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ABSTRACT

This Monograph is intended to present a discussion of the principles and
techniques of accomplishing a rendezvous between two spacecraft. In the con-
text here, rendezvous is considered as the interface between the midcourse
corrections of an orbital transfer maneuver which establishes the two space-
craft on nearly identical orbits and the docking maneuver which results in the
physical contact of the two spacecraft. First consideration in the discussion
is given to the development of the equations of relative motion of the two
vehicles, To facilitate the use in guidance scheme, these equations are
developed in various coordinate systems, with several choices for the inde-~
pendent variables, and with several simplifying assumptions. Next, guidance
schemes are developed based on these equations of motion. As each guldance
scheme is presented, its existence is in some way justified and the relative
advantages and disadvantages as compared to the other schemes discussed, With
this discussion enough information is available so that the elements of a
rendezvous guidance scheme can be constructed for a particular set of condi-
tions in which a rendezvous maneuver is required,
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acceleration vector
acceleration magnitude (of thrust)
semimajor axis of target orbit
eccentricity

eccentric anomaly

force or control vector
fundamental matrix

transition matrix

angular momentum

Hamiltonian

switching function

mass

mean anomaly

mean motion

semilatus rectum

co-state variable

unit vectors centered at target vehicle describing an inertial
reference

radius vector from attracting body to rendezvous vehicle
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components of cylindrical coordinate system centered at target
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X,Y,2

time difference between a reference time, t_, and current time

unit vectors of rotating coordinate systems centered at the rendez-
vous vehicle

unit vectors of a rotating coordinate system centered at the rendez-
vous vehicle

acceleration (control)

velocity

components along the u,v,w or UgsVe¥y unit vectors
components along the E,Q,E_uni; vectors

true anomaly

gravitational constant of attracting body

components of the relative position vector (p)

position vector between target and rendezvous vehicle

SUPERSCRIPTS

denotes a vector quantity

SUBSCRIPTS

denotes a vector quantity

denotes the ith component of a vector



SATELLITE RENDEZVOUS

1.0 STATEMENT OF THE PROBLEM

This monograph is directed to that portion of the rendezvous problem in
which the relative distance and velocity between an active spacecraft and a
passive target satellite must be reduced from moderate values (say 50 km and
«5 km/sec) to small values (say less than 5.0 meters and 1.5 meters/sec).
On-board relative position and velocity sensing are assumed for the purpose of
allowing precise manual or automatic steering. These observed gquantities are
to be utilized to drive the state of the system to zero in a reasonable time
with as little fuel as possible. Neither the gross orbital changes which have
been brought about previous to this closing (rendezvous) maneuver, nor the
final phase, known as docking, will be considered. The target satellite will
be assumed to be in a closed orbit; and since perturbative influences (such as
a non central gravity field) will be nearly the same on both vehicles with the
result that their effect will be very small, the orbit will be assumed to be a
two-body orbit, Since this monograph represents an attempt to survey the known
information regarding the rendezvous problem, it will be analytical in nature
and will not refer to any particular spacecraft or its capabilities.

The problem of station keeping is similar to that of rendezvous in that
it is assumed that a satellite is to be maintained in a specified orbit with a
specified phase within tolerances similar to those mentioned for rendezvous.
Thus, in a sense, the target is a point which moves along a desired path (this
path may not correspond to the motion in the actual gravitational field). On
the other hand, the chase vehicle moves along a path relative to this desired
path which is defined by the perturbative influences acting on the vehicle and
the differences in the positions and velocities. Accordingly, the position
coordinates of the chase vehicle may consequently deviate from those of the
target. After such a deviation has accumulated for a period of time the prob-
lem of returning the active craft to the nominal path in a substantially
shorter time is the rendezvous problem as presented. Of course, it is assumed
that the active craft possesses a mechanism by which the deviations from its
nominal trajectory are determined as they may be needed.

The discussions begin with the presentation of the field free casej i.e.,
the case in which the same gravity acts on both satellites. This problem is
of little physical importance; however, it serves to provide valuable insight
into a more rigorously formulated system. It might be surmised, at first
thought, that in this case no guidance technique would be necessary since an
astronaut could effect the rendezvous by line-of-sight thrusting. This would
approach would, however, cause the motion of the active craft to be one of
constant angular momentum about the target. That is, if an angular momentum
caused by an initial small velocity (v o) perpendicular to the line of sight
exists at the distance rg, then, if the distance is reduced to 107~ r, and



only line-of-sight thrusting is used, the velocity perpendicular to the line of
sight will become 103v_ . Thus, unless v__ is zero (initially), rendezvous -
is not possible with llne-of-sight thrustigg. For .the more accurate approxima-
tion of linear terms in .the equations of motion, the same situation pertains
except that some sets of initial conditions would reduce the effect and others
would magnify it., 1In either case, it is clear that a technique for managing
the relative velocity perpendicular to the line of sight and for reducing it to
zero as range and range-rate are reduced to zero is essential for rendezvous,
Further, though an astronaut could learn to make the necessary corrections by
trial and error, techniques for optimal and for automatic control are needed.

The rendezvous operation may be described as the overall solution to the
following set of interrelated problems:

a. The state determination problem.
b. The trajectory determination and prediction problem.
c. The trajectory control problem.

Each of these problems is discussed briefly here:

a., The state determination problem - Before making a course correction,
the current conditions (i.e., the orbit of the target vehicle and the
relative position and velocity of the active vehicle), must be deter-
mined. It is assumed in this monograph that this information, which
is taken teo include error estimation, is available at the start of the
problem, as well as at later times as it may be needed.

b. The trajectory determination and prediction problem - the future sepa-
ration of the two vehicles must be predictable in some fashion in order
that changes of velocity can be determined which will cause the
separation to be reduced to zero at the same time the velocity differ-
ence 1s nulled. The degree of sophistication required in the equations
of motion will depend on the time to make the maneuver and the levels
of thrust that may be used. For times which are short compared to the
period of the motion and for thrust accelerations which are consider-
ably larger than the differences in the gravitational or other
perturbation accelerations between the two satellites, the motion of
the two vehicles approximates completely the field free space problem.
On the other hand, if the time to rendezvous is of the order of a
quarter of a revolution or longer, the equations must contain peri-
odic effects and secular effects produced by the dynamics of the two
bodies. However, since the object of the maneuver is to effect a
reduction of the relative motion to zero, it is to be expected that
approximate representations will be satisfactory as long as errors in
the rendezvous caused by poor representation at large values of the
relative coordinates can be corrected by subsequent thrusting as the
rendezvous is approached. In fact, this capability for error compen-
sation is required since noise and measurement errors in the data
sensed must be taken into consideration. Both the model errors and
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the measurement errors could add to the fuel cost but under these
conditions would not hinder the eventually successful rendezvous.
The motion analysis in this monograph (Section 2.1) will not go
beyond that of linear terms in the relative coordinates, since these
terms are believed to be adequate for the ranges of relative motions
to be considered. A brief discussion of the possible effects of
perturbations due to air drag, earth oblateness, and solar-lunar
gravitation is included in the last portion of Section 2.1,

The trajectory control problem - Having determined the future course
and set up the capability of determining the velocity requirements to
effect rendezvous, a philosophy and a procedure to obtain it must be
generated, described, and shown to be successful. This development

of the guidance scheme is the heaxrt of the problem. Thus, a series

of techniques which have been suggested for this purpose are described
in Section 2.2 (Guidance Equations). The rendezvous which is effected
with any given guidance scheme, however, may not be as close as
desired because of errors in the data and in the engine performance.
Further, rendezvous will not be optimal unless allowance is made for
the stochastic nature of the problem. Optimization techniques and
data filtering procedures will thus be important phases of the prob-
lem, and these will be described as found in the literature in
Sections 2.3 and 2.4, respectively.

For evaluation of the various schemes and for assistance in choosing
the state determination process, error analyses are required. The
work that is available in this area will be described in Section 2.4

Finally, in Section 3 suggestions for choosing the specific approaches
for a number of types of systems and the definition of interface
problems associated with mid-course orbital transfer or with the

final docking will be discussed.



2.0 STATE-OF-THE-ART

The significant analytical results concerning the friendly rendezvous with
a passive target in orbit around a single attracting center ave presented in
this section. The first portion (Section 2.1l) deals with the equations of
motion and their solutions for coasting arcs and for arbitrary powered arcs.
Some of the equations are used frequently as the coast.arc solutions (closed
forms) and are given (or referenced). The powered arc solution, on the other
hand, is reduced to a set of indefinite integrals containing the acceleration.

In Section 2.2 a series of guidance schemes is developed for the field
free and constant gravity field casesj a scheme is then developed for the
linear gravity gradient representations with their linear equations of motion.

In Section 2.3 the methods that have been used for optimization of the
rendezvous maneuver are discussed. Included in this development is a discus-
sion of optimal stepwise thrusting for time optimal, fuel optimal, and power
limited fuel optimal rendezvous and a brief discussion of optimal impulsive
rendezvous and its adaptation for finite thrust cases.

2.1 Equations of Motion

In order to formulate velocity requirements for rendezvous guidance it is
necessary to know how the relative motion of the target vehicle during rendez-
vous 1s influenced by the application of corrective thrust (to the spacecraft)
and by the passage of time for the case when no thrust is being applied. To
this end the equations of motion of the target with respect to the spacecraft
(as opposed to the absolute motion of the two vehicles in a central force
field), and the solutions to these equations are developed in this section. It
is noted that in a previous monograph of this series (Reference 1l.1l) the solu-
tions to the equations of relative motion are presentedj however, since they
are to be examined in detail and since it is desirable to extend the material
in the reference to include sets of equations in terms of a variety of inde-
pendent variables, the equation will be re~developed here.

2.1.1 Coordinate Systems

The coordinate system for the relative motion is usually centered at the
target satellite and rotates with it. However, a significant simplification of
the circumferential component occurs if the unit vectors are determined by the
position of the active satellite. In this derivation, therefore, the reference
directions in the plane of motion of the target are chosen by the projection
of the position of the active vehicle onto the plane: the first axis (U)
being radial, the second axis (V) circumferential in the plane of the motion,
and the third axis (W) binormal to this motion. (At this point the oblateness
of the earth is neglected so that the target satellite moves in a truly peri-
odic orbit in a fixed plane.) The usual distance forms with the origin at the
target will be presented below in Section 2.1.3.2.

The target satellite is taken to be at the location
r, = ry U) where r) = p(1l + e cos e)-1 = ap(l - e cos E)=aqq 1.2



while the active (or chasing) satellite is taken to be at

r=1ry(1+ §l)_[_1_+rl §31_4_ : 1.3

where U 1lies in the orbit plane at the angle §2 ahead of U,, and where

€1 f; are small angles while §é is unlimited (Figure 1.1). Thus for
circular target orbits, the chase vehicle is allowed to be anywhere inside a
torus of small lateral dimensions centered on the orbit of the target. For
elliptical target orbits of high eccentricity, the values r; and r may be
so different for large §2 that fl could become large. Or to put it another
way, if a torus of reasonably small cross section centered at the radius of
the semi-major axis of the target orbit does not include the whole elliptical
orbit in its interior, then ¢, will have to be limited to moderately small
angles in order to keep §; small.

Figure 1.1 The Target Orbit Plane Vectors and Angles



~ Thus in cylindrical coordinates, the position of the target satellite is
(r., #, 0) and its motion satisfies the differential equation (the * indi-
cates d4/d4t)

l.u

while the active satellite is at [rj(1+ &£,), ¢ + €ry 13 55] and its motion
satisfies

£=-ur’z +a 1.5

where a 1is the instantaneous acceleration produced by the engines in affect-
ing rendezvous.

The differential equation for the relative position p=1r - r; is then
g= Ag+ a wvhere Ag 1is the difference in gravitational accelerations of
the two satellites and is given by

!

Ag =p(/z,'24/ -22) 1.6

Equation 1.6 may have a wider application than indicated here, for Ag may
represent the difference in all accelerations of the two satellites. Thus,
the reference trajectory could be a simple orbit satisfying any portion of the
total force equation. In fact, the idea of referring the motion of one satel-
lite to that of another nearby has been used in lunar theory since the time of
Euler in 17723 and it is doubtful if any of the sets of differential equations
given below could be considered to be original in this century.

The signs of the coriolis terms in equations found in the literature are
sometimes the opposites of those used in this monograph. The difference arises
from a difference in the choice of coordinate axes, here X radial, Y cir-
cumferential ahead; whereas many authors use X circumferential back, Y
radial.

2.1.2 Tield Free Case

For the field free case, the vector difference Ag 1is assumed to be
negligibly small and one obtains simply g = a. The solutions are immediately
available as

¢

p = éo ’:/;(T)O'T 1.7

o]



¢
p = Ba +fé(T)dT 1.8
o

2.1.3 Approximate Equations

On the other hand, one may choose to obtain a set of linear differential
equations for the components of ¢ which may be chosen in order to develop a
more accurate representation. This procedure will be adopted; but at the out-
set it is desirable to point out that solutions to the homogenous part of
equations (i.e., for the case with no force, a) that will be obtained are, in
fact, already essentially available, These are the state transition matrices
which have been discussed in the State Determination and/or Estimation
Monograph (Reference 1.1). Of coﬁfgéjvihdependent variable changes and simple
coordinate changes will be necessary in order to obtain all the various forms
that may be used.

2.1.3.1 Angular Forms of the Equations

The expression for g=1- fl is developed in terms of r,, 8, £,, £,,
§3 and their derivatives by making use of

—

U =8y, u=@6+%

v, L/ =_9.é/, s @nd _l_/ =°(é*§2)é/- 1.9

/

The gravitational terms, expressed in components aleng U, V, and W, are

g = e {0 5K *-co0 8w ~ain 5,V - £k * W}
’ 1.10
z
where K = < =(/*§')2+§32
4,
The motion of the target satellite can be shown to satisfy
274 §2 a
. ﬂ '
& + (26+§)(/+§) (f, é’,*—*--)=;z— l.11a
. a
§(/+£) f(/f)*ZE {6"5,):/(—2 1.11b
o QA A a
§3+/Z—§,+EJ[Z+—(/ 3¢ +. )J=/1_,J l.11c



In this form the equations are valid to the second order in the & . It is seen
that the truncation of an infinite series (K) 1is required in only the radial
and the binormal component equations.

As already indicated, however, a linear theory is usually adequate for

rendezvous discussionsj therefore, these equations reduce to the following set
of linear equations:

-,é; ch,aunO ()§ 2,2//7-() _ 2

P44 2
9
i 2 Re ain + 2n /a2 ( )f ;2 1.12
R
w 2Rhcand . " a,
é*—_;M oot (5] -] - %
3 1
where n* =,£ﬂ2-3 . 1.13

Here the independent variable is timej; and as is customary, the dot indicates
differentiation with respect to time,

The first important point to note is that the out-of-plane motion is
decoupled from the in-plane motion, a feature that is characteristic of all
linear sets. These equations can be changed so that the independent variable
is the mean anomaly, M, since dM = n dt. This step is equivalent to making
the unit of time equal to the time required for a change of one radian in mean
anomaly. The resulting equations are (where the open dot ° is used to indi-
cate d/dM):

o 2ac.ainl ¢ a a 0 Q,
t ————§€E-3 — E£-2 - /- & = —5—— . 1.14
é/ n /_ez gl 2 ] 7 2 #’zﬂ/ a
w Lae amb a 72 _ %
2 7oz atR et T Wi 1.14b
os ZQCM o a u a
+ = ¢ +(=| [/-e?|¢ =L
‘% n/l-eZ s (/z ) ( )gs 'uz/zl l.1l4c

A major simplification occurs if the independent variable is changed to
the true anomaly, (8), or to the argument of latitude (¢ = & + @y ). The
transformation makes use of the conservation of angular momentum

Adt = 22d0 = /;20’95 1.15



Denoting d4/d8 by the prime, ', there finally results:

" r : 3 p-
£"-32¢ -2¢ =147 1.16a
»
4 4 g p-2
£, +28& = I 47q, 1.16b
£+ € =1y 1.16
g 3 ’ 4 . [o]
For the case of coast arcs when aj; = a, = a3 = 0, it is to be noted that the

out~of-plane motion is simple harmonic 1n terms of true anomaly and that the
first integral for the circumferential equation can be written down at once.

