’= + &($ - 5 $g (2 3 ~) . . 

(2.3.45) 

Equation (2.3.L+J+) has the solution 



T'T;LfF the second condition in (2.3.i+5), it follows that 5 '<%..) must 
Y 

(2.3.47) 

YO 

Finally, substitution of this expression back into (2.3.46) provides the desired 
solution. The constant multiplier K is then evaluated using Eq. (2.3.46) and 
the magnitude condition of Eq. (2.3.39). While these calculations are alge- 
braically involved, they are easily accomplished on a digital computer once 
2, (x) has been specified. The second iterate satisfied 

(2.3.48) 

where &f is evaluated using (2.3.46). 

2.3.2 C&silinearization 

Again, the problem is to determine the arc yMw (~1 which minimizes the 
functional 

I 
4 

J ($1 = C Cx, 2, ey)d,: = MIN 
%a (2.3.51) 

subject to the boundary conditions that 

$f= 70 AT X=X, 

-J = -& AT XZXF 
(2.3.52) 

Let f, 0) denote the first guess at the minimizing arc 
satisfying the boundary conditions in (2.3.52)) and expand 
series about 

y,w l 
Truncating the series after the 

provides 
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- 

1 

+?: (2.3.53) 

sufficiently close to I Mlry CX) 
approximation should provide an improve: arc with 

selecting v&(X) to 

(2.3.54) 

Before proceeding with the minimization, rewrite Eq. (2.3.53) in the form 

where 

Hence, for "7 lx) to be minimizing, the Euler condition 

(2.3.55) 

(2.3.56) 

(2.3.57) 

must hold. This equation, in turn, reduces to the second-order equation 

where the coefficients tij b, C) d and e are given by 
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a2f czz- 
aj12 

B’ = a’$ 

Vj’ 
l. 

C 

=? 

d = i?- 

aiyr 

e =af 

(2.3.59) 

Note that this differential equation is linear and takes the same form as that 
given in (2.3.12). Hence, its solution is identical to that developed in 
Eqs. (23.13) to (2.3.19) but with the specific boundary conditions 

(2.3.60) 

Thus, the correction & 
2- 

o<) and the second iterate 

$5 
(X) = -yl CT) + s y fX> (2.3.61) 

are easily determined. The process is repeated until the minimizing solution 
is found. 

One disadvantage of this technique is that its range of convergence may 
be small in comparison with the steepest descent procedure. At any one point 
the correction magnitude is determined which will remove all of the error based 
on the quadratic approximation to the minimizing functional J . This approx- 
imation will be poor if the first guess P,(X) is not close to the minimizing 
arc and in such a case the iterative procedure will diverge. 

To extend the range of convergence, that is, to allow convergence for the 
case in which y,((xI is not close to g+n&w OCJ , a modification can be 
used which is essentially the same as the modification introduced in Section 
2.2.2 to extend the range of convergence of the Newton-Raphson method. This 
extension consists of minimizing the expression in (2.3.55), but subject to a 
magnitude constraint on &#r) of the form 

(2.3.6?) 1 

where A is the positive semi-definite matrix. 
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fx) a,, (Xl 

tx1 a,, (Xl I (2.3.63) 

For example, letting a,, = / and a,, c a,,= ~2,~ =0 reduces (2.3.62) to 

(2.3.64) 

which is essentially the magnitude constraint used in the steepest descent 
approach of Eq. (2.3.39). The problem of minimizing the expression in Eq. 
(2.3.55) subject to such a constraint is still a "quadratic cost" type problem 
and hence possesses a closed-form solution. As the minimizing arc is approached, 
the magnitude constraint in (2.3.62) can be relaxed and the unmodified quasi- 
linear technique used. 

2.3.3 Neighboring Extremal 

Neighboring extremal, like quasilinearization, is a second-order iterative 
process in the sense that second-order terms in a Taylor series expansion are 
used to develop each succeeding estimate of the minimizing arc. Thus, L/--(X) 
is selected to minimize a quadratic approximation of the functional J . 
However, unlike quasilinearization, it does not follow that yL provides a 
smaller‘value for 3‘ than y, . 
JC;Y,I 7 Jy,) . 

In fact, it is equally likely that 
The reason for this is that both 7, C,Y~ and 

are chosen to satisfy the optimizing condition (the Euler equation) 
2.2 a) 

and the initial condition 

9 Ix, > . = -& (2.3.65) 

The iteration consists of "bringing in" the terminal condition 

7 w = -$fF (2.3.66) 

Hence, the terminal values, 7, cx,) and may be such that 
JC J 7 JC ,I 

72 (x,1 , 
; but this is of no consequence. What is important is that 

the 1 p ocess of Iz 'nimizing a quadratic approximation to r[ 
2 

) leads to 
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successive iterates which more nearly satisfy the terminal constraint of Eq. 
(2.3.66). The name %eighboring extremal *I comes from the fact that each 
iterate satisfies the extremizing Euler condition. 

Let f,(X) denote the first iterate which is generated as follows: 
Require that 7, (<b'6) satisfy the initial condition of (2.3.65) and guess 
some value for..the initial slope d This guessed slope will be 
denoted by 

f) 
L, Integrate the Euler equation 

from X, to Xf with the initial conditions 

and record the value of 
2-f 

at -j+ as 

(2.3.67) 

(2.3.66) 

(2.3.69) 

If satisfies the correct terminal condition indicated in (2.3.66), 
then Yf$ (>c) is in fact the optimizing arc (since it satisfies both the Euler 
equation'and the boundary conditions). If Y-f does not satisfy (2.3.66), 
then a second iterate is generated with the ne$ initial conditions 

(2.3.7Oa) 

The change in initial slope 6i0 is to be determined so that yfa = f,t ~XJ) 
more nearly satisfies the terminal constraint. 

Note that #,1X) depends on the choice of the initial slope Yh, as 
indicated in (2.3.68). Thus, #, cYf) is a function of j;J and this is 
written as I 

(2.3.7Ob) 
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Similarly, yf is a function of 9; Expanding 2% in a Taylor series 
about 

f)f, 

and retaining only first-aider terms provides 

(2.3.71) 

where the derivative dfg/dy,’ denotes the rate of the change in terminal 
value to the change in initial slope evaluated at yp . Hence, to first 
order, the correction in the initial slope should satisfy 

(2.3.72) 

and it is this value which is to be used in (2.3.70a) for the second iterate, 

In the slope correction process just outlined, the derivative 4Yf is 
required. As will be shown next, the neighboring extremal technique-essen- 
tially a method for generating this derivative. 

Let denote the initial iterate generated by means of Eqs. 
(2.3.67) an?$)9.68) and let Jc$,) denote the corresponding value of the 
functional J . Expanding J in a Taylor series about J(,,) provides (to the 
second-order terms) 

where 

s-.4& =;ycx) - ;y,cx, 

S,y’ = 4/(X) - j,‘(X) (2.3.74) 

Now, integrating the second term under the integral by parts and noting that 
87 Cx,) = 0 provides 

43 



But since 
sioA is aero%!eLZLg 

satisfies the Euler condition, the first integral expres- 

where 

F - = + 
a2f 

[ 
272 

$2 + 2& 

%f' 
SgJZ 1 (2.3.77) 

Now, S-P is to satisfy 

s+ = yf -@I 

(2.3.78) 

that is, sq$ is equal to the difference between the specified terminal 
value of 

v- 
and that value use on the first iterate, ff, Urider this 

condition, the minimization of the expression in (2.3.76) 1s akomplished by 
requiring $ 6) to satisfy the Euler condition 

9 

aF- 
a(sg 

together with the boundary conditions 

(2.3.79) 

(2.3.80) 

Substituting (2.3.77) into (2.3.79) provides 

% “Q(X) -i- &f (d(r)) -t s ;jr (-2 ‘IX) - CCX)) = 0 (2.3.81) 
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where 

(2.3.82) 

At this point, comparison of this expression with Eqs. (2.3.12) to (2.3.18) 
indicates the solution 

(2.3.83) 

where the calculation of & and /tjL is given in Eq. (2.3.18). Finally, 
evaluating (2.3.83) at XJ and using the boundary conditions of (2.3.80) 
yields the result 

(2.3.84) 

Hence, the second iterate $L,CXJ is chosen to satisfy the Euler condition 
of (2.3.67) but with the initial values 

where 6p' is given in (2.3.84). A comparison of (2.3.84) with (2.3.72) 
indicates the identify 

(2.3.86) 

2.3.4 Discussion of Results 

The steepest descent technique is a first-order technique and, like the 
equivalent procedure in maxima-minima theory, requires that the user guess 
the magnitude of correction at each step (the quantity 4, in Eq. (2.3.28)). 
The process has a relatively wide range of convergence in that it can be made 
to converge from starting solutions, that are far removed from the minimizing 
solution. However, the technique breaks down in the 
solution since the correction mechanism, the Euler operator 
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approaches zero, 
difficult. 

thereby, making the selection of the constant R/ extremely 

In contrast, both quasilinearization and neighboring extremal are second- 
order methods and converge rapidly in the vicinity of the minimizing solution. 
However, both techniques tend to diverge if the starting condition is not 
sufficiently close to the minimizing solution since both techniques attempt to 
remove all the error in one step - a procedure which works well if the error 
is small, but fails if the error is large. Fortunately, by the inclusion of a 
constraint on the magnitude of correction, the range of convergence of both 
techniques can be extended. Such a procedure for the quasilinear approach 
was outlined in Section 2.3.2 (see Eq. (2.3.62)). An equivalent condition for 
neighboring extremal would simply replace the terminal constraint of Eq. 
(2.3.80). 

