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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports

in the series.
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1.0 STATEMENT-OF-THE~PROBLEM

The basic objectives of this monograph are the development of the
mathematical formulations of the maneuver in orbit problem and the presen-
tation of solutions which can be utilized in the analysis of space missions
and the associated guidance process. These objectives will be realized by
isolating those factors which affect the motion of a vehicle and by de-
fining the optimum sequence of events required to produce the desired motion.

The approach to this problem has been to divide the maneuvers which
will be considered into two general classes for the purpose of discussion.
The first class (referred to as gross maneuvers) contains all of those cor-
rective strategies in which the individual corrections are of such a
magnitude as to require that the non-linear equations describing the
maneuver be solved explicitly to obtain the required accuracy. Such problems
are common in the analysis of orbital transfer, injection into a specific
escape trajectory from orbit, etc. This class of maneuvers will be analyzed
to demonstrate the manner in which specific trajectories are generated and to
provide the reference to which motion will be controlled in subsequent
discussions.

The discussion of the gross maneuver begins with the formulation of the
problem for the case of two-body motion (that is, for the case where the tra-
jectories are conic sections). This portion of the analysis defines the
parameters of the problem and suggests the most efficient combinations of
these parameters for use in a given numerical solution. Attention then turns
to the construction of the performance index (cost, impulse function) to be
used in comparing the various transfers and to an automated means of pre-
senting this index as a function of the parameters of the transfer orbit.
This presentation affords the ability to view a broad spectrum of transfers
simultaneously for the purpose of locating the neighbors of optimal 2-body
transfers. This knowledge is essential in the location of truly optimal
transfers since all numerical and analytic formulations of the optimization
problem result in a solution which is optimal only with respect to those in
its vicinity. This presentation also discusses the special case of the
transfer problem obtained by applying a time of transfer constraint (that is
the rendezvous problem).

The discussions of the gross maneuver conclude with a presentation of
the generation of optimal transfers in the true force field. This section
shows that the 2-body solution can be modified through the mechanism of
differential corrections so as to satisfy the 2-point boundary problem in
the true force field and that optimization of the resultant trajectory can be
effected in an efficient manner either numerically or by a combination of
analytic and numerical methods.

The second class of maneuvers contains all of the corrective strategies
which. are sufficiently small as to allow the non-linear equations describing



the corrections to be expanded in a first order series in the neighborhood
of a pre-selected nominal trajectory without adversely affecting the re- .
sultant accuracy in the analysis. This class of maneuvers (referred to as 4
differential corrections or midcourse corrections) is commonly encountered in :
the evaluation control strategies required to null the effects of injection

errors, target vehicle trajectory estimation errors in a rendezvous problem,

etc. The presentation of the discussion of this class of maneuvers will

progress from a formulation of a simplified guidance process to a discussion

of optimal control as measured by several loss functions and will conclude

with a series of observations pertaining to the application of this material.

The introductory sections, treating this second class of maneuvers,
develop the concepts of fixed and variable time of arrival guidance for the
case in which each correction is designed to null some set of components of
the terminal error. The specific objective of this material is to develop
an awareness of the variations in the formulation which can effect changes
in the control requirements and suggest avenues worthy of more involved
investigations. These guidance discussions are complimented with a dis-
cussion of errors and their effects on the control requirements and terminal
accuracy.

The introductory developments are followed by a section which draws
heavily on the literature available to present several approaches to the
optimal controller problem. The first of the discussions in this section
pertain to the "classic" approach (so named because of its nearly universal
use). In this approach a gquadratic loss function of the form

N
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where 8(t), u(t) are vectors representing the state (e.g., first order
position and velocity deviations) of the system and the
applied control

0 (t), 7 (t) are symmetric arrays of weights which express the
emphasis between accuracy and control effort.

is utilized to measure the performance of the system in regard to bcth
accuracy and control effort. / This particular form of the loss function has
ruch to reccmmrend its use since partial derivatives taken to define the
optimal contreol are linear, since the general nature of the expression obeys
intuitive reasoning regarding the nature of the "loss'" ascribed to positive
and negative errors cf like magnitude and since the stochastic optimal con-
troller (the cptimal controller for the complete ensemble of midcourse
problems) can be handled with the same ease as its deterministic_counterpart
provided only first and second statistical moments are employed;7 For these
reascns, this form of performance loss has heen utilized by a large number of



researchers in many different applications. Thus, the number of works
available are legion, and care must be taken to select from the group a set
of papers which are unique in the discussion of various aspects of the
problem or more illuminating in the discussion. While the choice is
obviously a matter of opinion, it is believed that the works of Kalman

\Ub. d._l. ), Guanel, Lee, \IULLhS—HL, Meler, Bcllmau, JOSGph (et. al.), and
Kushner constitute such a set. As such, these papers (Peferences 2.1
through 2.15) will form the backbone of the presentation of the quadratic
loss approach to optimal control. Other papers discussing various aspects

of the problem may be found in the Bibliography.

A newer more involved approach to the stochastic optimal control problem
was formulated by Breakwell and others (Peferenceq 2.16 through 2. ?'I) This

formulation employs a different performance index for measuring the control
effort. Namely

where E( ) denotes the expected value. This statement-of-cost more closely
corresponds to the penalty associated with control effort since the magni-
tude of the control (for a rocket propulsion system) is a direct function of
propellant consumed. The cost is not a precise statement since

| £ w)l # £ly" ]

but it does serve to bound the maximum control. This formulation, referred
to by the originators as minimum effort control, results in a different
weighting (relative to the quadratic loss criteria) of the dependencies
between the corrections which are applied at the different times. This
difference in turn is responsible for differences in the optimal control
policy and the total cost (generally the cost is lower).

The theory of minimum effort control is based on the same linear model
of the dynamics and observations processes as was quadratic loss control.
Further, the analysis is restricted to the same assumptions regarding the
statistics of the errors (both approaches consider only the first and second
statistical moments). The nature of the solution, however, is so completely
different that the motivation for the approach, a summary of the implicit
assumptions and a review of the development will be presented. This review
will present observations of the nature of the solution, its physical meaning
and metivation for additional research to complete the development.

The final classification of midcourse corrections for the purposes of
this monograph will contain all analyses in which higher order terms in the
representation of the dynamical and observational processes are included
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and/or in which non-second order statistical moments are employed in the
description of the error sources in the model, the estimation errors, the
midcourse correction errors, etc., and/or in which measures of performance
loss which cannot be derived from the first two by proper choice of weights
are employed. This class of analyses at this time does not contain many
menmbers due to the complexities involved in representing the process and the
specific nature of the results once particular distribution functions are
selected for the errors involved. However, exploration of this family of
problems from the stand point of the construction of a unified theory appears
to have reached the point that publication of the results is practical.
Accordingly, the monograph concludes with the development of a theory from
the concepts of decision theory and from Bayes Theorem which is capable of
embodying all of the published work on the problem. Further, this work
appears capable of lifting assumptions and restrictions implicit in other
work and of providing a great deal of insight into the structure of the
stochastic optimal control problem.

In summary, it appears that the current state-~of-the-art in midcourse
guidance, while far from complete, has reached a degree of sophistication
which allows analyses to be conducted in a rigorous and efficient manner.
Future efforts would , thus, appear to be most useful if they are directed to
the development and exploitation of the unified theory for midcourse guidance.
This opinion is predicated on the fact that this theory displays the full
impact of the loss function on the generation of an optimal control policy
and provides a clear interpretation of the effects of constraints on either
the control or the state at points along the trajectory.
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2.0 STATE-OF-THE-ART

2.1 THE GROSS MANEUVER
2.1.1 Introduction

In this section, the determination of the velocity impulse necessary
to implement two types of corrective action designed to make large changes
in the orbital parameters is discussed. (The significance of "large" changes
is that linear perturbation theory is inadequate to handle the problem.) The
first type corresponds to the case where there is no restriction on the time
required to make the change from one orbit to another; this problem is termed
an "orbital transfer" problem. When a time constraint is added as, for
example, when it is necessary that two spacecraft (initially on different
orbits) meet, the problem is termed a "rendezvous" problem. This is the
second type of action. The orbital transfer problem will be considered first,
and the rendezvous problem discussed later as a specialization of the transfer
problem with a time constraint.

The general problem of transfer from an arbitrary position on some ini-
tial orbit to an arbitrary position on some final orbit has no unique solu-
tion. Even in the case where the problem is restricted by specifying the
positions on the initial and final orbits where the transfer is to be made,
the transfer orbit is not completely determined. Thus, it is not surprising
that the transfer from orbit to orbit by many of the possible transfer tra-
Jectories can require quantities of fuel so immense as tc be beyond the
limitations of vehicle proposed for the mission. It is, therefore, of extreme
practical importance to locate, from among the class of all transfer tra-
jectories, those which are optimum in the sense of optimum fuel requirements.
Indeed, this will be the objective of the material of this section.

The analysis presented will, however, be restricted to impulsive ve-
locity changes since the transfer duration generally exceeds the burning time
by a large amount; one impulse will be given to make the transition from the
initial orbit to the transfer orbit and a second impulse will affect the
change from the transfer orbit to the final orbit. For the rendezvous pro-
blem, a three-impulse transfers as well as two impulse transfers will be
considered.

Optimizing the fuel required for performing the orbital transfer is
equivalent to minimizing the sum of the magnitudes of the velocity change
from the initial to transfer orbit and from the transfer to the final orbit.
Thus, a measure of performance, called the impulse function, can be defined
as

11,7+ |7, 7 Q1)
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where

Vi = velocity vector on the initial orbit at the point
of injection to the transfer orbit {

Vpr = velocity vector on the transfer orbit at the point
of injection from the initial orbit

Vop = velocity vector on the transfer orbit at the point
of injection to the final orbit
VF = velocity vector on the final orbit at the point

of injection from the transfer orbit.

The problem of minimizing this impulse function can now be formulated in
a straightforward manner. However, the solution to the equations, except for
special cases, is analytically intractable. Therefore, appeal to numerical
techniques (such as numerical solution of the Euler~Lagrange equaticn,
gradient or steepest descent methods, dynamic programming etc.) must be made.
Generally, these numerical techniques have a serious limitation in that they
can locate only local minima. Thus, without a' priori knowledge concerning
the number and location of the minima, the discovery of local minima will not
necessarily mean that a satisfactory solution to the problem has been found.
One means for obtaining this a' priori information is provided by graphically
displaying all possible transfer solutions for the central force prcblem by
contour maps in the "impulse function" space. (References 1.1, 1.2, and 1.3).
The location of the optima from these contour maps can then be used at
starting points for a numerical solution of a more precisely formulated
ortimization problem.

Before a detailed formulation of the impulse function and the develop-
ment of the minimization problem are attempted, however, a digression into
the transfer geometry and orbit parameters will be made.

2.1.2 Orbit Description & Transfer Geometry

Six independent quantities specify a two-body orbit in space; however,
many sets of elements (functions of these quantities) are adequate to describe
the orbit (Reference 1.4). The set which will be used here describes the
orientation of the orbit in space by two angles i and £ (the inclination
and longitude of the node, respectively); the shape and size of the orbit by
the eccentricity (e) and the semilatus rectum (p); and the orientation of the
orbit by the argument of perigee ( @ ). The position of a point on the
orbit is given by the true anomaly ( vV ), i.e., the angle between the
radius and the perigee direction. ©Now, if the plane of the final orbit is
used as a reference plane, its inclination (i) can be taken as zeroc and the
inclination of the initial orbit (i) is then the angle between the planes
of the initial and. final orbits (see Figure 1.1)
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Figure 1.1

The line of intersection of the initial and final orbits can now be used as a
reference line from which the location of the node ( £ ) can be measured.
With this reference, the nodes of the initial and final orbits are both zero.
Thus, the elements necessary to define the orbits are

°1,F = eccentricity of the initial (final) orbit
PI,F = semilatus rectum of the initial (final) orbit
iI = inclination of the initial orbit
o p= direction of perigee of the initial-(final) orbiF .
? referenced to the line of intersection of the initial

and final orbit planes

= angle of the radius vector to a point on the initial
(final) orbit referenced to the line of intersection
of the initial and final orbit planes.

The coordinate system in which the calculations will be made is also
referenced to the final orbit plane. The unit vectors of the coordinate
system are N, M, and EF and are defined as follows:

N = unit vector along the line of intersection of the
initial and final orbit



Hp = unit vector along the angular momentum vector of the
final orbit

M = unit vector normal to ﬁ, in the plane of the orbit
such that the set (N, M, Wg) from a right handed
system

This (N, M, Hp) coordinate system will be called the reference coordinate
system. In terms of the reference coordinate system, the radius vectors
toward the departure point on the initial orbit and the arrival point on the
final orbit are:

- % coo ¢,

T e, (@) | oo (1.2)

sin b dimi

ain 9.
_ 2 .
= ain 9
F (g ) P (1.3)

coo(AP-8.) cood +.ain (48 -F.)coo X an B,
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where @ and @ are measured from the line of intersection of the initial
orbit plane and transfer orbit plane; A ¢ is the change in the true anomaly
going from the insertion point to the departure point in the transfer orbit,
and o« is the angle between the nominal to the initial orbit plane and the
transfer orbit plane. i.e.,

A¢=a/wwo(’:'. ’7')
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The velocity vectors necessary to compute the impulse function (Equation 1.1)
can now be found by differentiating the expressions for the position vectors.
These equations will be presented in subsequent discussions as they are
required.

The initial and final orbits are assumed to be known, that is, that
the eccentricity and semilatus rectum for each are known. However, these
quantities are not known for the transfer orbit and must be computed. As the
first step, an expression for the eccentricity can be written in terms of the
magnitude of the radius vector at the beginning and end of the transfer.
This is done by first writing an expression for the two radii from the
equation for a conic in polar form

# = rhl+e coor))

B = n(l+e coo( +48)
where A @ is the angle between ;I and ;F and where Vg is the true anomaly
in the transfer trajectory at the time the transfer is initiated. These
equations can be subtracted and the expression for ep determined as

Bt

ST oo (Y +A8) =1 cooly,) (1.5)

The semilatus rectum can then be determined as

B = r(l+e coovy) (1.6)

Note that both of the parameters of the transfer orbit are expressed as a
function of the variable Ve

2.1.3 Impulse Function and Optimization Variables

The velocities necessary to compute the impulse function are now obtained
by differentiating Equations 1.2, 1.3, and 1.4 as

’}2 ?’ M¢I
v = coo ¥ cool
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Thus, since VYV, = @, at the point of injection into the transfer orbit,
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These quantities can be substituted into Equation 1.1 to yield the impulse
function which must be minimized.

I = |Z'V‘*|Z;‘Zl (1.1)

I

The velocity components and, therefore, the impulse functions contain the
variables P, € , w, and #. However, since the initial and final orbits are
assumed known, the parameters (with the exception of @) are fixed on those
orbits. -The variable @ locates the points at which the transfer orbit inter-
sects the initial and final orbits. This angle (@) is, thus, a natural choice
as an optimization variable. With @, and ¢T chosen as optimization variables
there are no unknowvm quantities remaining to be determined for the initial
or final orbits. Attention, therefore, must turn to the transfer orbit.
Consider Equations (1.5) and (1.6). These equations are independent in the
three unknown of the transfer orbit; that is, one of the three parameters
PT’ e, @ May be chosen for the purposes of optimization (the selection of
any one immediately determines the value of the other twec). However, numerical
experimentation has shown that optimization with respect to the variables

and<n is less desirable than that performed with respect to p Reference
(E 1) uses a disguised form of wp for the variable while References (1.3),
(1.5), and (1.6) use Py as the optimization variable.

Rendezvous Problem

tp are the times required to traverse, the true anomaly
nd A,Qs then the condition for rend(wv ous can be written

Lot o= 4ot (1.7)

where 7 1s time required for an object in the final orbit to reach the
reference axis (the line of intersection of the initial and final orbits)
from the position it occupies when the object in initial orbit crosses the
reference axis. As long as the periods of the initial and final orbits are
not identical, the value of 7+ will change, by an increment equal to the
difference in the periods of the initial and final orbits, with each revo-
lution of the vehicle in the initial orbit.

The time (t) required to traverse a true anomaly interval ( A @) is
given by Kepler's equation

7t = £, — £ -e(aink,~ank) (1.8)

7

where E, and E, are the eccentric anomalies of the initial and final points
in the interval and n is the mean motion

11



The eccentric anomaly is defined by the equation (see Reference 1.4)

0

r=a(/-ecpof) =—"—
/*+e coo v

For the rendezvous problem, Equations (1.5), (1.6), and (1.8) specify
the transfer orbit in terms of the variables rp, r- and t. An alternate
set of equations in these variables is available in the form of Lambert's
theorem (Lambert's theorem is probably the more widely used form in investi-
gations of rendezvous problems). Lambert's theorem for elliptic motion
involves the simultaneous solution of the following equations (manipulations
of the equations presented on the previous pages)

o
hth tC = Ha ain® g

= 2 B
r,+rn-C Ya an” 3

¢ =2 i )= (- )

where

c ='|€: -

WY )

A complete derivation and discussion of Lambert's theorem can be found in
Reference 1.4 (starting on Page L8).

The utility of this approach is derived from the fact that this formu-
lation uncouples the solutions for "a" and "e" (i.e., in this technique, the
problem can be reduced by direct substitution to the scolution for one
variable at a time)! This feature is extremely important and makes the
simultaneous solution of Kepler's equation and an equation involving the
radii (rI, rF) and the angle between them an unnecessary burden.

The solution of the rendezvous problem can now be accomplished by either
of the two methods. ZEquations (1.7) can be solved for T as

12
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and since the transit times, ti’ are functions of the ¢i then 7 is also a
function of @, i.e.

T=7(8,¢,49)

Thus, finding the optimum two-impulse rendezvous trajectory is a matter of
minimizing the impulse function, I, under the constraint 7 = constant.

As an alternative, Lambert's theorem may be applied directly. In either of
these two approaches, however, the transfers can be characterized by the
variable T .

Since the value of 7 changes with each revolution in the initial orbit,
there will be scme value of 7T for which a minimum pulse would occur. It
is reported in Reference 1.1 that the impulse penalty increases rapidly with
(7 - 7opt ); thus, only a small portion of the 7 range can be covered
by a two-impulse rendezvous without prohibitive impulse penalties.

If only two impulse maneuvers are allowed, the change in 7 with each
revolution of the initial orbit is the difference in the pericd, (TF'TI)’ If
a third impulse i1s considered, waiting in some intermediate orbit with a
period T' is permitted. By this method, 7 may be varied between O and
(TF-TI). Reference (1.1) shows that if it is possible to hold the initial
orbit for a bounded number of revolutions, the optimum three-impulse
rendezvous requires no more impulse than the optimum two-impulse orbital
transfer (Further discussion of the three-impulse transfer can be found in
References 1.1 and 1.7).

This feature is afforded by applying the lst and 2nd impulses at the
same position vector but displaced in time by some multiple of the orbital
period (extension to n-impulses is immediate). Generally, of course, the
3=-impulse scheme is less optimum. The exceptions to the general case are
discussed in References 1.11, 1.12, and 1.13.

2.1.4 Numerical Solution to the Optimigzation Problem

The mathematical expressions developed for the minimization problem do
not admit an analytic solution except in special simplified cases. Further,
conventional numerical search techniques by gradient methods find only the
nearest local minimum and provide no indication of the location or relative
size of other minima. However, one method used to obtain information on the
number and relative size of the minima is to evaluate the impulse function for
conic motion for a large number of the possible values of the optimization
variables. These data can then be plotted in the function space for contours
of the same impulse. Since the function space is three-~-dimensional a visual-
ization of the space must be made by a series of two-dimensional plots which
represent the trace of the surface on planes. An illustration of such a plot
is found in Figure 1.2.

13
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This figure is reproduced from Reference 1.l;

, was used as the third
optimization variable. With this choice of the third variable, the entire

function space is contained in a cube whose sides have length 360°,

As the complexity of the impulse surfaces increases, more projections
on cutting planes are required to obtain a good feeling for the location and
importance of the minima. To overcome this difficulty, two of the three
variables are chosen at random and the third is optimized. The entire range
of the two variables may be covered in this manner and contours of the third
variasble, representing the cptimum values of that variable, plotted (for

example in References 1.2, and 1.3 a technicue called "p-optimization" is
employed.) In this case, the third variable is p, i.e.,

v =.[(¢,7¢2’77)

If fixed values are assumed for ¢l and ¢2 the optimum value of p can be found
from the equation

97

0] (19)
do
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The values of @1 and @5 can be varied over their applicable range and a
corresponding optimum p determined for each set. A plot can now be made in
the ¢1 and ¢2 plane by connecting points with corresponding values of p.
Such a plot has been reproduced below from Reference 1.2.
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Lee (Reference 1.8) shows that the equation for the optimization of p
(Equation 1.9) is equivalent to an eighth order polynomial whose real roots
must include all the values of p for which the impulse is an extremum. By
further analysis of this octic, identification of hyperbolic transfers and
double minimum was possible.