Another form of the linear equations of motion which will be considered
makes use of the eccentric anomaly, E, as the independent variable, To
accomplish this transformation, the substitution

2d8 =a, V/-e* JE
or

50’7"50'0’5 1.17

is made where q = 1 - e gos E = Pl/aT and o = 1 - e2,
d
Denoting (dE) with the asterisk, #, there results:

:

(9 ¢')"-38 -z20e) =ogt

z 1.18a
¥ * 2 %
(; fz) +*20f, = og 2 1.18b
* o? ¢ a 1.18¢c
ff) + 3 = gg? 2 ‘
e g ar

where

_ -2
Gu = M0 1.19
equals the acceleration of gravity at the distance of the semi-major axis. For

coast arcs the third equation is easily integrable as will be shown below, and
the second equations possess an immediate integral as for Figure 1,16.



For all the equations given to this point, the reference orbit can be
elliptical, If the path is circular, a further simplification occurs for each
form presented. The set with time as the independent variable (Eq. 1.12)
becomes (rl = r, = constant):

v a

v 2 : _ 4

§IREER T 1.20a

.o » az

&, 2k == 1.20b
40
a

Y g2 - _i

& PR E Z 1.20c

The remaining sets (Egs. l.1l4, 1.16, and 1.18) reduce to a single set because
of the equality of the three anomalistic variables (M = & = E) for circular
orbits. This set is

[73
£ -36-2¢6 =~ =4 1.21la
" ’ = 2 _
,E 12§ ===y 1.21b
& * & S, % 1.21c

It is to be noticed that for linear systems and a circular reference orbit
the set of equations has constant coefficients and is, therefore, easily
integrated for the case of coast arcs (U = a = 0).

As already mentioned for the sets of equations in terms of true anomaly or
eccentric anomaly, the second of the three equations possesses an immediate
first integral for the no-thrust situation. This integral is a representation
of the constant difference in the angular momentum per unit mass for the two
vehicles., Thus, for the no-thrust case, there must exist three more independent
integrals consisting of simple combinations of fl, 52, f‘l, §'2 represent=-
ing constant differences in other elliptical orbit elements (e.g., semi-major
axes, arguments of perigee, times of perigee passage). This concept, in fact,
yields a method for obtaining the integrals to the sets.

2.1.3,2 Distance Forms of the Equations

In the first place, let

e =XUY, +;(y,+zyy l.22

10



and assume an elliptical reference orbit. Note that the reference system is
centered at the target. Now, using the derivative of U; and -Y-l as in
Section 2,1.3.1 the equations are found to be:

. 3 2 ( - \
¥ - ?0 + x€2-25(9 =-:Z% [(/Z, rx)K ;2"./7/] *a,
G668t 226 - Ak ¥]ra, -
. =- %
z - /ZJ [Z;Q' ]*-d} y

Note that moving the origin to the target vehicle has the effect of causing a

K term to ocecur in all three equations, The second-order form of these equa-
tions as used by Anthony and Sasaki (Reference 1.2) is obtained by intreducing
changes of scale for both distance and time. In.this reference, the semi-major
axis, agp, of the elliptical reference is used as a normalizing variablej

thus, x = arX;, y = a » 2 = agzy, and r; = arq. The time is then changed
to mean anomaly, M, and d4/dM is representeé with the open dot, ©¢, as
before, Including the second-order terms on the right, the equations become:

o0 90 22 o Rx, 3 2_ 2z _ 2y, %
zl~%¢9—x,5 '2%5— g" *22’,(2% % z,) ?‘7

v s0 02 __# L Ouy 4y

I*ZIQ‘IB "'2).’.,4 =7 i > 1.2,
7 7 A Fa
%o __-_z_'-f-Jz_’z_' 1-_0&

' 57 37 g /

For circular orbits the equations simplify to equations of exactly the
same form as Equations 1.20 thus indicating the equivalence of the two origins
(either active or target) for rendezvous. Thus, one finds

[ d 2 . ~
X -3ncx —2/77 =~ a

R
)

+2nx » 1.25

2+ n3z =a,

For the final twe forms of the equations, consider that p 1is expressed in a
set centered at the target in an elliptical orbit and oriented in a fixed set

11



of inertial directions which are taken to be those of perigee (P), Q = WxP

and W (binormal)., Fipst choose a rectangular set (Figure 1. 2) where

e, = XPpP + Y@ +Z W

The result is:

X+ /Zﬁ(x 3K 00?60 - 87 co0 6 ain ) = ay

:.. /a ~S

_Y+;— ()’ 3X 4in 8 coob -3V un?6) ~a,; 1.26
. A -

z ; —az

Here, of course, the terms involving u are the first linear terms in the
series expansion of Ag.

Finally, using a cylindrical set of coordinates (R, Y, Z) where

R= R L, the equations are seen to be

. . 2
B-RF* =L /- Zent(7-6)]q,
4

It 4
. SuR
RF +28 Zand 1.27
/ZI
F =-zrq
yZ4

From sets 1,26 and 1l.27 the usual expression for circular reference orbits is
obtained by substituting »% =« /72’

Figure 1.2 Targ;t Centered Coordinate Systems
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2.1.4 Solutions to the Equations of Motion

As has been mentioned in the discussion of the state transition matrices
of the State Determination Monograph (Reference 1l.1), this matrix represents
the solutions to the homogeneous parts of various sets of the equations. How-
ever, rather than refer to them directly, solutions will be developed making
use of matrix methods in this sectionj especially since it is desired to
include the effects of the thrusting acceleration, az. The sets of equations
will be split\into the out-of-plane motion and the in-plane motion. Further-
more, the techniques of the matrix method will be illustrated in the solution
for the out-of-plane motionj; since this motion is seen to be simple harmonic
motion with a forecing function (except when the reference orbit is elliptical
and the independent variable is eccentric anomaly). Matrix methods and results
are given by lLeach (Reference 1l.3), Tschauner and Hempel (Reference 1l.u4) for
circular reference orbits and by Tschauner and Hampel (Reference 1.5) and
Tschauner (Reference 1.6) for elliptic reference orbits.

2.1.4.1 The Out-of-Plane Motion

The out-of-plane motion can be represented by the differential equation
E +n%é =ay/q
. 4 3/, 1.28

for all cases except the set Equation 1.18, which will be considered later.
The matrix methods require that the equations be expressed as linear first-
order equations. This is accomplished by defining the two vectors £ as

() - 2]
Cz §3 1.29
Thus, Equation 1.28 becomes
{=AC*8Ba/n 1.30

where

e D R

To proceed, the fundamental matrix (F) for A must be found; that is, a set
of independent solutions to

{ = AL 1.31

13



which form the columns of F must be found. This process is difficult in

general; thus, sometimes it is preferable to make a transformation of variables
to simplify the matrix A before attempting to find the fundamental matrix F.
For the present equations, however, the solutions are known; and the fundamental
matrix can be written in terms of real functions as

aim nt coont
F(¢) ={ . ) 1.32
neoo nt -~ am nt
The inverse matrix is
- ainnt  ocoont
Ft) = ( .
(¢ coo nt -h ain nt 1.33
d(F'F)
Now, since T =0 s 1t is easy to show that
d -’ -7
= = -F
pr (F7) A 1.34

for all problems of this kind. In order to obtain the solution, it is conven-
ient to obtain a set of constants for equations with no forecing (a3 =0). This
is accomplished by the substitution

z = Fe 1.35

which is seen to satisfy the differential equation

3 =F(t)Ba, (t)n, 1.36

This equation is integrated to give Z - Z_ and is then multiplied by F(t)
on the left to obtain the original variable, { . The result is

4 .
t(t) = F/tf)F_/“o)Ca +F(é)_4/‘/'_-?f)3q,(t‘)ai‘//za 1.37

The state transition matrix for these two variables is F(t)F_l (t ). When the
coefficients in the matrix A are constant, it is possible to wrife

FI)F (L) =G (¢-4)

14



For this case (t - ty = T)
7 hamnl
GIT) = coon n

-nannl coon’l

This solution, valid for circular reference orbits, is also applicable to
elliptic reference orbits by changing nt to © which is then true anomaly.

The solution to the out-of-plane problem for the case of elliptical target
orbits and eccentric anomaly is given by Tschauner (Reference 1l.5). Let

¢ =<g§’;) 1.39
Thus, the set becomes
*=A{+Ba . L 1.40
where o .
A (-‘-;—z 0 me  E-(0)

The fundamental matrix is now

snf  -cpfre
FlE)=| ¢ 7 1.41
coof-¢ oPank
2 2

and

ol unkE ek -e
FE)= ¢ ¢ 1.42
-coolte awmE

# #

In this case, the substitution

z=F1E)L 1.43

gives the equation (q = »/a = 1 -e Cos E)

15



* Coo[C

o g "“/ﬁ«

Thus, the solution is written

gdE

coo£ e) Tas
s

LIE)=FIEIF (5) ¢, + FIE) f€ .

The transition matrix then becomes

V) = / ( a b)
FIE)F ( -——o _fb @

where a and b are defined by the equations below:

a = coo (£ -£,) -e(coo £ +cook,) +e* (/- ain £ an £,)

b = dn(f-£) -elsnk-wunkt)

2.1, 4.2 The In-Plane Motion

2.1.4,2.1 In-Plane Motion for Circular Target Orbit

For the case of the in-plane motion and the circular reference orbit,
first two equations of Equations 1.2l are used. To express these as a set

linear equations, let

7 £,
AN
7 % ‘?l,

% 2

The set becomes

=27+ 8(,)

16

l.44

l.45

l.47a

1l.47b

the
of

l.48

1.49



where

0010 00
A= 0001 B = 00
3002 10
00-20 01
The characteristic equation for A is M+ M =0 from which it is seen

that the four independent functions out of which solutions are formed are 1,
8, sin 8, and cos 8. The fundamental matrix may be taken to be:

0 2 Sin © Cos ©
1 -396 2 Cos © -2 Sin @

F(8)= 0 0 Cos © Sin 6 1.50
0 -3 -2 Sin © -2 Cos ©

The determinant of F 1is equal to unity, and the inverse is

6 6 1 -2 3 8
Fio)= [ 2 0 0 1 1.51
-3 Sine 0 Cose -2 Sin ©
-3 Cos® 0 -8in® -2 Cos ©
Thus, making the substitution
-1

allows the differential equation for Z to be written as

’ -/ U
z =F (0) B(H) 1.53
or
AR 2 38
i) ()
Cos © -2 Sin @ U‘ 1.54
-Sin © -2 Cos ©

The state transition matrix for the variables 17 is thus

FB)F(8) = G(6-8)

17
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This matrix is simply written as G(8) (i.e., this notation is used to avoid

writing)
4~3 Cos 9 0 Sin 6 2(1 ~ Cos @)
6(Sin 6 - 9) 1 2(Cos 6 ~1) 4 Sin @ - 3 ©

G(e) = 3 Sin © 0 Cos © 2 Sin 8 1.55
6(Cos 8 - 1) 0 -2 Sin © 4 Cos 6 - 3

This matrix, when combined with that of Equation 1-38 and both expressed in
terms of © = nT (and n added as needed to give dimensions correctly), are seen
to be exactly that of page 145 of SID 65-1200-5 (Reference 1l.1).

In the case of the representation of state transition matrix for locally
level inertial systems (Table 2.4.2, page 147 of Reference 1l.1l), the coordinate
transformation required is only that between inertial and rotating systems at
the moment they are aligned. Reverting to 6 = nT, the rotation rate is one of
the angular velocity, n, about the =z or third axis and the transforma-
tion matrix, T, for ¢ =T X is

_I 40
T = 0 -ni 1.56
n o!l

with

The state transition matrix for inertial locally level (at both times) may thus

be obtained from G(nT) and it is s'b‘.l = T16(nT)T =
2-Cos nT sin nT l/n Sin nT 2/n(1-Cos nT)
2 Sin nT=-3nT 2 Cos nT-1 2/n(Cos nT-1) 1/n(4 Sin nT-3nT)
n{3nT Sin nT) n(l-Cos nT) 2-Cos nT 3nT-2 Sin nT 1,58
n(Cos MT-1) -n(Sin nT) -Sin nT 2 Cos nT - 1

The development of the system by Tschauner and Hampel (Reference 1l.4)
involves a substitution to simplify the matrix of coefficients, In addition,
the out-of-plane motion will be included and the set of six equations solved
with matrix notation for later reference. It is simplest to add the out-of-
plane coordinates to the set of four in-plane variables of Equation 1l.48 as

18



(we,W,) = (7,7 ) = (5, &

t

The set of differential equations is now written

w' = Aw+f

where the transformation from the position and velocity differences

w is given by

[2 0o o 1 o0 o 3
o -% % o o o £,
4
% 0 0 1 0 o0 £
w = TV: ) ) /
0 0 % o0 0 o £,
0 0o 0 o0 1 0 &
I4
L 0 0o 0 0 0 1 | €3 ]

where

o
o
o
|
[

| O
and where the forecing function, £, 1is

7=y,

Win

U5 & s

NI~
K
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The fundamental matrix for A can be written at once as

1 0 0 0 0 0
e 1 0 o 0 o
0 0 Cos © Sin © 0 0
F(8) = 0 0 -Sin © Cos © 0 0 1.60
0 0 0 0 Cos © Sin ©
| O 0 0 0 -Sin © Cos € |

for which the inverse is

F(e) = F(-6)
The solutions to the equations can now be written in the form

é
w(8) = F(8) F(8) w, ~F(8)) F (z)f () dr 1.61
4

In this case, the matrix G(o - 90) = F(9) F_l(eo) is easily seen to be
G(8-8) = F(6-g) 1.62

Note that F(0) = F-l(e) = I. In fact, since no loss of generality occurs
by choosing 65 = 0, this value will be assumed for the remainder of this
section. The six integrals in the solution for w (8) (called "2'") will be:

8
Zz =~/~42<1?

0
J 2
, =f(2'zz2 r3uU)dT
[-]

¥4
6 , 1.63
z, =f(az eoor ~F U 2 T)IT
4
¢ /
Z, =f(l(zwzt*§é(,coo':)dr
0
3
2z, = -f U, e T T
5
3
z = ~/~ U, CooTIT
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Finally, the solutions are expressed as

w(8) = F(8) (w, - 2(8)) 1.64

To repeat,the boundary conditions at 8 = 0 are w = w, and are seen to be
satisfied. The final boundary or rendezvous conditions at 6 = 8 are ,77=
wl = (o0, 0, 0, 0, 0, 0).