(2.3.87) 

(2.3.88) 

where 4 is some number between zero and unity. By this device only a part 
of the terminal error would be removed on each iteration and an enlargement 
of the range of convergence would result. 

In the neighboring extremal technique it was noted that the second iterate 
y&C%) did not necessarily provide a smaller value for the functional 7- 

than y,C%) . The reason for this observation is that the value of the 
functional J-is not a proper measure of closeness of a particular iterate to 
its optimum value. A better measure is the difference between the specified 
terminal condition and the terminal value provided by the particular iterate. 

A similar situation occurs when both quasilinearization and neighboring 
extremal are used to solve the generalized Bolza problem which was formulated 
in Section 2.1; that is, successive iterates do not necessarily decrease the 
functional which is to be minimized. The reason for this is that in neither 
method do successive iterates satisfy all the constraint conditions (just as 
the terminal constraint was violated in the neighboring extremal approach of 
Section 2.3.3). Thus, here also, the value of the functionalto be minimized 
is not necessarily a proper measure of the closeness of a particular iterated 
solution to the desired extremum. However, the corrections are still chosen 
to minimize a quadratic approximation to the minimizing functional, since by 
this device the errors in .satisfying the specified constraints are automati- 
cally "brought in." 
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2.4 CLASSICAL MAYER PROBLEM 

The Mayer Problem consists of minimizing the functional 

J- = @ (X$1 (2.4.1) 

subject to the differential constraints 

x’= f e, U,U - x; 2 CL (x, u,t) j AC.= 1, n (2.4.2) 

the specified initial state 

X = x, AT t=t, (2.4.3) 

and the t-4 terminal conditions 

= 0 AT t= t, 

(2.4.4) 

This minimization is accomplished through the appropriate selection of thep 
dimensional control vector k which is required to lie in the control set V. 

As indicated in Section 2.1, this problem is solved once a solution has 
been generated to the 2n equations 

H = pTf e H = c P’f; 
L’S / 

i 
which satisfies the boundary conditions 

x = x, AT t= t, 
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If the final time t+ is not explicitly specified, then the additional 
condition 

H = P'f = 0 AT t = t, 
(2.4.8) 