\
\‘x

J)

1§

The problem of achieving actual rendezvous rather than orbital transfer
can also be displayed graphically. Since 7 1is a function of the same three
variables as the impulse function, surfaces of constant T as well as con-
stant impulse can be described in the function space. The visual soclution
consists of superimposing the T and impulse contours on the same plot as is
done in Figure 1.4.
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The contours of constant 7 are very regular compared to the complicated
shapes of most impulse contours. This fact considerably simplifies the
problem of conducting numerical searches since only the impulse surfaces
discontinuities cause major difficulties.

Because of the large number of variables involved in the transfer
problem, it is difficult to make general statements concerning the number,
location, or relative importance of the minima. Reference 1.1 presents data
for various types of orbits (i.e., coplanar, inclined asymmetric orbits, etc.)
and the effects of perturbations of the parameters on the minima. The data
in this reference may be useful to the reader with a specific problem in mind,
however, it is felt that specific problems will have to be analyzed on an
individual basis using the techniques described here and in the references.

2.1.5 Steepest Descent Solutions

The visual technigue described in the last section makes possible the
identification of regions of the impulse function which represent optimum
transfer. However, the approach does not generally provide (nor was it in-
tended to) the numerical accuracy necessary for the design of space missions.
This observation is the result of the fact that some impulse functions have
long narrow valleys containing several minima. For these situations, the
visual information obtained from the impulse contcurs is used as a starting
point for a numerical search technique such as the method of steepest de-
scribed below.

16
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The basic idea behind the method of steepest descent is that the de-
sired root (solution) can be found by starting at any point in the neighbor-
hood of that root and steping in the direction of the greatest change of the
function. From vector analysis, it is known that the gradient vector is
oriented in the direction of the greatest change of the function; thus, the
motion should be along the local gradlent vector. That is, if the impulse is
a function of the three angles ¢l, 2, and #2, and the starting point is ¢l,
$2, B3, the changes in the @#'s which should ge made to reach the minimum are

ar
A4 >
! I
ae, | = -% 78,
49, a1
79,

(In the case where the minimum value of I is known, an estimate of K can be
computed explicitly and the method becomes a Newton-Raphson iteration.

However, since the minimum value of I is not known in this problem, a numerical
search is required.)

The new value of @y, @, ¢3 which hopefully, is closer to the minimum is
computed as

The process is now repeated by computing partial derivatives at the new point
in the @ space. Since the number of computations of the partial derivatives
could be excessive in terms of computer time, an alternate to computing new
values of the derivatives at each step is to continue in the direction of the
original gradient until I reaches a minimum. A new gradient direction is then
computed and the process repeated. In effect, this "stepwise method" reduces
the three-dimensional problem to a series of one-dimensional problems. A4
two—-dimensional illustration of these two techniqgues are illustrated in

Figure 1.5.
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The gradient direction, as shown, is normal to a contour while the local
minimum in the gradient direction is attained at the point of tangency to a
contour. Discussion of a modified steepest descent solution to the optimum
transfer problem is presented in Reference 1.5, a general discussion of

steepest descent methods as well as other numerical search methods can be
found in Reference 1.9.

2.1.6 Real Force Field Effects

For mission analysis, the formulation of the orbit transfer problem in
terms of patched conics should provide adequate accuracy. However, if an
actual flight is to be analyzed, it will be necessary to include the effects
of the actual force field. Such an analysis would be extremely uneconomical
using the real force field because of the large number of trajectories which
must necessarily be generated to define the impulse function necessary to
locate the optima since these trajectories must be numerically integrated
from the initial position tc the final position (a closed form solution does
not exist, Reference 1.10). However, the process can be drastically simpli-
fied if the optimal 2-body trajectories are assumed to lie in the neighborhood
of the optimal trajectories for the true force field. This assumption is
valid for essentially 211 trajectories for which the perturbations induced by

the noncentral nature of the force field are of the order of a few percent
of the total position and velocity vectors.

When the initial conditions defining the optimal 2-body rendezvous tra-
jectory are now integrated in the true force field, the end point (the point
at which rendezvous 4s desired) will not generally coincide with a position
on the target orbit containing the target. 1In fact, the transfer trajectory
may not intersect the target orbit at all. Thus, a differential corrections
process will be required to drive this first estimate of the transfer tra-
Jjectory until the end conditions are matched. This differential correction
process is exactly equivalent to the two-impulse midcourse guidance formu-
lation presented in Section 2.2.1 when V.. is interpreted as the correction

required in the initizal velocity vector to shape the trajectory (Vg is of no

concern). This shaping process continues until some acceptable accliracy has
been obtained. The arrays of partial derivatives required in this solution

18
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may be generated by finite differences, by integration of the differential
equations for the state transition matrix (Reference 2.22) or approximated by
those derived for conic motion (the effects of the perturbations on these
derivatives will be negligible for most purposes).

The trajectory resulting from this shaping process will not generally be
optimum. Thus, a numerical optimization technique based on the Euler-Lagrange
equations, dynamic programming or steepest descent must now be attempted. The
initial conditions for this process will, of course, be the shaped 2-body
optimum.

2.1.7 Application of Optimum Transfer Methods

The techniques presented in this section would not be used in an on-board
midcourse guidance scheme because of the computational requirements and the
necessity of the visual analysis of the data to select an appropriate optimum.
Instead, these techniques would fall into the analysis phase of the mission
and would be performed before an actual flight. The information obtained by
these methods would be reflected in the choice of a reference trajectory or in
the selection of abort or alternate mission trajectories. The linear midcourse
guidance formulations discussed in subsequent sections of the monograph can
be optimized in this manner in both a large and small sense.
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2.2 MIDCOURSE GUIDANCE
2.2.1 Two Impulse Fixed and Variable Time of Arrival Guidance

2.2.1.1 Fixed Time of Arrival

In the way of an introduction to the midcourse guidance problem, a simple
corrective strategy will be presented. This strategy will be developed for the

case in which some prescribed mission objective requires that particular
position and velocity vectors be attained at a prescribed epoch. Schematically,

{7

In this analysis the state (state deviation) of the system (represented by
the vector &(f{) is assumed to be sufficiently small that its time history
can be expressed through the mechanism of the state transition matrix (see
Reference 2.22 for a complete discussion). Under this assumption and the
assumption that all of the parameters used to define the reference trajectory
are correct (i.e., no other perturbations than those in position and velocity

will be considered). Then

£
_fSFy %% % A
so={7}=1y % | s}
%
= p(4,4,) 5(1,) o

Now, by evaluating ¢(¢1,) at the terminal time (tf) and by requiring that

SF (ff) =0
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it is possible to evaluate the velocity-to-be-gained (? ) which must be

applied to the velocity vector at the time a correction is commanded to affect

reaiming the vehicle. That is, before the correction

-

SF(t) = [ﬁj 57 +[”°"‘ 57

while after the correction

Thus, by subtraction

SF(L)= = ¢(4,z;)5(°)=-[j—£7:] 7
_ a7 -
7 == 2] =80, 4060
where °
rl 0 0
. 5]
001

(2.2)

This correction producés closure with the desired point in space but it

induces an additional perturbation in the velocity at that point.
a specific velocity is to be attained it is necessary to apply a second
correction. This correction can be compuvted by nulling 6ia

E;z =-dV;
--[52)er - [5g] lew -
= 0Bt L) 8(4) - [%] v
where ’
o= (7 7]
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This guidance concept is extremely simple and may be optimized for the
deterministic case by finding the time, represented by t,, which results in
some measure of performance such as

ARSI

or
5T = -7 _
el b e e

attaining a minimum value. (This aspect of the problem will be deferred
until the next discussion to avoid duplication.) However, two assumptions
implicit in the development of this strategy:

1. The time of arrival is rigidly constrained

2. The correction desi%nated as V,1 is selected so as to null the

‘ complete error 6F( f) in theé absence of other errors (such as
application errors, state uncertainties at t,, and estimation
errors for the elements of the target trajectory).

Thus, in general, there is a more optimum means of correcting the errors.
The procedure for introducing these objectives will be discussed in sub-
sequent sections.

2.2.1.2 Variable Time of Arrival

The most obvious source of inefficiency in the previous analysis arises
from the fact that the time at which the corrected and target trajectories
intersected was held absolutely constant. This requirement may be relaxed in
most problems of common interest, however, provided that the target itself is
still intercepted. This requirement is equivalent to stating that any point
on the target trajectory is acceptable as an intercept point, provided the
target arrives at the new point at the same time as does the interceptor.
Schematically,
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The requirement for intercept (assuming a linear theory of motion is adequate)
is now '

AF (t +at)= V() at (2.4)

This process introduces an additional degree of freedom (At) and allows the
control to be optimized with respect to this parameter as well as with respect
to t_.

o

Consider the equations

or  9r
fer)_ |7 7% {27} E[% %]{aa}
ave av a7 | 4% b %l log
Fr T

and the situation in which Ar_ has been measured (or computed) and found
(estimated) to be non-zero. e problem as before is to apply a correction
(Vgy) which will produce a zero position error at some time tp + AL, i,
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43
{Af;.+l/,z1t}=[fé, ﬁz]{aa }f a(
2% + e, at) g, 2, 0la7 7Y |4
3t
4
or
Arpy +Aad an
v;+" } ¢“f"£°){ . ‘}
a4y, +Bat Av,+v"
where
W = Target's velocity at t =t
ET = Target's acceleration at t = tf
Y - ¥, - 2%
dt
t={
= r
3 - 5, -2k
It Ny,

Now, if Vg] is to be applied so as to null
4F +Ad¢

The same frmctional form of the solution obtained for the fixed time of
arrival case will result; i.e.,

Rut as before

Thus, ’
= ~{l¢, 8 I18(,) +4, 4 4¢}

<

~

I

~{4, 84, + K, 4t}
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where for convenience Kl and K2 have been defined as

K =184 Il
Y

Ke =9, A

Upon arrival, a second impulsive correction will be required as in the
fixed time of arrival concept. This correction will be

V, = ~laig »Bat]

2
~[(%,18,) §(¢,) +8, v, »Bat]

=-1(8,18,,) 5(4) -8, (K & (&) +K, a¢)*Bot]

i

™ (%, %2) =% K = (%, 22)—(2522 ,;/Z’, H )

=(%,-%, 8, %) 0

= 4
Thus,

b, <4 84) 4, K -Blat
=k, S () * K, ot (2.6)
where
4 =-14,-4,44,0

To this point no constraint or condition has been employed to determine
the value of At. Thus, the final step requires that a scalar comparison
function be specified which can be utilized to judge the relative performance
of different guidance strategies. Three such functions are

a) |\ = min
®) Jd

min

¢ tva = .
AARIVARIE.
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Fach of these functions will be considered in turn.

2.2.1.2.1 At by Minimization of the First Tmpulse

As the first step in this solution it is recognized that minimization of
lvgl] is equivalent to minimization of Vgll . This observation allows
the problem to be formulated in a more convenient manner by eliminating
radicals in comparison functionj; thus consider,

e =12 =TS a&T = ST =
£=lig)" =77, = 84Kk 4, +at*k, &,
+8U) K &, At + At K, K 8(L)

= §LIK K 8(L) +at?2 Ry K, + 20t B, K, 5 (L) 2.7

Now for F, to attain.a minimum with respect to At,

95 _
aat

0
But,
5

— = -7 T <
oo = Rat Ky Ryt 2R, 4 5 (4,)

thus,
Lk
2 K (2.8)

Tnder this substitution the corrections assume the form

7, = [k §e) - &, 2¢]

~ K -
= [—K,H{z 52—_] 5¢,)
< (2.9)
| =G, 5 (t) '
and
£ K
v =le -2 255
Yz [/(3 K -y ZJ (& (2.10)
= G,5(t,)



2.2.1.2.2 At by Minimization of the Second TImpulse

The same approach employed in the previous paragraph will yield the
required solution for this case. Thus, a function F2 is formed as:

r4

/‘C?_ = “?-‘I - Vz \;z r
= SUIKK, S(L)+ AL RTR, + 28t K K, 8 (4
(2.11)
and its partial derivative with respect to- 4t is set equal to zero to yield
4t = - Ky Ky 8(t,)
/2; /2# 0 (2-12)
Substitution of this result now yields Vgl and ﬁgz as
..Tk
v, = [—/<, * K, /24; .’]5(4) =G,6(4) (2.13)
v ¥
17 - E; II<3 = ~
%e = [/(3 i *]5(”3) =G, 8() (2.14)
% <4

2.2.1.2.3 At by Minimization of the Total Impulse

The final case of interest requires a slightly different approach since
the solution obtained by minimizing the sum of two magnitudes is not in
general equivalent to minimizing the svm of the squares of these magnitudes.
Thus, the comparison function F3 is formed as
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Now once again the partial of F with respect to At is formed and the result
equated to zero.

K, Bt L HAT ATV 2R R, + By Ky S(4)
Jat /l;/ _ /142/
or
-7z T T — -
4z &, ) K, 8(L)

This equation or an equivalent form obtained by squaring both sides.and
substituting Vv, \7", for )v‘_[" must now be solved for At. 1In general,
a solution can be found by numerical techniques though the processes may
be involved.

However, for most gnidance mechanizations and stndies of common interest
an analytic expression_is desired for At as a function of S(to) so that the
matrices which define Vg, and Vg, can be written explicitly in terms of S(to).
This fact reguires that a different measure of the performance of the system
be adopted and results in a less optimal (though much simpler) scheme. Though
many measures can be constructed which produce the desired result, the
simplest of these measures is

(2.15)

This function is a positive measure of the control and would be equivalent

to the Index F_ were it not for differences in the weighting of the dependence
of the second %orrection on the first. However, experimentation for special
cases has shown that the control generated for this index is generally com-
parable thongh slightly less efficient than the more precise statement of

the problem,

Minimization of F_ 1 with respect to At can now be accomplished by expanding
the respective scalar products

K, K,)8(4,)

wh
1l
Oy
~MN
N
N—
-~
~
X
+

+ DR R, r KK, ) + 204 &K + K K,)5E)
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Thus,

:765 =0 =24t () R, + R} B,) +2 (R, K+ Ry K, ) 8 (L)

or
(2.16)

Substituting this relation into the expressions for the corrections Vkl and
ng now ylelds

-

V = |-k +/k K-z ed /("Jd- = 3
7 - [4& Peite]$w) =686 2.17)

= [ = (R, K+ K,)
3

Ve

2.2.1.3 Observations of the Form of the Guidance Gains

]5“‘,)5G‘g(4) (2.18)

In all three of the previous cases a linear relation for At in terms of
the state deviation 6&(t ) was obtained (for the assumed quadratic perform-
ance index). Thus, both®of the corrections assume the form
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where the subscript j on the gain matrix B denotes the type of performance
utilized to define the array. Further, this form of the solution is exactly
comparable to the fixed time of arrival derived earlier. This fact will be
employed in subsequent discussions to divorce these sections from a specific
guidance logic. That is, future discussions will assume that a choice of
the guidance concept has been made and that the proper form of the gain ()
is available,

2.2,1.4 Error Analysis

The formulations presented on the previous pages will yield the required
corrections to effect a prescribed change in the position and velocity vectors
under the assumption that the state, S(to), is known. In all cases of interest,
however, SYtoi will not be known (rather, an estimate will be available),
the corrections will be imprecisely applied, and the exact state of the target
trajectory (as in the rendezvous problem) will be uncertain. The net result
of these errors will be a random variation in the commanded corrections which
will be a function of the errors themselves, Thus, it is necessary to establish
the mathematical framework relating these errors to the correction and to
errors at points along the trajectory or in the terminal state.

To accomplish the desired result and introduce the effects of additive
errors it is necessary to focus attention on the correct on equations in the
following form:

v, =-4"{ar +ALt}

A A
Ve="1av 4, v, +Bat}
At =TE)

where T depends upon the choice of the guidance scheme as discussed in preceding
sections, where the "hat" above a quantity indicates that the wvariable is an
estimate, and where the vector notation has been dropped for simplicity., Now
define the estimates A\}, A\'/F and & (t ) in terms of their true values and
additive noise as

A = Adr + ot f;,,, (2.19a)
A\Z, =A\§+Dr’r +f{,’f (2.19b)
A* - - 2.

W'o= g 7 (2.19¢)
a(t) =48(¢4) +év’a (2.194)

30



[

where 7 . v are 3-vectors of errors in the terminal poéition and velocity
¥ is the application error for Vg]

€ is the error in the estimate of the state at (t )

Vv, =&
W Y
o = E#&,
where 1%* - f;-%F
=-[55)
- 00
o = [O O]
I I
Thus,
25 = 2[4,664)°46, *47,]
ay =004, 8@) &, v&,]
and

A - 3
b= "% = [(¢,+AT) 3(4) +d e, # (#,+4T)e, ] (2.20)

Now, if the additive noise processes are independent (that is, if the estimation
errors for the target orbit and the transfer orbit are not functions of one
another) and if all known biases have been comnensated for by adjusting the
respective trajectories, then the first two statistical moments are:

£(7,) = £[-#, 2% +1)5(4)] = 7
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and

0, -£f [, -£000} =7

#, E(e, & )¢;+(¢,~+A:r)£(a,,o e, (&, +AT)
$ B, 9 +(B,+AT)R, ($,+4T)"

rno'r

(2.21)

U}

Thi¥s equation displays the effect of estimation errors in both the target and
transfer trajectories on the variation of the estimated correction. Note the
absence of any reference to errors occurring after the time at which the
correction is commanded.

The second correction is considered in an exactly equivalent manner.
First, ng is written in terms of the independent error sources of the
problem

A = -
e -{65(£)+95 * B¢,
=%, 4, Z[(8,74T) 5(4) + ¢, &,
f(¢V+AT)EV’oHﬁ]+BT[S(t°)+E”]} (2.22)
But
5t,) = 6 5¢)
so that

Ve--{l0d-9,, ¢, 28,241 +81] 5(4,) ‘O(E,, +E, )
#(, $1E)[ 8.5, ¢[8, +ar007) 7, +~/7]}

sa §(t )+ e + P
(04 )ra, € *a euaf«qj ~OCe, + €

(2.23)

ve’
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where

a = -6Obr¢, ¢ Z(d +AT) - BT

@ == b, L EP
o, =~ ¢, &1 2[4, ra+8]
@, = o ¢ |
Now
E(V,)=a, 5(s)
=7,
and

A a A " T
G -GN G-, ) )=y,
Thus, upon expansion,

=, B, & 08 6 -(0vq)R, . (6+a)

Lo 2

2
+ o R, o] +OFR, e - B+a) R

Yo

-
\W_.(9+a3)
te,Q "‘;

where Rq gp 1is the auto correlation function of the estimation errors

(2.24)

T
correspending to the two times t,, ty for the target vehicles [_-E (eTcﬁTF)]
4

and where @=E£ (¥ V’)—- covariance matrix for the application errors in Vg
1

The result of the errors expressed byV-, and V,_ can now be evaluated

in terms of the variance in the terminal state. This step is accomplished

by referring to

An +Apt =~ ¢ 7,

and defining
Ya) /2*_ = error in the terminal position
= "9 8,
= - ot A
be ()
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Thus, - ,
E[AR sR =4, V8,
— T
R= 47 %, (2.25)
Similarly, noting that
A\é + BAZ —.E;‘

and defining the error in the terminal velocity as AV, allows the covariance
matrix for errors in the terminal veloeity to be written as

.
£[ay ay’]=
14 =y (2.26)

Since the terminal state, S(t ), is not equal to the desired state, the
possibility exists that the mission obgectlves cannot be satisfied by employing
the two correction concepts without imposing severe correction requirements.

In this case, a decision should be made based upon the elements of R as to
whether the' resultant desversions will be acceptable. If not, subsequent
corrections should be considered. These intermediate corrections can be
computed in exactly the same manner as those outlined on the previous pages
with two important diffference.

1) The reference trajectory about which the control is being exercised
is the corrected trajectory resulting from the previous correction. (That is,
the problem can be restarted using the commanded trajectory resulting from
the previous correction as the nominal and the errors in the correction as the
state.) However, the error sources affecting the performance of the system
are the same as those existing in the earlier analysis.