2.1.4,2.2 In-Plane Motion for Elliptical Target Orbits

A technique for obtaining the solutions to the in-plane motion has been
mentioned (Section 2.1.3) and references made to two papers by J. Tschauner
(References 1.5 and 1.6). It is suggested that these papers be reviewed as
required; the ability to obtain these solutions should allow a completely
satisfactory representation of the problem of rendezvous with targets in
elliptic orbits.
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2.1.5 Approximate Second Order Solutions

A solution to the equations of relative motijon which includes both
linear and quadratic terms in the gravity expansion and which is applicable
to target orbits of small eccentricity is developed by Anthony and Sasaki in
Reference 1.2. This work is essentially a combination of the work of London
(Reference 1.7) who examined the effect of including the quadratic term for
circular target orbits, and that of deVries (Reference 1.8) who considered
target orbits of small eccentricity, but included only linear terms in the
gravity model.

The equations of motion are given in terms of a rotating coordinate
system centered at the target as in Figure 1.2. The equations of motion,
before any approximations are made, were developed previously in time of
non-dimensional variables as Equation (1.22). For convenience , this set is

reproduced below-along with the definition of the non-dimensional variables.

.0 . / (x+0)

8 st ) :
2-yb -276 -6% ) eyt E =0
o é‘ 46’ - b4 X -
f(vﬁl +,2§( Qé( + (}(zf(xf,o}'e*zz)%t
2, Z

(é/zf-(é(f/o)z*zz)%
where
x Z r 3
£ = — = _Z Z = — = - = A

a’_ ﬁ ar ar /0 ar M (af) 7—

and where the open dot superscript (e.g., % ) refers to differentiation with
respect to M. Expanding the nonlinear terms of the differential equations in
powers of the coordinates and retaining linear and quadratic terms results in
the set.

£-y8-2:6 —<;’23 +92> x - 2,04‘(/2:32;42,«32) -0
Z r 26 + 226 +(é —éz) & - %‘f—’ =0 (1.66)
o, £ _ FFx

e

Now, for orbits of small eccentricity, the variation of € and £ with time
(and ultimately with M) can be written as a series expansion in the
eccentricity, e.g.

S
6 =/+Re coolr-2,) * EGZCMZ(T-TP)t..

(1.67)
/-€ coo(7-2p) +(e?z)[/-c002(z-—?p)] Ll

e
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where the subscript » refers to the condition at the time of periapsis
passage.

If the nonlinear terms are omitted and the target orbit is circular,
Equation (1.66) is identical to Equation (1.49) and a solution for x, y, z
can be found in terms of the initial conditions x,, ¥% , 2, xa, x, % by

.the use of the transition matrix Equation (1.58). If this solutlon 1s de-

noted by the subscript "¢ then
2, = Z ainT-2(24+3%) coT* 2(2 %,

[+]

Ze

%

+2)

(4

2(24, +3%,) ain¥ + 2%, oo ¥ ~3(R X, +%)2'—(2i,—%,)

) '2‘7"
2, Z, CooT

The solution to the nonlinear equation will be defined in terms of this
solution and small corrections; that is, the solutions to the set (1.66)
have the form

x = x *t0x

#

Z

\l

A

z * 8z

If this solution set is substituted in (1.66), a set of differential

equations for the variables &6x , 6y , and Sx is produced. This set is

then 31mp11f1ed by neglecting the smaller terms such as %, 6x , eéx ,
ez? , e% etc. The resulting differential equatlons are

55:'-'26% -36x =—(z —% Zz )+e[(/0,z: fé’é(c)am(?' 7,)
~ Ry, i (7 - 7))

c)"é'/"f,?o“i =3xc;/6 —c[(#ic —,qc)coo(r—?,,)—zzcm('z‘—r,a)]
§% +6z = Fx 2 ~3ez coo(7-75)
This set of equations is linear in terms of the known forcing functions;

therefore, the solution is straightforward. For convenience the solution is
given in two parts indicated by

Sx =8x +Jx° , 5}" = 5;("+d‘é(e , 0z =8z2°+38z2°

where the superscript O denotes the solution when the target orbit is
circular, and the superscript e denotes the effect of small eccentricity on
the solution. These solutions are given by

P .
8 ~A+ A ain 7 A oot + A an 2 v + 4 o2 + AL

. »© 2
f/%x}'xasz'v‘A% Teoo T *'/gﬂZ‘
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»

6y” = 87+ BTun v+ B coor + B sin 27 + B croz7
*é;’g‘ +é§’3:40k z + ZB:??‘coo'T
827 =GP+ G ainv » Cleoo T + Cllain 27 + Gl 02«

*Q”?M? * Q"pz—caoz*
where the superscript p can be either o or e. The constants Af s Bj

are then given by
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Q
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[+]

P

[\
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= -~ w4
= 210

*/6’5/;1
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A
2

J(y) 2 /5 xF +—%2 4 2% e

*bx,4 "% Z

2*_22

2P 247 - 64 2, -%’x: - F(Z )z
—61‘,% "3}(“/‘; *6;20% +/2,z°z'o
“2fo%, - 64t ~18xf

“6x, %, - 33,4,

2 . g .
/8250 */‘9}6"% f:?—yaz

= 3Fx A, v g ~ x4 *F 2 E)

= 3Z, 4 ~36%,4, ~/04° -22F ~304F - 347 -27 - 244
~6x, % *2)2_;/0 4% ~22Z

R

-—4%— 243
Bl rzal v 2t bt e g2t fafaTa -2 kg

3, . .

= (%2 -24,7 -3z2 z,)
X, Z, f}(ozo *310220
-Zloz *2%2’0 3102
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X, MILES

A comparison of the linear and quadratic solutions is given in Figure 1.3,
1.4, and 1.5, (from Reference 1.2) for a target orbit with apogee and perigee
altitude of LOO miles and 200 miles. The figures were generated by assuming
the relative position was zero at time zero, but that a non-zero relative
velocity existed as indicated on each figure.
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As expected, the linear solutions are accurate for a short time until the

distance involved becomes large.

1/2 revolution for the trial cases.

component.

two revolutions of the target.

This divergence occurred in approximately

Thereafter, the linear results differ
substantially from the actual (numerical) solution partically in the vertical

28

The quadratic analysis yields accurate results for approximately
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Extreme Case Comparison

Figures 1.5 illustrate a rather extreme case of velocity difference in
which even the quadratic theory breaks down rapidly. However, even if this

case for relative distance is less than 2500 miles, the predictions are quite
accurate.

2.1.6 The Effects of Perturbations on Rendezvous

Satellite orbits are perturbed from pure conic sections by forces due to
the earth's atmosphere, the non-sphericity of the earth, the attraction of the
moon or sun, and the radiation pressure of solar radiation. As was indicated
earlier, the term A g really represents the difference between the accele-
rations of the two objects due to all forces. The earth's atmosphere could
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cause a significant effect for rendezvous maneuver sufficiently low, but the
assumption in this study is that the maneuver is as a sufficiently high
altitude ( >150 Km) that air drag is negligible. The largest of the
remaining forces in the region near the earth is that due to the oblateness
of the earth. The magnitude of this force is about 103 times that of the
inverse square force and while its gradient coefficient is twice that of the
main term, it is clear that the magnitude of the contribution to Ag is not
more than 1/500 that of the main term which is itself expressed only approxi-
mately. Consequently,.all perturbative differences can be safely neglected
in studying rendezvous in orbits near single atiracting centers that are no
more oblate than the earth. Rendezvous in earth-moon space is thus considered
in the monograph only if near enough to one of the attracting centers, that
the perturbative force due to the other is substantially smaller than the
rain gravity turn.

2.2 GUIDANCE FQUATIONS

Tn this section the methods that have been proposed for mechanizing the
rendezvous are presented. In several cases, gnidance schemes are chosen without
regard to the degree of optimization; however, when the approach is taken,
the considerations will be detailed / see Section (2.4) /,

2.2.1 Fixed Inertial Line of Sight (LCS) - Free Space

It has been shown in a previcus section that the '"natural" maneuver of
thrusting in the direction of the TLOS will not, in general, vroduce rendezvous.
However, for the special case with the relative veloclty vechtor aligned
parallel te the LOS, then thrust thrusting along the TOS is the optimum
method of achizving rendezvous (in free space). This fact is demonstrated in
Section 2.4 where cptimizaticn is discussed. This solution suggests that a
maneuver which first orients the relative velocity vectcr along the 10S
conld be advantagecus. Aligning the velociily vector in this way is equi-
valent to nulling the angular rate of the LOS in inertial space and can be
accemplished by avplving thrust normal te the 1.OS. The overall maneuver,
thus, retains a degree of naturalness in that an astronaut performing a
man=al rendezvous can easily determine the directions in which the thrust
is o te applied.

The discussion rresented here is limited *to its application as a manual
back up guidance technigue for Gemini as presented in papers by Chamberline
and Rose, and Burton and Hayes (References 2.2 and 2.3), and to an extension
ef the technique by Steffan (Reference 2..4) which separates the guidance and
navigation tasks. Because of the approximation that there is no relative
acceleration due to gravity, the range of initial conditions for which this
techniqnue has accertable accuracy is Timited. A larger set of initial
conditions can be handled if a number of '"midcouvrse" correctinns are made,
However. from an efficiencyr standroint, these midecourse corrections are
imdesirable. Tre principal advantage ~f this method lies in its use as
a natural basis frr manval guidance.
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2.2.1.1 Manual Rendezvous Guidance

The technique of fixing the direction of the line of sight in inertial
space effectively uncouples the linear and angular motion and reduces the
problem to one dimension. This feature is a particularly useful in the case
where a pilot is manually performing the rendezvous. Such a system is con-
sidered as a back-up for the Gemini missions (Reference 2.3); for the Gemini
scheme, the pilot visually observes the relative motion between the spacecraft
and the target vehicle with respect to a star background. Range and range-
rate information are provided by radar or optical means. When the two ve-
hicles are within a preselected distance, the pilot initiates a thrust
maneuver normal to the line of sight until he observes that the relative
{angular) motion has been eliminated. This process is continued throughout
the rendezvous whenever relative motion is again noticed. The range and
rate range are monitored so that the time to begin the braking maneuver can
be determined.

2.2.1.2 Separation of Guidance-Navigation Tasks

In the previous section, the astronaut performing the rendezvous maneuver
was required to navigate (i.e.; determine when the relative motion has ceased)
during periocds of thrust application. A technique developed by Steffan
(Reference 2.4) determines the time duration of the thrusting from data taken
before thrust initiation. The angular rate of the LOS is allowed to oscillate
between limits with the period of oscillation determined by thrusting in the
LOS direction. This technigue requires the application of several velocity
increments normal to the LOS, the times of these applications are related to
the period of the limit cycle and are controlled by contreclling the range
rate. The desired period of the limit cycle is then chosen so that the time
between corrections is sufficient to allow for data taking and processing.
This time will vary depending on how the data is being taken and processed,
e.g., a range radar feeding information directly to a computer vs. optical
measurements and hand calculations by an astronaut.

By the use of the rocket motor normal to the LOS, the rendezvous ve-
hicle is established on a collision course with the target vehicle such that
the direction of the LOS is stabilized, to within some limits, in inertial
space. The approximate behavior of this limit cycle can be determined
analyzing the expressions for the angular rate of the LOS as a function of
time for (1) termination of normal thrust and (2) time for the initiation of the
normal thrust. First the case of no thrust is considered.

A polar coordinate system will be used to describe the motion. 1In this
system, the range (p) is defined as the distance from the rendezvous vehicle
to the target vehicle; 7' is measured from an inertial reference direction;
and the origin of the coordinate system is at the target vehicle.
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Figure 2.1
Polar Coordinate System

(Since the out-of-plane motion is uncoupled, only motion in two dimensions
is considered.) Now, since for the case under consideration, there is no
relative acceleration between the two vehicles due to the gravity gradient;
thus the angular momentum of the system will remain constant (for period of
no thrust). i.e.,

z- 2.
P 7T =87 (2.1)

The subscript, o, refers to some initial time. Therefore, if the normal
control has been operating, the velocity vector will lie along the line of
sight (to the first order) and the range as a function of time will be

P +,<gz‘ (2.2)

With the use of this expression for range, the angular momentum equation can
be written as

. 7
TR TR (2.3)
(/4-£;t) :
(-]

Equation (2.3) is the desired relation for the angular rate ( 7 ) of the
10S for periods of free motion.
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The kinetic energy of the system is

T=gmo®= 3w [ (o 4)]

Thus, Lagranges equations of motion for periods of normal thrusting are seen
to be
25 =0
Pt o=
pPI+2p%7=a,
where 4, is the acceleration due to the normal thrust. Now substituting

relation for L as a function of time from Equation (2.2) in the second
equation above gives

(2, +/gf,)é'f-gﬁé 7 = a,

or
é"+(zhp°-_)a‘ = —%n
% rt 5t AL

This equation can be considered a first order differential equation in the
variable 6 , i.e.,

) .
o +(2L%)9 = 2
dt  \grgt Rrat
But this equation has as a general solution
i= L o, + ) + 2] (2.4)
(5 +/0F) n-re 2 9 o0 )

Equation (2.4) is the solution for the angular rate of the LOS (6 ) during
periods of normal thrusting. This equation, however, is not the one employed
to determine the length of time that the normal thrust is to be applied, but
rather the simpler equation which assumes /5'= 0 is used. The time of normal
thrusting is calculated as

y = B% (2.5)

n an '
That is, if % is the threshold value of 7 and it is desired to drive 7
to zero the length of time that normal thrusting should be applied is cal-

culated from (2.5). If the motor used for normal control is actually operated
for this time, & will not be driven to zero. Rather, the value that it
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will attain, 7 » can be calculated by substituting the value of t, from

1]

Equation (2.5) into Equation (2.4). This substitution gives

£ a2
Y X/
2(a,~-06 L)
Thus, assuming IZ/?, << ]ahl (this approximation becomes better as

r - 0 as will be seen when motion along the LOS is discussed) the ex-
pression becomes

Y
2; 'Zanza‘ (2.6)

The overall behavior of © can thus be determined from this equation and
from the one given earlier for a no-thrust condition [ Equation (2.3)_7.
This overall behavior will be a limit cycle between the values m, and §,
as characterized in Figure (2.4). The time between applications of normal
thrust ( t,) and @ can be #
calculated from Equations (2.3) o
and (2.6). Letting 7=-2-

(the time until rendezvous °

occurs assuming no radial .
thrust is applied) quation @ ==~ s
(2.3) results in t f —
-2z, ¢
[
2'Limit Cycle
. E; _ :é Figure 2.2
r 3
or :
‘)
A =T\ 5
0
Finally, substituting for & from Equation (2.6) gives
;7
¢ Ra,

A certain minimum time will be necessary to take and process the data
to determine the current position and velocity. Therefore, it will be
necessary to require that the time between corrections, tes be longer than
the minimum data taking time. Since 2 is to be driven to zero and 7, is
small, it can be seen from Equation (2.7) that a minimum t_, will be maintained
if a minimum 7 is maintained. In turn, a constant T ( or more practically
a constant range of values for T ) is obtained by a proper choice of
thrusting periods for the LOS thruster. A discussion of motion along the LOS
is now called for so that the behavior of # during periods of LOS thrusting
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can be determined.