must also hold. The optimal control is chosen as that control in the set 'LT 
which maximizes the Hsmiltonian; that is 

~~~~~~~~ > P,t) z Htx,& P,t) (2.4.9) 

where L(OPT denotes the optimal control and y" is any other control both 
of which must lie in r . 

In this section the three numerical procedures, steepest descent, 
neighboring extremal and quasilinearization, will be used to solve this problem 
but under two additional assumptions. 

1. It will be assumed that the control set 2/- is the entire ,T' dimen- 
sional control space; that is, no bound is placed on the control and each 
component ML [i= 4 r ) can take on any value between - 00 and t 00. Under 
this assumption the optimizing condition in (2.4.9) reduces to the P 
equations 

3H 
dL(, 

JH = dH 
au 

I. 

au2 

= 0 
. 
. 
. 

dH (2.4.10) 
au, 

These equations are the classical Euler equations for the control action (y) 
and are just sufficient in number to determine the yc- control components at 
each point along the optimal trajectory. 
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2. It will be assumed that the final time tq is explicitly specified. 
An extension to the case in which the final time is allowed to vary will be 
indicated in Section 2.5. 

As in both the maxima-minima and Lagrange problems, only a very special 
form of the.,problem of Mayer can be solved directly. This class is referred 
to as the "quadratic costI problem and will be treated next. 

2.4.1 Quadratic Cost Problem 

Let the state equations and boundary conditions take the convenient linear 
form 

xsx, At t = t, 

=q= cx-d = o => 

u, 

uz 

(2.4.U) 
Yr 

(2.4.11B) 

Note that A and G are n x n and n%r time dependent matrices, respec- 
tively, while C and d are Mx~ and MY/ constant matrices. The 
admissible control set V is the entire control space with each component 
%' ( t' = 1, r) allowed to take any value between - go and + u=. The 

problem is to select the control history which minimizes the functional 

tf 

*J = bT Xf + j-(X%, x t UTQ2 u) dt 

tl 5 
= c bix;,+ 

ilil 
f:;d 

'd.'$. dt (2.4.llC) 
I 

X It should be noted that linear terms in )c and y can also be included in the 
integrand of this performance index without destroying the "quadratic cost" 
property of the problem. 
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where Qi is a symmetric nK I7 positive semi-definite matrix (i.e., 
x7-a/x = 0 )and QdL isan yxr positive definite matrix. The 

quantity b is an 4 dimensional constant vector. This problem is frequently 
referred to in the literature as the Wnear dynamics - quadratic cost" problem. 
Note that the performance index J- is a linear function of the terminal state 
(%f ) and a quadratic function of X and 4 of the interval (G J *,c). 
As will be shown next, the solution to this problem can be developed without 
iteration. 

The problem stated to this point can be put in the standard Mayer form by 
introducing the new state variable 55 defined as 

=f 
z = I WQ,X + QrQz u)dt 

t 

Hence, 

i = XTQ,X + UTQ2 U 

Thus, using the new state variables 

1 
which satisfy the differential constraints of Eqs. (2.4.llA) and (2.4.12A) 

(2.4.D) 

(2.4.12A) 

(2.4.12B) 

together with the boundary conditions of (2.4.llB), the problem becomes one of 
selecting the control K to mi&mize the functional J- where 

(2.4.12C) 

This problem is now in the standard Mayer form to which the Maximum Principle 
conditions of Eqs. (2.4.5) to (2.4.9) can be applied. 

This solution is facilitated by introducing the A Y/ -I vector p 
c ) 3 

dimensional 

50 



where the first 4 components of p are the adjoint variables associated 
with the state Xr' Ii=/, n ) and the n fjSz component, Pt , is asso- 
ciated with the state variable t . Thus, the Hamiltonian becomes 

= PT(Ax t GY) f Pz (X%,X +UT Q,U) 
(2.4.136) 

Using Eq. ($4.7) with p and 4 given by (2.4.llB) and (2.4.l2C), it follows 
that the 

i 1 pt 
vector must satisfy the boundary conditions 

P, 
P+cTk +b=o+> P, 

P,+l=o j AT t =t, 

Also, the vector ' 
0 5 

must satisfy the differential equations 

p,.' -aH .,&'=dn ax,, 

(2.4.13C) 

(2.4.I-4) 

Further, since from (2.4.13A) ,$Y is not an explicit function of the state Z , 
it follows that 

Combining this last result with (2.4.13C) yields the first of the multipliers 
as 

Under this condition, Eq. (2.4.14) reduces to 
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..__. - ._ .._ 
I 

%, a,, . . . an4 

= - a,, a 

I 

,a. 4, 
. 

. 
Qm Qm 4, 

(2.4.158) 

Finally, to maximize the Hamiltonian, the control must be selected so that 

This condition leads to the optimizing control 

4 = Q;’ GTP<=> 
2 

(2.4.15B) 

Combining results for the quadratic cost problem, the state and adjoint 
vectors satisfy the differential equations 

i =AX t GU 

f; =-ATP + u?, X 

and the boundary conditions 

x =x0 AT t =t,, 

cx-d =o 

Pdj.i + b=o 
AT t = t, 

(2.4.16A) 

(2.4.m) 
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The optimal control satisfies 

I( = Q; G’P 
2 

Substituting (2.4.1&Z) into (2.4.16A) leads to the 3-n 

i = AX + GQ;‘GTP 
z 

r; = -ATP+ ZQ,)t 

(2.4.16C) 

linear system 

(2.4.16~) 

and since the boundary conditions of (2.4.16B) are linear, this system has a 
closed-form solution. 

Let A (2) denote the ZI)Xl)"l matrix solution to the 
differential set 

(2.4.17A) 

and let/t be partitioned into the four nx /;, matrices 

Then (2.4.16D) has the solution representation 

(2.4.17B) 

Thus, the terminal point can be evaluated as 
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or using the partitioned form of A this equatiun becomes 

(2.4.18~) 

Combining this expression with the terminal constraints of (2.4.16B) provides 

Now, since X0 is known, this equation can be used to determine p, . 
Substitution of 4 back into Eq. (2.4.17B) then provides the solution to 
the quadratic cost optimization problem. 

As in the maxima-minima and one-dimensional Lagrange case, the quadratic 
problem yields to the solution in one run on a digital computer (no iteration 
is required). Hence, the numerical procedures used in the solution of non- 
linear problems consist of approximating the problem by a series of quadratic 
cost type problems. The particular iterative technique used is a function 
only of the type of approximation which is made. In all cases, the procedures 
used are essentially the same as those used in connection with the msxima- 
minima and Lagrange problems. 

2.4.2 Steepest Descent 

The starting iterate in the steepest descent technique, which is denoted 
by &c/ Cf) must satisfy all the problem constraints; that is, it must 
drive the sysiem 

x = Qx,u, t) (2.4.19A) 
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from the initial point 

x= x, AT t-2, (2.4.19B) 

to the specified terminal set 

(2.4.19C) 

However, &/cf) is not the optimal solution in that it does not minimize the 
functional 

The problem is to select the second iterate 

% (a =ff, (t) -h&Q(f) 

so that itwillalso satisfy the constraint conditions of Eqs. (2.4.19A) to 
(2.4.19C) and more nearly minimizes the functional J . 

Rewrite the functional J as 

J = $ (X$1 + lf&f t PT(i-f cX,u,t))dt= J (2.4.208) 

where P and 4 are multipliers to be selected so that the constraints of 
Eqs. (2.4.198) and (2.4.19C) are satisfied. Since each solution will start at 
the point x0 at time to there is no need to explicitly include the con- 
straint condition ofEq. (2.1.19B). Note that since T is equal to r (only 
terms equal to zero have been added on), minimizing the functional 7 in 
(2.4.2OA) is equivalent to minimizing the functional J- , and in what follows, 
attention will be focused exclusively on the functional S . 

Now, U,(t> denotes the first iterate which drives the system from the 
fixed-initial point to the terminal set p= 0 at the fixed-terminal time 

tf Hence, 
in (2.4:208). 

let Fc &, ) denote the corresponding value of the functional 
Expanding F(y) about T[u,) in a Taylor series, and truncating 

after the first-order terms provides 
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But the first term under the integral can be integrated by parts and combined 
with the definition of the Hamiltonian 

to yield 

Now, noting that the h dimensional vector P 
equations 

satisfies the differential 

(2.4.2I-A) 

and the boundary conditions 

allows Eq. (2.4.20B) to be written as 

(2.4.22) 

Now, minimizing ? is equivalent to minimizing T ; thus, if the amount 
by which the control can change is limited, then minimizing the first-order 
approximation to 7 should provide a second iterate K~= LL/ f Jy 
more nearly optimal. 

which. is 
Hence, require that 
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(2.4.23) 

where 4 is some small positive quantity, and that sy is to be minimized 
subject to this condition. 

Proceeding formally, the scalar multiplier 2 is introduced and the 
functional $7 formed where 

Again, requiring the first variation of $7 to vanish provides 

which is equivalent to 

(2.4.24) 

(2.4.25) 

Now, the adjoint vector P must satisfy the differential and boundary condi- 
tions of Eqs. (2.4.2l-A) and (2.4.21B). For an integration to begin, however, 
the M dimensional vector / must be known. Recall that /li is selected so 
that 

or to the first order these constraints are 

= 0 

(2.4.26) 
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The selection of /cr to satisfy Eq. (2.4.26) is accomplished by integrating 
the system 

from f+ to fO Mj/ times with the M+J different terminal conditions 

i=/,n 

/ 

A! t=+ 

Now, let 

Since the linearized form of the state equation is given by 

it is a simple matter to demonstrate the identity 

(2.4.27) 

(2.4.2&I) 

(2.4.28~) 

(2.4.29) 

for any vector P satisfying the differential condition in (2.4.2lA). 

Hence, integrating this expression between t, and 
that $x0 = o tf and noting 

provides 

(2.4.30) 
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Now, substituting each of the vectors /JCL') CA*= 1) M) into (2.4.30) 
and using the boundary conditions of (2.4.26) provides the fl equations 

Combination of this result with the expression for $4 in Eq. (2.4.25) yields 

rhis set can be used to determine the appropriate values for the A> 6- C’=$M) . 
Specifically, these equations are equivalent to the Pj linear equations 

a,, Q,z ’ . . Q,,., 

A/L( = b ti u2, aE2 . . . ~~~ . 

where 

(2.4.33A) 

(2.4.33B) 

With the multiplier /Lc determined from these equations, the exact value 
of the P vector can now be computed using Eq. (2.4.28A). The scalar multi- 
plier ji 
(2.4.23). 

is then evaluated using Eq. (2.4.25) and the constraint condition of 
This operation yields 
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(2.4.34) 

Finally, combining Eq. (2.4.30) with Eqs. (2-k-27), (2.4-32) ad (2*4*34) 
yields 

Thus 

(2.4.35) 

and for 4 sufficiently small, the new value of the performance index 

PCc”f) till be smaller than the previous value. 

The step by step calculation procedure to be used in the steepest descent 
method is as follows: 

(1) Select an initial control program, LL,C t) , 
which wilt drive the system 

x = f IX,% f) 
from the initial point ;u, to the 
terminal set c CY$)-o(L=/,n). 

(2) Integrate-the state system 
= $ c x, UC, t j 

forward f:om t, to t+ 

(3) Integrate >he ad&int system 
=- 2% 

backwards fY+/ times with the terminal 
conditions 
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Pf 

rw< - - 

(4) Compute ,4 from Eqs. (2.4.32B) $?sre the 
quantities 4; and 6; are evaluated 
from the resul6 of Steps (1) to (3). 

(5) Compute p and A from Eqs. (2.4.28A) and (2.4.34). 

(6) Use Eqs. (2.4.25) to develop the control correction 6u =kp7kf 

(7) Set y(t) = u,(t) + du(t) 

(8) Go to Step (2) 

The iteration continues until additional changes in the control program 
produce no improvement in the performance index. At this point the optimizing 
condition 

a/4 dH 

au = o - ay 
=o j L’= /, n 

has essentially been reached and the process is terminated. Additional details 
of the steepest descent procedure are given in Refs. (l-2) and (13). 

In this iteration process the second iterate is chosen to minimize the 
first-order approximation to the modified functional 7 (defined in (2.4.2OA)) 