2) Since the total correction concept requires that the second of the
two impulses be applied at the terminal state, a composite correction
equivalent to the vector sum of the corrections (%h)z is required.

The net result of this process will be a correction strategy which can
be commanded in real time using very simple computational algorithms. The
policy will not be "optimum" in the sense of the comparison fumction employed,
however, since the feedback matrices defining Vg and Vgy are each predicated
on the assumption that exactly two corrections are being utilized. Thus,
this source of inefficiency must be added to the list of items serving as
motivation for a more encompassing analysis of the midcourse guidance problem.
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_The analysis of the first two moments of the statistical distributions
for Vg, and Vg, in general will not completely describe a random process.
However, for tlie special case where all of the errors are Gaussian and where
the relationshlpg between all of the variables are linear, the analysis is

- PP | _....l. A2 2 e e Amam Pt 1 m.s~

complete since the resultant distributions are also (Gaussian. This fact was
demonstrated in an earlier monograph (Reference 2.22).

These results also have other applications. One such application is to
the problem of defining the probable amount of fuel required for correction
of a planrned trajectory for the situation where estimates of the error
processes are available. This application is realizatle by considering the

state, §(t_ ), to be an independent random variable resulting from injection

guidance ergors. Under the assumption,

L +SG3T (2.27a)
= TGT (2.27b)

where

S= ¢, Z(b, +AT)
r=6¢- ¢ S+BT
G = E[54)5(2)7)

and where the asterisk used as a superscript denotes that this equation defines
the probable requirements for the corrections. TInterpretation of the numbers
in these arrays is now possible in terms of the magnitudes of the probable
corrections by considering

£0yN7 = £y (v*)]

cq[?(Léﬁ)z = a Tr (%rr)
and

@, (LX) = oy Tr (V)

where Tr() denotes the trace operation and where «, and «, define the
probabilities which can be associated with the estimates (see Reference 2.22).
This capability is enhanced greatlv bv the fact that the trace operation is
commutative (i.e. [ (4+8) = Jr(4)+ Tr¢8)thus allowing the contributions and
sensitivities of each independent error source to the performance of the
total system to be assessed. This capability is especially valuable in the
performance of preliminary design studies since it affords the possibility of
generating much of the data in a parametric form.
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2.2.2 Optimal Control for Quadratic Cost

2.2.2.1 Introduction

The midcourse guidance problem for most spatial missions is characterized
by control intervals which are generally short relative to the total flight
phase. This fact means that a suitable model for this process can be
constructed by assuming that the corrections themselves are impulsive, however,
no assumption will be made regarding the nature of the observation process
used to define the state. Rather, it is assumed that the state has been
measured and is known. The effects of errors in the process will be introduced

subsequently.

The problem is now to determine a series of corrections which will minimize
some suitable measure of performance for the system. To accomplish this object-
ive, the mechanism of Dynamic Programming (Reference 2.3) will be employed as
follows. Assume first that the 1nss finction for the system is a linear
combination of the losses resulting from each control action. That is

AN

J, =2 F

7=/

Further, assume that the F, are functions of the state of the system and the
control action (thus, by proper selection of the control, the E and consequently
Jy can be minimized). The functional form of the F 1is unimportant at the

present time. It is only necessary to indicate that

/_; = /‘;[8[ (80;%" .. ,a‘._,)’ L(‘-_,]

and to note that the value of the performance loss will change as any of the
controls {(0%n <i-1) changes. (The fact that the subscripts used to

denote the state and the control differ by one is a matter of convention dictated
by the lag between a specified control and the state just prior to the next
correction and by recalling that &, is specified whereas «, is free to be
chosen.) For the sake of simplicity in the presentation, the vector notation
will be dropped from § , « . . . ete. This deletion will not cause problems
provided normal matrix - vector operations are considered for all of the

products and inverses. Now, consider the sequence of control times

36



-

and focus attention on the epoch n (i.e., the n plus first control action).
The loss associated with the duration corresponding to the remaining corrections
is now

A
JA-J-nvl' = E 5(6(:’ u(;-l)

i=n

(Note that the subscripts on performance loss increase in a direction opposite
from that assumed for the control epochs.) At this point, the specific value

of 7 which is minimum, I is defined as
M-nel x-n+l
M

= P £
IN-ns/ ALL ax JA‘/"H/ " ‘K M

This notation means that the variable J,,, 1is minimized with respect to all
of the controls which can be applied from the present epoch to ‘that of wission
completion. But, this minimum loss can be re-written using the additive
property assumed for the performance index as

My M M
= ... F (8. .
N-ntl oy, [F'-’ (2, u"") i wuln) ufr-1) isms (8‘ ?» Y )]
Min
g [Fl6,4 4,01, ] (2.28)
A~}

This equation is the "principle of optimality" of Dynamic Programming. It states
in mathematical form that the optimum control strategy satisfies the condition
that all corrective actions, regardless of the state of the system, must be
optimum with respect to the state resulting from all preceding controls,

Having rederived this basic principle, attention can now turn to the choice
of a functional form for F'Cx w.,) . Discussions in the introduvctory
developments of the midcourse” zuldance problem presented two such functions
and arguments which revealed problems in applying these two functions. Based
upon these observations the quadratic loss function will be employed as the
measure of performance for the system under consideration. That is

\ _ 2 r
Flx,u,)=8Q 8+u, Y%u, (2.29)

4
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The reformulation of the problem in terms of the minimization of a sum of
vector magnitudes will be considered later. Before leaving this discussion

it is noted that many other loss functions can be selected for most problems.
However, few are of general interest to the midcourse guidance problem, there-
fore, little or no work has been reported for them.

As the final preparatory step in the development of the optimal control,
one further assumption will be made. This assumption is that the times
corresponding to the various corrections are all known (that is, the matrices
relating the states and controls at two successive correction times are
constants). This assumption will be relaxed in subsequent discussions. How-
ever, relaxation will not be considered until this special case is understood.

The developments presented in this section of the monograph are based in
large part on the work prepared by Kalman (Reference 2.3) and Gimckel (Reference
2.14). Thus, to a large degree the notation will be similar. In contrast to
these works and the works of others who have been concerned with the perform-
ance of more general linear systems, the discussions to be presented here
pertain only to the midcourse guidance problem. This loss of generality is
felt justified in the light of the objective of this monograph and the excellent
nature of the references,

2.2.2.2 Optimization of Deterministic Systems
2.2.2.2.1 Formulation

The loss having been defined and the mechanism provided for performing the
analysis, emphasis can now turn to the development of the optimum control. This
development is accomplished by substituting the relationship for the state of
the system

8, = +
N ¢M,A/-I 8,4/-/ T, LYV Ly

(2.30)

into the loss function, solving for the control which minimized this last legk
of the problem and employing the optimality principle to provide the relation-
ships for the remaining corrections. First,

.
£, = (¢ 8, I, Uy ) Qu (¢u, L +ru,/u-/ Uy oy )

VAV e VR VI VS
7
+ ’
Uy Y Yy

T r J 7 r
8u-/ ¢/U, et Qu %’ -1 6&/- p + 2 au_, ]:/, o QU ¢U,U-/ 84./-/
T T (2.31)
* U (Yu +r/u,u-/ Qu ]-A'J,U-I)u -1

# The last leg of the problem is considered first so as to divorce the analysis
from consideration of anything which has occured prior to the epoch denoted

tN 7° This procedure is suggested by the principle of optimality itself.
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But for this segment

-4

AL ~Asvf J
and, therefore,

B M [4]

H

Now, if Jl is to attain a minimum with respect to Uy the condition
oJ,
du,,,

=0

must be satisfied. That is

/u,.u 1 Q Z[I:l - IQU I;'.I, A=) +yu] uu-/ =0

or

7
uA/v - [1:/, AS=t QU 1:/ n-t U] Ay -1 Q'J 92/, M-/ SAJ-/

= /<, 01 (2.32)

where K, is the gain (feedback) matrix required to effect the correction in
an optimal fashion,

The generalization of this result for the preceding corrections is now
realized by applying dynamic programming. First, substituting the solution
for Uy g into the equation for Jl vields

= ra T r__r
2= 8, B Qu By 72K G B e
+/( (y ,u,/v-/ QU III,U-I)K' 8ll.l-/
_ T
= 61/-/ 'Ll; s,u-/
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Thus, from the optimum principle,

_ T r T
1; B ‘A(/,u/t [ 8“'/ QU-I 81\./-/ *-uu-z 7&/-/ Uy-2 ¥ 8 l? ! ]

A= =l

—M/N[UI(QU, *P)s, +ul ¥ u 2]

N~ -2 N-I
U'2

Q§ and P. are not functions of and the funectional form of this
exores I%n is identical to that which wig™

S'minimized to determine w, Thus,
r - J-1
Uz = —[Q_/,u-.e (QA/-I *R) L a2 Yot
T
* L ez Qs 'I'D) ¢u vz Oug

= Kz Oz
And, the corresponding loss (cost) is

'z.; =[(¢U-I’U~2 “ I Kz)

A=y AI-2 ] (QUI ')[ U~I,U-2 +r:l-l,kl'2 Kz] au-z
r r
* 8, , Ky Y., %2 8,
7 T 4
= 8:/~2{¢—/uz(q~ p)¢u1uz Kz[r

Mi-ly M2 (QU-I +e) FIJ~I,U-Z +‘)1/-I] kz

+ 2 K Wty -2 (QM-I 'D)¢‘J -1y ““2} 8“"2

Rut, the last term in this equation for 12 can itself be written as

2/( [U/ v-2 (QU-I +'c’))¢4/-l, U-.Z] ZK [ N-l N-2 (QAH +'l'9)1;/-/ -2, +4 l] '(/1

A=

by simple manipulation of the definition of K

5° Thus,

Ty T
'l:! = 6&1-2{ ¢N-l, -2 (QU-/ * IID) ¢,u_/, -2

KL s @ BIE 27 0 )} 5
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Finally, these equations can be expressed in recursive form for the
general point, n, as follows:

* T
/i-l-n —1-;7? n—/[Qu +e/-n] l:l"n-l +yn (2.33a)
*® -1
:kl.l-uil =~ [FA‘/-"] I;’ n-1 [Qh * '?j-n] ¢U’ n-l (2-33b)
_ o7 _ 5 |
A-ne/ - ¢n, n-/ [Qﬂ +’i]- ] ¢’,, n-/ Ku- nel F':,..*" /{H ~n+l (2’33c)
4, = KM_M 8, (2.33d)

where the initial. conditions for the P array must be

The process for the special case where the control times are known is
now completely specified provided the weights ( Y and Q ) are given. Thus,
the solution can be obtained as follows: n n

1) Starting at the Nth epoch, work backward in time defining F, K
and P based upon assumed elements for the varions arcs of the
reference trajectory (these elements define / and ¢)

2) Starting at the initial state, work forward evalnating the control
(using the known gains, K) and translating the state using the
equation .

1o} =¢ ! ) + I u,,_,

n n, n- n-l n, n-1

3) Repeat steps 1 and 2 until the matrices I' 4 and & for the
two passes agree with each other and with the valuesnﬁgé& in the
preceding pass. At this time, the control is consistent with the
arcs of the reference trajectory.

4) The state at any point can now be computed as

n
8,7 = LIZ/ (?SL',[_/ +l?,£-/ Ku_‘:,l)] 6° (2'3h)

” n
vwhere JI denotes the product operation (analogous to X ).

r=l Il
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This last equation shows a very important fact. The terminal state
(or any other) is a function of the N gains (in a complex fashion -- these
gains in turn are a function of the times of the corrections and the weighting
matrices, Q and ¥ ) and the initial state. Thus, if both the initial state
and the correction epochs are specified, the terminal state is also specified.
This fact, though not unexpected, is unfortunate since this value of the terminal
state may or may not agree with physical constraints applied to the problem.
Further, the magnitudes of the corrective actions may or may not satisfy
constraints (such as u_ < u = INIK,IH_Z u, = min, etc.) imposed on the
control. While some freedom exists in satis%ying both types of constraints,
by varying the free parameters the actual process for ataining these objectives
will not be simple for a particular problem. To illustrate the point, assume

that

B ™ %,
it > 4., | (202N

For this case, both conditions can be relaxed providing a larger number of
corrections can be anplied. The result of the increased frequency of the
control will generally

1) drive the terminal error in the general direction of zero
2) reduce the magnitudes of the commanded corrections

3) rednce the magnitude of the total control. This observation must be
tempered with the observation that the total control has the general
appearance

U,

N

Thus, optimization of the total control by increasing the number of
impulses eventually ceases to pay off.

For other cases, 'this approach may make the problem worse. For example,
consider the problem where the terminal error is too large; but one or more of
the corrections is smaller than the minimum which can be applied. (This
situation could exist if the corrections were applied by firing a variable
nunber of fixed impulses.) For this case, it is necessary to vary the entire
gain structure by adjusting all of the free parameters (N, ti’ Qs Y:). In
fact, this is the only logical means of defining these gnantities to effect
a given type of control. The alternative to this search process is to adjoin
the equations of constraint directly to the loss function and to resolve for a
new set of gains. To illustrate this latter approach, consider the case of a
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terminal constraint on some linear combination of the elements of the state
which can be treated simply as:

N
_ r T 7 7
J - Z=/ (8[ QL' ac' * a[-l 72 u;-/) +8u H A Hsu

L

(2.35)

where

@ =& <(*N
=@ +HAH =M

H = transformation relating 6 to some set of parameters
which will be constrained (for example, perigee height,
orbital inclination ...)

A = A square array of undetermined multipliers whose
dimension is that of the vector H§,, (the
vector of constraint parameters)

Now, the gains can be generated in exactly the same mammer employed before.
However, for this case, the last gain weight, Q., is not free (arbitrary) and
must be determined so as to satisfy the constraint. This process is iterative
in nature, and very little was found in the literature regarding the terminal
constraint problem relative to its solution or difficulties encountered in a
set of numerical computations.

UInfortunately, nothing was located in the literature which treated the
bounded control aspects of this particular problem. This statement should
not be taken to mean that no literature exists; rather that within the
effort available, none could be located. Further, since the schedule for the
preparation of this monograph precludes the amount of research necessary to
develop such a theory, no further discussion of the bounded control problem
for deterministic linear systems will be provided.

2.2.2.2.2 Simple Example. To illustrate the application of the "optimal®
control equations presented in the preceding sections and establish the
relationship between these discussions and those presented for the fixed and
variable time of arrival concepts, a particular example will be presented.
In this example, the loss function utilized for the purposes of comparing
various controls will be selected such that the square of the position error
is minimum; no weight will be ascribed to the amount of control required to
accomplish this objective.

For this sample



where the partitions of this matrix are each 3 x 3. Now, comparison of this

relation for J. and its general guadratic form results in the following .
definitions

offid

L
and
A =TI
° Ady K1 Qu 1:1 e,
6 =[]
Ny N/ A@AJ/
a‘l—l = l U-l

= = - — A VL
81\1 9b,t/, Nl 6A.l -/ 11.1, M~/ A VN -/
1
= %L;EL ) + j%?_ AV
,d) A~ ¢ A~y
2t 22
N -l A A1

Thus,

Substitution of this relation now yields (dropping the subscripts N and N-1

for convenience)
. o [1 0] [%
9%2 922] [; (2] [q%i]

o
!
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But, this gain is exactly that which was derived for the fixed time of arrival
two-impulse guidance concept. Thus, the simple nature of the cost funetion
for the previous analysis can be fully interpreted.

Continuation of this process will yield the gains for correction epochs
prior to the next to last. First, P, is updated as

. [.,, cgt] [z o] [99, ¢,,]
’ /zr ?z; 0 0 ¢.£l 'bzz.

¢7‘ -/\T T ~/
MEEERA
2

'=[¢,, %, 5,,"%] [rﬁu 6, | ¥ q&%

Now, since P, = O, the remaining gains are of the same mathematical structure
as X, (the array qb-cb" iy ). That is

Note that this result differs from that discussed earlier in that the intent
of the cost function is different for all but the last correction. This
difference arises from the fact that the sample problem is attempting to
minimize the summation of the square of the position errors at all of the
correction epochs as well as the terminal epoch. This objective is contrasted
with that of minimizing the terminal error alone. This distinction is
extremely important in the construction of the cost function for a particular
problem,
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2.2,2.3 Optimization of Stochastic Systems i

2.2.2.3.1 Stochastic Control. As was the case in the analyses of the two ¥
impulse total correction guidance concept, the first observation of the solution :’i
(of the resulis obtained in the previous section) is that the state of the :
system is generally not known. Thus, a reformulation in terms of the total

expectation (i.e., the expected value over the entire ensemble of trajectories)

of the performance index is in order (other redefinitions of this index which

admit the fact that the state is a random variable are possible; however, this

approach allows the problem to be stated in a manner analogous to the determ-

inistic case). This reformulation is the subject of subsequent paragraphs.

The first step in this development is to show that an equivalent form of
the principle of optimality exists by employing the total expectation (taken
over the total ensemble) of the performance index

v
J =Mn E 3 'L;(B[’“[-,

A~n+l ALl uK =n

and the corresponding minimum is

L%
—"’M/N [ E 6(64'7u£-/ néKé_N

Momel ALl g, in

Thus, interchanging the order of differentiation and expectation

A
Ly = E{M/,u > E (s, ”z-/)}

ALL uk i=n

A
= E{ Mini [5(5[’“£-')+ﬂ’2’ FZM £ (8, u‘.)]} nsl < m <N

-/

= E{ MM/[FL-('O‘L' auz-/) *Z, '”]}

n=l
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Finally, once again changing the order of differentiation and integration yields

{I-ml = glu E[’Z'- (84 ? a,:-/ )*l”_”]
-t (2.36)
This form of the principle of optimality will be used for the balance of this
development.
Now, as before, the second step is to focus attention on the last leg of

the trajectory. But the stochastic development requires that the total
expectation for this leg be written as

E(R) = 4,4, [£/5]

where 0 and D denote the state and the data, respectively. MNow,
£5) =SS £ #(5) £(0/5) ap 08

where f( ) denotes the probability demnsity function of the argument. Finally,
interchanging the order of integration and employing the fact that

f(8) £(D/8) = £(D) f (s/D)
yields £(F) =Df 3/' (£ F&/D)ds]F(D) oD

E"!'B[SU 1 au-, (D)] f(.D) dD
. (2.37)
=4 8[5,,«,, (D)]
where B[SN ) Uy, (D)] is the Bayes function or the a' posteori risk discussed
in a previous monograph (Reference 2.22). Thus, wnder the assumption that the

order of differentiation and expectation can be interchanged, the minimization
of E(FN) can be accomplished.

Mw E(E) = E, Mw B8, , 4, (D)
-1 Lt
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But this objective is achieved by focusing attention on the Bayes function
Bls,,q,, ) = £[E (s, , 4, /D)]

and by making the following substitution

8u = E_J(au/Du_,)*SN = § "'3

where 4 Ay
£(6~ Bu /Du-/) =0
£(8,/D,,) =0

3~== optimal estimate of the stated based on data obtained through
th_1 (from the orthonality of the optimal estimate and the
estimation error and the fact that the optimal estimate is
unbiased).

Under this set of definitions, the particular loss fimction being considered
transforms to

£(5) =5, (8] ])
<E,(87Qu 8y v uy, % 4,,) v£, £(5,Q, 5,)

AT 'a ra r 2
=ED[( Bu-/ ¢;./ ’ uu—/n/ )Qu (¢u 8.{/-/ +1A—'J ul/—/) * ”u-/ ‘)’M dtH]

1L, £4(8,0, 8, )
80, 4 8, ul, QL v, )] * £ 6 (5,4, 5,)
=5,[G (80, 4.)] *£,6,(5,4,5,) (2.38)
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That js, the expected cost can be separated into two parts. The first part
Eo (AR S is a function of the control and the estimated state (a oy -
and the second part is a function of the error in the estimated state. This
property is not general; on the other hand, neither is it restricted to

qn::d-r-n'l--!n 1nas fimetions

URLRL BV u-w B avaiw VLIS S e

Now, since the second term is independent of the control
A
Adu/ E(R) =Mu £, (F)
4/ / uﬂ-—l

£, M (E)

Lyer

(again assuming the interchange of expectation and differentiation).

But
=>4 = J
AT:/ (/?) a,, =k & (2.39)

where

Quu = optimal control

8., = £(8,,/0,,)

¥ = the gain matrix for the N minus first control as evaluated
for the deterministic system
[%hl = the data vector for alluepochs through that of N-1

This result states that the optimal control is a linear function of the optimal
estimate of the state. However, the exact nature of the control as related
to the statistical distributions of the data and the state has not been stated

nor is it required. That is, 3~# may be

a,, = E(u,,/0,.)