If the angular-rate control system is operating, the approximate
range-rate and range equations for periods of LOS thrusting are

/0=0 a,t
= 5 1 £t rGa,t?

?\)l\

1

where a, is the acceleration along the line of sight. The corresponding
expression for = is thus

. / 2
o /§+/§é rzayt
T:—-—:——
~° /§+ajz‘
and
d rOt + Y R
—T=-[/—a1 g 3¢ 2;‘)] (2.8)
de (7% +a,¢)
If the desired limits of 7 are 7z, <4 ¢ LA and if the slope dt
is positive at t = O, then the LOS thrusting is 1n1t1ated whenever r s 7,
and terminated whenever =T, If the slope of g is negative at t=0,

then 7 will continue to decrease up to the point at which ¢ changes sign.

(Figure 2.3) In this case, the minimum value to which 7z will be driven
must be predicted so that
thrusting can begin
sufficiently early to
prevent < = 7, .

The point at which
reaches its minimum

value is determined A
by solving Equation (2.8) Motion of =7
with g{ = 0. The result Figure 2.3
is
/ . 2
LN N P ]
2 aj[ 9 Zajo <2

and the corresponding value of 7, ~ obtained by substituting this time is
the equation for = 1is:

o2
2’5 al

" 2o A
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This equation may now be solved for/o and replacing <z, by gm‘(the desired
lower limit)

,p aJ 2
2 o= 2 7,
Zal .2

Thus, for the case when the initial slope %{ is negative the motor is fired
whenever this equation is satisfied and firing is terminated whenever

Tz . If this scheme is used to control the velocity along
the line of sight, the time until rendezvous will remain between the limits
Z,,. and 2, and the range will be forced to decrease approximately ex-

ponentially with time. As the range becomes sufficiently small, the range
rate control loop is opened and a docking maneuver initiated.

2.2.2 (Coriolis Balance

The two previous sections considered guidance schemes based on nulling
the angular rate of the line of sight. In this section, a technique where
the line of sight is allowed to rotate at a constant rate is considered. It
will be seen that this restriction is equivalent to requiring that the force
normal to the line of sight be equal to the coriolis acceleration. Hence,
the descriptive title "Coriolis Balance". (Reference 2.5).

Using a polar coordinate system centered at the target vehicle and
assuming no relative gravitational acceleration, the equations of motion
are (as in Section 2.1)

.. -2
PPy =a,

PF126Y =a,

(2.9)

Now, if the LOS acceleration, ap, equal to zero and the normal acceleration

is equal to the coriolis acceleration ( a, =206 7 ) these eguations
become

oo '2

pP-p&" =0

7 =0

But, the second equation shows that the angular rate is constant and that the
range eguation can be written as

o420 =0, 2 =7 = cousranr (2.10)

Equation (2.10) now shows that the coriolis balance technique also uncouples

the angular motion from the range mcotion. The problem is now to show that a

collision will rosult if this acceleration is applied. Consider the solution
to Equation (2.10) at the boundary o = 0.
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P =0 = %M!&’f-,@a@f{{:g

This equation will have a solution for positive time, if ,©<0 and [féiljg .
If these conditions are not met, or if the time to rendezvous is unsuitable,
a velocity impulse along the line of sight can be added to remedy the
situation.

The solution to the Equations (2.9) for an acceleration is applied along
the line of sight (ug) is now

o, .
o =2—,¢m)ﬁ £ +(/o°+/%)m,,€[g—§%

P = (%0, 7 F) aink $¢ + 1 coch Bt

If the conditions for rendezvous (i.e., p =0, O =0) are inserted in
these equations, it can be seen that a solution can be obtained for a,

equal to a constant. Thus, the rocket motor furmishing thrust along the line
of sight need not be throttleable. However, the normal thrust motor must
furnish thrust according to

and 1s therefore required to be throttleable.

The author or Reference (2.5) compares this scheme to a scheme which
nulls the angular rate similar to that described in the last section. The
comparison indicated that the coriolis balance technique requires a lower
thrust level for both the range and normal rocket motors; however, the total
impulse and flight time are greater.

2.2.3 Improved Model - The Inclusion of a Gravity Gradient

An improvement in the description of the gravity model can be made which
will increase the range of initial conditions over which the preceding methods
are valid, yet still retain the simple expressions for determining the
duration of thrusting. The improved gravity model consists of approximating
the difference in the gravitational acceleration of the two vehicles ( 42 )

by
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If the matrix [jg] is taken as a function of time, then the linear gravity
model discussed “fn Section 2.1. 3 can be applied. However, the matrix can be
approximated by a constant for short time periods and a less than precise
gravity model suitable for improving the free space model is obtained. The
value of the constant matrix can be obtained as the average value of (a&/gt)
during the thrusting period, i.e., if & denotes the constant value which

approximates(%/,, ) then f (

fdt

Using this approximation, the equations of motion are

L -Ko =a

A solution to this eguation is easily obtained if it is rewritten as set of
two first-order equations

i

/0

/0

%
#2

o

then

4 = &

e =Ky 12
or

Y =AY +Ba
where

The solution for Y is

Z
t-r
y=e®yo) +[eTBa dr
o
In the previous sections, only the integral term on the right hand side of the
above equation was cobtained. Thus, the only modification to the equations

developed in those sections is the addition of the expression involving the
initial conditions. Mechanization is, thus, similar.
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2.2.4 Impulsive Rendezvous Technigues

Tn this section, the development of guidance egnations in a linear
gravity field will be restricted to determining an impulsive velocity
correction such that a rendezvous will take place at some time in the futwure.
The techniques of this section can he thought of as defining a reference
trajectory along which the rendezvous vehicle is to travel. Once this
reference trajectory has been established, the actual steering equatinns
(i.e., orientation of the thrust vector as a function of time) can be
determined by the methods discussed in a previous monograph of this series
on boost-guidance equations (Reference 2.16). The section below gives a
discussion of twe simple technignes for ntilizing calculated velocity impulses.

Impulsive velocity changes have been considered in detail in the
monograph on midcourse gnidance (Reference 2.15) and this reference is
recommended for a more complete formulation including the effects of errors
in data and optimization of multiple impulse schemes.

2.2.4.1 Approximating Velocity Tmpulses

The use of a model having a Tlinear variation in gravity generates the
necessity of neglecting the effects of finite burning time in order that
closed form solntions be obtainable. Although, the use of impulsive
velocity changes is essential to the simplificatiom of the eqmations, their
physical realization can be only avproximate. If a true impulse could be
achieved, then the gnidance mechanization would simply be to orient the
thrustor along the direction of the reguired velocity change and apnly an
impulse equal to the magnitude of the required chanege. Since the rocket
motor must bnrn for a finite time (the Jength of time denends uron the
thrust capability in relation to the magnitnde of the velocity increment)
the orientation of the required velocity increment will, generaliy, not
be the same at the initiation and termination of the thrnsting veriod.
Thus, if the rocket

TARGET ORBIT

; i//’ ORGINAL INTERCEPT
! RENDEZVOUS TRAJECTORY

VEHICLE ORBIT

Figure 2.4
Direction of Velncitv Correction

Rocket motors were oriented along the required AV vector and maintained in

that orientation throughout the thrusting period, the resulting velocity
increment wonld have the correct magnitnde, but it wonld be directly incorrectly.
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One method which can be employed (and has been employed in the Gemini
missions (Reference 2.3))_1:0 compensate for the finite thrusting time is to
center the thrusting period about the time at which the velocity impulse is
to be applied. For example, if it is calculated, that the velocity change
to be applied at t = to to achieve rendezvous is AV, and the acceleration
produced by the rocket motor is T/M then the length of time the motor is
required to burn is

M
at = AV- 7

The thrust perlod is then centered about time to by initiating the thrust at
¢ =2

Another method of employing impulsive computations which can be used
when the computation time is negligible compared to the thrust period is
afforded via definition of required velocity. Required velocity is that
velocity necessary to achieve rendezvous from the present position in the
absence of external forces (except gravity). In this method, the thrust
vector is realigned along a new velocity to be gained vector (i.e., the
difference between the required velocity and the actual velocity) at each
computation cycle and thrust is terminated when the velocity to be gained
is driven to zero. In order to insure that the computation of required
velocity can be accomplished rapidly, it is written as an expansion about
its initial value (the calculation of which may take considerably more time
than the subsequent calculations).

This method, discussed by Gunckel in Reference (2.8), requires that a
multiplication by a constant matrix and an addition be performed to determine
the required velocity at the next time point. That is, if an impulsive
velocity has been determined at t = O and thrust initiated, then at time At,
the actual velocity is compared with the velocity calculated from the
following equation to determine if thrustlng should continue.

V, 0t) =V, (0)7*/;:# f s [0-7) a
Vg = required velocity
v = actual velocity
4 = acceleration due to gravity
3&] = matri; of partial derivative§ 9f required
Jote velocity with respect to position

evaluated along the desired trajectory
as a function of time

This calculation is made as rapidly as necessary to provide the required
accuracy. In this process, the matrix %@ahiand a are considered as
constants over several computation periods. If the thrust period is
relatively long, the matrix of partial derivatives and the acceleration
vector will have to be updated to account for the inaccuracy in the model.
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This updating can be accomplished, however, at a much slower rate than is
necessary for steering and cut-off calculations. In the reference, Gunckel
proposes to update one element of the matrix each computation cycle; thus,
updating the complete matrix in nine cycles. Since the quantities under the
integral sign are taken to be constant during the time period, the above
equation can be written as

Ve |
Ve(at) = y(0)r g2t + =0, [(V(O)]-\{?(O))At

2.2.4.2 Two Impulse Rendezvous

The first linear impulsive guidance scheme to be considered was pre-
pared by Clohessy and Wiltshire (Reference 2.1) and is the basis of the
Gemini automatic rendezvous guidance (Reference 2.2 and 2.3). Two major
velocity impulses are used through several smaller mid-course corrections
calculated from the same equations and based on intermediate measurements of
the state attained by the first change in velocity may also be required.

The first velocity impulse is applied at the beginning of the rendezvous
maneuver and establishes the target and rendezvous vehicle on a collision
course. The second impulse is required to null the range rate at the time
of closure. Consider a target
vehicle in a circular orbit and L X
a coordinate system fixed to the !
target such that the Y axis is
always along the radius from
the center of attraction, the
X axis is circumferential inthe

direction of the motion of
the target, and the Z axis

I

completes the right handed A
XYZ set. If the rendezvous
vehicle is in an orbit which TARGET
closely approximates that of VEHICLE
the target vehicle, then the
transition matrix of Equation RENDEZVOUS
(1.58) can be used to describe VEHICLE
the relative motion. 1In this Linear Rendezvous Coordinate System
scheme, the only concern is the Figure 2.5
reduction of the range to zero; )
thus, the only part of the matrix which is needed is rewritten below.
X
X { 6lamnr-nr) O (4dimnz-3nz) % (coonz-/) 0 y
y| =0 #-8cwonr O %(/-coon?) Yol ainnz) o) z
Z 0 o coon T o o e nT g
=z =0
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If a collision is to occur at time 7 then the components on the left of
this equation must be zero. If this substitution is made and the matrix
mutiplication indicated on the right performed, the three resulting
equations are

+ £

0 =X f-é(m/zr)ﬁ, +,,i(4m»z-3m)xo 3 (cao/zz"-/);io

0 =¢ﬂ’ -3600/12% * f(/—aoﬂ’r))%o +/7/,¢OL/12'/‘

Lo nT
Z

0=coonrz + A

n

Assuming that the position at t = 0 is fixed, the velocity necessary to
achieve a collision at time 7 can be determined by solving the above sets
of equations for X,, Y , and Z,.

¥ =”'{XoM/zTfﬁ,[—éﬂrdo}uﬂ?v*/é/(/—mﬂ?)]}

0 3nT amnr ~8(/-coonz)

. {i(a2(@”?-/)+%[‘5‘Mﬂ2’—3ﬂ2‘600ﬂ2’1} \ (2.11)
#o Inr amn -8(/-coonr)

Z = nZ cotnr .

Thus, if the rendezvous vehicle is at a position (X,, Y,, Z,) with velocity
(VX s Vy 5 Vg ) and the desired time to rendezvous is 7 then the impulsive
velocityoincrgment necessary is given by.

Ag=&-%
4 =4 =%
A =4 -y

The velocity which must be nulled by the braking impulse can now be determined
by again applying the transition matrix to the initial conditions

X,Y,z,%x,Y, 7.
o’ "o o’ 7o’ o . ' .
X, =3n annt X, teoontx, +2M/z2';/o

O’

g, =bnlconr-l)r,~24innt i, + ¥(co0nz-3)g,

Z, =R nT G CoonTE

Note that this method requires knowledge of the time at which rendezvous
is to occur. However, there are several factors which will indicate a
suitable choice for 7T . For example, in the Gemini rendezvous, it was
found that the velocity requirements for a rendezvous maneuver which caused
interceptions in three-fourths of an orbit were less than for other fractions,
therefore, T is chosen to cause such an interception (Reference 2.2).
Another criteria would be the adjustment of the closing rate to be compatible
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with the rocket motor which is to supply the braking thrust. Data taking
and processing requirements could also place a particular reguirement on .
For a generalization to finite thrusts, see below Section 2.3.1 and the work
of Tschauner and Hempel (Reference 1.4).

2.2.4.3 Extension to Non-Circular Orbits
The state transition matrix used in the derivation of the required

velocity in the last section was limited to circular orbit . If the
transition matrix of Equation (1.58) is replaced by the symbolic notation

oL, : ar
o Y
G(Z)éa)= - +___
1
ar EEZ '

the technique of the previous section can be applied to any orbit. In the
case of a circular orbit, the transition matrix has been given (Equation 1.58
or Figure 1.58). For other orbits, the matrix is available in an analytic
form  (Reference 1.1, 1.5, 1.6, 1.9). References 1.1 and 1.9 gives ex-
‘pressions for transition matrices for elliptic and hyperbolic orbits. For
extension to finite thrust, see the work of Tschanner (Reference 1.5 and 1.6)

Very little use appears to have been made of the results for elliptic
target orbits and it is suggested here that they should be of significant use.
For example, possibly the use of the long set of approximate equations for
orbits of small eccentricity developed by Anthony and Sasaki (Reference 1.2
and Section 2.2.4.5 below) could be replaced entirely and with no limitation
on eccentricity.

2.2.4.,4 Multiple Impulse Rendezvous

A modification of the previous scheme developed by Shapiro (Reference 2.11)
employs several velocity corrections and drives the range rate to zero by the
successive application of velocity pulses rather than by a single impulse at
zero range. This technique achieves a degree of flexibility over the previous
scheme in that it is also applicable to targets in an elliptical orbit.

The first velocity correction is computed from Equation (2.11) based on
a ficticious time to rendezvous 7T . Subsequent velocity corrections are
computed on the basis of a time to rendezvous equal to ( = - kt) where t is
the time elapsed since the initiation of the rendezvous maneuver and k is a
constant. The desired velocity magnitude decreases at each computation
period because of the dilated time scale and approaches zero as t = 74 . 'To

see that this is so, consider the solution (2.11) as t - w4 . In }his case,
the approximations awe (v-4£2) = n(v-4£¢) and coon (7-4¢) = #&2
are valid and Equation (2.2.1) reduces to
}t = - - 7
z-42 7 (2.12)



The solution to these equations are

rer—46] {57 em (22722

y [/?'(T -ii)]’i {—BM [’L(:_’M]MM[ ﬂ(r;@z‘)]} (2.13)

From these equations, it is seen that the position and velocity will simul-
taneously go to zero if k < 1. However, if the acceleration is examined,

it will be found that for 4 £ k < 1 infinite acceleration is required

as t = ¥4 . Therefore, for practical rendezvous, k must be restricted to

the range O < k < 3.