subject to the magnitude constraint of Eq. (2.4.33). This first approximation 
is a quadratic cost problem of the type discussed in Section (2.4.1). However, 
in the approximation and minimization processes conducted in Eqs. (2.4.2OB) to 
(2.4.25) inclusive, the quadratic nature of the problem is somewhat obscure. 
Hence, it is worthwhile to give an alternate derivation of Eqs. (2.4.2OB) to 
(2.4.25) in which the quadratic nature of the problem is more apparent, and 
the solution developed in Section 2.4.1 can be applied directly. 

The quantity 

J = sux,) (2.4.36) 

is to be minimized subject to the differential constraints 

61 



(2.4.378) 

and boundary conditions 

i = fh, u, t1 

x=x 0 at &!=t 0 

j$(d = 0 Qt t=$ ; i = 1, h’ (2.4.37B) 

The first iterate satisfies the constraint conditions but does not minimize 
the functional J in (2.4.36). Hence, to first-order terms, the second iter- 
ate is to be selected to minimize 

subject to the linearized differential constraints 

the linearized boundary conditions 

% =0 at t=t* 

and the magnitude constraint 

(2.4.38) 

(2.4.39A) 

(2.4.39B) . 

(2.4.39C) 

62 



If the constraint in (2.4.39C) is adjoined to the linearized functional in 
(2.4.38) through a constant multiplier A , then the problem becomes one of 
minimizing the quantity 

(2.4.40) 

subject to the differential constraints of (2.4.39A) and the boundary condi- 
tions of (2.4.39B). 

This problem is the quadratic cost type problem of Eqs. (2.4.llA), (2.4.llB) 
and (2.&.llC), but with 

b= i?!! ax ; T; G = (g)’ 

C 
J@ = - 
dw 

; d =O ; Q, = 0 , Qa = AI (2.4.41) 

Hence, the adjoint equations and boundary conditions (see Eqs. (2.4.13B) and 
(2.4.15A)) take the form 

with the optimal control satisfying 

(2.4-U) 

(2.4.43 > 

The methods of Section 2.4.1 can now be used to develop the solution. 

Note that the required conditions in (2.&.&Z) and (2.4.43) are identical 
to those used in Eqs. (2.4.2lA), (2.4.2lB) and (2.4.25). (These equations were 
used in the calculation of the steepest descent correction.) This discussion 
establishes the quadratic nature of the auxiliary minimization problem used in 
the steepest descent procedure. More important, it also establishes that 
minimizing the firs&order approximation to the modified functional 3 
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+ 
7 = S%Z--) f@> f p%-fldt (2.4.438) 

to 
is equivalent to minimizing the first-order approximation to J = $(x,1 
subject to linearized versions of the boundary and differential constraints. 

In the quasilinear and neighboring extremal techniques to be discussed 
subsequently, a similar procedure will be used. That is, second iterates will 
be developed by minimizing some approximation to the functional 7 in Eq. 
(2.4.43A). This approach is algebraically cleaner than minimizing an approxi- 
mation to s subject to linearized constraints. However, in taking this 
approach, the quadratic nature of the auxiliary minimization problem is 
obscured. 

2.4.3 Neighboring Extremal 

The optimization problem is solved once a solution has been generated to 
the 2n system of equations 

i = f(x, I!/, t) 

dH 
;d =- z 

which satisfies the 2n boundary conditions 

x =X0 at r' = to 

where the multiplier p is determined so that 

Ywf’ 
r* 1 3% (Xf) ydx$= . =o v.i. (Xf) 
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(2.4.44) 

(2.4.45) 

(2.4.46) 

(2.4.r;7) 

c 
u 



This optimal control is determined from the condition 

(2.4.48) 

Note that Eqs. (2.4.46) and (2.4.47) constitute a set of n+M terminal 
conditions. If the matrix (a~i/ax') has maximum rank (i.e., if the constraints 

I,!J; = 0 are not redundant) then thJe,vector j..k can be eliminated from this 
se< providing a system of n equations in thevariables p 
example, Eq. (2.4.46) can be rewritten as f 

which is equivalent to the two sets 

f 1 

I f 

+ 

A’ 
7% 

2l . . J 

+ 

and 
"f l 

For 

‘f?w 

P -t2 

7% 

= 0 

(2.4.49A) 

1 = 0 
(2.4.49B) 



Solving the first set for the vector p and substituting into the second set 
leaves a system of n - M equations in the variables pf and 
Combining these equations with Eqs. Xf l (2.4.47) then provides a system of n 
equations in the 2n unknowns, pf and "f l 

In what follows, it will 
be assumed that such a procedure has been followed with the multiplier j.~ 
eliminated from the ntM constraints of Eqs. (2.4,46) and (2.4.4'7). The 
resulting n equations in xf and Pf will be denoted by the expression 

Thus, the terminal constraints of Eqs. (2.4.46) and (2.4.47) have been replaced 
by the equivalent representation given in Eq. (2.430). 

In the neighboring extremal technique, each iterate satisfies the opti- 
mizing condition of Eq. (2.4.48) along with Eqs. (2.4.u) and (2.&U), but 
does not satisfy the required terminal conditions in Eq. (2.4.50). The itera- 
tion consists of correcting and recorrecting the initial value of the vector, 

PO ' so that Eq. (2.4.50) are satisfied. The method by which this is accom- 
plishedisasfollows: Since the initial value p. completely determines a 
solution (a particular iterate) in the neighboring extremal mse, both xf 
and 

ps 
Hence, the terminal constraint of (2.4.50) 

takes t 
are functions of p. . 

e form 

v+pf ) = qvfio,, = =o 
(2.4.51) 

IJet PO denote the first iterate (i.e., the first guess of the initial 
vector)'and expand q in the truncated Taylor series 

The second iterate is taken as that value of p. for which the above approx- 
mation is zero. Hence, 

(2.4.52) 



In the initial application of this method (see for example Ref. (I&)) the 
derivative matrix (a-'li/dPj,) was approximated by the finite difference matrix 
(A?li/Apj,) with the latter generated by numerically integrating the original 

system but with a slightly perturbed set of p, vectors. Later on, a method 
was suggested (see Refs. (U), (16), and (17)) for a more precise evaluation 
of this derivative using the theory of the second variation in the Calculus 
of Variations. This method is now generally referred to as the neighboring 
extremal technique. An account of this method is given next. 

Minimizing +(xf) subject to the state equations 

2 = f(x, u, t) 

and the terminal conditions 

is equivalent to minimizing the functional 7 where 

(2.4.53) 

Let Po1 denote the first iterate and 5, the corresponding value of 7 . 
Expanding 3 in a Taylor series about p and truncating the series after 
the second-order terms provides 01 

where 

(2.4.54) 

-- o’t (2.4.55) 
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Now, the nominal trajectory (the first iterate) will Satisfy au the optblbklg 
equations but the terminal condition of Eq. (2.4.50); that is, EqS. (2.4.44), 
(2.4.45) and (2.4.48) are satisfied by the nominal trajectory. Hence, Eqs. 
(2.4.54) and (2.4.55) reduce to 

(2.4.56) 

Now the sec_ond iterate is to be selected to minimize the second-order approxi- 
mation to J as given in Eq. (2.4.56). Proceeding formally, the first 
vy$;ion offit($ expreesion in (2.4.56) with respect to the variables 8x(t) , 

U 

equation: 
P Y f and 6~ is set equal to zero. This leads to the 
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1 (2.4.60) 

Eqs. (2.4.57) to (2.4.59) are the linearized approximations to the state, 
adjoint and optimizing equations given in (2.4.44) and (2.4.48); the boundary 
condition of (2.4.60) is the linearized version of Eqs. (2.4.46) and (2.4.47). 
In view of the assumption that the multiplier ,!.L has been eliminated and Eqs. 
(2.4.46) and (2.4.47) represented in the form of Eq. (2.4.50), it can be shown 
that the linearized result in (2.4.60) is equivalent to 

(2.4.61) 

Thus, the second iterate is generated from 

% = z, + Jpo 
where 6p is to be chosen so that Eqs. (2.4.57), (2.4.58) and (2.4.59) are 
satisfied: subject to the boundary conditions of (2.4.61). 

Under the assumption that la2H/au21 $0 along the first iterate, Eq. 
(2.4.59) can be solved for 6u yielding 

Substitution of this result into (2.4.57) and (2.4.58) provides the 
linear system in 6x and 6p 

(2.4.62) 

(2.k.63) 

where the C(k) (k=1,3) are nxn matrices with the elements given by 
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The solution to this system can be represented by 

(2.4.65) 

where A is the 2n by 2n fundamental matrix solutions 

A (0) = I (2.2c.66) 

Let A be partitioned into four n by n matrices of the form 

Then, since 6x, is zero, it follows that 
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tip, =- 2 ax (2.4.68) 
c 

The second iterate is now generated from the initial p vector as 

where Spa is evaluated using (2.4.68). If the first solution comes 
reasonably close to the correct terminal set 

then the second solution should be even closer. In fact, if the method con- 
verges to the correct terminal set, the convergence will be quadratic with 

I fin+, -i4,/ - I& - %n-, /’ 
It is again emphasized that the neighboring extremal technique is simply a 
device for solving the transcendental equation in (2.4.51) for the unknown 
vector p. 

A step by step account of the calculations to be performed at each itera- 
tion is given below: 

(1) Guess a po vector 

(2) Integrate the 2n system 
2 = C(x,u,it) ; p = - g! 

from to to tf with u 
aH 

satisfying 

au 
=0 

(3) Test to see if the n terminal conditions 

Q($P,) = 0 
are satisfied. If they are not, continue. 

(4) Determine the 2n x 2n fundamental matrix solution 

i = CA ; Act,) = I 
where the C matrix is given in Eq. (2.4.64). Note that since only 

A2 and A4 are used (see Eq. (2.4.67)), only half of the 
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calculation required in evaluation A need be performed. 

(5) Evaluate 6p. using Eq. (2.4.68) and set 

% = %, * 4% 

(6) Return to Step (2) 

The process is continued until the required terminal conditions 

are satisfied. 

2.4.4 Quasilinearization 

Stating the problem again, the solution to the system 

i= f (x, u, t) 

is to be determined which satisfies the initial conditions 

x = z. af t= 15, (2.4.69) 

and the terminal conditions 

(2.4.68) 

and where u is selected so that '8 

1 

at/ 
$ 

au 
= 0 i /I 

(2.4.71) j, i.\! i 6. 

It is also assumed that a procedure similar to that indicated in Eqs. (2.4.49) 
to (2.4.50) has been used to eliminate the multiplier p from the ntM 
terminal conditions of Eq. (2.4.70). This approach results in a set of n 
equations in the 2n variables Xf and Pf 

which will be represented by 
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pj.,iy) = =0 

(2.4.72) 

Thus, the multiplier p no longer appears in the boundary conditions that are 
to be satisfied. 

The method of quasilinearization is frequently referred to in the litera- 
ture as the generalized Newton-Raphson technique. As indicated in Refs. (18) 
to (20) the technique is conceptually the same as the Newton-Raphson procedure 
employed in maxima-minima theory. For this reason, the latter name may be 
more appropriate. The use of the technique in trajectory optimization problems 
is demonstrated in Refs. (21) and (22). 

Like neighboring extremal, quasilinearization is a second-order iterative 
process in that second-order terms in the series expansion are used. In con- 
trast, each successive iterate satisfies the boundary conditions of (2.4.69) 
and (2.4.72), but does not satisfy the governing differential equations of 
(2.4.68). The iterative process consists of correcting and recorrecting the 
starting solution in a direction which tends to "bring in" the differential 
constraints subject to the constraint that the optimizing condition of (2.4.71) 
is satisfied. This condition can either be satisfied exactly by each iterate 
(the usual procedure in the literature) or can be "brought in" by the iteration 
process. 

Again, let the functional to be minimized by written as 

and let the first iteration be denoted by 

(2.4.73) 

x = z, lt) 

p= @kl 

1 

first iteration 

,g= q(t) 

(2.4.74) 
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are required to satisfy the boundary constraints of 
~~~e(212'.6~~~nd~~.4.72) but not the differential constraints of (2.4.68). 
Now, expand 7 in a truncated Taylor series about the first iteration as 