A=/

but this possibility has not been established here and is not required to
define the optimal control.
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To this point, many questions have been raised by the interchange of
the expectation and minimization operations, even in the case where only one
leg of the total trajectory was being considered. However, the problem is
drastically compounded at this point since the results of the analysis must
be generalized employing the Principle of Optimality. While this application
appeals to reason, for the case where the total loss function is composed of
a summation of terms which depend on single values of the state and control
(i.e., these variables are uncoupled), it is not rigorous. Indeed, Striebel
(Reference 2.17) has been concerned with this type of problem and ha$s
indicated that such an application,while possible for this type of function,
is not possible for many cases. However, the principle can be applied as
Gunckel (Reference 2.1J) and others have done. This fact allows the results
for the first leg of the stochastic process to be generalized exactly as were
the results for the first leg in the deterministic process. The results are:

EX = M,[Q 2 Lo 4, (2.40a)

Kype ™ [u. ]1;,',,,[0 ~P ] e (2.40b)
o= B B Y 4 ey (200
=K, 8 (2.40d)

Thus, under the assumptions outlined, the optimal control process in the case
of linear systems with quadratic cost is a linear function of the estimated
state. That is, the optimum controller for this stochastic problem is
obtained by cascading the optimal estimation and the deterministic controller.

The loss function (performance index) for the preceding discussions has
now been optlmjzed with respect to the controls applied at the correction
epochs t,...t,,. Thus, this index is a function only of these epochs, (the
welghtlng matrlces ( Q R YL ) are parameters of this problem and may be
varied arbitrarily since no constraints have been employed. Thus, optimi-
zation with respect to these choices is also possible), i.e.,

L= t £[%(2,, 4)]

(=0

Now, if a table of values of Fy (ti+l’ ti) is constructed for a grid of
assumed times, the correction epochs can be optimized using Dynamic Pro-
gramming by locating the path through the table which has the smallest

possible cost. This optimization is accomplished by progressing forward in
time with -
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L) sl 40w (8 )]

(2.41)
T T r r
F(é"’ ”/ 6’"" [g’;"'/ Q" Q"s nr” 'Z/(J.hnﬁ /ﬂ_'n-l Qn ¢n n-1i
r
+(2"? *l/;-:)-l Qn /;:n-l)]d.

A complete discussion of this type of solution is presented in any reference
on Dynamic Programming. Thus, no further discussion will be devoted to this
phase of the analysis at this time.

2.2.2.3.2 The Terminal State. In contrast to the equations relating the
state at points along the trajectory to the initial state as presented in
Section 2.2.2.2, the state at such points will also be a function of the
estimation and application errors occuring at all of the preceding correction
epochs. This fact can be shown by considering the state just prior to the
second correction, i.e.,

% =% T, K, (80 re, )

(ﬁé,,,* K, )8+ I, K, (e, ¥,) (2.42)
=,4 +8/,o (fo

where
€ = the estimation error at the time of the first
correction
%'== the application error in the first correction

Similarly, the state just prior to the third correction will be
5, =4y, 8 +5, (6 %)
='42,/ ’4;,0 60 +A2,/ B/,a (eo +¢’a) * 82,/ (el +¢,)
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or in general

” ”
= +
o =[4,)aElfe,. 8,0
where
Co = I
C;‘,t-/ = g, ¢~/

"l’ﬁ) (2.43)

But this equation can be rewritien by constructing a composit vector to

represent the errors in this model. That is, if

J
D.i = [4':/ ct',[—l} Bn,n;j
v = €+ w,,_j
thén
/2 T —
>Dy=0w
. 7 J
J=!
where
y
-7 ] ' 1 i
= ! H ! 1 i /4
O, [D' =Dzi[3=“'iQJ L=
Y
and where the vector V 1is uncorrelated with the true

estimation errors and the correction errors themselves
the state). Under this substitution, 4, becomes

n =T
g A[J[:l] 80 +L)n %

—_T -
G,8,*0, v,

state 6, , (since the
are uncorrelated with

(2.44)

Now, since the expected value of qu over the entire ensemble of tra-

Jectories which might be flown is

£(8,)=G, £(8)+D]E(D,)
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the second moments can be written as

E(Sh —E(S”))(S” —E(ah))r=6” e G’.r+D_”rQnD’, (2.&5)
where
B = £(8,3)
A; = £( Vn %:)

2.2.2.3.3 Terminal Constraints in the Stochastic Problem. The procedure for
applying constraints to the stochastic problem is a considerably more in-
volved process than the comparable problem in deterministic systems. This
difference arises from the fact that the estimation and control functions are
contributing to the error in the terminal state. Thus, if a constraint of
the form

E(H,8,K)%C, (2.46)

(that is, if the error in some linear function of the state at the final
point is constrained) is applied to the problem, a necessary condition for
satisfying this constraint is that the function HJU be estimable to the
required precision.

This apparently trivial statement can be utilized to advantage in a
particular solution as follows: First, the estimation process is simulated
to define the capability of the navigation loop and implications in so far
as the amount of data and sensor accuracy required. After this requirement
is satisfied, there will exist a range of times at which the state will be
known well enough to satisfy the constraint

E(Hg, 8, K1) 2C,

This situation is portrayed in the following sketch.

Error
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Thus, any time in the interval [tl, tf] can be utilized for the purpose of
adjusting three of the components of the terminal state. This correction,
alone, may be adequate for the purpose at hand; however, if another correction
is required at arrival to adjust the velocity, it can be made.

This restriction on the choice of the times at which the final corrections
can be made, thus allows the inequality constraint to be satisfied. The
control policy can now be optimized as before. That is, the gains for the
control loop can be evaluated under the assumption the times for the cor-
rections are known. Then, the times for the corrections can be optimized by
applying Dynamic Programming to construct the smallest cost path through the
series of corrections subject to the constraint that at least one correction
be in the interval &1, tf]. It is interesting to note that the resultant
solution for this problem is not always the most apparent solution. That is,
the n~stage control process can achieve a minimum (lowest expended control)
without requiring that the final control itself attain a minimum, however, there
will be a range of times in this interval over which the required control
effort for the N-1lst correction will increase continuously as time approaches
ty. Thus, in general, the optimum policy will be to null as much of the
terminal error as is required at a time very close to the time denoted t;.
This fact can be employed to advantage in the construction of a nearly
optimum initial solution. The alternative to this process is the inclusion
of a series of undetermined multipliers in the criterion of performance
which can be defined so as to satisfy the censtraints. (This apprecach is
taken in the discussion of minimum effort control in subsequent sections.)
Unfortunately, however, the introduction of the multipliers and the fact
that the mean value of the state on a given trajectory is non-zero compound
the problem to the extent that a completely new gain structure is required
each time an additional piece of data is required. This behavior makes
constraints in many problems computationally out of the question with a more
rigorous formulation.
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2.2.3 Minimum Effort Controls*

2.2.3.1 Introduction

The problem of maneuvering a space vehicle during the midcourse phase of
a lunar or planetary transfer has been analyzed extensively in the literature
during the past six or seven years. Probably the most complete treatment to
date is the "minimum effort!" control of Striebel and Breakwell (Reference 2.22)
in which the "expected value" of the fuel to be used during the midcourse
phase of the transfer is minimized, subject to a variance constraint placed
on one component of the terminal state (e.g., the peri-apse altitude &t the
target planet). This analysis, which appeared originally in 1963, has been
modified and extended in several subsequent papers (References 2.16 to 2.21).
The purpose of these notes is to outline the minimum effort strategy for a
vehicle with an impulsive propulsion system and to show how the theory can
be used in an on-board control mechanization. The analysis closely parallels
that given in Reference (2.21) and Section 2.8 of Reference (2.16).

Unlike most other optimal trajectory problems, the midcourse correction
problem is stochastic in nature. If the vehicle was placed exactly on its
design trajectory, then no midcourse maneuvering would be required. However,
due to the inevitability of errors at injection, the vehicle's path deviates
from the design condition. Furthermore, the extent of deviation is imper-
fectly known since any measurement made to determine the deviation will be
contaminated with noise. Hence, the problem is not one of making some
minimum fuel correction maneuver which will bring the vehicle to the correct
terminal condition, but rather, of making corrections which will most pro-
bably minimize the fuel consumption, while at the same time keeping some
statistical measure of the dispersion at the terminal point within reasonable
bounds.

From considerations of fuel economy, all correction maneuvers should be
made early in the flight, since small expenditures of fuel here will result
in large changes in the terminal state. However, the trajectory errors which
the correction maneuvers are to remove are known very poorly initially and
with steadily improving accuracy as measurements and sightings are taken.
Hence, corrections made early have a high probability of being wrong, while
those made later are more accurate but require more fuel. It is this trade-off
between terminal accuracy and fuel consumption that the minimum effort theory
seeks to determine.

It should be mentioned that the optimal correction strategy resulting
from an application of the minimum effort theory is not a strategy that would
be used on board a vehicle during an actual planetary transfer. Rather, it
serves as a design tool by which an "average" fuel requirement can be de-
termined subject to a specified terminal accuracy condition. This shortcoming
of the theory is due to the fact that in calculating the gains and correction
times, no use is made of the actual sighting and measurement data which are

*This section of the report was prepared by J. E. McIntyre as a review of the
work of J. V. Breakwell, C. Striebel et. al. (References 2.16 - 2.21).
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gathered during the flight, but only-of the types of measurements and the
times at which they are to be made. However, as will be shown, it is rela-

tively simple to extend the theory to include on-board mechanization; although,

in this case, the problem becomes much more computationally involved.

2.2.3.2- Minimum Effort Control As A Preliminary Design Tool

2.2.3.2.1 Problem Statement.

It is assumed that the actual trajectory of the
vehicle is sufficiently close to the design condition to justify the use of
the linear dynamic model

X = AX *+ Gu (3.1)

# (see footnote)

where X is an n dimensional state vector, A is an nxn time varying matrix,

u is an r dimensional control vector and G is an nxr time varying matrix.
Usually X will denote the vehicle's position and velocity, and hence, will be
six dimensional (or four dimensional if the motion is restricted to be planar).

During the course of the transfer maneuver, observations and measurements
are made in order to better estimate the state of the system. This operation
is ‘represented by the observation equation

y = Mzxre (3-2)

where y is an m dimension vector of observed minus computed residuals,
an mxn time varying matrix, and & 1is a Gaussian white noise with mean zero

and covariance R (i.e., £ (e(f)e(z) = RU)S(¢-v) )-

These measurements
may be made continously or at discrete instants of time.

M is

The initial state of the system, X_, is not known exactly.

Rather, X,
is assumed to be a Gaussian random variable with zero mean and covariance
matrix V. ; that is

£(X) =0 _
ry =y )@t t=9 (3.3)
E(X, X]) =V,

where E denotes the total expectation operator. The midcourse phase of the

transfer is to terminate at a specified time T at which point the state
(X(T)) is to satisfy a variance condition to be described next.

Now, let Z(T) denote any linear function of the terminal state which is
to be constrained. 1i.e.,

Z(T) = HX(T) (3.4)

# The state deviation will be expressed using the variable X rather than §
for this discussion to conform to the notation of the original references
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where H is a constant sxn matrix and where s <n. Three different types of
terminal constraints will be considered:

(1) 7R £{zzr}_4_c ; C is a scalar (3.54)
(2) (Elzz’}) <« ;i=1, s (3.5B)
(3) (Et(zz), < , ;i=1,s¢<s (3.5C)

In the first case, the symbol TR denotes the trace of the matrix_E(ZZT).

Hence the sum of the diagonal elements of E{ ZZF} is required to be less than
or equal to some number C. In the second case, the individual diagonal
elements of E {ZZT} , that is, (E (ZZT)hi i =1, s are required to

satisfy inequality conditions while in case (3) only the first S; diagonal
elements of E {ZZT} are constrained. To clarify the physical meaning of these
constraints, some examples will be considered.

These three possible forms for the constraint by no means exhaust the
number of choices. Rather, they are introduced simply to indicate the
physical situations that can be represented by constraints of the form of
Equations (3.54) to (3.5C). In the following development, it is only re-
quired that H be some constant matrix with dimensions less than or equal to
nxn, where n is the rumber of components in the state vector (X).

But, in order to satisfy the terminal constraint of Equation (3.5), some
control action will be required; that is, the vector u in Equatioh (3.1) must
be non-zero over some portion of the flight. This control action will be
measured by a number referred to as the characteristic velocity and will be

given by the equation
r T r
= = 2
Av /lal ot f/z u* ot (3.6)
@ ° éat

For a chemical propulsion system, this number is a direct function of the

fuel consumed during the maneuver and will vary as a function of both the
vector u and the particular realization of the random variables X_ and € .

The problem to be considered is the determination of that control time history
which satisfies the terminal constraint of Lquation (3.5) and at the same time
minimizes the expected value of the characteristic velocity; that is

T r
7 = E{A.,}= gf /3 u? ot = miv (3.7)
o] i~

Of the possible control functions u(t), attention will be focused only on
those functions which correspond to impulsive velocity corrections; that is,
the control u(t) must take the form

U (¢) " ()
wtty= a8 | =3 wtt) 8(t-4) =2, |met) | 8(¢-¢) -8
: =/ i=/ :
u (¢) . (t)
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where 8(t-ti) denctes the Dirac delta function; ti denotes the times at
which impulses are applied: N denotes the number of corrections; and w(t)
denotes the direction and magnitude in which corrections are to be made. This
restriction [quuation (3.8);7 is imposed on the physical grounds that the
propulsion system will be of sufficient thrust level to allow the change in
the state of the system to be accomplished in a time which is short compared
to the total mission time. By substituting Equation (3.8) into Equation (3.7),
the criterion function becomes

T A A/
T =£f lulot =£3 |t =£; V2 8) g (8) +. . wE (%)
(-] i=l L=

and the optimization problem becomes one of determining the number N, cor-
rection times t; and vectors  ar(ty) which minimize this expression.

2.2.3.2.2 The Expectation Operator. In most papers dealing with stochastic
systems, there is usually some ambiguity in regard to the meaning of the ex~
pectation operator E. This ambiguity results from the fact that the same
symbol, namely E, is used to denote expectation conditioned on different types
and amounts of information. To avoid this difficulty, the following symbol
convention is adopted:

(1) The quantity E (& ) will denote the expected or average value of
§¢ , where the averaging is conducted over the random variables

Xo ande (7) {all ¥ € (0, 7]} Thus

£(5) =f 50X, etx) plx, eondp, ae(v)  {altre(0TI}(5.9)
-0
where
de(r) = de(g)0E(T) ... falf 7. € (0, T}

Alternately, by use c¢f the observation equation

;{ =Mx ¢
the random variable € can be replaced by the random variable Y
with
m .
£(F) =f }'[X,,;(!T)]p[)(, s g(oldx, dytr) {all e (0, T]}(3.10)
-00

and in what follows this alternate form [Equation (3.10)7 will be
used.
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t
(2) The quantity E ( § ) will denote the average value of & where the
averaging is conducted over the variables X(t) and Y(7T)
Te (¢, 7]} Thus

¢ 00
£(¥) :‘f}”[x{l‘), F 1 §xt), g(0)] dx(4) Iy (T) {ald e(¢, TH} (3.11)

Note that x(t) is a random variable whose distribution can be
calculated from a knowledge of the distributions of Xs and Y(T)
{all ze (0, 2]} and the control applied on [o,t)

(3) The quantity ét{ ;/?(Z‘/),Z/(’!:)} will denote the expected
value of £ where the averaging is conducted over the random
variables X(t) and Y(T) {a.l[ re (¢, T]} , but where the dis-
tributions of X(t) and Y(T ) are conditioned on the observations

2{7{ (ti) and the control ¥ (t;) with

Y2) = 4(t) ;{0<t <2} (3.12)
Vi) = ult); {0«t &t} (3.13)

Thust ©
E(g/(;/(t,), Ut) = f F[x(t),y(r)] @), y(r}/?(a‘,),Zf(t,)] dx(¢) dycx)
- (3.14)

{all Telt, Al

As will be observed, this nomenclature leaves much to be desired. However,
it is consistent and will prove useful in what follows.

Before proceeding, it is well to establish one important identity.
Since the probability density P(Xl, Xp) can be written

20X , X ) = y 2] (x /x p(X )
( 19 72 I/ z) 2 (3.15)
it follows directly that

E{ftx, 1)} = E{E1F (x5 5,/ 0 1} (3.16)

where the first E symbol on the right operétes on the variable X5, and the
second, on the variable X;. For clarity, this expression could also be
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written as

Hf ) = ElEF G, 1)/%)) = E{E{f(x x /%l amy

This result can be used to demonstrate

£ { /), Vi) = f’{i‘{.f/;(/zz), VLI Y, %

é t‘ (3'18)
- E’{E /5060, VI Y (8), U ()) ¢eret,
where as above, the flrst expectation in the rlght operates on the variables

(T) te(f [ ] . This expression will be used again and again in
the fbllow1ng sectlons

2.2.3.2.3 The Filter Fguations. For the state system

x =Ax + GU

with X, a Gaussian random variable satisfying
£x) = 0

Ty =
Elx,x,) =V

and with the observation equation

? = Mx re

it has been shown by Kalman and others that the distribution of X(t), con=~
ditioned on the EP ervations ?’(t) and control VU (t), is Gaussian with
mean X(t)( X(t) = fxtfl/ (), DYf)]) and covariance

vu)(vw—f{[x(t) - 2] [xw - 20Y/yc), v(w)y)

Further, X(t) and V(t) satisfy differential or algebraic équations depending
on whether discrete or continuous observations are tazken. These equations

are
(1) Continuous Observations

£ =AReGu VMR (y-MR) 5 %(0) =0 (3.29)

V =AY sV -WmR MY, V) =0 (3.20)
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(2) Discrete Observations

)2“2) =@ (fz, ¢,) X (t,) between (3.21)
Vi, = $(2,,4) V(L) $ (4, 1) observations (3.22)
RN= XAV MR MY M) (y-Mi7) ) across (3.23)
vt =y - V_MT(Q MV Mr) mMv- observations  (3.24)

The matrix @ is once again the state transition matrix /Reference (2.23)/
and satisfies

Z,-I—f(t,‘r) =A(t) (t,7) (3.25)

or

92 (4 7) = -8 (t-DAT)
dr B4, 8) =1 (3.26)

The observation process, continuous or discrete, effects the algebra involved
in reaching the final result, but not the result itself. However, for con-
venience, it will be assumed that continuous measurements are made with
Equations (3.19) and (3.20) holding. The discrete case will be treated later
on.

At any time (t) the conditional mean[f(\(t)] is computed from Equation
(3.19) and this value can be used to predict the terminal state which would

result if no control action were applied on [t, T] . Let X(T t) denote this
predicted value. Then it follows that

R(T, ) = $(T,¢) 2(t) (3.27)

This predicted quantity plays a central role in the computation of the optimal
control since the terminal variance constraint is:

Z(T) = H x(T)

Let Q(T,t) denote the predicted value of Z(t) at time t which would result if
no control were applied on the interval [t, T] . i.e.,

2(T,¢) = HR(T,¢) (3.28)
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In the next section, it will be shown that the optimal control to be applied
at time t, Yopt (t), is a function only of the variable Z(T t); that is

Uy () = w(E(T,2))

2.2.3.2.4 Functional Form of the Optimal Control. Following the procedures
of the Calculus of Variations, the problem of minimizing

)
J = E(AV) = Efluldt (3.29)

subject to a terminal constraint on the quantity

E(z(T) Z(n) 5 =(T) = Hx(T)

is reduced to the problem of minimizing the modified functional
T
A =£{AV+TRA;£(7')27(7')} = E{fluldt”k/lzmzrm} (3.30)
0

where A is an SXS constant diagonal matrix of Lagrange multipliers se-
lected so that the specified terminal variance condition is satisfied. The
particular form of the matrix A will depend on- the type of terminal con-
straint which 1s imposed. For example, if X is a six dimensional vector and
H is the matrix

. /,0,0,0,0,0)
H (0,/, 0,0,0,0

the terminal constraint of Equation (3.54) becomes
EQE i (D} = E(z3(7 +22(1) <C
and the quantity to be adjoined to Equation (3.29) to form (3.30) is
A[{zf(T)*Z;(T) }= E{h[zf(f) *Z; (T)];
which is equivalent to  £{le Azz } provided |

2=(5 %)
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Alternately, if the terminal constraint of Equation (3.5B) is imposed, the
quantity to be adjoined to Equation (3.29) is

MEZAT) # X Ez2(T)

which will equal £ T NLzzT if
A, O )
A= (o A

The demonstration that the control u(t) which minimizes J, in Equation
(3.30) is a function only of 2(T t) begins by resorting to the pr1nc1pal of
optimality of Dynamic Programming which states

"An optimal sequence of decisions in a multistage decision process
problem has the property that whatever the initial stage, state
and decision are, the remaining decisions must constitute an
optimal sequence of decisions for the remaining problem, with the
stage and state resulting from the first decision considered as
initial conditions."