I

X

Flight control is accomplished by generating an error signal, V., from
the continuous monitoring of the actual and desired velocity

€ =V, ) (gs )

and igniting the rocket motor whenever this value reaches a specified thres-
hold. The thrust angle (i.e., the angle between the thrust vector and the
X axis) is ] .
Xo ~ Xo)

€

9=a/zoaoo(

lavi =y,

[N
<

Y

4

v, /’,\
/1
xD

[

T ———
]
b

Figure 2.6
In-Plane Steering Angle

The relative out of plane motion (2 ) is sinusoidal and uncoupled from the
planar motion. Thus, the out of plane motion could be nulled separately;
alternately, the desired Z can be selected as some function of the Z error,
e.g.,

E, = -4z
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The total velocitiy error in this case is

o=~ 5 -0, ) (2, -2, )

and the out of plane thrust angle is

g = _ate Zon (fé_—z;)

Ve

Figure 2.7
Out of Plane Steering Angle

If an elliptic target orbit is considered, each successive calculation
of the desired velocity from Equation (2.11) can be viewed as a problem in-
volving a new set of initial conditions and a new circular orbit with a
period slightly different than at the last calculation. Since the limits as
t — oé of Equations (2.12) and (2.13) remains, the same, even if n
is a function of time, the implication is that a rendezvous will occur for an
elliptic orbit. Shapiro theference (2.11)_7 has shown that a rendezvous
will not occur for elliptic target orbits by the use of a single application
of Equation (2.11) as in the method discussed in Section (2.2.2.1).

The general idea of this method can be used with other schemes by
changing the time to rendezvous at each correction point so as to gradually
reduce the range rate. If a range range-rate schedule is used, the time to
rendezvous can be calculated from the present position and desired range-rate.
For example, a fixed range range-rate schedule being considered for an Apollo
rendezvous is given in Table 2.1 (Reference 2.9)
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Fixed Range: Range-Rate Schedule

Range (N. Mi.) ' Desired Range Rate (fps)
5 =100
1.5. -20
.25 -5

Sears and Filleman, in Reference (2.10), chose a desired range rate pro-
portional to the square root of the range. Many other range range-~rate
schedules could be used and the choice of a particular one could be based on
factors such as (1) the maximum relative velocity expected at the beginning
of the rendezvous maneuvers (2) the type and capabilities of the propulsion
system to be used in the maneuver (3) data acquisition and processing re-
quirements and (4) back-up guidance requirements.

2.2.4.5 Second Order Improvement

If the required rendezvous velocitv is calculated from Equation (2.11),
then the miss at the target (i.e., the difference between the target and '
rendezvons vehicle) at the time rendezvous is to oceur will be zero to first
order. However, if the initial semaration distance is large or if the
selected rendezvons time is large, the actval target miss mav be significantly
greater than zern. inst dne to mndel err~rs. Tn these cases, an on-board )
svstem hased excinsivelv on the Tinear egnation mnst inclnde midconrse
eorrectio~s to achieve reasmmable miss distances. An alterrative is to
use equations of motion which have increased acciracr hecavse of the
inclnusion of secomd order terms in the expansion nf the crordinates. Snuch
equations have been develnrped in Sectior 2.7.5 and are of the form

©O(t) =& + &t + &, 0t + Xy ool + X, e 2F

2.1
* Ay 000 lt * & Lamwl + X, 1 ool (2.10)

where ©(7) is the relative position vector (to second order in the
coordinates) for target orbits of small eccentricity. The vector «; has
components A;, By, C; which are in general non-linear functions of the
initial position and velocity. (See Section 2.1.5 for the exact expressions
for Ay, By, and C4 ). One way to improve the miss at the target would be to
calculate the requgred initial velocities from Equation (2.14). This step
cannot be accomplished directly, however, because of the non-linear nature
of the ot ; thus, appeal to numerical methods must be made. An alternative
to a numerical solution is developed by Anthony and Sasaki (Reference 1.2)
which assumes a solution as a sum of the linear solution plus an error term.

2.1
B (0) = 8,(0) *€ (2:35)
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where o, is the required velocity computed from linearized equations such
as Equation (2.11). Substitution of Equation (2.15) in Equation (2.11)
yields equations for the ¢ 2. A second technique which yields essentially
the same result as that of Anthony and Sasaki method was developed by Bonomo
and Schlegel /Reference (2.12)_/. This second method seems to be more
formalized and compact for on~board implementation and is, therefore, chosen
for detailed discussion here. The method consists of first determining the
velocity required for rendezvous by the use of linear equations; next the
miss resulting from the use of this velocity is calculated using Equation
(2.14); and finally, the transition matrix is applied to this miss to de-
termine a new velocity correction.

CURRENT : Predict miss using Apply transition
POSITION Szigzﬁtefz zl?lulred v’ |this velocity from |4 » [matrix to miss P
— Ve 4 - “R .lsecond order vector to (0=
llnear.equatlogs equations determine new
(Equation 2.2.1) (Equation 2.3.1) velocity correction

Block Diagram of Second Order Velocity Correction
Figure 2.8

If Sp(r)denotes the miss distance to the second order resulting from the use
of the first order velocity correction at t = O, then the relation between

the miss and the required correction to the linear velocity increment is
given in terms of the transition matrix GlT,0) as

8,0(7) 8,2(0)
[/2 ] = G(7,0) [

The transition matrix can be partitioned as

Therefore, the desired relation between the second order miss and the re-
quired velocity correction is given by (since it is assumed that &g (0) = 0)

Sen = G, §V(0)

or

8V(0) = G, 8,0 ()
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" The velocity correction, &V(0) , represent the corrections which must be
added to the "first order'" required velocity so that the miss distance at
rendezvous will be reduced to zero.

Figures 2.9 and 2.10 (taken from Reference 2.12) illustrate a comparison
of the first and second order scheme described above.

102 T Repr Miss for Various Readezvous a';‘lﬂ Mias D1 for Var Rendezvous
Birategles: R, = 60 NM trategies: R = 200 NM
1084
10 R, = 50NM R, = 200 NM
10%
10 Key for Figs 510 9
3 As With fint-order AV,
= no mld-course correction.
o A B: With first-order AV, 10
E one mid—course correction.
= C: With first-order AV, A
§ 1071 ] two mid-course corrections.
H D: With (Iterated) second-
b order-Improved AV, =
& no mid-course correction. z 0
% E: With (iterated) second- o 107
H B order-Improved AV, i
; 10'2 one mid-courte correction. £
n B
5 g o
: ¢ §
£ ° "E 107!
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I I
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8
3
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Rendezvous Time, T, Min 3
f T L T U T ] 10
O 6 120 180 240 300 360 o | ® . 4o ' e | @ !
Corresponding Target Orbiral Motion, Deg Rendezvoun Time, T, Min
Figure 2.9 Figure 2.10
As can be seen in these figures, the effectiveness of the improvement depend
upon the initial separation distance and rendezvous time T . As a con-

sequence of reducing the number of midcourse corrections, the second order
technique reguires a smaller total A V to perform the rendezvous maneuver.
This difference becomes more significant for large initial separations and
times.

2.2.4.6 Direct Calculation using Two-Body Orbits

Perhaps the most straightforward method of determining the impulsive
velocity required for rendezvous is obtained by using the equations of
absolute motion of the two vehicles. The relative motion can then be de-
termined as the difference of the respective absolute motions. However, since
the relative positions and velocities will be several orders of magnitude
smaller than their absolute counterparts, it is seen that great computational
precision is required. Furthermore, the errors in the knowledge of the orbits
of the two vehicles must be small in order to maintain acceptably small errors
in the relative motion. The method has the advantage, however, of providing
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rendezvous velocity requirements from a much wider range of initial con-
ditions than any of the methods discussed previously.

In order to use the two-body equations of motion to determine the
required velocity a time at which rendezvous is to occur must be selected.
Some criteria for selecting the rendezvous time, T ', have been given in
Sections 2.2.3.2 and 2.2.3.4. For the purpose of illustrating the method,
it is assumed that the time till rendezvous 1s determined from some range
range-rate function, i.e.,

£ o= F(r) (2.16)

as in Section 2.2.3.4. The procedure is (1) measure the relative range;
(2) determine the desired range-rate ( ¥; ) from Equation (2.16), (3)
calculate the time of rendezvous, 7T , as

/o
T:_-—_
o
where /m = Mmeasured range
f; = desired range rate

(4) determine the position of the target at T wusing two-body eguations
and knowledge the target orbit (5) compute the required velocity by solving
Lambert's problem using the position of the.target at <z , the position of
the rendezvous vehicle at t = O and the desired flight time T .,

TARGET ORBIT RENDEZVOUS VEHICLE

ELEMENTS POSITION AT t = 0‘1
DETERMINE.
RENDEZVOUS TIME, 7 ,| . |CALCULATE r [SOLVE LAMBERT'S | ¥,. = REQUIRED
2 |FROM RANGE: ~| POSITION | "1 .|PROBIEM FOR | L VELOCITY
RANGE-RATE o T VELOCITY AT t = 0
CRITERIA

Block Diagram of Conic Rendezvous Calculation
Figure 2.11

If the position and velocity of the target vehicle are expressed in an
inertial coordinate system whose origin is at the center of attraction, then
the position at time 7 can be calculated from the following (sequential)

set of equations
r=vyx*r y*r2*
.2 . .
sazzi_yl
rio= ziryg r2Z
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Ll - 2 _ S

a r /a
e cook, =y/- L
Q
CM€= _,I
U a

”n
az
£ = a tan (227 L)
(e coo £,)
M, =nzr * £ e i £
£ , (2.17)
T—eM,é'T =MT

r(t) = 2 [(coo £, ~e) cook, » ain k£, an £ ]r (£0)

v 2 (o £ ~e)din £, ~lcoo £, -e) cov £,] £ (¢=0)

The solutions of all of these equations are straightforward except that for

(2.17). Kepler's equation requires an iterative procedure to obtain E,
is known, the

Once the position of the target vehicle at time <~

velocity required of the rendezvous vehicle at t = 0 can be found.
the set of equations (2.18), which constitute Lambert's theorem (see Reference

2.13) solved iteratively for a, « , and & .
rio) + rix) +C

First,

- 2 &
= Ya an? 5
r0) + r(x) - C =#QM2§
(2.18)

z =/Q;U“'M°‘) " (E-am8)|
c=lreo)-r ()]
Next, the eccentricity e 1s determined from the set
dE = x-8
a(/-eecmk )

i

ro)

rz)=all-e coo (£ »A£))
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Now, the magnitude of the required velocity, V, can be determined from the
energy equation

Y2 = e _ 4

ro) a

This magnitude- can be associated with a velocity component normal to the
radius (VM) which is found from the conservation of angular momentum

Y = a(/~-e%)
n r20o)

and a radial component (V ) found from

P) z
g =y,
Finally, the required velocity vector can be written as

r (0) (nxn)xr

Ve = V% o0 T Tir k)]

A variation of this procedure called 'miss distance guidance! and is
described by Gunckel in Reference 2.8. In this method, both the target and
rendezvous vehicle orbits are integrated forward to the rendezvous time.
The difference in their positions, at this time, is the miss distance. The
velocity required for rendezvous is then found by operating on the miss
distance with the transition matrix.

V(0) )
sy = [Hm Jtren-r)

where ‘—/Q = V() + J\_/
Vg = velocity vector required of the
rendezvous vehicle at t =0
V(0) = velocity of the rendezvous vehicle at t =0

I

[a\_((o)] transition matrix relative variations in
or(T) position at £t = v to velocity at t =0




r(0), r(0) ]
- T COMPUTE POSITIONS | f(o | B APPLY TRANSITION
r,(0), £,(0) OF TARGET AND Lo Cglggr 2 \aTRTX T0 2 ( ) &vio)
RENDEZVOUS VEHICLE r-r =0 TO DETERMINE
ATt =7 = =1 = VELOCITY CORRECTION
r(0)

- Block Diagram of Miss Distance Guidance
Figure 2.12

Because of the fact that the solution to Lambert's problem, in the
first method, is replaced by a repeated application of the equations de-
termining the position followed by a matrix operation, this second method
holds considerable computational advantage over the first. This simpli-
fication is purchased, however, at the expense of generality in the method.

Some of the difficulties mentioned in the first paragraph of this
section can be overcome by the incorporation of direct measurement of the
relative range into the equation defining the velocity. Such an incor-
poration is discussec by Gedeon (Reference 2.14). In this reference, Gedeon
compares the direct measurement of the relative range with that calculated
by the conic equations for application to a process employing differential
corrections of the transfer orbit parameters. Only an outline of this
procedure is presented here, since the reference uses Herrick's universal
parameters rather than the orbital elements discussed to this point. The
coordinate system is such that the Z axis is normal to the "transfer" orbit
and x is along the radius r . Let the subscripts = and ¢ denote the
measured and calculated values of the relative position ( ax ’ Ay and Az );
then the residuals ( 6x , 8y ) are defined by

6‘1 = AXC —AX,”
. 24w
6‘0? coo ¢

where

dzm )
5”") *Afm

A relation between these residuals and variations in the elements of the
transfer orbit can be written as

() - ()

4'=a/ul‘a»t(
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when a

Q
A

semi major axis

one of Herrick's universal variables

matrix

A similar relation can be written for the velocity and variation in the orbit
parameters

(59)- o (5) - oa(2)

The "correct" velocity required for rendezvous is then given by

Z = & 5%
4. = (fr8g) conl’

z'r = (%. +<9%', Daere ¢’

2.3 PROPORTIONAL GUIDANCE

Proportional guidance refers to a class of guidance laws which exhibits
smooth thrust functions chosen to be proportional to some function of range
and range rate. The mechanization of these laws requires throttable motors,
this requirement may be undesirable when compared with the relative simplicity
and reliability of constant thrust motors. Also, these methods are ex-
pected to be less optimum than those using constant-thrust motors since
optimization of maneuvers indicates that thrusting should occur in periods
of either full or zero thrust (see Section 2.4). The computation of the
thrust vector, however, is quite simple since the graviiy model is not
introduced into the equations.