(2.4.76) 

and select the second iteration so as to minimize this second-order approxima- 
tion. Proceeding formally, the.first variation with respect to the quantities 

6x(t) isu(t) Z,(t) 6x 
to zero providing the difierential expiessionfs 

, and 6~ is set equal 

(2.4.77) 



Since the first iterate must satisfy the terminal conditions of Eq. (2.4.72) 
(which is equivalent to (2.4.70)), the boundary equations can be shown to 
reduce to the h conditions 

Y- ax f 3 6 
a+ +- + e = O f (2.4.81) 

In addition, the initial condition 

(2.4.82) 

must hold since the first iteration satisfies Eq. (2.4.69)*. 

The required boundary conditions of Eqs. (2.4.81) and (2.4.82 are the 
linearized from of the actual boundary conditions in (2.4.69) and 2 2.4.70). 
Also, Eqs. (2.4.77) to (2.4.79) are simply the linearized from of the con- 
straint conditions in (2.4.68) and (2.4.71). Note the appearance of the terms 
(i -6;) and (i,'(-i$!)) in the Eqs. (2.4.77) and (2.4.78). These terms 
are/ present since the f&t solution does not satisfy the differential con- 
straints. For example, define t by 

2 = ,i - jy%,&(, z!) = t (2, x, u, t) = 0 
. 

and expand t about some first solution Z, =z o(,) 3,) LCI 1 4, which does 
not satisfy the zero condition. This procedure yields 

which is exactly the sane as Eq. (2.4.77). 

Once the quantities S, SP and sq have been computed using Eqs. 
(2.4.77) to (2.4.79) and the bo&dary conditions of (2.4.81) and (2.4.82), the 
second iterate can be determined from 

However, it is computationally more convenient to substitute (2.4.83) into the 
governing equations, Eqs. (2.4.77) to (2.4.79) and (2.4.81) to (2.4.82), and 
then solve for the second iterate directly. 
which the presence of the derivatives, 9, 

This approach avoids any trouble 
and 4 in (2.4.77) and (2.4.78), 

may cause. Thus, substituting Eq. (2.4.83) into Eqs. (2.4.77) to (2.4.79) 
provides 

75 



(2.4.84) 

(2.4.85) 

Similarly, the boundary conditions of (2.4.82) and (2.4.81) become 

(2.4.87) 

Thus, under the assumption that 
be solved for K and the result 

I I &T does not vanish, 
s%s?ktuted into Eqs. (2.4. 

Eq. (2.4.86) can 
84) and (2.4.85). 

This substitution provides the linear system 

where the C 13 are given by Eq. (2.4.64) and where d@ and d@are/, vectors 
given by 
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(2.4.89) 

This system has the solution 

where the quantity xA (t,) = x, and & clt,) is to be chosen so that 
Eq. (2.4.87) is satisfied. The matrix A is the fundamental matrix solution 
given in (2.4.66). 

The step by step iterative process takes the following form: 

(1) SSew\thejti.me histories of the three functions %,Ct ) , p/ It) 
/ so that the bqundary conditions 

x(&J = x0 af t = 2, 

T”‘Zf, f) = 0 ad t=tc 

(2) Compute the matrices Co 
(2.4.64) and (2.4.89). 

CL c@ d'and dGusing Eqs. 
F&n the& matriges determine the fundamental 

matrix-/L where 

/i= CA; A CtJ =I 
(3) Select P,ltiO) so that the terminal state given by 

[ ;l;;l'] = R L$l{ [ ,:,,1 +p-'(r) [I;] dj 

satisfies the linearized terminal conditions 

the second iterate, X2 and PL . 

(5) Use Eq. (2.4.86) to evaluate aA (8) . . 
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(6) GO to Step (2). 

The process continues until additional iterations produce essentially no 
change in x (f> , p [fJ or Y(t) . At this point, the solution has been 
achieved. 

2.4.5 Discussion 

The three techniques which have been presented in the preceeding sections 
are those most commonly used to solve optimization problems of the Classical 
Mayer type (i.e., a Mayer Problem in which no constraints are imposed on the 
control action 4 ). It is to be emphasized that these are not the only 
techniques that are available. However, all other techniques are simply minor 
variations on the above three. While these variations may be of considerable 
importance when it comes to solving specialized problems, they tire of limited 
interest as far as general methods of solution are conserned. 

Each of the techniques has certain advantages and disadvantages when 
compared with the other two. An assessment of the relative merits and utility 
of each method is offered in the following paragraphs. 

A. Amount of Computation Required for Each Iteration 

As a general rule, the steepest descent method requires less computation 
for any one iteration than either neighboring extremal or quasilinearization. 
This advantage is the result of the fact that steepest descent is a first- 
order method and only the first-order terms in a series expansion need be 
evaluated to compute each succeeding iterate. The evaluation of second-order 
terms, which are needed is neighboring extremal and quasilinearization, causes 
a slight to moderate increase in the amount of computation required. 

The fact that steepest descent requires less computation at any one step 
does not mean that the overall amount of computation is minimized by using 
this method. Possibly more steps (more iterates) may be required to generate 
a solution by steepest descent; or possibly, the method itself may diverge. 
This, of course, would depend on the particular problem being solved and the 
exact value of the starting iteration. 

B. Storage on the Computer 

In general, the neighboring extremal technique requires the least amount 
of storage and quasilinearization, the most. 

The computer storage is directly proportionalto the amount of information 
required to completely specify a particular iterate. In neighboring extremal, 
this information consists of simply /T number, the initial value of the p 
vector. In the steepest descent method, the required information is the time 
history of the control vector Y , while in quasilinearization, the time 
history of the x , & and P vectors are needed. 

c. Difficulty to Program for the Computer 

As in the case of storage, the programming difficulty is proportionalto 
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the amount of information that must be retained in order to specify a particu- 
lar iterate. For this reason, neighboring extremal is considerably simpler 
to program than steepest descent (considerably less information is needed to 
specify the iterate) and quasilinearization is significantly more difficult. 

D. Selection of a Starting Iterate 

To begin the numerical process, a starting iterate must be selected. The 
difficulty in making this selection is a function of the number of conditions 
that the starting iterate must satisfy. In neighboring extremal, the starting 
iterate is specified by the value of the initial P vector and this vector is 
not required to satisfy any condition whatsoever. Hence, the difficulty here 
is zero. In quasilinearization, the starting iterate, x,(6/ P (6) and 

4, Ct/ Y must satisfy certain initial and terminal conditions (EqA (2.4.69) 
and (2.4.72)). However, since these functions need not satisfy the differen- 
tial constraints, it is an easy matter to make this selection. (The difficulty 
here is very close to zero.) On the other hand, the starting iterate in 
steepest descent must satisfy both the state boundary conditions and the state 
differential constraints (Eqs. (2.4.19A) to (2.4.19C)). For this reason, the 
selection of a starting iterate in steepest descent is an order of magnitude 
more difficult than that encountered in either of the other two methods. In 
fact, the program must generally have a special subroutine (which is itself 
iterative) for calculating a satisfactory starting iterate. 

E. Rate and Radius of Convergence - 

As a general rule, second-order iterative techniques converge rapidly, if 
the starting point is close to the optimal point, and diverge rapidly elsewhere. 
On the other hand, first-ordermethods can be made to converge from points far 
removed from the optimal point but the rate of convergence tends to zero as 
the optimal point is approached. For this reason it appears that some combin- 
ation of both the methods might produce the best results. Of course, the 
radius of convergence of both neighboring extremal and quasilinearization can 
be extended by using a procedure similar to that employed in Eq. (2.2.34) for 
extending the radius of convergence of the Newton-Raphson method. By this 
device the second-order techniques attempt to remove only a part of the error 
(rather than the total error) during any one iteration. In papers dealing 
with optimization problems which have been solved using a second-order method, 
such a procedure is almost always used. 
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2.5 NONCLASSICAL MAYER PROBLEM 

The previous section dealt strictly with the Classical Mayer Problem in 
which the admissible control set U is the entire r dimensional control 
space and the individual control components satisfy the Euler equation 

dH -= 
au 

aH 
z, 
e! 
%2 -0 

(2.5.1) 

In many applications, these conditions are not satisfied. For example, in the 
vehicle problem of Section 2.1, the control component (corresponding to 
the throttle setting( had to satisfy the inequality condition of Eq. (2.1.13) 
with the control set U limited by Eq. (2.1.14). In this case, the optimal 
value of uf (th; value +ch maximizes the Hamiltonian H ) does not 
satisfy Eq. 2.5.1 as is indicated by Eqs. (2.1.25) and (2.1.26). 