Uy (¢){tel0,T]}

From this principle, it follows that if is
the control.wﬁl?h minimizes dJ,, then opt(t){ée[t 71}
must alsoc minimize
by ,
¢
[3

where the distribution of X(t;) needed in evaluating this expectation is
developed from the distributions of X and Y(7 ) {TE(O,t,]} and
from the control u . (7) applied on °the interval [o, t;). By using
Equation (3. 16), thls equation can be rewritten as

gon { {f lul ot +Txe/tzzr/;/(z‘ ), U'lt. )}} (3.32)

o< T4

Now, the control at any time ¢ can depend only on (t) (that is, on the
observations that have been made up to time t) since there is no other in-
formation on which the control can be based. From this condition, it follows
that the control u which minimizes the expression in Equation (3.32) also
minimizes

i T
g =,é£‘{flaldt +TeNzZ/Y (L), U(t‘-)} (3.33)
4
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In summary then, if U (t) for telo,T ) minimizes J, in Equation (3.30),
then from the pr1nc1pfg of optimality, U, (t) for te [t;, T] also
minimizes the quantity Jt in Equation (8 33). Tor impulsive control action

where

A
ult) =3 wlt)s(¢-¢)

é=l
the quantities J, and Jti reduce- to
Al T
£{3 Ll + e Az 27T} (3.31)
03 M) Y4, UL, )
J =£{Z/”’(’;)l+7’2ﬂz{nz % A (3.35)
(3 ;=/
Thus, if Lti is
‘41- = M J;
R (3.36)
kN
then the minimum value of J, is given by
My J _yé-r) Ltl'} (3.37)
0c T4

The demonstration that the optimal control, ar(t;), is a function of
Z (T, t5) only, proceeds inductively as follows:

(1) Show that
wit,) = w(Z(T,¢)

At'u- = L,_:u (Z (T’ td_l))
(2) Assume that /V(ét.ﬁ) =/z/-(z" (7, LL‘_:I'))
Ltl'rl B Lf‘.fl (z (7; tl.:l ))
(3) Show that wit) = o 2(7; t'.))
¢
/v‘. = Lli (Z(r, 4.‘))

*The symbol Z(T, tj) denotes the value of 2(T,t) at the time immediately
preceding the ith impulse.
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The proof parallels that given in References (2.17) and (2.32).

Now consider Equation (3.36)

Zy
S, = /’/1;/(/2:’/) [{I/I/'(l‘u)l7'77-2./1.2'(7-)2_7'(7')/?(4,), U(fu-l)f (3.38)

ty

But, as stated earlier, # (ty) can depend only on 4 (ty); hence, this
quantlty can be moved outs:Lde of the expectation operator to provide

S, 1%1» {/m(z”)/+£ [ﬁAz(T)z’(T/; ,), Zf/zi,.,)]} (3.39)

where
Z(T) =Hx(T)
or
2(T) = HI#(T,8,)x(2]) +G w4, )]
Now, the distribution of X(tN) conditioned on (ty) and U (t -l) is

Gaussian with mean X(tu) and covariance V(tM), us it follows that the dis-
tribution of Z(T), conditioned on %(tN) and V' (ty-1), is also Gaussian
with mean and covariance given by

= (2T IV, ) =3 (T4,) +HE v ()

E 4z (7 =) (2(T) DY L) VL, ) =HEVEHT

But since H, §, V and G are known functions, it follows that the second term
on the rlght of Equation (3.39) is a function only of Z(T, ty) and w (ty).
Performing the minimization over (tN) then provides QN) as a functlon
of Z(T, ty) only; hence St is a function of Z(T ty)

Assuming that Sy, 4 and a (t;47) depend only on Q(T, ti41), the
the quantity St can be written as

A
S = Mw £{Z | d )]+ RN 2(T) 217/ 1), U(z‘”,)}
k=l

% wlg)
k=(N
i T
=‘/l;l(/5 E‘{I/V(z“-), +ﬂAr/7ég lor (4,) +7k/12(7'/z(7/;(z‘,),?/(z‘,-_,)}

k=i
65



But the identity in Equation (3.18) transforms this equation to

S, =M [}/m ) us‘ { Mins B ot Rehzz VY4,V )]/;// LY, )}

269/

& ‘Z"Z’M £= 4
with the final result
5 =m L) + 2 [s . . ]
% ”/?,{ {/”( ) P ‘zﬂ/?(é‘)’ vt (3.40)
44154'

S, = 2(7 ¢
Now, from the assumption LY SL‘[ (Z(T f )) , the right hand side of

Tquation {3.40) can be evaluated once the condltlonal distribution of

7(T, t3 4+1) is known as a function of ( ¥) for 7 on the intervallty, t; 4l

This distribution will be evaluated next.

First note that the quantity Z(T, ti4;) is given by
FT¢7,) =HE(T4,)%(4])) (3.41)

and that X(t) for te [?f ém] satisfies the differential equation
[Fquation (3.197

R=AR+ VMR (y-MR) =AR » VMR (M[x-%]) ¢ (3.42)

with
X(t)=X) +Gw (L) (3.43)

+ -
Now, the distribution of X(t) on [z“ , tm] , conditioned on # (t ) and
V(t 1) is Gaussian since both X and €& are Gaussian, and since the

equation is linear. Furthermore, it is simple to show that Z(T t1+1) is
also Gaussian, with mean and covariance

L5

7= ENETL &, YU Vi) = 2,60 H3(T4) 6vla) (5.

£{(z(rf )w)(zwg )-m )y 40, VLL,) (3.15)
—f HE(T, 1) v R MV S H Yt

‘o
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Thus, the second term on the right of Equation (3.40) is a function of v (t )
and é (T, ti) only. Minimization now yields the desired result

v (&) = (2T ¢ )
8 =S, (21, ¢7))

¢

and the proof is complete.

2.2.3.2.5 Additional Simplifications. It was shown in the previous section
that the control ¥ which minimizes

J=£[5_M: wrt)]] =£g) Vo) (3.46)

&=l

is a function only of the quantity Q(T,t) /i.e., the predicted value of Z(t)
conditioned on (t27 and the requirement that no control is applied on

[t, T] . However, even with this knowledge, the determination of the optimal
control is very difficult. The usual procedure, at this point, is to make
the following two simplifications:

(1) The optimizing criterion J in Equation (3..46) is replaced by the
condition K where

A/
K =D NELA) (3.47)

&=
As remarked in Reference (2.16), it can be shown using the Schwartsz
inequality that
K= g

and hence, minimizing K provides an upper bound on the expected
fuel required to successfully complete the midcourse maneuver.

(2) The control mr(ti) is required to be a linear function of
7 (T, ti)

wit)=-8 2(T,¢) (3.48)

Thus, the optimization problem becomes one of determining the
matrices Bj. DNote that A~ is an r dimensional vector and that Z

is an s dimensional vector; hence, the matrices B; are of dimension
r«s.

By employing these two simplifications, the stochastic optimization problem

can be reduced to deterministic form and, in certain cases, solutions can be
developed.
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2.2.3.2.6 Reduction to Deterministic Form. Under the condition that the
control depends linearly on Z(T,t) with

v () =-8 2 (T, £) (3.49)

the optimizing criterion K in Equation (3.47) becomes

3 |
k =Y VEB 27,18, 2(T,4)1}

=/

(82)7(BZ) = T {Ez’B’B}

Thus, it follows that

N
K=ZJ}R{£(2(7;fL)2T(LfL)B‘TB,'} (3.50)
=]

Using Equations (3.44), (3.45) and (3.49) and the identity

&
E(E) -£ {E {s/y, zf(zé-_,)}}
oLTE ¢

it now follows that Z(T,t) is a Gaussian random variable with zero mean and
with covariance satisfying the differential equation

B = HB(L)YMR MY T (3.51)
»(0) =0 :

on intervals between impulses and the equation

2 =(I-H86B) g (I-H68B) (3.52)
at the times t,. Where ;Z = P(¢)
3 =8(7,¢)

Z = Unit Matrix T
The constraint at the terminal point is now placed on the quantity E(ZZ').
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Ty __ - A T " . )
£(zz) ~£{(z -2(7;7)/2-2(7; 7)) } # £{z(7; 7')21(7,7)}
=HVIT)H+P(T) (3.53)
But differentiation of Equation (3.53) and substitution of Fquations (3.51)
and (3.20), leads to the result that the quantity H$(72) vit) 15 0)H"+P, (2)

is a constant on invervals between switches.” Hence, the terminal condition
in Equation (3.53) reduces to

£(zz") =HE,V, 3] H+R* (3.54)

A/ [,
where

y, = Vi, ), R =pP(t)), 8,=98(T,1¢,)

A/

Collecting the results of Iquations (3.50), (3.51), (3.52) and (3.54),
it follows that the stochastic problem of minimizing the functional in
Equation (3.47) is equivalent to the deterministic problem of minimizing

k=3 V7 P&E (3.55)

f; Z
C=/

subject to the conditions

R =(7-HEGB)R (I-HE GB) (3. 56)
- # tz’u
B,=R*Q, i @ =[ HVM 'R MVS W ot
% (3.57)
5 =0 (3.58)

and some terminal constraint [Eepending on the particular form of Equation
(3.5) which is used/ on the quantity

£lz2) =HE | & H +pT (3.59)

A

69



2.2.3.2.7 Formulation Using Maxima-Minima Theory. The problem of minimizing
the quantity X in Fquation (3.55) subject to the constraints of Equations
(3.56) to (3.59) is one that can be analyzed using the maxima-minima theory
of the Differential Calculus. Following a procedure identical to that used
in the development of Equation (3.30) / see paragraphs following Equation
(3.3017, the modified functlon K is formed where

€S rege 3 laleq
(I-H3GB)R(I- HJGB)]}+ To A, (P Q) (3.60)
e\, (K8, v, 8 1T+ (I-HE, G8) £ (I-H4,68,)]

The A; i = O,N are Lagrange multiplier (SXS) matrices which are symmetric
since the constralnts (spec1f1cally P and V) are sy metric. The matrix

A, 1is, in addition, diagonal with the number of different diagonal
elements depending on the specific form of Fquation (3.5) which is used
Also, since the constraints of Equation (3.5) are inequality constraints, the
Kuhn~Tucker Theorem* can be used to demonstrate that the diagonal elements

of A,, are less than or equal to zerc. Thus,

A, = negative semi-definite matrix (3.61)

Setting the first variation 6K, to zero with respect to variations

in P; and B; (i=1,N) provides

(3.624)
r2\n,-ng68)R HEG=0

t A (T-HEGB) A (I-H$ GB) =0

Vier P~ A B‘ -1 ¢ ( i (3.268)

But, these equations can be combined to yield

B’
i =-2A, HE.G
rpgg - (3.63)

s (3.64)

=1

*See Hadley, G., "Nonlinear and Dynamic Programming," Addison-~VWesley (1963)
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The solution of these equations in conjunction with the constraints of
Equations (3.56) to (3.59) can be accomplished iteratively if the time t; at
which the impulses are to be applied are given. For example, if the terminal
constraint of Equation (3.5A) is imposed with

A O O
Jl&/ =10 Aﬂ ; Ny £0
O :..0

the following iterative scheme could be used:
(1) Guess 2y

(2) Guess the elements of PT under the condition that the terminal
constraint is satisfied., Since P is an SXS symmetric matrix and
since the constraint’of Equation (3.5A) is scalar, this would
involve guessing %%’ -1 quantities

+

(3) Determine Py and /1§_ from a knowledge of Py , Ay and

an

tntions (Ve3Y 5. 605 b 3. 56)
(4) Set i = N-1

(5) Compute P;, B; and Aj_j from a knowledge of Piy Bi41 and
Ay and u51ng Equatlons (3.6L), (3.63), (3. 563 and (3 57)

(6) Test i=1 . If no, set i=i-1 and go to Step (5)
(7) Compute P, from Equation (3.57)

(8) Test if P_=0. If yes, solution has been achieved. Since
P, is an 5XS zy?metrlc matrix, the condition that P, =0 is
-r

equivalent to scalar conditions. But from Steps (1) and (2),
“;ﬂ) condltlons have been guessed to begin with. So if
P # O,
s(s+1)
(9) Use the Stse) conditions that P, 7# 0 to correct the 2; guessed

quantities and go back to Step (3)

In correcting the guessed quantities in Step (8), a first or second
order method such as a gradient or Newton Raphson technique could be used.
However, in such an approach, the rate of convergence and the solution de-
veloped depend on both the starting condition and the number S (P is an SXS
matrix). For S=2, the problem could be solved without too much difficulty.
For S > 2, a great deal of trouble should be expected as in the case of quad-
ratic cost, once a solution has been achieved for a particular set of
correction times t; , 1 = i,N, additional iteration would be required to
determine the optimal times. Hence, even for 5=2, the problem appears
rather formidable. On the other hand, for S=1 the solution can be developed
in a rather straightforward manner as will be shown later.
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2.2.3.2.8 Case of Discrete Observations. In the development to this point,
it has been assumed that observations were taken continuously with the
continuous filter equations, Equations (3.19) and (3.20) holding. An exam-
ination of the deterministic form of the stochastic problem which is given

in Equations (3.55) to (3.59), indicates that the continuous filter assumption
is used only in evaluating the quantity

g = HEVMRMVEH ot

i

But, this expression can be integrated to give

Q= HE MR MY SH = HE_ Y, MRMY, 8] H

i vl Cri

If this expression is used to evaluate Q,, then the deterministic problem of
Equations (3.55) to (3.59) is the same for both continuous and discrete
obsevations. Only the manner in which the covariance V is evaluated is
different; in the continuous case, Equation (3.20) is used; Equations (3.22)
and (3.24) are used in the discrete case.

2.2.3.2.9 0One Dimensional Problem., In the special case in which H is a row
vector, (i.e., S=1), the variables Z(T,t), P; and A; become scalars and the
solution to the minimum fuel transfer takes a particularly simple form. For
this case, the criterion function of Equation (3.55) and the constraints of

Equations (3.56) to (3.59) reduce to

k=3 /r g5 (3.65)

(=l

;‘?*=/L?'(/‘/ﬂ?{-at‘i‘)y2 (3.66)
% =RrR ; Q= t‘;fVMTf\’-/MVfrf‘/rd&‘ (3.67)
oy
p =0 (3.68)
£lzz") =Hd, o H R <C (3.69)

where C in Equation (3.69) is some specified scalar. ¢

As noted, the criterion function K is no longer the expected character-
istic velocity, but rather a quantity which is greater than or equal to it.
The expected characteristic velocity corresponds to the criterion function J !
which is given in Equation (3.46) by ,
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Substituting into this equation the expression for the control

”(Z‘L‘) =~8“ZA (7;4') ; By = r dimensional vector (3.70)

provides the result

MK 7
J =£;E NE(7,2) 3:'5:'} (3.71)

=l

Further, since Q(T,ti) is a normal random variable with zero mean and co-
variance P; , it is a simple matter to show that

£ {i Jzre - 12 3 e (3.72)

(=1

Thus, substituting this expression into (3.71) yields

A/
J=/2 3 /P A8 (3.73)

=/

Note that for this case (S=1) the criterion function J (the expected character-
istic velocity) differs from the criterion function K by a simple constant.
This result leads to two conclusions:

(1) In the scalar case, the control w (t;) which minimizes the
criterion function K also minimizes the criterion J.

(2) In the scalar case, the quantity K exceeds the expected character-
istic velocity by approximately 25%. Thus, K is not a very good
approximation for J at least in the scalar case. Whether a
similar situation exists in the vector case can not be concluded.

From Conclusion (1), it follows that the optimizing conditions of
Equations (3.63) and (3.64) hold for both J and K. These equations reduce to

-4 -2 P
’1?_3[78‘, - 2 it /L/ f G (3.7[;)

A =(1-HE GB)A,
e (3.75)
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Now forming the_dot product of Equation (3.74) with itself, and multiplying
both sides by P; yields

z)
2/, = B (H36)(HEG)T

But, since from Equation (3.61) A y is negative, an examination of (3.62)
indicates that all A ; are negative.
Hence

-/
et =B (HE.GIHEG) (3.76)

Substitution of Equation (3.76) into (3.74) now provides

8’ HéG

/3 = 3.77
VB8  WHEGHHEG) (-77)

Thus, control corrections are to be made in the (F¢.G)T direction (i.e.,
the direction of maximum sensitivity) as indicated by the equation

Now let
D =VIHEG)HEG)
(3.78)
and T
g - % [#46] ;
¢ D ‘ ;
¢ (3.79) :
Combining Equations (3.79), (3.75) and (3.76) provides
/ g~ Dz
- _ ¢+ (44 .80
4‘2{’ /?qff -2

But from Equations (3.79), (3.66) and (3.67) é

B = @r-04)p"
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Thus, substituting this expression into Equation (3.80) yields

o Y (3.81)

Mlso, at the final impulse, Equations (3.65), (3.69) and (3.79) provide

/ C-Hé V s‘rHr
— - NN TN .8
{I = — 1/ / e (3.82)

A

Collecting results, it follows that the control m'(ti) is given by

wit,) =-B,2(T¢)

with

(HEG) ; D =VHEG)(HEG) (5.3

and with the k; computed using Equations (3.81) and (3.82). Finally, sub-
stitution of (3.83) into (3.73) yields the minimum expected value:of the
characteristic velocity as

N
I =5 2 AVE (3.84)
=/

From the previous discussions, it is apparent that given the correction
times t;, the optimal solution can be developed directly without iteration.
As for the determination of the optimal times, F. Tung in Reference (2.21) has
developed a search routine based on Dynamic Programming by which these times
can be readily computed.

2.2.3.3 On-Board Minimum Effort Mechanization for the One-Dimensional
Problem

In the previous section, it was shown that the optimal control nF (ti)
is given by

wit) =8 2(5¢) =-BHERL)

¢ [4

where

2

7= S (H86), [ =HEGIHIE)
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and where the gains k; can be computed using Equations (3.81) and (3.82).
Despite the apparent feedback form of these equations, they are not suitable
for an '"on-board" mechanization due to the fact- that the gains k; and the
correction times t; will vary as the particular realization of the random
process varies. For example, in the analysis of Sections 2.2.3.2.7 and
2.2.3.2.9, the average value of X(tl), where the averaglng is conducted over
all possible observations Y( ) for v#¢ {Le ﬁw X (¢ )} , is
zero. , This result greatly simplifies the calcufétlons. However, for a
vehlcle on an actual planetary trajectory, it would be unlikely that X(t )R
as calculated from the observational data (rather than the expected value of
this data) would be zero, and if it where not, the gains and correction times
would have to be changed accordingly.

One possible approach to the on-board mechanization problem would be to
recalculate the quantities k; and t; as the random process itself unfolds;
that is, after each observation is taken. As indicated in Section 2.2.3.2.9,
these quantities can be computed quickly and easily. Hence, if observations
are made at discrete instants and are sufficiently separated (say by a few
minutes or more) then the flight computer could be used to adjust the
correction schedule after each observation. Thus, an on-board control mecha-
nization might take the following form:

(1) Take observation Y(7) at time Y. Set t;=

(2) Compute the distribution of Q(T,ti) conditioned on this observation,
all previous observations and all control applied prior to this
time.

(3) Note the time of next observation, say t] + At

(4) Compute optimum correction schedule on [tl, Tﬂ based on the dis-
tribution in Step (2) and the required terminal condition.

(5) Test to determine if a correction is to be made on the interval
&l’ ty + A1ﬂ . If yes, make the appropriate correction.

(6) Take next observation Y ( T + At). Set t =t) + 4t

(7) Go to Step (2).