An example of proportional guidance is presented by Sears and Fellman
(Reference 2.10). In this reference, the rocket thrust is determined from
the equations

T=sle-f1-5002,)
L = 33[/‘5"%‘7]*"34 (0 a:s)
L = 35[/.0"/'?]#‘54 (/o a./:s)

where 51, 55, 53, Sh’ Sg, and Sg are constants and 1,5.1s the angular rate
of the line of sight. The subscripts r, ¢ and z refer to the radial,
circumferential and out of plane direction.) If the constants S; and S

are made equal and S, and Sb are set to zero, the thrust direction will be
along the line of sight and the thrust magnitude will be determined by the
difference between the range rate and the square root of the range. For
this case, the trajectory as seen by an observer on the target satellite
will appear as in Figure 2.13.
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Figure 2.13
Rendezvous Trajectory with Thrust Along the Line of Sight

If all four of the guidance constants Sy, S,, 83 and S; are made equal, a
rendezvous will occur and the trajectory will appear as in Figure 2.14

Y (feet)
20000 40000 60000 80000
1 i 1

S |

20000 i

40000 1

X (feet)

60000
Figure 2.14
Rendezvous Trajectory with All Sensitivities Made Equal
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Another example of proportional guidance is given by Green (Reference 2.17).
A discussion of this method, call logarithmic guidance, is presented here
since a comparison between this type of guidance and an optimum guidance
technique is made in Section 2.3. In this method, the vehicle control
system attempts to adjust the thrust so that the equations below are
satisfied

L o=k 2
A e
7 V
—T';Kz—
s ~
where K5 and K2 are constants. These

equations may be integrated to
illustrate the logarithmic behavior

éi-— (fl)q 07 e Lé‘ = A;-j% £

\

4 R % %
5 -(2) ’ 2
i ‘gl w gk
"The first equation may be integrated to give°

Py (,+ f (J-K)E) K/

LP= A exp(— Z,L) K =/

® |

and differential yielding

-2 K-l
/5 = K //j:zk/oz

Thus, the time to achieve rendezvous can be determined as

ra( ’)
2’="7; Py

From these equations, the following bounds on Ky can be determined

& </ (to achieve rendezvous in a finite time)
K =z %

]

(to keep B < 2 gas ,° approaches zero)
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Manipulation of the equations involving & results in

- b2 [/+ f’ (/1%) “]/.ﬁ
7= g =) BA(2)5)

F= KRBTk
/oo (k’z'f';k,)

From this equation, it is seen that the condition

+ X - 0
K2 1l >

must be met if ¢ is to remain finite as ,/© approaches zero.

2.4 OPTIMIZATION OF THE RENDEZVOUS MANEUVER

The cost of transporting fuel to space is so great that it is essential
in the design of the maneuvers to determine those which require the least
fuel and to choose the guidance mechanizations which approximate the optimum.
Eventhough the considerations of this monograph deal with small orbital
changes, the problem can be studied from the point of view of orbital
transfers. Thus, it is known from the work of several authors (Reference 3.1
through 3.5) that impulsive transfer of either one or two impulses will be the
optimal transfer (minimum 4 V requirement) between orbits such as are
involved here. Further, a phasing technique similar to that discussed by
Strahly (3.6) which involves splitting one of the two impulses into two
portions which are used as an integral number of revolutions apart can yield
rendegzvous with the impulse of optimum two-impulse transfer. Some
possibilities of this technique were demonstrated by Bender (3.7). Con-
sequently, there exists a determinable lower bound to the velocity increment
to rendezvous for any given case. This bound can be used to evaluate the
effectiveness of any chosen scheme for its nearness to being optimal.

There is a feature of optimal two-~impulse orbital transfer which
partially removes the need to optimize. This is the fact that for orbit
pairs which do not intersect deeply and which are fairly near to one another
all the way around, the effect of varying the departure point around the
first orbit is not very significant (see Figures 5 and 6 of Reference 3.8).
In addition to this feature of this class of optimum, impulsive transfers is
the well known result due to Lawden (3.1) which states that optimal space
maneuvers employing a rocket motor are constructed of zero and maximum thrust

segments. Thus, rendezvous schemes universally utilize this principle in
their design.
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The first area of work to be discussed concerns the optimization of
rendezvous using stepwise thrusting either as a series of impulsive thrusts
or as-a series of finite burns separated by coasting arcs. This technique
actually results from a develepment of switching functions from the
Pontryagin maximum principle. In this second and third portions of the
section, rendezvous studies involving continuous thrust are described. These
sections deal (for the most part) with the final phase of the rendezvous
maneuver; that is to say, the two objects are on the verge of a very near
collision and the engine is to be used with a single burn to alter this
situation and produce rendezvous. In this area of study, field free
equations are, in general, satisfactory and most work deals with such motion.

There is an area of low thrust rendezvous studies in which power limited
engines are considered. The cost functions for the fnel for such engines is
gradratic, thus the linear differential egrations of motion yield a set of
equations for the optimum sitnation which is Tinear and consequently solvable.
Applications of this approach have been largely for interplanetary stndies
which anticivate electric propulsion systems. However, closed form solutions
obtainable for this tyme of system have been suggested by Goldstein et. al.,
(3.9) and Rryson (3.10) as useful aids in studying the rendezvons maneuver.
The method of Bryson will be described in Section 2.3.2 and finally the

continuous low thrust studies (with linear cost funection) will be presented
in Section 2.3.3.
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2.4.1 Optimal Stepwise Thrusting

Assuming that a spacecraft is propelled by means of a chemical rocket
engine, optimization of space maneuvers on the basis of minimum fuel implies
optimization on the velocity increment provided by the engine. That is

J“[’a’dz‘ = a minimum 4.1

It is assumed that the engine, when it is turned on, operates at a fixed fuel
rate and that this condition implies a fixed acceleration because the total
change in velocity for the rendezvous is expected to be provided by less
than 5% of the total weight in fuel. If an unlimited time is allowed for a
rendezvous or transfer maneuver, the optimal thrust program solution will
revert to the impulsive solution in which many very short duration pulses at
each passage of certain points on the orbit (Breakwell Ref. 4.2) are applied.
Another variation of the rendezvous problem formulation is the time optimal
problem in which a fixed acceleration and an upper limit to the total amount
of fuel (i.e. A V) available are assumed; the solution then seeks the pro-
gram for rendezvous in the shortest time possible. Both procedures lead to
a series of engine burns and both procedures require the solution of two
point boundary value problem as will be shown.

Most of the results to be presented in this section refer to the linear
problem with a e¢ircular reference orbit. The solutions to the equations of
motion are found in section 2.1. ( Equations 1 - 21 and 1 - 48 to 1 -
63). Before proceeding to the application of the Pontryagin Maximum Prin-
ciple to these problems, some results obtained by Tschauner and Hempel
(Ref. 1.4) will be indicated. (Tschauner has recently extended #he results
to the case of targets in elliptical orbits (Ref. 1.5 and 1.6).) These
authors consider the rendegvous maneuver on the basis of linear terms
and a circular reference orbit and separate the motion into the in-plane
and out-of-plane motions so that the quantity being minimized is

-
T vy = = [ apmpr] * 12, ) 0%
& o
% &
=f’/442+”zz oy +//a3/ dé
0o (2]

where ?a = the acceleration of gravity at the target orbit.

The out-of-plane motion is simple harmonic and is driven to gzero by a
series of oppositely directed thrusts applied every half cycle, the last one
of which yields § 3 =0, $ 3 = 0. The duration (@) of each pulse depends
on the initial motion, the number of pulses desired, and the maximum thrust
of the engine. The optimum cost is that of a single impulse applied at the

58



time the vehicle crosses the desired plane. This cost is

&, topts = £t el b3

For the finite thrust case of (mtl) intervals of acceleration ("3) and
duration @, the cost is '

~ R Z 7
{ —A{’(M*/)ﬂ‘—,d:ﬂ:_d/; Jo,oz‘ Lok

This technique is shown to satisfy the Pontryagin Maximum Principle by the
develomment of the switching function.

For the in-plane motion Tschauner and Hempel point out that

‘47=f:/7’7 96 =fluy)d0 =] [ u,08)= | p0))  *

This equation shows that 7. (o) is a lower limit for the velocity increment
needed, and that this minimim can be reached only if there is no radial thrust
and the circumferential thrust does not involve a change in direction. On
the basis of this argument, 4] is set = O and the problem is reduced to a

one dimensional motion.

The condition that «, does not suffer a change in direction is known
to occur when the two orbits do not intersect, since for this case optimum
impulsive transfer is very nearly cotangential, and the angular momentum is
increased by both burns (the active vehicle is assumed to be in the orbit
closer to the force center). Tschauner and Hempel proceed to develop cri-
teria and equations for a three burn maneuver of the form shown in Figure 4.1.

\
—] o ——] tf—
CIRCUM. g 2
ACCEL.
0 % = TIME
I
4
— @ e
3
z-" -

Figure 4.1. Three-Burn Maneuver to Rendezvous
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Note that if it can occur, this scheme will include the optimal two-burn
case when the thrust is not reversed,.

The integrals z;, z5, 23, and z, can be easily found and set equal
to wy (0), wo (0), w3 (0), w, (0). They are:

Z = w (0= (B+8-%)

2 cwy 0)= 4z -2)d+ (5 +%)8-(5-2)d] .
L.
2, = w; (0)=lanz-wse(z-8) *2en 3 - a7~ )
~ it T ain (7,-8 )]
2z, = a0 =4lecol(z-4)-cozg +eoo(7,+4,) - coo,

+co0 7, - coo (7~ %, )]

Assuming that ©p = 'T3 is given, it is seen that there are four equations

to determine the unkndowns @, #,, @3, Tq, and T,. Since the fuel consump~-
tion is equal to (@ + @p + ¢5), this sum can be equated to some reasonable
value as the extra equation.

The inversion of these equations to find the coast and burn intervals is

not possible in a closed form, but by means of special assumptions Tschauner
and Hempel are able to sclve the special case of optimal rendezvous from an
inner non-intersecting orbit. The results are a generalization from impul-
sive to finite thrust of the impulsive splitting technique suggested in

Ref. 4.6 and 4.7.

Before leaving the work of Tschauner, it is to be noted that in
Reference 1.6, a similar pair of thrusting programs for elliptic reference
orbits for the out-of-plane and the in-plane portions of a rendezvous with
a target in an elliptic orbit is developed. The independent variable for
this analysis was eccentric anomaly (the analysis turns out to be more
manageable). Again, no radial thrusting is assumed and again, the case of
three impulses to rendezvous is developed. The analysis is somewhat involved
and the reader is referred to the paper for the details and the equations.
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Goldstein et al, (Reference 4.9) utilizes linear equations for the in-
plane motion only and describes a procedure for obtaining the optimum thrusting
and steering program. The problem is formulated as a Mayer problem in the
calculus of variations and the switching function is developed. A sequence
of thrusting programs is then constructed and developed in such a way as to
approach that one which satisfies the maximizing conditions. Computational-
results for a series of cases are given and these will be summarized below.

The analysis to be presented is similar to that of Palewonsky and Woodrow.
In this case, the full set of equations for the circular reference orbit is
used because the function to be minimized involves all three thrust directioms,
that is, Equation 4.1 is used. In addition, both the time optimal and fuel
optimal rendezvous problems are developed. Much of the analysis is common
to the two procedures; therefore, these discussions will be carried together
until it finally becomes necessary to distinguish one problem from the other.
These two problems are in fact very similar to the time and fuel optimal or-
bit transfer problems which are described by McIntyre (Ref. 4.12, Section
2.3.4, pages 61-68) as illustrations of the Pontryagin Maximum Principle.
The differences between rendezvous and transfer problems are: first, that
for the three dimensional transfer problem only five variables corresponding
to some set of five distinct orbital elements have to be matched at the end,
whereas for rendezvous six variables are needed so that the final position
on the target orbit matches a given phase situwation; and second, that the
transfer problem is extremely non-linear while the differential equations
for the present problem are linear with constant coefficients.

In order to attack either of these two problems in three dimensions, it
is necessary to combine the differential equations of motion and one for a
measure of fuel consumption into a set of seven linear differential equations.
The equations of motion were integrated in section 2.1.4.1 as follows: to
begin with, the differential equations of motion are: (Eg. 1.21).

§'-35-25, = «
S *28 = 4 4.10
33”* EJ = l{’

where the £1s are distances expressed in units of the radius of the circular
reference orbit; the independent variable, ©, can be taken as the true
anomaly or the mean anomaly in radians (time in units of the time for the
reference particle to move one radian around its orbit); and u; are the
forces/unit mass in units of the acceleration of gravity at the reference
orbit.

The variables (§,, %o, ’s']/_ > §a, 53, §'3 ) = T were transformed
to wl according to Eq. 1.59 and the solution was obtained as (Eq. 1.64) as

w=F (6) (w, - z) 4.11
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where F (©) is the matrix given by Eq. 1.60. Then, the six integrals (z)
of the components of the forcing variables w, up, ug are given in Eq. 1.63.

Now the acceleration produced by the engine is deseribed by three
control variables: b, &« , & where the magnitude of the acceleration
will be specified by, o . (This variable will have only the values u, or 0
as called for by the switching function) and the components are described
by two angles, «, & , similar to latitude and longitude in the rotating
coordinate system as shown in Figure 4,2. Thus, the forecing functions are
specified by the controls according to

uy = b cos cos 4

u, = b cosoa sin yt

2 412
Uy = b sinx

where the permissible values are

-7 . e r
z TXx=7,

0«8 %27, pup

b =0 o UD onty
}g (BINORMAL)
%
ACTIVE
SPACECRAFT /'5; (CIRCUMFERENTIAL)
o

§ (RADIAL)

Figure 4, 2 Thrust Direction at Active Craft
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For a measure of the fuel consumption (assumed to be a small fraction
of the total mass of the spacecraft), the total velocity increment added
will be used as the seventh variable we This differential equation is

w':Z =b with g (0) = 0. 4.13
The integral is expressed simply as
90
w, = f bdr IARVA
o

Many presentations of the Pontryagin Maximum Principle sueh as that
given by Kopp (Ref. 4.13) require the introduction of an additional variable
when the payoff function involves the time; here, the payoff function is the
final time itself. The treatment by McIntyre (Ref. 4.12) on the other hand
allows J tec contain ©¢; this procedure will be followed, though it 'is’
noted that the adjoint variables and the Hamiltonian can take the same form
for both problems. Thus, seven adjoint variables corresponding to the seven
state variables w, wyp are introduced as p, py and the Hamiltonian is

H=p  (Aw *Flto b 4.15

r 2
where the forcing vector is F = (4, 54, 4,34, , O, e, )

and where the differential equations for the seven variables p, py are:

P’ -A'p L.16

s P 0
A L.17

Since a fundamental motion for AT is FT (-6), the solutions can be written
as

T
p=F (8) F(=0)p, = F (-0)p 418
Py = P7 , a constant, 4.19
where O, =0 and F (0y=1

The control variables in this problem are to be chosen so as to
maximize the Hamiltonian along the path. In order to determine these control
conditions, note that H can be written as:
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H =pbeooa and *p (& *f;g,} coox co0 4)

*py (w, +4 coo X ain 8) 4.20
* (- +3 4 coo x cpo8)
rpgowp r g (w rban )t p, 4 4.21

= A4 cooox cood * B4 Coo x een 8 + O avse oc
"t R Pl ey TR Y TR

where A= 5p *4pg 4.22
B=pa +p,
C=p
Since < and & have continuous ranges, H is maximized by setting _2f1.=
0 and o4 i
-7 0, These conditions yield
(~A tncx eoo 8 - B awe K terw 8 +C coox ) 4 =0 4.23
(A coocxan,d » BepoX eoo B)b =0
Eq. 4.23 shows that (when 6 # 0 )
8
Zn 8 = Z
and hence that
L] 4 L.2h

SRy B ey 2]

The sign ambiguity resulting from the square root is resolved by requiring
that second derivative be negative., Thus, it is seen that only the positive
sign is required. The quadrant in which 8 lies ( 9¢ & 27 ) is thus
determined by the signs of A and B,

In a similar manner, Eq. 4.23a now yields

c 4.25
am & =-)5?:2§7
Hence
2 z
e X = £ oo X = u
D D 4.26
where

D=’/ 2+BZ+CZ
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Again, a test of the second derivatives will indicate that only the plus
sign for D is allowed. The guadrant for o (- % < o ¢ 7 ) is thus
determined by the sign of C.