The dension of the three iterative procedures to nonclassical problems 
is a relatively straight forward matter. Unfortunately the exact form which 
this extension takes depends strongly on the exact form of the admissible 
control set U and the number of control components which are constrained. 
Hence, it is not possible to develop a set of equations which completely 
describe the iterative process and which are also generally applicable. For 
this reason, the attention will be focused on one particular type of nonclassi- 
cal problem; namely, the l'bang-bangt' problem. For convenience, it will also 
be assumed that only one control component is constrained. The approach does 
not change if additional constraints are included. However, the algebra gets 
unwieldly. 

The state equations for the problem under consideration are 

x = f‘(x,u,z!) ==s- i; = < (X,U,tl ; 1' = /, n (2.5-l) 

where u is an r dimensional control vector which is required to lie in the 
set U . It is assumed that the control components have been numbered so that 

U is described by 

uce v 

(2.5.2) 
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that is, only the rth control component, ur 
ponent is to lie in the region [U 

, is constrained; this com- 
rM+&&.&ws it $~;;e~o;;~~~t;o can take on any values whatsoever. 

let v denote the constrained component ; tha: is 

% 
Mlhl MAX 

(2.5.3) 

with the control vector given by 

u H = N 
~ 

(2.5.4) 

In addition to the form of U , it is required that v appear linearly 
in the governing state equations with (2.5.1) taking the explicit form 

i = f(x, u,m, t) = F-(x, u, &!J + dxx, u, t) 

2!i = $((n,u,f) +Nqh,u,f) ; (‘=j,n (2.5.5) 

It is this latter requirement that causes the problem to be "bang-bang" - a 
term which indicates that v is either on its upper or lower bound and that 
transitions from one bound to the other are made discontinuously. Note that 
the vehicle problem of Section 2.1 (see Eqs. (2.1.9)) took just this from 
with v equal to u2 and with v satisfying 

as indicated by (2.1.13). 

While this problem is not completely general, it does occur rather fre- 
quently in trajectory applications. More important, the manner in which the 
iterative techniques are modified to handle this particular problem should 
serve to indicate similar modification procedures for other nonclassical 
problems. 

2.5.1 Erob&s Statement and Necessary Conditions 

The state of the system is given by 
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i L’ = ((;~,~,/v,f) =<(x,u,t)+~G~(x,~,t) (2.5.6) 

i=/,n 
where u is an r-l dimensional control vector 

4 

[* I 

52 u= : 
4.4 r-l 

and where N is a one-dimensional control variable required to satisfy the 
inequality 

N MlN 
g NC 

WAX 
(2.5.7) 

Again, the control action, u and nt , is to be determined so that the ter- 
minal constraints 

?$ (x) gfFU(x)= . 
i 1 GM (%I 

= 0 at t=+ (2.5.8) 

are satisfied and so that a function of the terminal state is minimized; that 
is 

J= $%I@ = minimum (2.5.9) 

Applying the maximum principle of Section 2.1 (which requires that the 
control maximize the Hamiltonian) leads to the condition that u be deter- 
mined so that 

(2.5.10) 
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where 

and that JU be selected so that 

where 

(2.5.11) 

n 
(y = fQ = E e Gi (~9 us t) (2.5.12) 

i=l 

The adjoint variables for this problem satisfy the differential system 

(2.5.13) 

and the transversality conditions 

where p is selected so that Eq. (2.5.8) holds. Note that the multiplierfl 
can be eliminated from the terminal conditions of Eqs. (2.5.8) and (2.5.U). 
This elimination leads to a system of n independent equations in the .Zn 
variables pf and zf l 

As in the preceeding section, this system will be 
represented by 

=0 ai t=if 

(2.5.15) 

Once again, it is assumed that the final time is explicitly specified. An 
extension to the Itfinal time openI' case will be given in Section 2.5.5. 
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2.5.2 Neighboring Extremal Technique 

Assume that an initial p vector, p+ , has been selected and that an 
optimal trajectory has been computed which does not satisfy the terminal con- 
straints of Eq. (2.5.15). As in the classical case of Section 2.4.3, the 
neighboring extremal technique seeks to correct the initial value of p so 
that the terminal conditions are met. The process of correction is the Newton- 
Raphson technique contained in the iterative equation 

(2.5.16) 

where 6p 
initial "p 

is the difference between the first and second values of the 
vector; i.e., 

As pointed out in the previous section, the rate of convergence of Eq. 
(2.5.16) is quadratic if the partial derivative matrix an/dp, is calculated 
exactly. It has been this investigatorts experience that finite difference 
approximations to this matrix are sometimes inadequate unless a great deal of 
care is taken in the approximation process such as performing the calculations 
in double precision on the computer. The advantage of the neighboring extremal 
technique is that it allows for a precise evaluation of the derivative matrix 
without resorting to the double precision calculations. 

Denote'rry the Mlxcri.@ I the trajectory and control action resulting from 
a certain choice of pO , say p. ; that is 

I 

x (I!) = x, ct) 
U(t) = u, tt) 
IV(t) = N;(t) 
p(t) = 19 (t) (2.5.17) 

Now, write the perturbed state equation in the form 

(2.5.18) 
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where 

6% = x.-c.- lf) - x, (t) 

and where the trajectory s(t) is that resulting from a new choice of 

% 
It is tacitly assumed in Eq. (2.5.18) that 6% 

. 'a~~ysm%L (Lfinitesimal). 
6~ and 

control programs, ly;(t) 
This, however, is not the case. 1; the two 

and +It) shown in Sketch 
A 

6) 
it follows that &v is finite on the interval (tf" ) t, > 

are compared, then 
and the validity 

of Eq. (2.5.18) on this interval becomes questionable. Now, in the quasilinear 
and gradient techniqu;s to follow, the behavior of the nominal and neighboring 

I 

i p 
t 

I 
I 

I I I 
t@ +P t 

Sketch (6) - Possible Control Programs 

solutions specifically on this interval, (t,'b, t?] will be of prime 
interest; thus, the description contained in Eq. (2.5.151 is not correct. In 
the neighboring extremal technique, however, the derivative matrix is calcu- 
lated by considering the limiting case in which the interval goes to zero. In 
this case the description contained in Eq. (2.5.18) is adequate since, though 

SN is finite, its effect becomes infinitesimal as the interval shrinks to 
zero. However, to be consistent with the quasilinearization and gradient 
techniques which follow, a different perturbation method will be used from 
that employed in Eq. (2.5.18) even though Eq. (2.5.18) is adequate for the 
neighboring extremal case. 

Suppose the perturbations 6% , Sp and Su are calculated by comparing 
the nominal set and neighboring solutions at different values of time. For 
example, let 
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6x(&!) = x2 (i + St) - %, It) 

SK It) = &+.(tf Sf) - u,w 

6pU) = pr (ft 82) -p(f) 

&r(i) = Nz (L!t 8t) - q tt) (2.5.19) 

where St is a small time variation which in itself can vary with tine; i.e., 

St = cf.&! If&) (2.5.20) 

Further, require 
( P 

that St(t) be selected so that at the switching times, 
along the neighboring or second solution and ty along the nominal or 

first solution) the equation 

holds. In this case, 

(2.5.21) 

and since 6v differs from zero only in the vicinity of the switching times 
t; , it follows that 

&v E 0 (2.5.22) 

By this device, the difficulty arising from the finiteness of 6~ in Eq. 
(2.5.18) is eliminated. 

From Eq. (2.5.19), the perturbation equations take the form 

a+i 

sib= -- 
a2H 

hap 
JP - 

azlY 

s Sr- - SK - 
ax au 

(2.5.23) 
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where the quantity 6u is computed from Eq. (2.4.59) to be 

(2.5.24) 

Note that the matri.x(3%//3ffgis again assumed to have nonvanishing determinant. 