The feasibility of this scheme would depend on the flight computer's
ability to accomplish this process. In Section 2.2.3.6, it was shown that
this is a relatively simple task in the one dimensional problem when the
random variables X (t) and Z(T t) have zero mean value. However, in the
non-zero mean case, the calculations are considerably more difficult, as will
be shown next. TFor convenience, the time interval [T T] 1ndlcated in the

stepwise procedure above is taken as [O, T

Consider the problem of minimizing the expected value of the fuel

J = [frluldt
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subject to the scalar terminal constraint

F(zz) «C , z=Hx(T)
The observation equation is again given by

4= Mxre
and the state system by
X = Ax+Gu

but now, the initial state Xy is a Gaussian random variable with non-zero
mean

£x, = X,
and covariance
£lly-R)5-21] =
| De-R10x- %, =Y
As in the zero mean case, the impulsive controller is assumed. i.e.,

N
wld) =, wr (8)8(i-4,)

=/

Thus, it can be shown that
wlt) = w3 (T ¢)
Again, letting

ﬂl’(t‘-_) = '3‘-2(7; ig)

it is relatively straightforward matter to show that

7-£3 /20,688, (3.85)
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where 2(T,ti) is a Gaussian random variable with mean m; and covariance
P; satisfying

o
= HE(T,0) %, (3.86)

- 2
0" = 2 (/-HEGE,) (3.87)
A =BT
T = 727
(3.88)

Hence, the terminal constraint takes the form

, 2
Flzz') = K,V & K1 R+ M) £C (3.89)

If the initial mean (m,) is zero, then from Equation (3.87) m; =0 i=1,N.

In this case
A A .
A -2 _ /2 . -

EYVET LS = (3.90)

3

and the problem becomes that treated in Section 2.2.3.2.9. For the non-zero
mean case, however,

Im]

z
Y L4 5
12 - %R - % 4

7Y A g) =S g e rmer a8 lo.o

r=/ &=/ R
where erf [.] denotes the error function. The minimization of this quantity
subject to the constraints of Equations (3.86) to (3.89) is considerably more
difficult than that experienced in the zero mean case of Equation (3.90) even
though it can be shown that the matrices B; again satisfy

@T=~-[’D—£:%(H¢{.G) (3.92)

The difficulty arises from the fact that the computation of the gains must be
conducted iteratively. Thus, an on~board mechanization which is based on a
repeated and rapid solution of this problem does not appear to be computa-
tionally feasible.
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On the other hand, if the criterion function, J in Equation (3.85), is
replaced by the criterion function K where

2

K =X V/E2(1,4)°5'8 (3.93)

the optimization problem can be solved directly. While the resulting control
does not minimize the expected characteristic velocity, it does minimize a
quantity which is always greater than or equal to the expected characteristic
velocity and this should be adequate. Letting @i =2 rm* the

criterion function becomes
_ 7
k=27 8'f

with the constraints 9} =HS(T,0) )?o
- 2
W' =w (/-H$.GB)
S ,
Wy =W e
7, T r
*
HE, Y, 8 K ra, “<C
This is exactly the problem treated in Section 2.2.3.2.9 and the solution
developed there holds when the variable P is replaced by e . Thus, an

on-board mechanization which was not feasible using the criterion function
J, is relatively simple for the criterion function K.
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2.2.4 A Unified Approach to Statistical Optimization

2,2,4,1 Introduction

It is quite apparent that within space f£flight technology there exlsts
a set of slgnificant problems which must be classified as problems in
statistical optimization; therefore, space flight technology must necesgsarlily
encompass methods of statlstical optimization. Of particular concern are
the problems of optimum navigation and guldance procedures which must be
considered on a statistlical basis since the natural environment is
characterized by random phenomena whose effects can be significantly
deleterious to mission success if they are lgnored. Thus, it becomes highly
desirable to establish elther a general theory of (or, at a minimum, a
unified approach to) statistical optimization. Of these alternatives, a
general theory is the more deslrable since, supposedly, all that can be
generally known would be contained within the theory. However, this
objective represents a rather significant endeavor which characteristically
yields results that remain somewhat obscure and which are of doubtful direct
usefulness in the development of methods of solutlon whose ultimate purpose
1s the application to problems subject to constraints on the state and/or
the control. Thus, from the standpoint of space flight technology, i1t
appears that the preferred approach 1s the formulation of a unified
treatment of statistlcal optimlzation which directs most of the attention
to those aspects of the problem which are of direct interest. In this
sense, the unified approach 1s a general theory of a class of problems with
particular characteristles. Obvliously, the development of a unified
approach is a far less ambitlious undertaking than the development of a
general theory; however, the former can prove to be far more fruitful than
the latter when measured in terms of results dilrectly applicable to the
problems involved in the application of methods,.

Of course, a significant amount of effort has been devoted to methods
of statistical optimization and their application to navigation and guidance
(i.e., the problems of optimum estimatlon and control, respectively).

These efforts, however, have not produced a unified approach to the problem
since the slgnificant aspects of the problems encountered in application

are not clearly understood (in some cases these aspects are not included in
the formulation). Rather, each effort is characterized by a set of restric-
tive assumptlions which precludes, at the outset, the ability to analyze

the effects of certaln unavoidable discrepancies in the actual utilization
of the methods. Usually, efforts directed to removing certain restrictions
require the imposition of others to be successfiul. The resulting situation
is that a set of singular problems is considered, each of which 1s t
distinguished by a particular combination of the restrictions which define .
the set, Without doubt, the efforts to date represent a significant and
meaningful contribution tc the problems of statlistical optimlzatlon;
however, 1f further progress is to be made, then efforts must be directed
toward a unifled approach which encompasses present results and extends the
methods of statlstlcal optimlzation over a domain which contalins all
problems of particular concern in thelr least restrictive form.

s
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Unfortunately, such a unifled approach 1s not presently avallable;
however, from preliminary studies concerning the possibility of a unified
gpproach, i1t can be concluded that such an approach 1s highly feasible and
lles within the general principles of statistical decision theory. In the
following discussion, the formulatlion of a unified approach to statlstical
optimization wilth primary application to space flight technology is considered.
The primary purpose of the discussion 18 to set forth the framework from
which the unified approach should evolve and to assess the results which
should be obtalned or can be expected wlth reasonable certainty. It will
be shown that the probability of success 1s sufficiently hligh and the return
sufficlently important to warrant efforts which are dlrected toward the
development of a unified approach to these problems as opposed to continued
efforts intended to develop partlcular solutlons to restricted problems.
This conclusion is based upon the fact that the latter effort will produce
very lttle in the way of new and/or significant results (i.e., the results
will be variations of the previous results).

2.2.4.2 (eneral Considerations

There exist several general conslderations of a unified approach to
statlistlcal optimlizatlion as applled to space £light which are of particular
concern. These considerations willl be discussed at the outset since they
can be interpreted as general requirements for a unified approach; 1in these
dlscussions, the basic precept is that the problem of cptimum control, as
contrasted with that of optlmum estimation, 1s the objective of the data
collection and processing functions.

Present efforts dlrected to the solution of the problems of statistlical
optimization view the problems of navigation and guldance as distinct. These
efforts usuvally refer to these processes as optimal estimation and control,
respectively. In thils terminology, the estimation problem 1s concerned with
the determination of the optlmum estimate of the system state, glven a
conbrol, as a functlion of a set of avallable observations which are functions
of the state and unknown random phenomena (e.g., measurement errors). The
control problem is concerned with the determination of the optimum control
for the gystem, given the optimum estimate of the state. Thus, the optimum
estimate and control of the state are usually determined separately, i.e., one
i8 determined, glven the other. In the actual situation, observation data
are avallable and it 1s sufficlent for most problems to determine the
optimum control as a functlon of the avallable data. In these problems,
1t 1s essentially ilrrelevant 1f the optimum control is a function of
the optimum estimate of the state. That 1s, the optimum estimate 1s
necessary 1f, and only if, it 1s required to determine the optimum control.
However, 1t 1s not generally necessary to determline the optimum estimate to
determine the optimum control even if the latter can be shown to be an
explicit function of the former since, if u¥ = £[ & (D) 7} , then
u¥ = g (D) , (vhere u¥, &%, and D denote the optimum control,
optimum estimate of the state and observation data, respectively); hence,
the optimum control is an explicit function of D and the determination of
S *(D) is not essential to determine u¥.
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In the search for optimum solutlons, particular emphasis l1s usually
placed upon determlining solutions which are linear functlions of the observa~
tion data. Further, in the case of the optimum control problem, a linear
function of the optimum estimate of the state 1Is usually sought. The
primary motivations for these steps are, first, linear solutions are
generally easier to mechanize and, second, 1t is usually easler to obtain
solutions under restrictions of linearity. However, the resulting
solutions can not generally be consldered as optimum solutlons since the
optimum solution 1s a member of the class of both linear and nonlinear
functions and since this optimum will generally not be contained within the
sub-class of linear functions, Thus,the "optimum" solution which 1s
restricted to a linear function is actually a "sub-optimum" solution., This
"sub~optimum" solutlon may be adequate for certain problems; however, it is
not generally known how "sub-optimum" a "sub-optimum" solution is. Thus,
it is conceivable that a "second-order” approximation to the optimum
solution will result in a greatly reduced total cost. Thils fact leads to
the conclusion that the adequacy of a sub~optimum solution cannot be
assessed unless Information is available concerning the structure of the
optlmum solution. But, if this structure is known, any approximation to
the optimum solution can be assessed and an optimum design can be achleved
where mechanlzation is included as a trade~off parameter along with the
usual performance criteria.

In problems where an optimum solutlon 1s sought there must exist some

il PLOLICIES ASSHA S < L Ll Lilc

criterion of optimality, i.e., a measure of certaln significant parameters
of the problem which is to be extremelized. TFor all problems of interest,
this measureis amonotonically non-decreasing function of elther the system
state, the control, the estimation error or any combination of these
parameters. (The literature most frequently defines this measure as a
monotonically increasing function of the quadratic forms of the state, the
control and the estimation error vectors). This function is referred to as
a "loss" function and 1s denoted by I{ § , € , u). The customary approach
to the stochastic problem has been to define the criterion of optimglity
using the same loss function as that used for the deterministic case but
"averaged" using some "sultable" averaging operation, (usually the total
expectation). The optimum solution is then defined as the set of parameters
which minimizes thils averaged value of the loss function (e.g., in the optimum ;
control problem, the control which minimizes the expected value of the loss
function is the optimum control.) In general, the optimum solution 1s the
set of parameters for which the minlmum expected loss is achieved and the
solution is specified by

M/A/{[[L(&,e,u)]} = [(a*,e*, a*) =J*

where E () denotes the expection operation and * denotes the
optimum solution. This cost 1s a function of functions of § , € and
u(again, the cost functions are usually quadratic forms of & , € , and u).
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It 18 obvious that the exact form of the loss function must be some
approprlate measure of the parameters and must properly reflect their effects
upon mission success. Furthermore, it is required that minimization of the
expected value of the loss function is compatible with or assures the
probabllity of mission success wlthin the design goals or mission objectives.

It becomes apparent that there exlst gquestlions concerning optimum
solutions which can be relegated to the followlng aspects of the problem:

(1) The exact form of the loss function as a function of the system
state (8 ), state estimation error (€ ) and system control (u).

(2) The adequacy of the optimum solution in terms of achieving required
system states within control constraints (ee.g., achieving terminal
states within an allowable total veloclty correction). That is, the
opbimum control must also be sufficlent in terms of mission accomplish-
ment with the desired probability of success.

(3) The minimization of the expected value of the loss function as a
fundamental criterion for an optimum solution.

(%) The use of sub-optimum solutions which are restricted to linear
functions without information to assess thelr performance or results
relative to the optimum solutions or better approximations to the
optimum solution.

Based upon these comments, it can be concluded that the primary
objective of the unified approach to statistical optimization should be the
development of a general structure of the solution capable of reflecting the
interrelationships of those aspects of the problem that are of particular
concern in space flight technology.

2.2.4,3 A Synopsis of Present Results

Considerable effort has been devoted to problems of statistical
optimization with particular applications to space flight., This class of
problems is concerned with the optimum control where the fuel used for
velocity corrections is an essential consideration in the optimum solution.
A review of present results is glven below for the primary purpose of
developing an understanding of the problem in 1ts most general and least
restrichbive formulation.

The majority of effort has been devoted to problems wherein the
optimum solution is specified by the minimlization of the expected value
of quadratic loss functions. The most general form of thls problem, which
has been considered, is the optimum control problem with a loss function
vwhich is a linear function of the quadratic forms of the system state and
control vectors, § and u, respectively; l.e.,

A
Llxyu) =25 (5@ 8747 4,)
=/
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control is that for which ELL(S, u)] is a minimum, The solution for
thls problem is given in section 2.2.2.3 for the general linear system,
iee, &, =68+ Iy (vhere 4, and /i are independent of
the system state 6 for all i)e The determination of the optimum solution
is facilitated by the linearity of the loss function in terms of the
quadratic forms of § and u., (That is, the loss function does not contain
cross products of the states and controls or of states (controls) at
different points along the trajectory). This particular loss function will
be referred to as a "llnear-quadratic" loss function since it is linear in
the quadratic forms of § and u. In this case, the optimum control was shown
to be a linear function of the optimum estimate of the state; moreover, the
relationship between the optimum control and the optimum estimate of the
state was shown to be the same as that for the deterministlc case. Thils
result is independent of the statistical distribubtions involved. However,
this independence does not imply that the optimum control is a linear
function of the observation data; rather, the optimum control is a linear
function of the conditional expectation of the state, glven the observation
data (the conditional expectation can be a nonlinear function of the
observation data). On the other hand, if the statistical distributions are
Gaussian, then the optimum estimate and, hence, the optimum control are
linear functions of the observation data. These results are rather signi-
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veloclty corrections is more significant than the quadratic form of uj
thus, a more meaningful loss function would be written as

£(6, ) E(w N % u,)

The expected value of this loss function contains the expected value of the
total velocity correction for the special case of 3}==I y lee.,

[[A(xa)] [Ed‘ ,;EZAf]/a.r“

o, Lt " T S

_E£(5Q d)+z E/Z/

e/

E2(x,)] }";‘ E(870.6) »£(av)
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where

N
E(V) =£ 344, 4,

i=l
denotes the total expected veloclty requlrement. The latter loss function,
which is nonlinear in the quadratic form of u, is more meaningful than the
linear-quadratic loss function since the total veloclty correction is of
direct concern in the design of a space flight mission. Unfortunately, an
expliclt solution for the "nonlinear" loss function cannot be readily
obtalned (as was the case for the "linear" loss function) due to the non-
linearity in the quadratic form of u., Moreover, the effect of the specific
form of the loss function is not indicated in the known solution for the
"linear" loss function. Thus, the effect of a change 1n loss function upon
the optimum control cannot be explicitly stated; furthermore, the effect
upon E( AV) of using the optimum control for the "linear" loss function is
not known since it 1s difflcult to extrapolate knowledge from the solution
for a particular problem to more general cases.

Recent efforts have been devoted to solving the optimum control problem
where the formulation of the problem is augmented in two significant aspects.
First, constraints are Imposed upon certain statlstical parameters of the
terminal state, i.e., a constraint is lmposed upon the covariance matrix of
specified components of the terminal state vector. Second, modified forms
of the quadratic loss function which more closely represent the expected
velocity correction are used. (See References 2.16 through 2.21). The
results of these efforts represent a significant contribution toward
extending the solution of the optimum control problem to a more meaningful
formulation with respect to the midcourse guldance problem. However, the
extensions are generally possible only through the artifice of certain
restrictions which are often subtle but yet quite significant. Nonetheless,
the results of these efforts promote an understanding of the optimum control
problem as 1t applies to space flight technology. The most significant
extension of the optimum control problem is referred to as "The Theory of
Minimum Effort Control" which is discussed in section 2.2.3.

The essential difference between the linear-quadratic loss problem
considered in Section 2.2.2.3 and minimum effort control is the nature of
the loss function and the impositlon of a terminal constraint. In the basic
problem considered (see Reference 2.18), the optimum control is specifiled
by minimizing the modulus of the expected value of velocity corrections with
a constraint imposed upon the terminal state covariance matrix. The loss
function for this case 1s a function of the control vector u only, i.e.,
in continuous form,

r ]
L) = f VAL B uld)] ot

where the prime denotes transpose. The optimum control is deflned as that
which minimizes L(u) for a specified value of the covariance matrix of some
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linear function of the terminal state. It is shown that 1f the system
dynamics and the observations are linear in the system state, and if the
optimum control is a linear functlion of the observations, then the statisti-
cal optimization problem can be transformed into a deterministic optimization
problem. The deterministic problem can be solved by the method of the
maximim principle. This approach to the problem represents a rather prova-
cative method of solution, however, the following comments are in order.

First, 1t is seen that the loss function 1s not a direct measure of
the expected total velocity correction, instead, the loss function is the
integral of the standard deviation, i.e., square root of the variance, of
the commanded accelerations. In the case of a single control component or
in the absence of random phenomena, the loss function becomes a direct
measure of the expected total velocity correction which is of direct concern.
In the more general case, the loss function bounds the expected total velocity
correction. It is also seen that the loss function is not an explicit
function of the state vector &6(t). (That is, the criterion of optimality
is explicitly independent of the system state behavior intermediate to the
terminal state). Thus, it appears that the form of the loss as a function
of the control vector is motivated by mathematical considerations rather
than physical ones. The adequacy or validity of the loss function 1ln the
general case is not clearly known.

Second, the "optimum" control is restricted to a linear function of
the observations; therefore, the "optimum" control is the optimum linear
control and can be sub-optimum in the class of all possible controls. On
the other hand, the results of Reference 2.17 show that for lineaxr system
dynamics and Gaussian random phenomena, the optimum linear control is a
linear function of the optimum estimate of the terminal state, which is
itself a linear function of the observations; moreover, these results are
established for a more general loss function than that consldered in
minimum effort control. That is, in Reference 2.17 the terminal state
1s explicitly included in the loss function which 1s not necessarily quadratic
in control and state vectors. However, it cannot be concluded that the
optimum control is linear in the observations for the general case. Rather,
it is established that the "optimum" control of the class of controls
which are linear in the observations is a linear function of the optimum
estimation of the terminal state to be controlled. Whereas this is a
significant result, care must be taken not to generalize erroneously. It
should be noted that the results of Reference 2.17 are more general in
terms of the loss function, as contrasted with linear-guadratic loss;
however, the results are more restrictive than those for the case of a
linear-quadratic loss function. In the latter case, linearity between the
optimum control and the estimate of state was established without regard to
the statistical distributions involved.

Third, the solution for the optimum control is dependent upon the
behavior of the optimum estimate of the terminal state. In the formulation
of the problem, it is assumed that the covariance matrix of the state
estimation error reduces to zero at the terminal time. This is equivalent
to assuming that at the terminal time all uncertainty is removed concerning
the state. This assumption mlight be realistic for many cases since the
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relative errors can be quite small. However, this 1s not rigorous unless a
sufficient set of perfect observatlons are avallable or a large number of
uncorrelated observations are effectively filtered prior to the terminal
time. Usually, the state uncertainty cannot be reduced to "zero" although
it can be made arbitrarlly small in a finite time under certain restrictlons,
€48+, a large number of observatlons with uncorrelated errors. It appears
that the formulation of the problem does not require the assumption of

"zero" uncertainty at the terminal time; however, the solution becomes more
difficult to obtain. At present, the effect of termlnal state uncertainty
1s not clearly known. It should be noted that the terminal state uncertalnty
is dependent upon the time correlation between observation errors and this
effect is not included in the solution for the state estimation error,
therefore, this effect upon the optimum control is not known.

Fourth, the formulation of the solution for the optimum control utilizes
the optimum estimate (this estimate is a function of a' priori information
concerning the state). However, even in the case when no a' priori informa-
tlon is avallable, the problem of optimum control still exists. In thls
case the solution must be a function of the a' posteriori information. This
case 1s not included in the formulation of minimum effort control.

Fifth, in applying the maximum principle there exists the question of
uniqueness of the solution. That is, In the general case, it is not known
whether there exists a unique set of initial values for the adjoint
variables which yield the specified terminal conditions. However, for the
special case of a single terminal state component or a single linear com-
bination of the state components belng specified, the solution is shown to
be unigue. Unigueness for the general case has not, as yet, been
established.