The portion of the Hamiltonian containing the control is

He=b (D+pg) = b (D+ Py 427

Thus, it is clear that to maximize the Hamiltonian when D + P =0, the
value of b should be u,, whereas when D + Py < 0, b should be O, The case
when D + Py = O over an appreciable time is called a singular arc and is dis-
cussed by McIntyre (p 67 of Reference 4.12). Such arcs are not excluded and
have not been found to occur for these problems. Note that since D is either
positive or zero, the value of Py must be negative for coasting ares to occur.
The function k = D + P is called the switching function since it controls
the value of the thrusz. Thus, to summarize

lF Kk <0, ther b-0 a  coasting arec, or

4.28
iF k >0, therm b=4,, a full power thrusting arc
and the thrust components are
u, = b B/ 4.29
u3 = b D/C.

The distinction between the time optimal problem and the fuel optimal
problem lies in the function to be optimized, the constraints, the boundary
conditions on the adjoint variables, and the Hamiltonians. The time optimal
problem is the determination of the controls such that

Jd = Of is 2 minimum 4.30

under the constraint that wy ( O ) £ AV, the total allowable velocity

increment. It is necessary to include the constraint w (Of) £ AV in

some way since otherwise P, = O and the engine will be turned on all the

time. (That is, the time to rendezvous would be minimized if there were

no coast arc; that is, the vehicle should accelerate thus increasing the

closing rate until it is necessary to reverse the thrust to be able to

stop at the target). If the fuel is limited, this result suggests that the

optimal time will be attained by using all of the fuel and hence, Wy (Of) =
AV is the boundary condition. Thus, the seventh constraint is taken to be
Yo =Wy (6f) - AV =0 for the time optimal problem.
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In contrast, the fuel optimal problem is the determination of the con-
trols such that

J =fW7(Of) is a minimum (4.31)

under the constraint that Qf £ T. Suppose that a local optimum has been
found which produces rendezvous as the result of a one, two, or three burn
maneuver. This solution is the program sought and represents a lower limit
to the possible value of T which might be imposed in view of the thrusting
limitations. Hence, the final time @ will be left open for the fuel optimal
case; that is, only locally optimal solutions will be sought in the neighbor-
hood of one, twg, or three burn maneuvers, The boundary conditions on the
adjoint variables and the Hamiltonian are given by (Equation 2.3.36, P. 55
Reference 4, 12)

iy o % (4.32)
» . = 0] -
~ ;/{’ dw;  Jur £2hen?
aJ aw 1%

= — —_—

" 5 2 4 26
d (4.33)
where yg (Qk) = 0 are the boundary conditions for the variables Wiseeoss

W7.
In summary, for the time optimal problem, the results are (at & = Qf)
p + H# =0 (for the first six)
p7 +/“7 =0 (4.34)
H = 1

and for the fuel optimal problem (time open)

p +tM =0 (for the first six)
p, +1= 0 (p, = -1) (4.35)
H = 0

The computational problem involved in finding the optimal maneuver is one
of determining the six components of &« (or of po) from the six conditions
w(ep) =0 (and M 7 from w (6p) = AV for the time optimal problem). Thus,
the problem has been reduced to a two point boundary value problem (as may be
expected, this problem is one of considerable sensitivity). Paiewonsky and
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Woodrow have shown that t..e Neustadc¢ method of solution which changes such
problems to maximum-minimum problems can be used in this case, They
illustrate the convergence properties for three methods of solving the max-
imum-minimum problem. However, regardless of the approach taken in solving
the two-point boundary value problem, the most important feature of the
success or lack of it is the starting point assumed. Without a reasonably
good guess for the first attempt, it has been found that optimum transfer and
rendezvous problems may not converge. Fortunately, there are at least two
schemes for obtaining valid initial estimates for the solutions. One method
uses the solution to the quadratic payoff function problem which can be found
explicitly for rendezvous (Section 2.4.2 below). Another scheme bases the
initial guess for the problem solution of the impulsive solution.

Still another approach has been suggested by McCue (Reference 3.14). 1In
this reference, the application of quasilinearization to solve the two-point
boundary value problem along with the use of impulsive transfers as the scheme
for generating the first guess of the solution has been shown to be capable of
yielding optimum finite thrust coplanar orbital transfers between arbitrary
elliptic orbits. This particular scheme has not been applied to the linear
rendezvous problem as formulated above to the author's knowledge but it should
be a rapidly converging device for the problem. Another demonstration of the
use of the impulsive case as a starting point is given Handelsman (Ref. L4.15).

Actually, the computations involved in locating optimal rendezvous are
required only in the case of low thrust systems. The pratical solution for
optimal rendezvous to any problem where the thrust capability is of the order
of 1 m/sec? (3 ft/sec?) can be obtained from the optimal impulsive solution
by replacing the impulsive thrusts by finite burns as is shown by Robbins
(Ref. 4.24). In this analysis, it was assumed that the thrust was of
sufficiently large magnitude that thrusting arcs would not be excessively
long. This is a very modest requirement because, as Robbins points out, an
error of not more than .2% in the velocity requirement can be assured if the
central angle traversed during the burn does not exceed .22 radians. As an
example, consider a circular orbit at 300 KM above the earth; this angle
corresponds to a burn of nearly 200 seconds (this time, generally increases
as the altitude increases).

As an example of the application of this material, consider Reference L.11.
In this reference Paiewonsky and Woodrow analyze the problem of time optimal
rendezvous in three dimension from two separate conditions at a series of
available AV's. For the case illustrated, the situation is somewhat like
an abort problem in that the two craft are separating at the initial time and
they are to be rejoined. Thus, an immediate first burn is required which must
at least change the sign of the relative velocity. Several tables of error
sensitivities were shown which illustrated the capability of the procedure
and the interesting feature that three burns are optimal in certain cases;
some results are reproduced in Tables 4.1 and 4.2. When the amount of fuel
available is large, a single burn time-optimal trajectory occurs as is ex-
pected., For a moderate amount of fuel (the case of Table L4.l), two burns
occur; while for a reduced amount of fuel near the absolute minimum (the case
of Table 4L.2), an intermediate burn also develops. The thrust required during
this intermediate burn is largely out—-of-plane and has the effect of
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significantly reducing the out-of-plane velocity when the out-of-plane
distance is small. The body of Tables 4.1l and 4.2 contain measurement error
sensitivity coefficients 2% “3%7;_ o,y Where the six variables are 7 (%, fx’
¥, 5;, $,5") . It is‘seen that the quantities in the matrix dépend
only on_tﬁe unit of time (here it is the second). The results represent the
effects of errors in the control due to the measurement errors of the initial
conditions, the vehicle being at its nominal position. (They are not the
usually obtained errors due to errors in actual position with nominal control.)
The very high dependence of rendezvous errors on initial velocity errors
indicates the need for updating the relative velocity information and for
making the required alterations in the thrusting program.

As another example, Goldstein et. al. (Reference 4.9) compare numerical
results of four methods of determining the velocity increment to rendezvous
for a series of planar rendezvous problems for a circular target orbit at 300
n. mi = 557 KM altitude. Two of their figures are shown as Figure 4.3 and L4.L4.
These figures show the velocity increment to rendezvous as a function of the
time from rendezvous. The four methods of determining the velocity increment
and the labels for the figures are: (1) the power limited optimal theory of
Section 2.4.2 (a curve labeled Phase I); (2) the fuel optimal (fixed time)
theory above (2 few points labeled P or L depending on the initial guess from
Method 1 or 4), (3) two impulse computation for a series of times (a curve
labeled Two Impulse), and (4) logarithmic or proportional guidance for the
case where the relative separation is initially decreasing (a series of points
labeled with crosses and the value of K (=(d/d) /(@/0) ). These transfers

were optimized orlﬂ'i/aﬂ,//;yya)g . The thrust magnitudes vary between the
methods used, but range below . ft/sec? = .2m/sec2 for the cases in
Figure 4.3 and below 1.5 ft/sec2 = .5 m/sec2 for the cases in Figure L...

The most important conclusion to be observed from these results is that the
two-impulse rendezvous is an extremely good approximation to the optimum if
the relative phase is such that the rendezvous transfer is nearly an optimal
transfer. Furthermore, as has already been noted, the impulse function for
for optimal two impulse transfers for such orbits in the rendezvous problem
has a very broad minima.
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Table 4.1
Measurement Error Sensitivity Coefficients

1 N ) 3 L 5 6
4.08 3.56 .0025 -.0148 .01 -.0007
.07 - .9 -.0039 -.0047 -.01 +,004kL
-825.06 1753.25 3.4236 6.1922 34.38 -3.8879
-1753.25  653.17 -2.1082 2.9518 0 .1307
.05 +.02 .0017  +1.7092 .06 -.0008
314.38 -8.59 1.2890  + .0020 858.8L ~1.4426
Initial Conditions 7y = -7,= 75 =60,000 ft = 18.3 km
73= -7, Te =100 t/sec = 30.5 r;xzi;ers/
Ingine Accel. = 1.0 ft/sec® = .305 m/sec?
Total velocity increment = 450 ft/sec = 137 m/sec
Burn 5.0 min; Coast 15.0 min; Burn 2.5 min
Table 4.2
Measurement Error Sensitivity Coefficients
-1.02 34.16 .019L .0055 -.05 .0129
.0 -1.04 -.0022 .0002 +.02 ~.0017
885.22 1667.31 9.2189  =-3.0149 42.97 7.4381
-1727.47  15,581.59 6.495. 2.6177 -17.19 3.6556
.0k —.05 .0082 ~.0009 .01 .0054
-.5799

—8.59 -8.59 6.6294

842.25

5.L4075

Initial conditions 771 = - 72= 75 = 60,000 ft = 18.3 km

-7, = 7= 100 ft/sec - 30.5 m/scc

7/3 =
Ingine Accel = 1.0 ft/sec?
Total AV = 250 ft/sec = 137 m/sec
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Burn 2.7.m»_in; Coast 27 min; Burn 1.6 mln, Coast 22 min; Bufn.
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Figure L.3
Velocity Increments to Rendezvous (Ref. La)

Initial Conditions, 1 = 139,000 ft = 42.3 km,
5 = 72,300 ft = 22,0 km,
3 = 335. ft/sec= 104. m/sec
, = 170 ft/sec = 51.7 m/sec
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Ciers 70 [
700 / :
650 / :
€00 |
550 / '
500 TWO IMPULSE :
450 —] I
400 \\ //, PHASE 1 :
350/ 2102 ,.801 |
L.COS T
300 P :
0 D 1000 2000 3000 4000 5000 :0000
TIME ( SECONDS) wisdy
Figure 4.4
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2.4.2 Optimum Power Limited Rendezvous

This analysis is concerned with a class of vehicles which contain a
rocket engine which is power limited and which has variable thrust by its
ability to vary the exhaust velocity of the fuel. When operated at full
(constant) power, the engine pay-off function for fuel consumption of such

an engine is
7'2
=.}r¢z a?
o

This pay-off function and the linearized equations of motion have been used
to study low thrust flights to Mars and Venus by Melbourne and Sauer (4-15)
and by Gobetz (4-16). However, the analysis presented is due to Bryson (4~10).

As is indicated from the title of Bryson's paper, (Reference 4-10)
includes interception and soft landing. This capability is occasioned by his
use of the cost function

-
0 + . t
2J =c,u-uv tC, R R U«
%
\lhere
A = relative separation
Y= relative velocity
Y = acceleration due to power limited engine
Z'Lo /= initial terminal time

C,, C, are scalar weighting factors
The linear differential equations for this problem are

s
::4;,#—5

where 4 difference in acceleration due to gravity between vehicle and
arget—g 4g = 0 for rendezvous)

Thus, the Hamiltonian of the problem is
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If it is assumed that 4g is constant, the differential equations for the
multipliers become

and the optimality condition yields

.?f:g*a -0
2

These equations are readily integrated to obtain (the initial position
and velocity are Lo and y, and the initial time is taken to be t = 0.)

A, =4
du &-At-4)
v =dgt f_ez-&gz" s

i

= %098% + % B4 - 7
R = 2498+ % B¢ Aé*gz‘+ﬂ
Where the boundary conditions at t = T for A, and Z”,are

Ay =G &(7)
A, =27

The problem is to find A and B in terms of_ﬂ and o This inversion is
easily carried out and the result is:

4o GO TN TR 4 Tr0,) -c, 0, % (40T o)
= D

5 - CTU1+C, %) ag T™y T1g)+C, (16, B)agT+4;)
D
(rec,T)-¢c,%)rc U

2(/+¢, %)

In order to apply these results to the rendezvous problem in free space,
A& is equated to zero and A and B are obtained for Sy G 77/ . The
value of the initial time is referred to ty. The result of these manipu-
lations is:
é

4= ey (2.4, +_u,,(7-4,)]

where D
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2
8 = 7oy [3g *24 (7-2)]

When these expressions are substituted into the control law, the result may
be interpreted as a sampled data feedback law where the last measurement
occurred at to. Thus,

6(¢-4)
34 * 2y, (7'-4)]+ (7__;")_, [2/o° (T-é,)]

“Tirs)

Another result may be cbtained by imagining that the position and velocity
are continuously sensed and immediately used to correct the thrust. In this
event, a ,©,, o, @nd t, become & , ¢ , and t and a continuous
feedback guidance law 1s obtained, which is

__ be _ Y
(7-4)%  (T-2)

«

To cxpress this law in terms of W, (toward the target) and uq (ncrmal to the
line of sight), note that £ = - ?L ¢ =-RL - R M. Next adopting the
notation of expressing a small dloplacement from the nominal path as a small
angle,

VEHICLE

NOMINAL PATH

TARGET 7

Figure 4.5 - Geometry of Rendezvous

Yields
., 2¥or R .
174 o r —5— = 0 o~
A -/ = = whee Y, 7z R
W+ 4 )
Uy = u-d = —;_TZ,—-*?’}‘_{ oo
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Examples of the effectiveness of this form of proportional guidance for
chemical engines used in earth orbital rendezvous are given by Goldstein,
et.al, (Reference L4.9) and an illustration of their results is given in
Section 2.4.1. '
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2.4L.3 Optimum Continuous Thrust Guidance for the Final Maneuvers

2.4.3.1 Free Space Model

In this section, the optimum steering program for the final thrust period
of a rendezvous is developed. That is, it"is assumed that the two vehicles
have been established on nearly identical trajectories such that the range
rate is negative and the range is large enough that rendezvous can be
accomplished without overshooting the target. A single thrust period will
accomplish the maneuver, but depending on when the maneuver is initiated, a
coast period may be required before thrusting begins. A switching function,
however, is not developed in the course of the optimization as was done in
the last section. Rather, the time to initiate the thrust maneuver is
determined after the optimum steering program for the thrust period has been
determined. Although the simplifications necessary for this derivation are
much more restrictive than those of the last section, the result is a closed
form expression for the steering function in terms of the initial conditions
of the relative motion. 1In contrast, the thrust components of the previous
section were given in terms of a two-point boundary value problem whose
solution is analytically intractable. Because of the closed form of the
solution, it is applicable for use in an on-board guidance system whereas the
previous method is probebly not because of the two-point boundary value
problem whose solution must be obtained by iterative techniques which are
often slow to converge.