Substitution of (2.5.24) into (2.5.23) provides the system 

si 

[I [ 

c 0(f) cOw 
Z 

SP c@‘(f) -Fit) (2.5.25) 

where the Co are n by n matrices given by 

(2.5.26) 

The solution to (2.5.25) takes the form 

[;;I = R Ct,) ( [;-I f $ A-‘(&) St; [:;;;; 1 j:;;;]/ (2.5.27) 

where A(t) is the fundamental i?n by 2n matrix solution to the system 
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A = c(f)/2 ; A CfJ = 1 

where C(t) has the components given by Eq. (2.5.26), where the summation in 
Eq. (2.5.27) is over the number of switches and where 62; indicates the 
difference in the ith switch time between the neighboring (second) and nominal 
(first) solutions. It is assumed that the nominal solution contains K 
switches. For any time t between the jth and j + lth switch, the solution 
to (2.5.25) takes the form 

Now, the values of Sq can be calculated from the condition contained in 
Eq. (2.5.11) that the stitching function vanish at the stitching times; that 
is 

6 [dt;,, puil, dt~.,] = 0 ; L’” 1, K 

Expanding B about the nominal solution at time t; 0 
provides 

r-l 
L+0 

- 
aLf.J 

“UJ =o at t=fi 
0 

; L'= ',K (2.5.29) 

and substituting Eq. (2.5.24) into (23.29) yields the K conditions 

a . 6,y ( q, i /& * 6p ( f‘? = 0 

where tx and p are 1 by R row matrices given by 
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a== (q.) = (2 - i g , 
(2.5.31) 

which are evaluated at the K switching points fL? . 

Now,atthe ,witch@nt tL* it follows from Eq. (2.5.28) that 

(2.5.32) 

Thus, Eqs. (2.5.30) and (2.5.32) can be used to evaluate the changes in the 
switching times, rst, . EIy straightforward algebraic manipulation, it can 
be shown that 

where 1 is the 2n by 2n unit matrix, 
given by 

f(fT) is the 2n by 2n matrix 

and with 8 a scalar given by 

(2.3.35) 
,.- Note the additional&requirements on the nominal solution that ,$(t;') $0 
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Substitution of (2.5.33) into (2.5.27) yields the desired result 

(I + a @I) 
(2.5.36) 

Recall that the objective of the neighboring extremal technique is to 
correct the initial p vector, A by an amount 6p0 so that the terminal 
conditions of Eq. (2.5.15) are satis&ed. The correction procedure of Eq. 
(2.5.16) requires the evaluation of the derivative matrix(ay///p,) and the 
last few paragraphs have been concerned with the development of.Eq. (2.5.36) 
which is needed in this evaluation. 
represented by 

The derivative matrix (&+?/a~) can be 

($4; (zg) (q)+ (q (q-) (2.5.37) 

Note that the matrices(av/$$)and (aq//dx+-) can be evaluated analytically from 
Eq. (2.5.15). 
once the Zlr 

Further, the matrices&/$@and(a$/c?'p,)are easily computed 
by 2n matrix (A 'i/l T;'{z+Y","@# 

This step is accomplished by partit%ing this 
) has been found. 

2~ by in matrix into four 
n by n matrices as 

form 

which is now easily evaluated. 

NOW, since a+., in (2.5.36) is zero, it follows that Eq. (2.5.37 ') takes the 

(2.5.39) 

The step by step calculation procedure is as follows: 

(1) Guess p 01 
and integrate the system 

)=O d/,l - -0 au. - j /2/-=?hA%. 

R/- = /zr,/N 

(2.5.38) 

870 
840 
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(2) Integrate the system A = c(&)Aj -&(k,) 3 1 

from t, to L; . (Note that since dr 
of this integration need be performed.7 

is zero only a portion 

(3) Compute r (t;@) using Eqs. (2.5.34) and (2.5.31). 

(4) Evaluate a@ and f2@ using Eq. (2.5.38). 

(5) Calculate ('y/a&from Eq. (2.5.39).= 

(6) Set 6p, = - ( ay/~8)‘/~(x4 t 3 ) 

(7) Update po by 8% 

(8) Go to step (2). 

The process is continued until the correct p, vector is found. 

2.5.3 Steepest Descent 

The steepest descent technique as applied to the nonclassical problem of 
Eqs. (2.5.6) to (2.5.9) is much the same as that used in the classical Mayer 
problem of Section 2.4.2. The iteration starts with an admissible control 
program, u and N , which satisfies the terminal and transversality conditions 
of Eqs. (2.5.8) and (2.5.14) but which is not optimal. This program is then 
corrected in the direction in which the minimizing function, &(r,J , is 
decreasing most rapidly but with the requirement that the corrected program 
continue to satisfy the problem terminal conditions. Since changes in the 
control variable M (denoted by 6~ ) will not be small over the entire tra- 
jectory, a resort must again be made to the perturbation method described in 
Eqs. (2.5.19) to (2.5.23) in which the nominal and corrected solutions are 
compared at different values of time. By this device, the problem of 
successively adjusting the variable N is transformed into that of successively 
adjusting the switching times at which N jumps from one extreme value to 
another. 

From Eq. (2.5.23) 

(2.5.40) 

where St is a function of time and is required to satisfy the conditions 

0 
CL = t,"+ St (tJ; i = I, K 

The quantities, t? and t9 denote the ith 
first iterations r&pectiv&y. 

switch time along the second and 
But, the adjoint equations are 



Thus, the identity 

P fr S’ir, -jy cr;rco (2.5.U) 

t* t0 

immediately follows. Since the state of the.system is specified initially 
and since 4 is required to satisfy the transversality condition of Eq. 
(2.5.14); &at is 

(2.5.42) 

Eq. (2.5.&l) takes the form 

ff 
d$ 4(dw’)T/u = - 

/ 
A-c&.f H&t 

cl 
(2.5.43) 

t0 

Now, in the neighboring extremal technique of the previous section, only 
the values which 6t took at the K distinct switching times ( t:, L'= /,K ) 
entered into the analysis. The'form of 6t on the intervals between switches 
was of no concern. In the steepest descent technique, however, the functional 
form of &tit) must be specified beforehand. For simplicity 6t' will be 
taken to be a constant on the intervals between switches. Specifically, on 
the interval between the i-lth and ith switch, [fL: , t;"] , let 

(2.5.44) 

with 

a. L-l = 

Substitution of Eq. (2.5.44) into (2.5.43) provides 

where 

df +(dy); =/“s dudt - 2 6tk (s-,- K; 1 (2.5.46) 

f0 
i-l 
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dt 

(2.5.47) 

Now as in the classical treatment, the quantity dP is to be minimized 
subject to dp= 0 and subject also to some additional constraint on the amount 
of correction to be made. In the classical case, it was required that 

(2.5.48) 

f: 
Here, however, a restriction must also 
switch times can change; i.e., the Sti 
such a restriction could be included. 
it might also be required that 

be placed on the amount by which the 
There are several ways in which 

F& example, in addition to (2.5.48), 

(2.5.49) 

Alternately, the corrections in 6ti and 6~ might be made sequentially, 
rather than simultaneously, by first correcting 6~ under the conditions that 

' = 0 and then correcting St; with bu=O . However, in the treatment to 
f%ow, Eqs. (2.5.48) and (2.5.49) will be combined into the single condition 

+-f 

/ 
J-u2dze +i dt; =/+p (2.5.50) 

t* i -J 

Introducing the additional multiplier h , the optimizing condition of 
(2.5.46) becomes 
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Thus, equating the first variation to zero provides 

(2.5.52) 

and it follows that 

The multiplier, X , is determined by substituting Eqs. (2.5.52) in (2.5.50). 
The /+. are determined by integrating the adjoint equations backwards M+f 
times where M is the number of terminal constraints of the'form y =0 . The 
terminal value of 4 for each integration is 

K" = 
- %dJx 

4 
i-c, = _ %.Lh ai f=f/ 

pt 
Irr+d = - as/ax 

From Eq. (2.5.42), it follows that the adjoint vector to be used in the calcu- 
lations has the terminal value 

and that u 

This solution represents a system of M equations in M unknowns (the M. ) 
and can be evaluated numerically. The ,.u. 

C 
, so determined, are then us d to 6 

evaluate the adjoint vector, p , where 

This vector then allows the control correction ( bu ) and St; to be computed. 

The step by step computation procedure takes the following form: 
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(1) 

(2) 

(3) 

Select U,(t) and nr;(t) for which the terminal conditions 

are satisfied. 

Integrate the state system 

from to to fF . 2 = f (&d.,~ t 1 

Integrate the adjoint system ' 
P 

dH =C- 
ax 

backwards Mtl times with the M+I terminal condition 

(5) Determine A from 

&$[gjLdt ~5 [c-,-K-$=,,@ 

(6) Determine sz$ kom 
AC=! 

Ai = 

(7) Compute s,,, from 

a,-, = 
& - d-&i -, 

(8) Compute 
t.@ t,y 

7- = &fcf(L, 
where 

(9) Compute the new switch times 

(10) Update the control 



(ll) Go to step (2) 

Note that in the process, the number of switch times may decrease, but 
may never increase. If the starting control program is selected so that 
m(t) has K switches while the optimal program has K-I , then it is not un- 
likely that the process will converge to the correct solution. However, if 
the optimal solution contains K+J switches, the iteration process contains 
no mechanism for increasing a starting guess of K switches to KtJ . Hence, 
the iteration process will not converge on the optimal solution. Most likely, 
the process will converge on the solution which is optimal under the additional 
restrictions that w(f) contain K or fewer switches. 