Finally, several significant extensions to the baslic results (given in
Ref. 2.17 and 2.18) for minimum effort control have been made (See Refs. 2.20
and 2.21) In these extensions the loss function is defined as the expected
total velocity correction rather than the integral of the standard deviation
of the commanded acceleration. This modification results in a more meaning-
ful loss function from the standpoint of design considerations for reaction
control devices . However, the problem consldered is restricted to that
in which a constraint is applied to a single linear function of the terminal
state. Also, the optimum control is restricted to be a linear function of
the observations. It is further assumed that the optimum control is a linear
function of the predicted terminal value function which is to be controlled.
In Reference 2.17 this assumption is shown to be valid for linear system
dynamics and Gaussian random phenomena, For other cases, the optimum linear
control is not known to be the optimum of all controls. It should be
polnted out that a nonlinear control for the same problem is considered in
Reference 2.16, however, it is assumed that the nonlinear control is a
function of the optimum estimate of the terminal state. (The results of
Reference 2.17 indicate that this assumption 1s valid for linear dynamics
and. Giussian distributions where the loss function includes only the terminal
state).
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2.2,4.4 Rudiments of a Unified Approach

For the purposes of space flight navigatlion and guldance, the ultimate
objectives of a unified approach to statistical optimlzatlon can be summarized
as Tollows:

(1) Determine the structure of the optimum solution in a sufficlently
general form to show the interrelationships of the significant
aspects of the problem.

(2) Evaluate the performance of the optimum solution with respect
to the significant aspects of the problem in order to identify
the critical aspectse. .

(3) Perform comparative evaluations of the performance of optimum
and sub-optimum solutions such that the best sub-optimum solution
can be selected when necessary.

The attalnment of these objectives, however, requires that the significant
aspects of space flight problems be considered. OSome of the most important
of these aspects for the present study are:

(1) The nature of the dynamics of the system (i.e., linear or non-
linear) and/or adequacy of linear models.

(2) The characteristics of the random phenomena involved (i.e., type of
distributions, Gaussian or otherwise), and the information required
of the parameters which specify the distributions.

(3) The criteria of optimality (i.e., type of loss function used) and
the minimization of the expected loss.

(4) Limitations in mechanization of procedures (i.e., finite data
processing capabilities, word length, storage and time) and in
control execution errors.

(5) In-flight system constraints as to number and type of available
observations and/or the number and magnitude of the corrective
actions.

The final result of the unified approach is a system configuration definlition
which is optimum in the "overall" sense and which embodies the best solution,
optimum or sub-optimum, in accordance with the constraints of reality.
Optimum in the "overall" sense implies that criteria of optimality and/or
constraints include additional parameters than those usually considered in
the mathematical formulation of the optimum problems. For example, in the
use of a linear control, it is tacitly assumed that such a control is
"optimum" where mechanization simplicity is considered as a criterion of
optimality or perhaps as a constraint. However, the validity of this
assumption cannot be established unless knowledge concerning the performance
of "optimum" linear controls is available. That is, the overall optimum
system conflguration would embody a non-linear control if superior performance
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could be -achleved within an allowable and/or tolerable increase in mechaniza-
tion complexity. Indeed, 1t is not unusual to find that an unacceptable
degree of complexity ylelds more than commensurate performance or results;
for example, in methods of finite differences, quadrature, iterative
solutions and parameter estimation, this situatlon normally exists.

The development of a unified approach to statistical optimization
as outlined above could be a formidable endeavor 1f all of the efforts
were to be accomplished within the study. Fortunately, significant
contributions have been made in two general areas. Filrst, although efforts
to date generally conslider space flight navigation and gulidance problems
on g restrictive basls, these efforts represent a basis for the formulation
of the more general problem. The results of these efforts establish a
minimum requlrement for the unified approach and a set of indicative results
which are to be expected, at least qualitatively. Second, the problems of
statistical optimization as applied to space flight technology comprise a
subset of the general class of problems which are considered in statistical
decision theory. The general principles and methods of decision theory will
undoubtedly provide the essential framework of a unified approach to
statistical optimization for space flight problems. Thus, the efforts
1n developing the unified approach will be directed toward codifylng the
directly applicable principles and methods of decision theory into a special
discipline suitable to the required treatment of space flight navigation
and guidance problems. To this end some of the basic aspects of decision
theory are discussed below as they apply to the desired unified approach.
It should be pointed out that efforts to date often employ certain principles
of decision theory on an implicit basls; however, unless these principles
are consistently employed on an expliclt basis, thelr full usefulness is
not realized or exploited. Thils subject was treated in detalil 1n a previous
monograph concerning the problem of estimation (Ref. 2.23); note is made that
the material of this reference covered a special form of the more general
problem belng considered here.

The basic problem which is consldered in decision theory can be
described as follows. There exists a situation wherein a decision must be
made and/or an action must be taken in order to achieve some desired
objective; however, the situation is not exactly known, i.e., there exists
some uncertainty concerning the state of the situation. Further, the
situatlon is characterized by some loss in making a decision and/or taklng
an action. The general problem in decision theory is to determine a
strategy or policy which achlieves- -the deslred objective with the minimum
loss. Thus, the basic problem in decision theory could be succinctly defilned
as that of determining an optimum strategy in a situation of uncertainty.

It should be noted that the optimum strategy can consist of either the

optimum estimate of the state or the optimum control, or both, as determined
by the particular problem beilng considered. It should also be -noted that the
uncertalnty in the state of the situation characterizes the problem as one

in statistical decision theory; otherwlse, the problem is one of deterministic
optimization. Generally, there exists the possibility of acquiring infor-
mation concerning the state of the situation and thus reducing the uncer-
tainty concerning the situation. Thils capabllity is usually provided by
acquiring observations from an information source which 1tself possesses
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some uncertainty. Whereas the uncertainty concerning the situation cannot

be completely removed, it can be decreased by utilization of certain
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exist in this problem which are of interest: (1) an uncertainty due to
ignorance of the true state of the situation and (2) an uncertainty due

to randomness in an information source.

In terms of space flight navigation and guidance problems, the true
state corresponds to position and velocity deviations from a nominal and/or
desired trajectory (or some linear function thereof) and the information
source corresponds to a set of measurement deviations (observed minus
computed residuals). The corresponding uncertainties are usually those
due to orbit injection errors and measurement errors. Wlth respect to the
space flight problem, the optimum strategy is then the "best" possible
action to be taken under the condition of uncertainty in the actual
deviations from the desired trajectorye.

It is important to note that the basic problem in decilsion theory 1s
characterized by two distinct uncertainties. These uncertainties, in turn,
are specified by two distinct probability spaces or statistical distributions
which are usually independent. That is, the true state of the situation can
be the outcome of a random phenomenon which is described by a probabllity
distribution. In general, the appropriate action to be taken depends upon
the true state of the situation or the unknown parameters which determine
the probability space of the observations or the population to be sampled;
where the latter probability space is a function of the randomness in the
observations. The important point to be made is that the optimum strategy
must, in general, consider all possible states, i.e., the optimum strategy
must be optimum with respect to the probability space of the state.

A more formal description of the basic problem in decision theory can
be formulated with the aid of the following notation. Let

(a) ® denote a parameter set which specifies the true state of a
situation

(b) Qdenote the parameter space which i1s the space of all possible
values of ©

(e¢) VY denote a set of random samples or observations which is a
function of ©

(d) U denote a set of actions

(e) 4 denote the action space which is the space of all possible
actions

(£) L (U , 8) denote a measure of "loss" assoclated with each possible
Uand O, l.e., the loss is a function of U and ©

Before preceding, the following comments concerning the general situation
should be noted.
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First, © 1s not explicitly known, l.e., © 1s generally unknown; however,
a' priori information is often available concerning the probability of
occurence of &. Thls information is usually avallable in terms of a
probability distribution function for © defined over the parameter space Q .

Second, the set of observations Y usually increases the knowledge of
6, l.e.,. the primaxry purpose of the observation process is to galn infor-
matlon concerning the true state of the situation. The information gain in
the observation process is determined by the dependence of ¥y on © and the
uncertainty in Y due to randomness.

Third, the concept of information as a measure of uncertainty is a
fundamental consideration in this type of problem. However, two types of
Informatlion are present: The a' priori information available concerning
8, and the a' posteriorl information obtained through the observation
process. The information available concerning the true situation is a
function of both types of information.

Fourth, it 1s axiomatic that the action U to be taken in a situation
is a function of the a' priori and a' posteriori information concerning
©, l.e., the action does not ignore the true state of the situation. Thus,
U 1is generally a function of Y and the a' priori information concerning
©. Conversely, U 1s not an expliclt function of ©, since @ is generally
not known.

Fifth, since the loss L (U , ©) is a function of random variables,
it 1s a random varlable also. That 1s, the space of the loss is determined
by the space of © and ¥ . Further, the prcbability distribution function
of L ( v , ©) is determlned by those of © and Y and the explicit functional
relationships of ¢ (Y Yand L( U , ©). Since 2( ¢ , 8) is a random
variable it possesses an average or expected value which is defined as the
"risk".

Sixth, since the loss L ( ¢ , ©) is a function of two random
variables, its total expectation can be written in terms of a conditional

expectation; therefore, the risk can be written in terms of a "conditional"
risk, given 6. That is,

R(U,2) = £[L(U,6)]
=& E[L(U, 8)/6]
R(U,0) = £ [R(U/8)]

where

R(U/6) = E[L(U,8)/6]

The term R( ¢ , {2 ) denotes the "total" risk. This risk is not an
explicit function of &; however, it is a function of the probability
distribution of © over the parameter space (1 . The term R ( ¢ /9) is
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the conditional risk (that 1s, the expected value of the loss, given a
particular value of ©.)

A basic precept of decision theory is that a loss functlion can be
defined such that the risk should be a minimum. Of course, the risk is a
function of the particular loss function L ( U , @) and the particular
action U as a function of Y . Thus, the problem is to determine the
action U as a function of Y which minimizes the risk assoclated with the
loss L ( U , ©). This action, denoted by U ( Y ), minimizes the risk
and is defined as the optimum strategy with respect to L ( ¢ , 9).

Such optimum strategles can,. thérefore, be defined as minimum risk
strategies. There are two types of minimum rilsk strategies which have been
formulated in declsion theory. These strategles are referred to as (1) Bayes
strategies and (2) Mini-max strategies. A Bayes strategy, denoted by ‘49 ’
minimizes g ( U , Q ) over the parameter space 1 , i.e.,

M [R(U,0)] =R(y,,.0)
A mini-max strategy, Uw , minimizes the maximum risk, i.e.,

M -Max [ R{Uy 2)] = Max [P(UM, n)]

A mini-max strategy can also be defined for the conditional risk, i.e.,:

M- Max[R(4/8)] = Max[R(U,/8)]

It should be noted that a Bayes strategy is optimum over the parameter

space and utilizes the a' priori information represented by the probability
distribution of © over {1 . On the other hand, a mini-max strategy minimizes
a least favorable situation in terms of either the distribution of & over

2 , or © itself. The latter strategy 1s applicable where a Bayes strategy
cannot be formulated. .

A Bayes strategy 1s generally implied in the usual formulatlons of space
flight problems by the virtue of the available information. However, while
the Bayes strategy is generally applicable, a mini-max strategy can be
considered in situatlions where a' priorl information for the Bayes strategy
is Incomplete or questionable. TFor a more exhaustive treatment of minimum
risk strategles, see References 2.24, 2,25 and 2.26.

It should be apparent that the problem .outlined includes the problems
of optimum estimation and/or control. Indeed, the two problems possess the {
same form and are distlngulshable only by the particular loss function '
employed. Generally, if £ (¢ , ®) =0for ¢(y ) =0and L(U, 8) >0 |
for v ( ¥ ) # O, then the problem is generally that of estimating the true 4
state of the situation and the loss 1s a function of the estimatlon error. /
The problem of estimation has been discussed in terms of decision theory in
a previous monograph (see Section 2.3 of Reference 2.23). The principles

which form methods of solution for the estimatlion problem also apply to the
control problem. The essential difference is the definition of the loss
function £ ( U , ©)e In general, however, a Bayes strategy is determined

s A
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by minimizing the Bayes functlon, or a' posteriori risk, as defined in
Section 2.3.5.2.1 of Reference 2.23+4 A Bayes strategy was derived for the
optimum estimation problem in Reference 2.23. A Bayes strategy for the
optimum control problem i1s dlscussed 1n the following section of this mono-

graphes

It should be noted that the problem which has been defined includes
the sequentlal problem or time sequence problem which is most common in
space flight technology. Thls aspect of the problem does not present a
major difficulty in determining minimum risk strategies. The essential
difference with respect to the other problems being considered lies in the
definition of the parameter (8), the action (U ) and the sample (Y ) sets;
l.e., these sets can be defined as ordered sets of vectors (or subsets)
which correspond to the state, control and observation vectors at
particular times. The optimum strategy i1s, thus, the ordered set U of
action subsets or vectors. Of course, the loss function L (U, @) is
defined over the sets U and ©. For instance, the "quadratic" loss
function (see Section 2.2.2) can be written as

L(U,8) =09o+1 ry

where @ and 6 are vectors with subvectors which denote the state and
control at discrete times, i.e.,

T T T T r
8 =(6,8,...,6, ,...,8,)

r_ T r r T
U —(ua s U sy g sy,
Thus, 1f the matrices Q and > as partitioned diagonal matrices, the loss
L ( U, 9) can be wrltten in the usual quadratic form.

L00,6) =25 18796+ u), 7 4]
=/

-/
3

where
Q O ..... 0
_|0 @0
@ = DLl @y
0 0....."Q,
r 0......0
o 7,......0
7=\: Y AT
O O..... -7,
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Thus, it is seen that the problem belng formulated 18 not restricted to
a "terminal" action,

An important goal in the establishment of minimum risk strategies is
the determination of a set which contalns all necessary information to
define the optimum strategy. This set, termed a "sufficient statistic",
was defined in a previous monograph (see Section 2.3 of Reference 2.23) for
the estimation problem. The use of sufficlent statistics in optimum control
1s discussed in Reference 2.17. The general result, as presented, is that
minimum risk strategies are exclusive functions of sufficient statistics;
therefore, only sufficient statistics need be considered in determining
minimum risk strategies. Thils proof 1s a signiflcant part of the sequential
problem in which it is generally desired to express the "local" action in
terms of the most "compact" set of information. In general, the sufficilent
statistic for a particular problem will depend upon the nature of the
dynamics, the statistical distributions and the loss function involved in
the problem. In all cases, however, the sufficlent statistic determines
a basic requirement of the optimum strategy for minimum risk which, in
turn, determines a basic property of the general structure of the optimum
solution.

2.2.,4,5 Bayes Strategy in Optimum Control

Bayes strategies are applicable to a variety of problems of space
flight navigation and guldance in the areas of estimation and control.
The development of a Bayes strategy for the estimation problem was considered
in detail in a previous monograph (Reference 2.22). In this section, the
development of a Bayes strategy for the control problem 1s considered.
However, it should be noted that this discussion is not an exhaustive
treatment of the subject. Rather, the dlscussion is expository in nature
with the primary purpose being to demonstrate the nature of the approach
1llustrating the formulation of the problems and the form of the results.
Equivalence of solutions with those determlned by other methods will be
indicated and a general structure will be given for a Bayes strategy as it
applies to space f£light navigation and guidance problems. The essential
feature of a Bayes strategy is the minimizatlon of the Bayes function or
the a' posteriorl risk as defined in Section 2.3.5.2.1 of Reference 2.23.
The basic steps are as follows: Filrst, the Bayes risk is defined as

R(U,2) = £{£L(U, 9)/9]}
=[f (v, 6)£(x/6) Ft6) dyds
ay

R, ) =f|f 1(v,6)F(%8) F(&) 06 dy
Yy N
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where £( ) denotes the probability density function of its argument and
£(/ ) denotes the conditional probablillity density function of 1ts arguments.
Now, since all of the functlons used in the definition of R [(J nl are
positive, the optlmum strategy (the Bayes strategy) minimizes the inner
integral for all Y. However, the Inner integral can be reduced further

by use of the identity £(Y /0)£(0) = £(8/Y)£(Y). i.e.,

rw,a) = [ [riu,6)Fte/y)ae [Fev)ay
Yy a

-[Bluvilr;mdy

where BL[U(Y)] is defined’as the Bayes function. (This function i1s
recognized as being the conditional expected loss, given a particular set

of observations Y).
gluyl =f/. (U,8) F(8/v)d6
2

Again, the optimal (Bayes) strategy minimizes the Bayes function 8[wU(YJ] .

In the more general form of the optimum control problem, the loss is
a function of sequential state and control vectors. However, thls depen~
dence can be 1ncluded in the parameter and action sets © and U by defining
these sets as vectors which contain the state vectors and control vectors
as subvectors, i.e.,

8, u,
2 Y
6= |-i_ U=]_:i_
&, U,
M Uy

where &

), and u, are state and control vectors, respectively, defined as

n-i

g = 8(%,) and. u, = w(t )

and where N is the total number of control points. Note that «, denotes a
control vector subsequent to &, . This minor difference in notation should
e contrasted with earlier discussions of quadratic loss. Conslder the
case of a "generalized" quadratic loss function in © and UV , to wit,

L(U,8) =66+ 7V

where Q and ¥ are symmetrical square matrices whose orders are determlned
by the number of control points N and the number of components in the

vectors ¢, and 4, . It should be noted that the loss function L ( v, ©)
is more general than the usual quadratic loss function Jp which is defined
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as (see Section 2.2.2)

E[d‘@ o, 7 ul

The loss J is a special case of L (U, ©) where Q and ?' are partitioned

diagonal matrices containing the matrices Q. i and 3‘;_ .

Now, the parameter set © is a function of the action set UV . In
particular, the state vector §, 1s a function of the previous state §p-1
and the control u, . For a linear system, the relationship of §, , and up
is usually expressed as

§(4,)=%,,, §(t.,) s e (b
However, the system can also be deseribed by the following equlvalent
relationships.
6’ = ﬁo 60 ’ //7 4,

6'2 =¢2.060*{2-;.‘Il f{z;”.z

PR WP

8, =% 8 * 2 o 4

.. =°°
I
o

Note that the system state é;, is expressed in terms of the initlal state &,

and the contribution of all previous control veetors « for i =1, 2, ..., n.
This system of equations can now be written in terms of the sets § and 9 as
=04 +/"U

where §, is the initial state vector, © and U are the parameter and action
sets, respec‘blvely, and 5?5 and " are matrices defined as follows

2,

%

ﬁ‘-—- —_—

Tne

B0
70 0.....0...0 |
la 122 O . ..O . ..0 g
m [;z /;3' [r;,’no ;E
/::I/ /;2 CJ' R '/;.U ‘
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The matrices § and r are thus partitioned matrices which contain the sub-
matrices ¢io angd T 1j, respectively. It 1s important to note that N is a

lower triangular matrix.

The loss function (for the present purposes,loss is quadratic) can now
be expressed in terms of the action set U and the initial state vector 6,
l.e., since the parameter set © is a function of UV and 6 o it follows that

LU ;5 8(8,0)] = L*U, 4]
where

v, 8] =(88+rv)q(#s UM U
-8 879068 +2U " QBE VT QU +UTIY

[y, g =6 # a8 20T 988 U (rGrer)v
L*(U, 8) =L*[uY),$]

Substituting L* ( U, 6o) = L% [U(Y), & o] into the Bayes function
and taking the first partial derivative with respect to the actlon set, it

is found that

a »
527‘5[1— (Chti)/g’]
£{l; L* (0, 8)1/Y)

26{[r@es +(For+7)u)/v)

2
P, aluey)]

Y]
>0 Bluwi]

Thus, setting the first partial oﬁB[U(Y)]equal to zero determines the
Bayes strategy Ug , l.e.,
r
(FRr+7)y =-£Urasx,yrl = - /'odE(s/Y)

(FRI+ )y, = -r"'9s4

where

& = £(8/7)
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Thus, the Bayes strategy becomes

- (rar-»)'r'ess = -Ké

and the corresponding loss is

1]

50 d-2k98 « k(@I +7)K]S,

r

8§ A8

o

L[uw);66,0)]

schedule for these corrections can now be determined by

The "optimum"
This process has its

minimizing the maximum eigenvalue of the matrix A.
origin in the fact that

-
A < l—,;-ig—] = 607-/4 >lmax
mn 50 80 6; 50

where the X are the eigenvalues of A, Note that Dynamic Programming has

not been employed at any point.

Several comments are im order concerning the Bayes strategy for the
optimum control (quadratic loss). First, note that the form of Ug is
the same as the form for the optimum estimate in the linear case and
Gaussian distributions (see Sections 2.3.6.3 of Reference 2.23). Second,
the optimum control is a linear function of the conditional expectation of
do, given the observations, which is a Bayes strategy for the optimum
estimate of & o under rather general conditions (see Sectlon 2.3.5.2 of
Reference 2.23). Third, the Bayes strategy (Uz) is the "total" optimum
control since 1t contains as subvectors, the "local" optimum control vectors
(Up*); i.e., Uy is a single expression for the set of optimum control
vectors ( Up*) for n = 1,2, ..., M. Fourth, the Bayes strategy (Us ) is
a more general solution than that for the special loss function Jy (discussed
earlier)-which is the sum of quadratic forms of "local" state and control
vectors. Fifth, the Bayes strategy (Ub), in total form, has the same
form as the local optimum control which is usually derived by the method

of Dynamic Programming (see Section 2.2.2.2.1).