The coordinate system in which the problem is considered is two-dimen-
sional, non-rotating, and fixed to the target vehicle. The X axis is in the
direction of the relative velocity vector between the two vehicles at the
start of the rendezvous maneuver.
The rendezvous vehicle is assumed
to have a constant
thrust motor
which provides a
constant acceleration

a,- The equations of motion are:

SA
'y

£ = a, co b

G = 4 uind (4-36)
- OM

where @ is the angle between the thrust vector and the X axis. The problem
is to find © as a function of time so that the fuel required for the rendezvous
maneuver is minimum. Since the constant thrust motor is operating con-
tinuously, the amount of fuel required is proportional to the time that the
motor is operating. Therefore, minimizing the fuel is equivalent to mini-
mizing the time of burning, i.e., the problem is

find & (t) 4t <t

such that tp is minimum and x (tr) = x (t,) = 0. The optimizations will be
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performed using the Pontryagin Maximum Principle as in the last section.
The notation used here is the same as in the previous monograph on the
Pontryagin Maximum Principle (Reference 1.8). In order to make use of the
maximum principle in the form given in the reference, Equation (4.36) must
be reduced to a system of first order differential equations. This is
accomplished by making the change of variables.

Z,=Z, /zz:y’ %=.i’,z"(=f

The new equations of motion arer

z, 00 /I 0\/x o
L,y _[ 000 1| x . o
x, 000 0| x coo @
or X = A X + Ba,. (4.37)

The target set in which the terminal state must lie is given by:
¥z, b)8{Wiy=2()=0, i-2,9,4

and, the function to be minimized is:

The differential constraints are given by Equation (4.37); (in component
form) they are:

x = 2:'4y 23.*-4% a,

where Ai and B. are elements of A and B, respectively,

J
Notice that the target set ¥ Z},éf) does not contain the condition
X, (t,)=0 . This condition is’ unnecessary since Xl (tf) can be nulled

by advancing or delaying the time to start the rendezvous maneuver. If X1
(t,.) were constrained to be zero, then the problem would have to be re-
formulated to allow for coast periods, i.e., the acceleration should be
allowed two values a6, , and O instead of just a, . In addition, the final
time of the maneuver would no longer be proportional to the fuel used.
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The Hamiltonian for the problem is:
7. T
H =P x=P(Ax+Ba,)

H=A?g+@x¢+€%cw9+3%4M9

But, the Pontryagin Maximum Principle states that the function &(%) which
minimizes the coast, @(t) , is that function which causes the Hamiltonian to
be a maximum at each instant of time. Therefore, this value of @ can be

found by setting the derivative dH/dé equal to zero:
94 _ .
o =-FB a, anb +ia co0od =0

or
2
lam 8 = =
5
The P. are the co-state variables and obey the differential equations:
L s H
g =~
7x.

[1

or
/
Since, the boundary condition on Py is:

;5:0’ ’9=01 '?:"‘,’, ’9’—"@

RUEL.) 3, o, =0
or
/f’(f}.)=0
And since 151 = 0, the solution for P (t) is:
P(t) =0

Solving the differential equations for P3 and Ph with P, = O gives
B =R, R =2(0)+3(0)¢

and the steering law becomes:

£.(0) + B (0)¢

Zan G = 2(0)
or lettine A (0) 2 (o)
c, = = and €, =2
! R (0) R (0)

lam 8 = ¢, *C, ¢

M

(4.38)



This equation gives the optimum steering schedule as a function of time.
It remains to evaluate G; and C, from the initial condition. This objective
is realized by first writing IEquation (4.38) in terms of «w 6 and co06.

/

@08 = ic e, i

C’fC;ga.‘

P fi

<in 6 Vir(c r g )%

X and Y velocity.

da

These values can now be used in the expression for

.t %
7~=faocoo«9dz‘ 1 g=faamadf
o

o

Performing the indicated integration gives:

] a . ,.
24) = v 2 ek (C0c,) - % sinh(c)
2 Ce

. Q
g4 = 2Viwlc rc,t)* - L \fjic?
c, C, 4

(Recall that the coordinate system was chosen so that the initial velocity

vector is along the X axis therefore % =V , 4 =0
Applying the terminal conditions reduces the y equation to:

25

F=7 7
Z
Substitutions of this in the x equation gives

La, .
(L.50)

(7] cz

Integrating the second equation in (4.39) to get Y(Ef) and applying the
boundary conditions gives

a,c, 5 _
0==;% + cZ V/’%% E;;.Aaug

-/

2

This equation and Equation (4.40) are adequate to determine the constants
C, and C2 from the initial condition. The complete solution is summarized

below:
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O =c rC, ¢
y = - 22 unk(c,)
2
Q a . -
0 = g BT B et
_ c; ¢;

If the equation for t. is substituted in the relations for C; and CZ’
a perametric relation for t. in terms of the initial conditions results.

This relation is informative since tg is proportional to cost of the maneuver,
and since it is required to determine the length of the initial coast period.

A / -
—-o——"-—_aM/C;

aoz(f C/
7 17 / r / A S1en? 0
Hogo _ _° L 4 + Y2 VT Yy
z g - . -
A 4 Lan# /Q (zinh ’6:)2

V. a, 4,
The quantities a_ol‘? , and '_VFT can be plotted with Cl as a parameter
obtaining a graphi’cal solution for tp,

f /. 1
v 8
aoz‘f .6
© v .2 3 .4 .5
Q, Z
0 {4
Vo
Graphical Solution for tg
Figure 4.7

Once t. has been determined, the miss distance in the X direction can be
determined by integrating the x equation

g
% = X —f X (t) ot
°
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where X (t) is given by the first equation of (4.38). This miss is to be
reduced to zero by an initial coast period of t, seconds with

M
4 =

An earlier paper by Kidd and Soule (Reference 4.18) also discusses
optimum rendezvous in a gravity free space. The basis of the optimization
is that the optimum initial conditions for a rendezvous maneuver have the
relative velocity vector oriented along the line of sight. (This conclusion
can be verified by examination of Figure 4.2 which shows that for constant
values of the other parameters, a minimum ty occurs when g=0.) If it is
assumed that midcourse corrections have placed the rendezvous vehicle on a
trajectory such that the relative velocity vector is nearly parallel to the
line of sight, then the thrust vector will make only small angles with the LOS.
In this paper, the cost function was selected to be the amount of energy
expended normal to the line of sight (i.e., the integral of the impulse due
to the non-zero angle between the LOS and the thrust vector) and the
optimization was performed by a variational technigue. The range of initial
.conditions over which the reswults are valid are limited by the same
assumption as the first method of this section with the additional re-
striction that the initial relative velocity vector must be nearly parallel
to the LOS. This method seems to have no advantage over Gunckel's method
and, therefore, will not be discussed further here.

2.4.3.2 Linear Gravity Model

The analysis in Section 2.4.1 is limited as an on-board mechanization
because of the necessity of using iterative methods to achieve a solution.
However, a method discussed in Reference (4.18) approximates an optimum
policy for the terminal maneuver; although an iterative solution is still
required, the convergence was found, by the authors of (4.18), to be rapid
for a wide range of initial conditions. The basis of the approximation is
the observation that for a range of trajectories, there are only small
variations in the thrust angle ( & ). This observation suggests an ex—
pansion for & of the form

7 = 2; *ra *JZL * ¢ F(¢) (4.L1)

where z;»(afjéfcfﬁﬂ

The procedure assumes that this is the form of the optimal steering angle,
then inserts this form in the equations of motion and finally determines the
constants so that rendezvous actually occurs. Assuming a circular target
orbit,(the equations of relative motion are derived in Section 2.1.3.2) and
neglecting the out of plane motion, these equations are
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where

I

constant rocket motor thrust
instantaneous mass = MO - Mt

= direction of rocket thrust referenced to the

&8 X 45
]

axis

A

RENDEZVOUS
VEHICLE

Coordinate Definition
Figure 4.8

The solution to this set of equations is

X() = % + ﬁ[/tm [a‘(z')].aén[(t-?)n]dt*z M[?(r)][/-ao[a-undq
% nly M *Mrt J M,+ Mz
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t 3
coo '(T) au ¥(r)
il 4 :/“M[(é-r)ﬂ]}df

7(7'() =% *f[ e & (t-TIn -2
n L M,rﬁir J MMz
coo I'(7) '
- j;i:z;;'=(é-?)ﬂ'tdén[(t-?)nq}]

¢
. . an 2(7) s 3(7)
)= f y i 1/ . °
()= 2 * f;[o MMt coo[ (¢ z)n]drﬁ?a W, Mz [« 'r)/z]dz-]

¢
o2y s o0 7(z) coo [(4-1)n)dT
;Jf)-—éz#/;[g/. A@-fﬂ?]‘

M—-——coi i;:) { eoof(¢- 7 ) ] f/}d‘t]

Z/M F(2) acn [(¢-T) n) ot
A M+ Mt

are the solutions to the homogeneous equations

where X,y 4,3 Zcs Y
which are found by applying the transition matrix for circular orbits to the

initial conditions
X, x(0)
4 y1(0)
. =G 0
X, (¢,0) 2(0)
A 4(0)

with G(t10) given by Equation 1.58, When the approximation for 7
(Equation L.A1) is substituted into the previous solutions, the resulting

equations can be written in the form

X(4)=0~R +Ra »R, b +R,c

$Us) =0 =Ryt ha r Kb + Ryc

X()=0 =R, +*R a+R b+ R,y
U0 =2, "R, a *Eyb 7 Ry

where a, b, ¢, and tF are constants and the R, .'s are nonlinear functions of
This set of equations must be solved for a, b, ¢ and tg; this

7, and tg.
objective is accomplished by first estimating ty and 6, from the first two
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equations in the set with a, b and ¢ set equal to zero. This guess for trp
and ¥ 1is next substituted in the three equations:

z(d) = g(t) = 2(4) =0

Z

and this set is solved for a, b, and c¢. Substitution of these values of a,
b, and ¢ in the equation for y(tf) will generally not result in it being
zero, so further iteration (on time) is made. The time increment is chosen
by seeking an increment which causes the remainder from y(t.) to change sign.
Half this interval is then used to recompute a, b, c and sugsequently j(tf).
This process is then continued until the remainder from j(tg) becomes
acceptably small.

The authors of Reference (4.18) investigated three forms for f(t) in
Equations (1.21). These forms were: (1) t2, (2) i/(t+#4), and (3) awnt
Of these three, only the quadratic one proved unacceptable because of the
inability to maintain the small angle approximations. The other two forms
were found to be stable at all points on the trajectory, and the trajectories
obtained were very close to the optimum trajectories as determined in
Section (2.4.1).
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3.0 RECOMMENDED PROCEDURES

In the preceding sections of this Monograph, the equations of motion
relevent to the rendezvous maneuver have been discussed and several methods
of incorporating the various form of these equations into guidance concepts
have been proffered. Of the guidance techniques discussed, none is clearly
superior to all the others and to recommend a particular scheme for all appli-
cations would be folly. As with many engineering applications, the trade-offs
between the various techniques are one of flexibility vs. complexity and
efficiency. Thus, for example, the price that is paid for requiring a
rendezvous guidance system capable of initiating the maneuver at extreme
ranges is the additional computer capacity to mechanize equations such as
those in Section 2.2.3.6 or to provide the additional fuel required for
several applications of the simpler equations of Section 2.2.3.4. Vhile it
would at first appear that guidance schemes which are optimized tc conserve
fuel could be generally recommended, a closer look reveals that there are the
same sort of criteria to be employed in this area. At present, computational
methods for solving optimization problems where they would do the most good
(i.e., early in the mission when the separation is large) are not suitable
for a closed loop, on-board guidance system. The difficulty here is that
large separations require the use of sophisticated gravity model, and the use
of such models in the optimization problem leads to two-point boundary value
problems which require iterative solutions as was seen in Section 2.3.1. On
ther other hand, if the separation distance is small enough to allow a good
description of the motion with gravational acceleration totally neglected,
then the optimization problem has an analytic solution as in Section 2.4.2.
However, the fuel savings in some cases is so small that it is not worth con-
sidering, and a guidance scheme which could accommodate a wider range of
initial conditions is preferred. (This determination can be made only after
examination of the particular problem of interest, and it is not intended to
imply that this technique should never be used.)

Although no single method can be recommended for all applications, a
general procedure for selecting an appropriate guidance scheme can be
suggested. It is felt that first consideration should be given to one of
the two-impulse schemes of Section 2.2.3. The choice of the degree of
sophistication to be used in the gravity model will be determined by the
desired range of initial conditions, the expected computational capabilities
of the particular configuration, and the amount of fuel available for the
maneuver. If the most severe constraints appear to be on weight or size of
the vehicle, then the linear gravity model of Section 2.2.3.2 might be first
investigated to see if it will produce acceptable rendezvous from the
desired range of initial conditions and with the available fuel. Alternately,
if the space and weight of the computing equipment is relatively unrestricted,
as, for example, it might be if the computation were done on some other ve-
hicle or on the ground, then the two body equations of Section 2.2.3.6 might
be first investigated. These equations might also be the first cheoice for
investigation if they were used for some other portion of the flight as with
the Apollo case where basically the same equations serve for midcourse and
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rendezvous. Finally, a comparison between the amount of fuel used for the
maneuver selected and the theoretical minimum amount as determined by an
optimization process, such as discussed in Section 2.4.1 should be performed
to determine if the fuel savings is significant enough to warrant investi-
gation of an approximate optimization technique.

A general block diagram of the rendezvous guidance process is shown in
the following sketch.

S ENSORS EST(;“FATE GUIDANCE STEERING
: SorTE EQUATIONS ‘EQUATIONS
DYNAMICS |~

In some of the rendezvous guidance schemes discussed, as for example
the impulsive technique in Section 2.2.3, the interface between the determi-
nation of the required velocity and the steering equations was not discussed.
In these cases, the required velocity can be used to generate a reference
trajectory and the methods of the Monograph on boost guidance Reference (2.23)
used to define the steering commands. The guidance and steering equation
blocks of the sketch can be represented in more detail as

ESTIMATE DETERMINE GENERATE STEERING
o e —=| REFERENCE | EQUATIONS
STATE REQUIRED TRAJECTORY (REF 2.2.3)
(REF 1.1) FOR RENDEZVOUS

F = ——| SENSORS | DYNAMICS |~

_— ——— — . — —
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For the guidance technique whlch nulls the angular rage of the LOS, the
direction of thrust are along the range and normal and steering is achleved
by determining the length of time each rocket motor is to operate. For this
situation, the link between the state estimation and the dynamics is rep-
resented as

DETERMINE
DURATION
OF
NORMAL THRUST

ESTIMATE
OF
STATE

DYNAMICS —

DETERMINE
DURATIOR
OF
RADIAL THRUST

Still another representation is possible for the optimum guidance scheme of
Section 2.3.2 since this scheme determines the steering angles directly.
For this method, the two blocks of the first sketch can be combined as

ESTIMATE | COMPUTE a“)l
OF 1 - OPTIMUM —=———T——— DYNAMICS +—
STATE i THRUST PROGRAM l

Although the sensors necessary to measure the quantities necessary for
a particular guidance scheme or the methods used to smooth the raw data have
been discussed in this Monecgraph, these portions of the guidance and navi-
gation process have teen included in the above diagrams for completeness.
Both of these subjects have been discussed in detail in previous monographs
of this series (Reference 1.1 and 2.22).
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