2.5.4 &uasilinearization 

As in the classical Mayer problem, the iteration starts with the functions 
p,(f) , x,(t) , ~c,Itl and e (t) which satisfy the boundary conditions 

y = ‘)c, AT & = to 

=0 AT++ 

but do not satisfy the differential equations 

or the optimizing conditions 

(2.5.54) 

(2.5.55) 

Subsequent programs, pa(t) , ur (tl and x.:,ct) are computed so as to minimize 
the second-order approximation to J ti*ere 

7- 

Using the device of comparing thztwo solutions at different values of 
time, the perturbation equations take the form 
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where &t(t) is to be determined so that the ith switch along the second and 
first solutions are related by 

This last condition provides 

The change in control 6u is now determined from the equation 

Substituting (2.5.58l.into (2.5-56) and noting the identities 

(2.5.57) 

(2.5.58) 

(2.5.59) 

provides 

where C 0 and do are given by Eqs. (2.4.64) and (2.4.89), respectively, 
and where r and t are related by 
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7- =t+cwt, (2.5.61) 

Eq. (2.5.60) is to satisfy the boundary conditions 

(2.5.62) 

The time history of 6t(t) is arbitrary except for the corner condition 
of Eq. (2.5.57) which requires that the updated switching function, 0 , vanish 
at the new switching times; that is 

(2.5.63) 

where /L is the number of switches. 
can be rewritten as 

This condition, which determines @(c~?), 

J je = ~~~j i = /,K (2.5.64) 

where a: and ,6 are given by Eq. (2.5.31). 

Eqs. (2.5.60) to (2.5.64) can be solved for + and pZ as soon as the 
form of St(t) is specified on the intervals between stitches. Since this 
function is arbitrary, it should be chosen to augment the iterative process 
in both the rate of convergence and computation required. Undoubtedly, the 
simplest choice in regard to the amount of computation is to take 61 as a 
series of delta functions such that 6t is zero on the interval between 
switches while taking on the appropriate value at the switching corners. In 
this case, however, the behavior of x2 , 7% and uz on the intervals 
( $5 $@ ) would be lost since the time variable, r in Eq. (2.5.61), would 
jump discontinuously from 1: to $" . 

Alternately, &i(t) could be equated to some smooth function closely 
approximating a sequence of step functions. By this smoothing process, the 
behavior of x2 and fi on ( fro , z!~@ ) would be retained. But, unless con- 
siderable care were taken, these values would contain errors which would influ- 
ence the switching time adjustments on the next iteration as indicated in Eq. 
(2.5.63) (i.e., the change in switch times is a function of the state and 
adjoint values at the previou_sly iterated switching points). 
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In the development here, $c will be taken to be constant. As in the 
steepest descent method, define St(t) by 

&t(e) At;-,+a;-, (t-$yl ; 5: r-p (2.5.65) 

with 

With 6t(t) defined, the variables x2 and p can now be determined. 

The solutions to Eq. (2.5.60) can be represented by 

This solution involves n+K parameters, the initial p *vector, R, , and 
the K distinct but constant values of the derivative 8t on intervals between 
switches (i.e., from Eq. (2.5.66), these constants.take the values a,, a, ,--. 

). These parameters are to be determined to satisfy the 
tea%&,1 conditions Ei:q. (2.5.62) and the k corner conditions of Eq. (2:5.64). 
Since these equations are linear and since the parameters appear linearly in 
Eq. (2.5.67), a closed-form solution is possible. The step by step calculation 
procedure is as follows: 

(1) Select an q(t), ~(t),u,(t) and /v(t) which satisfy the boundary 
conditions 

x=x0; t=t, 
gmp+, =o ; i=& 

(2) Develop the fundamental matrix solution 
/i = C(t,A ; A($.),, =I 

where the c matrix has components given in Eq. (2.5.26) 

(3) Compute the quantities o( (ti"j and ,&'t;", using Eq. (2.5.31) 

(4) Compute the value of the g x / vector 

J--, =j>-' (-2) dt 

$9, 
(2.5.68) 

(5) Using Eqs. (2.5.66) to (2.5.68), evaluate xz and pz at the corner 
and final times as 
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(6) Use the n terminal conditions of Eq. (2.5.62) and the K corner 
conditions of (2.5.64) to evaluate the ntK constants, po3 and 
ai (t’;O , K-1 1 appearing in Eqs. (2.5.69) and (2.5.70). From Eq. 
(2.5.66) the constant ay is given by 

(7) Calculate 61161 from Eq. (2.5.65) using the values of ai computed 
- above. Set 

7- =trcJ--t(t) 

(8) With SC(t) and sz known determine the solution 

x2 (&I = x, 6-W) =x2 (t +Jt cf)) 

where 
fJ&- w = yz e-(6 I) =pz (-&J-c &)) 

x,tz~ and qcr) are computer using Eq. (2.5.67). 

(9) Go to step (2). 

The process is repeated until additional iteratives provide essentially 
no change in the time histories of 2: , p and u . At this point, the solution 
has been achieved. 

2.5.5 Final Time Open 

In the development to this point, it has been assumed that the final time, :c 

ir ' is specified. In many cases, such as the vehicle problem of Section 2.1, 3 1, 
the final time is open and is to be selected so that the total system perform- 
ance is optimal. As discussed in Section 2.1, this selection is accomplished 
by requiring that the final time satisfy the additional transversality condition 

hf;fJ& =o;t=tf (2.5.71) 
A=/ 
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(see Eq. (2.1.18b)). 

When the final time is not specified, the three iterative techniques must 
be slightly modified to allow for adjustments in the value of tg . One such 
modification for the steepest-descent procedure is offered in Ref. (13) and 
another, which can be used in both second-order techniques, is offered in Ref. 
(23). In the technique to be presented here, adjustments in the final time 
are made in exactly the same manner as adjustments in the switching or corner 
times; that is, successive iterates are compared at different values of time. 

Let 

where St is itself a function of time, that is 

At the final time at ( tF) = 8tF is selected so that 

(2.5.72) 

(2.5.73) 

The criterion for selection depends on the particular iterative process being 
used. 

In the neighboring extremal or quasilinear techniques, the quantity dtF 
would be selected so that the linearized version of the transversality condition 
in Eq. (2.5.71) holds. That is, 

H( 7 ,JL,~‘) -f (2.5.74) 

Thus, the terminal time would be treated exactly the same as a switch time 
except that instead of a linearized switching condition being used to determine 
the correction SfF , Eq. (2.5.74) would be used. 

In the steepest descent technique the magnitude constraint of Eq. (2.5.50) 

101 



would be replaced by 

(2.5.75) 
fo A;=1 

The quantity Sfr would be chosen as are the other Sti , so as to minimize 
the first-order approximation to the performance index but subject to the above 
magnitude constraints. 

In both first and second-order techniques, the final time open situation 
is treated in exactly the same manner as a switching corner in the l'bang-bangl' 
problem. This holds for classical and nonclassical Mayer problems. Note that 
in the neighboring extremal technique, only the value of 6tJ at tr* enters 
into the analysis with the functional form of Et(t) immaterial. This is due 
to the fact that in the calculations to be performed b+ is treated as an / 
infinitesimal. In both the steepest descent and quasilinear methods St, is a , 
finite quantity and the behavior of the solution on the interval (tFO, i+$') is '1; 
important. Hence, the form of Stat) doe s enter into the analysis and it is 
important to choose this form so that the best accuracy is achieved while keep- 
ing the computation required to a minimum. 
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3.0 RECOFMGNDED PROCEDURES 

It has been shown that the iterative numerical procedures used for solving 
nonlinear optimization problems consist in approximating the problem by a 
succession of linear problems. The three techniques presented, steepest descent, 
neighboring extremal and quasilinearization are essentially extrapolation into 
the variational domain of techniques that have been used for over two hundred 
years in ordinary maxima-minima theory. The step by step calculation procedure 
to be used in each of these techniques has been tabulorized in Sections 2.4.2, 
2.4.3, and 2.4.4 for the classical Mayer problem and in Sections 2.5.2, 2.5.3, 
and 2.5.4 for the nonclassical problem. Also, the relative merits of each 
technique were discussed in Section 2.4.5. All other techniques represent only 
minor variations or combination of the three. Since there exists at the present 
no nonlinear theory, there is very little more that can be done in this area 
in regard to the development of new and improved procedures. However, there 
is much practical work which should be pursued. 

It would be of considerable value to extensively experiment with the three 
iterative procedures in connection with a variety of problems currently of 
interest in flight mechanics and control theory. Information relating to the 
effectiveness of each of these techniques on typical problems in regard to 
range and rate of convergence , programming difficulty, computer time required, 
etc. would be highly useful and valuable. Work of this type is currently 
underway and as more and more numerical experimentation is conducted and 
disseminated in the literature, the numerical solution of optimization problems, 
will become more tractable. 
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