The Bayes strategy (UB) for the optimum control is given as a total
optimum contrcl; i.e., the optimum action set (UB) contains all the optimum
sequential controls. It is, however, deslrable to determine the local
optimum controls Up* from the optimum action set U@). This objective can
be accomplished as follows. The Bayes strategy can be written in terms

of the following equations:
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(rQr+»)l, =-r'@é4
1y, = -[r'eed+rory,l
7y, = @ [z+DU)

-reledry,l

where

-g& +(I"-D)Y,

and where D 1s a partitioned dlagonal matrix containing the matrices F-
for [ =1, 2, eswse N. That is

/[
n O
D - /;2_
°

The wvector #Z contains the subvectors %n defined as

n-l
z,s8 6+ Iy

o
which are in fact the conditional expeé:tation of the state at tp, glven the
controls d3, Uo, . . . U, 9, for no control at ty.1, i.e., 4,=0 .
Alternately, Zp 1s the conditional expectatlon of the state just pI‘lOI‘
to the control (4y,). It follows that
A
zZ =8,

n na-l -l
and

d = Zn +/:” un
Consider the case of L(U,8) = J,, for which Q and ¥ are partitioned
diagonal matrices containing the matrices Q,; and f- +» For this case,
the matrix product /I Q is an upper traingular matrix and the final
optimum control vector Hy¥% = u* (ty_ 1) can be written as

r 2, »
nut =1 @2, 040= (0@l 4. O]

=-/_’ Qu%ﬂ-ld-l—FQDa
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But, since Dy = 'y, It follows that

r A
(7‘ uu Qy uu)a = /4-:,'u @ ?/,u-/ s
Thus, Uy* is a linear functipn of 51\1-11 i.e.,

A

-/ 7 . 4 -
=-(7* fun Qu /;u) 4/7;./ Qu ¢24u-/ Gt = Ky O

where

=l
X =—(%+G;QA’/‘Z‘/) /;/"UQU¢.U,U~I

N

It 1s seen that the optimum control Up* = L(*(tN_.l) 1s d1dentlical to that
determined by applylng the method of Dynamic Programming to solve the
optimum control problem (see section 2.2.2.2.1). It is possible to continue
the process to determine the previous optimum control vectors. The control
U#¥y.1 is derived from the following expression.

- - T * r , *
At~/ a:l‘—/ - [Du-l 4)u-‘! ( zu-/ * Du~/ Lyt ? CU-I QU (ZH DV “u ) ]
T
=7 Lya Ru.s 2y W1 Qu., Q.H u~/ uu: @y (Z *0, u )
Thus,
4 * = - T Z "
(2,:/-/ * Q/-/ QU-I Du-/) Yyt DU-I Q”'/ 2 T “U 4 0 ( N)
Now, since i
* _
Yy = £, Gt
s
Zu = %U*/ A=l
A * {
6‘/_’ - ZAFI + U-I,AI-I uu./ s
{
it follows that N " )
u = é !
A~/ v~/ -2 b
where substitution and algebraic manipulatlon yleld the relationship Z

J:kA

4 T
Ly = 0230 (@ *P) 1 o i (s *R) Bz
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and where

r

r
"I) = %u-: Qu ¢U,u~/ ’ ¢4/,1./-/ @, /;::u Ku

Again, 1t is seen that the optimum control u¥y_j = U*¥(ty.p) is identical
to that determined by applylng the method of dynamic programming to solve
the optimum control problem (see section 2.2.2.2.1).

It is possible to extend thls process to determine the general control
4¥ in terms of a linear function of s;n_l, i.., U*%, =K, 0, 7. This
capability follows from the fact that the optlmum solution can be written
in terms of an upper triangular matrix, l.e.

(7+5QD) Y, =-" @z

The matrix T is upper triangular and the matrices 7 , Q and D are
diagonal; thus, the matrix [#+M'aD] is upper triangular. This relation
can be inverted recursively for the control vector u¥*, from the following
equations.

A
nowr =3 Q2 uf)

where

N »l, 1y n
" A
*
= + V74
5» ¢ﬂ’ n-1 5/7-/ nan —n
A
*»
= *
6» zn mn [’(n

The procedure staxts at n = N and proceeds backward as indlcated previously.
The important polnt to be made i1s that the Bayes strategy leads to the same
recursive form of solution which 1s obtained by usling the method of dynamic
programmling; however, the Bayes strategy does not require the "prineiple of
optimality" which is the basis of dynamic programming, nor is it as
restricted, as were the previous earlier discussions, to the case where Q
and ¥ are diagonal (this fact can be appreclated since the upper triangular
‘nature of the solution matrix can be assured for any symmetrlc welghting

by the simple expedient of introducing an "eguivalent" triangular array

0 29, 2@, ... 24,

o .. :

QI: 0 -+ 0\\‘\\ E
Q- gu 0 28,
@ i 0

101



7 0 23,...27,
\ 1
7‘= 721‘ 0 + 0\‘\ N I:
\\\ 0 \\:,2 n-yn
o 7, %

While the algorithms thus produced are different, the procedure involved
in producing them is identical). Indeed, since the last two controls as
obtained by the two methods were shown to be ldentlical, the two solutions
must be completely identical, assuming the Optimum solution is unique.

The structure of a Bayes strategy can now be given for the general
case. The minimization of the Bayes function is equivalent to the
requlrement that the conditional expectation of the first variation of the
loss function given the data should vanish. This fact is seen as followse.

il

£[L(v,6)/7]
s £[L(0,8)/7]

-1 2
2 Wy

8 [v)]
Y
o0 Bluvwy)]

Il

L(U,8)Y]

Setting the first variation of B [U(Y)] equal to zero, 1t 1s found that

2
[[(;UL(U,Q)/Y]:O
Now, consider the case of a general loss function defined by
L{U,8) =F(8)+K(U)

For this case, the Bayes strategy is defined by i

7 £ (V) =-£{1F[a(w]/y} i

oV v " |

i

4

This expression forms the basis of a general structure of the optimum A
solution. %
|

{

From the foregolng, it becomes apparent that a Bayes strategy 1s ;
generally applicable to problems of space flight navigation and guidance; Q
however, it is extremely Iimportant to note that the foregoing implies that :
the complete observation set Y 1s available to determine each element of the ;
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optimum action set Y or each optimum control u« ,*, That is, the
optimum action set Ug 1s a function of the conditional exception of

0 , glven Y. It 1g characteristic of space flight navigation and guldance
problem, however, that only a subset of Y is avallable to determlne each
control Uy, l.e., at time tp only the subset of Y, say Y, which has been
acquired prior to ty, is available to determine the control u,. Thus, the
problem becomes that of determing the optimum actlon set U subject to the
condition that each element of U i1s a function of the corresponding
element of Y., In particular, let U and Y be the followlng sets.

U(U,, Uy 9o+ - a”,_._,u”)
y(y,; 72 IR | 7,,""1/#)

where the following subsets of Y are defined

}/,=(f’)
Y, = (% ’?k)
}a)-(%’yz""7yﬂ)

That is, Y, 1s the subset of Y which contains the observation vectors
fOI'i =l, 2,.10’ Ne

In actual control problems, the control vector at t, can be a function
only of the subset Yp where, of course, appropriate definitions of the obser-
vation subsets are made. Thus, it is required to determine the optimum
action set U as follows.

Ula, (), w,(n), . u(y), .. u (%, )]

To accomplish thls objective, consider the class of loss functions which can
be written as

LTy, 813 1,Lu(y), 6]

{2/

It is important to note that this class of loss functions contains those of
interest in space flight navigation and guldance problems, among them beilng
the quadratic forms Just -analyzed. Now, a Bayes strategy can be determined
in the following manner. First, the risk R[U(Y)] is

RLUYI] =j]¢[ww, 61 £(v/8) #(5) d¥d8
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=f/i‘ L vy, 6] F(Y/6) #(6) dvd6

2y il
N
=f2f4. [Uty), 8] £(Y/8) £(6) aydb
2 ¢sl y
Now, it is noted that L, [ uey) 9] is independent of the observatlon set
(y-%) s where

Y= s rar - 900

" Thus, each term in R[U(Y)]  can be integrated over a Y set for which
LZ[U()Q)’ 9] is constant, i.e., That is,

sz. wiy),6) f(v/6) f6)aY
Y

can be integrated as

f 4, lweys, 81 [r(ve) riey oy

Y-
However, since F(V/ﬁ) £8)=F(Y:6) , the integral over )-J

1= the marginal density of Yi and € , i.e., f(¥%,0) . Now, since {’(}’ 8)=

,C‘(y/e) £06) it fellows that

fL‘. [viy), 6] £(v/8) Fl6)ay =fz.£. Cuy), 635(y/6) F6) d %

}‘{
Therefore,

r[U)] =f fz (U(y), 6] Fle/y) F(y)ay dé

¥l

Now, substituting 7(-()2/9) F(0) = ,['(9/}:) f():)

the Bayes risk can be written as

RLuev)] _foL [uiy), 81 Feery) F(%)ay a6

or ooy

rLuw)] = Ef{fzé vy, 6] fle/y) d&}%‘(,{) ay
¢=/ ¥ n

= ZN: 2 [Uy)]

=/
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where the /; are the Bayes risks for the ¢ steps of the process., l.e.,

w W= f{ [r,tucp), 6 pcarv)ae} £iy) oy
Yy a
=f4. (VYD) Fey) o

%

and where the b; axre the Bayes functlons for the steps. 1l.e.,
4 o = [ 4luey), 81 £6/1) 06
o

The final step 1n the present development is to express 4 [ U(Y)] in
terms of a Bayes function which is the sum of 1_7L [U(&ﬁ)) .

A?[U(y)]=_z”:f{f4[uug), 8] £(8/y) de} £y

fZ fL Cucy), 6] f(e/y)da} £Ly)dy

=f{f2 LLuly), 6] £(e/y)aé}rey)ay
y o &

Fimally

R = [ BLUINFI vy
Y

A
20742 AN =Zf4.[u(>;.), 6] £(8/y)dé

[
‘=l izl

£{4,[vcy),61/v}

M-

~

M

<L

L-
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The Bayes strategy, Uz , 1s the_action set which minimizes the Bayes function
or a' posteriori risk, a[uty) .

It is seen that for the case of sequential observations, the problem
of optimization reduces to a formnm whlch is similar to that for the
previously considered case where the observations were unordered; however,
there exists an essential difference. This difference i1s that 1ln the case
of ordered obsexrvations, the conditional expectations which form the
optimum solution are .taken with respect to the ordered observation sets Yy
rather than with respect to the total observation set Y.

Now as before, consider the class of loss functions which can be written
as follows.

vy, 604 )1= £ [weys} *G [6(y,)]

where [4 is the subset of the action set U which contains the control

vectors H R S
Uy = (u)
= (ul’ui)

ek

b= s )

Setting the first partial of B[UY)] equal to zero, it is found that
A
LZ;?U ARSI -ZE{ G Loy )J/y}

The solutlon to this expression determines the Bayes strategy, (j , for the
class of loss functions L.[U(W 6] which can be wrltten as follows.

Llwey), 8] = }f{ﬁ;[wm * G, [9(14)]}

&=/

This class of loss functions contalins the loss functlions of general interest
in space flight; therefore, the solution of the Bayes strategy can be
considered as a general structure of the optimum solution for statistlcal
optimization problems involving sequential observations. But more lmportant,
this general structure makes it possible to study the interrelationships
between significant aspects of the problem.

At this point, it is informative to consider the case previously
formulated where L(U,G)- ' but where this time the observations
wlll be ordered. The essential difference in the two cases arises from
the fact that the conditional expectatlons are taken with respect to the
observation sets Yi + Thus, the optimum control u *(tn) 1s expressed as
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a linear functlon of the conditional expectatlon of the state, glven the
set of observatlions ¥n. That 1s, all of the avallable Iinformation 1s
used to estimate the state ln order to define the control.

A particular case of interest 1s the problem of optimum control of
the terminal state. This problem can be specified by the loss Jy where
only Qy is non-zero, l.e.,

r U
VRIS W
>

The Bayes strategy Lb for thls problem 1s a speclal case of the previous
golution for which @ 1ls defined as follows.

0. ....00
00.....00
Q=1:: > -
00.....500
00......0q,,

For this case, the matrix product fJQ contains a single matrix column,

l.e., N
0 0. '/A:I Q/uu
- ? O-.... {; ka
Q= ,
€7Q ..... é% GL”
00.....774..

the corresponding Bayes strategy is then given by

0 @ B,y & (1)
ik Qus Pao 65(2)

@) = C 4
(7* Q) /‘7”70”‘/ ¢uo 80 (n)

r

L @ By & (W)

A
where & (n) = E( 4, /Yn). Thus, the Bayes strategy (Ug ) 1s an explicit
function of the estimated termlnal state as defined by the propagated
Initial state. Note the important fact that the additional data are providing
successively improved estimates of Q, « Thus, errors in the controls applied
at previous times due to éstimatlion errors are becoming known. This fact
allows for an adjustment to be made in the motlon to null the effect of
these errors and to prevent thelr continued contribution to the loss
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funetion. OF course nothing can be done for thelr effects prior to the
time at which they were estimated to an improved level.

Of course, a Bayes strategy is not limited to "quadratic" loss functions.
As another example, consider this particular case where the terminal state
is controlled but where the tobtal expected veloelty correction rather than
its square is used as a criterion of optimality. This problem, as was
noted, is also included 1n the general structure. For this case, £

G. are defined as follows:
L . 4
6’ =y 'u‘.r U

T

G = (S'.Q‘.a

3 A ¢

and

where QL =0foril=1, 2, « » o; N~1 and arbitrary for 1 = N, The loss

function, then, becomes
R/
L (U, 9} =‘-E/ .,/a‘.rq. + SJQU S,
L=
Now, for linear system dynamlcs v
S, = ¢A/oéo.*; Loe

6, =8, & * 17U

W w0,
where
/_'sl/:/’ /;.2’ "“"Cn’ R 4/7‘/[
For this case, the Bayes strategy is defined by
7 & 72 ,.r
— - = - _— 6‘
au is/ d 5[91./’ (J" Qu ”)/)’]
=-2£07'8, %, 4+7°@, "U)/V]
2 =-206(r'q, 4, 8)/Y +/Q, V]

where 1(VU ) is a vector of unit subvectors, lp, each of which defines the

dilrection of the optimum control U« *. Each of these unit vectors 1s then
defined by the following equation.

2 1%
]” =-2/‘::,7.OU[¢2/0 6;(,,)*2/‘7‘6(‘]
£~/

where 3; n) = E(do /%) « The corresponding magnitudes for
the controls can be determlned once information pertalning to the constraints
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imposed is provided (see section 2.2.3.2.9).

These examples illustrate the use of a Bayes strategy in statistical
optimization problems which are of particular interest., Further, they
show that the determination of expliclit solutlons depends upon the specific
loss function, the system dynamics, the statistical distributions, ete.
The most 1important observation, however, 1s that the general structure of
the solution provides the basis for a unifled approach to the general
problem, and serves as motivation for further investigations designed to
develop an effective means of determining solutions for partlcular problems.
These further analyses must also develop consistent methods for optimizing
the navigation and guldance procedures with respect to the sighting schedules,
the types of observatlons employed, the description of the system dynamics,
etec.

2.2.4.6 Some Concluding Comments

The present effort does not permit the full development of the unified
approach discussed hereln; however, several concluding comments are in
order concernling the materlal which 1s presented.

First, it should be apparent that the basic problem of decision theory
is sufficlently general to include the problems of space flight technology
on a non~restrictive basise.

Second, the methods of solution derived from the principles.of decislon
theory provlde an adequate basils for the formulation of a unifled approach
to statistlcal optimization for space £light problems.

Third, the two most important principles In the analysis are those of
minimum risk strategles and sufficlent statistics. These principles under-
lie the general structure of the optimum solution.

Fourth, the Bayes strategy provides a general structure for optimum
solutions and 1s applicable to most sltuations of interest. However, the
MINI-MAX strategles should also be consldered.

Fifth, the principles of declsion theory have been extensively applied
to the problem of estimation and have adequately solved this problem.
However, the problem of optimum control, which is a more significant
and difficult problem, has not been extenslvely reported from this polnt of
view,

Sixth, the most important result of a unified approach is that the
problems can be considered 1n their most general form.

Iastly, the objectives of the unified approach can be fulfilled

through the principles of decislon theory. However, an adequate effort
must be devoted to thls development.
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3.0 RECOMMENDED PROCEDURES

The subject of midcourse guidance, particularly in regard to the sto-
chastic formulation, is still in a state of infancy. Thus, at this time,
there are solutions available to only a small set of problems; further,
many restrictions and assumptions are implicit in these results which tend
to limit the freedom with which they can be applied. (Many of these limi-
tations have been noted in the text). Therefore, there is neither a clearly
definable superiority of approach nor a unified theory of midcourse guidance
for the stochastic problem. Rather, there is an impressive list of weak-
nesses in the present work and considerable amount of motivation for
completing the development of the theory. (These details have been enumerated
in Section 2.2.4).

For the reasons outlined, recommendations must be made reservedly until
such time as the unified framework for evaluating various midcourse policies
can be constructed and a valid comparison performed. However, with tongue-
in~-cheek a recommendation will nonetheless be made to satisfy the present
needs until such a theory is available.

At this time, there appear to be only two basically different formu-
lations of the stochastic optimum control problem which have been developed
and which are applicable to linear midcourse guidance, These two theories
(discussed in the text) are constructed around quadratic cost (e.g.,
References 2.1 - 2.15) and minimum effort (Reterences 2.16 - 2.22) criterion.
Of these two, the latter is generally the more efficient (according to the
references) from the standpoint of propellant expended since the cost function
more closely models the dependencies between the various corrective actions.
The former is conceptually simpler and appears to require fewer computations;
as a result, the former is probably more suited for present applications to
self-contained G&N systems which are severely restricted as to the number of
operations which can be performed.

However, the midcourse energy requirements for most of the missions in-
vestigated to date are small (for chemical systems, these requirements have
generally corresponded to less than 5% of the mass of the vehicle for one way
interplanetary voyages - including approach guidance). Thus, savings of 25%
as apparently is possible with the mechanization of Minimum Effort Control
produce almost negligible changes in the requirements imposed on the vehicle,
For this reason and for the reasons of simplicity and additional numerical
experience in the evaluation and mechanization of the quadratic loss approach,
it is recommended (by the authors) for application to the midcourse guidance
problem during the conceptual design of the system. During subsequent efforts
it is recommended that the relative merits of both approaches be contrasted
to define, in a quantitative manner, the importance of the energy reductjons
and the corresponding implications for the system (hardware, software). Only
in this manner can an intelligent choice of one of the existing approaches to
midcourse guidance be made. These recommendations should be considered in the
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light of the comments made in the text and should be disregarded as a more
unified approach to the problem evolves and as treatments of the stochastic
control problem with constraints are developed.

Quadratic cost midcourse guidance has the feature that the control
policy can be readily predetermined using a detailed simulation of the
guidance process. This feature is afforded by the fact that the gain struc-
ture of the stochastic problem (i.e., the true midcourse problem) is
idential to that of the deterministic problem., This simplification provides
the opportunity to optimize the problem with relative ease for the case
where no constraints are applied without concerning the analysis with the
statistics of probable error sources. Further, if constraints are imposed,
the effects of the inclusion can be introduced either in preflight simulations
or in a real time mechanization. These cbjectives are accomplished as

follows:

D)

(2)

(3)
(4)

(5)

The weighting parameters (i.e., ) ﬁ ,) and a series of times
(at which corrections are to be considered) be specified.

The covariance matrices for the estimation of the state must be
computed (These matrices are independent of true samples).

The gains for the nth to the first correction epcch be computed.

The table of costs as a function of the correction epochs be
constructed and optimized by Dynamic Programming to define the
proper sequence of correction. At least one correction must be
made in an interval where the estimation error in the parameters
being controlled is small.

The weighting parameters be varied within any limits desired to
define their effect on the total cost and the corrective strategy.
(is shown in the text, the variation of the matrix QN will allow
terminal constraints to be satisfied under the assumption that the
state is ever known to the required precision.)
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Once these tasks have been performed, the gains can be employed in a
particular mechanization of the midcourse guidance problem as follows:
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