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1.0 STATEMENT OF THE PROBLEM

This monograph will present both the theoretical and computational
aspects of Dynamic Programming. The development of the subject matter in
the text will be similar to the manner in which Dynamic Programming itself
developed. The first step in the presentation will be an explanation of
the basic concepts of Dynamic Programming and how they apply to simple
multi-stage decision processes. This effort will concentrate on the meaning
of the Principle of Qptimality, optimal value functions, multistage decision
processes and other basic concepts.

After the basic concepts are firmly in mind, the applications of these
techniques to simple problems will be useful in acquiring the insight that
is necessary in order that the concepts may be applied to more complex
problems. The formulation of problems in such a manner that the techniques
of Dynamic Programming can be applied is not always simple and reguires
exposure to many different types of applications if this task is to be
mastered, Further, the straightforward Dynamic Programming formulation
is not sufficient to provide answers in some cases. Thus, many problems
require additional techniques in order to reduce computer core storage
requirements or to guarantee a stable solution. The user is constantly
faced with trade-—offs in accuracy, core storage requirements, and computation
time. All of these factors require insight that can only be gained from the
examination of simple problems that specifically illustrate each of these
problems.

Since Dynamic Programming is an optimization technique, it is expected
that it is related to Calculus of Variations and Pontryagin's Maximum
Principle. Such is the case. Indeed,. it is possible to derive the Fuler=-
Lagrange equation of Calculus of Variations as well as the boundary condition
equations from the basic formulation of the concepts of Dynamic Programming.
The solutions to both the problem of Lagrange and the problem of Mayer can
also be derived from the Dynamic Programming formulation. In practice,
however, the theoretical application of the concepts of Dynamic Programming
present a different approach to some problems that are not easily formulated
by conventional techniques, and thus provides a powerful theoretical tool
as well as a computational tool for optimization problems.

The fields of stochastic and adaptive optimization theory have recently
shown a new and challenging area of application for Dynamic Programming.
The recent application of the classical methods to this type of problem has
motivated research to apply the concepts of Dynamic Programming with the hope
that insights and interpretations afforded by these concepts will ultimately
prove useful,






2.0  STATE OF THE ART

2.1 Development of Dynamic Programming

The mathematical formalism known as "Dynamic Programming" was developed
by Richard Bellman during the early 1950's with one of the first accounts
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of the method given in the 1952 Proceedlngs of the Academy of Science
(Reference 2.1.1). The name itself appears to have been derived from the
related discipline of Linear Programming, with the over-riding factor in
the selection of this name stemming more probably from the abundance of
racanrnsh fI1ImAIve avradlahla £PfAm JTiamans mnrnAasnammines wrnahl ame than from
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the limited technical similarity between the two.

Dynamic Programming did not take long to become widely applied in many
different types of problems., In less than 15 years after its origination
it has found its way into many different branches of science and is now
widely used in the chemical, electrical and aerospace industries. However,
even the most rapid perusal of any of Bellman's three books on the subject
(Reference 2.1.2, 2.1.3, and 2.1.4) makes one point very clear: the field
in which Dynamic Programming finds its most extensive application is not
that of science, but of economics, with the problems here all rather loosely
groupable under the heading of getting the greatest amount of return from
the least amount of investment., Of the several factors contributing to
this rapid growth and development, no small emphasis should be placed on the
vigorous application program conducted by Bellman and his collegues at Rand
in which a multitude of problems were analyzed using the method, and the
results published in many different Journals, both technical and non-technical.
A brief biographical sketch accompanying an article of Bellman's in a recent
issue of the Saturday Review, (Ref. 2.1.5) states that his publications
include 17 books and over LOO technical papers, a not=insignificant portion
of which deal with the subject of Dynamic Programming.

Historically, Dynamic Programming was developed to provide a means of
optimizing multi-stage decision processes. However, after this use was
finally established, the originators of Dynamic Programming began to use
their mathematical licenses by considering practically all problems as
multistage decision processes. There were sound reasons behind such attempts.
First; the solution of many practical problems by the use of the classical
method of Calculus of Variations was extremely complicated and sometimes
impossible. Second, with the fields of high speed computers and mass data
processing systems on the threshold, the idea of treating continuous systems
in a multi-stage manner was very feasible and promising. This new break—
through for Dynamic Programming gave rise to a study of the relationships
between the Calculus of Variation and Dynamic Programming and applications
to trajectory processes and feedback control,



The extension of Dynamic Programming to these other fields, however,
presented computational problems. For example, it became necessary to
study topics such as accuracy, stability and storage in order to handle
these more complicated problems. One of the beauties of Dynamic Programming
came to rescue in solving some of these problems. It is idiosyncrasy
exploitation. Whereas problem peculiarities usually are a burden to classical
techniques, they are usually blessings to the dynamic programmer. It is
possible to save computation time, to save storage and/or to increase accuracy
by exploiting problem peculiarities in Dynamic Programming.

An understanding of Dynamic Programming hinges on an understanding of
the concept of a2 multi-stage decision process, a concept which is most
easily described by means of an example. Consider a skier at the top of
a hill who wishes to get down to the bottom of the hill as quickly as
possible, Assume that there are several trails available which lead to
the bottom and that these trails intersect and criss—cross one another as
the slope is descended. The down hill path which is taken will depend only
on a sequence of decisions which the skier makes. The first decision consists
of selecting the trail on which to start the run., FEach subsequent decision
is made whenever the current trail intersects some new trail, at which point
the skier must decide whether to take the new trail or not. Thus, associated
with each set of decisions is a path leading to the bottom of the hill, and
associated with each path is a time, namely the time it takes to negotiate
the hill. The problem confronting the skier is that of selecting that
sequence of decisions (i.e., the particular combination of trails) which
result in a minimum run time,

From this example, it is clear that a multi-stage decision process
possesses three important features:

(1) To accomplish the objective of the process (in the example
above, to reach the bottom of the hill) a sequence of
decisions must be made.

(2) The decisions are coupled in the sense that the nth decision is
affected by all the prior decisions, and it, in turn, effects
all the subsequent decisions. In the skier example, the very
existence of an nth decision depends on the preceding decisions.

(3) Associated with each set of decisions there is a number which
depends on all the decisions in the set (e.g., the time to
reach the bottom of the hill). This number which goes by a
variety of names will be referred to here as the performance
index. The problem is to select that set of decisions which
minimizes the performance index.



There are several ways to accomplish the specified objective and at the
same time minimize the performance index. The most direct approach would
involve evaluating the performance index for every possible set of decisions.
However, in most decision processes the number of different decision sets is
so large that such an evaluation is computationally impossible. A second
approach would be to endow the problem with a certain mathematical structure
(e.g., continuity, differentiability, analyticity, etc.), and then use a
standard mathematical technique to determine certain additional properties
which the optimal decision sequence must have, Two such mathematical
techniques are the maxima-minima theory of the Differential Calculus and
the Calculus of Variations. A third alternative is to use Dynamic Programming.

Dynamic Programming is essentially a systematic search procedure for
finding the optimal decision sequence; in using the technique it is only
necessary to evaluate the performance index associated with a small number
of all possible decision sets, This approach differs from the well-known
variational methods, in that it is computational in nature and goes directly
to the determination of the optimal decision sequence without attempting to
uncover any special properties which this decision sequence might have., In
this sense the restrictions on the problem's mathematical structure, which
are needed in the variational approach, are totally unnecessary in Dynamic
Programming, Furthermore, the inclusion of constraints in the problem, a
situation which invariably complicates a solution of the variational methods,
facilitates solution generation in the Dynamic Programming approach since
the constraints reduce the number of decision sets over which the search
must be conducted,

The physical basis for Dynamic Programming lies in the "Principle of
Optimality," a principle so simple and so self-evident that one would
hardly expect it could be of any importance, However, it is the recognition
of the utility of this principle along with its application to a broad
spectrum of problems which constitutes Bellman's major contribution.

Besides its value as a computational tool, Dynamic Programming is also
of considerable theoretical importance. If the problem possesses a certain
mathematical structure, for example, if it is describable by a system of
differential equations, then the additional properties of the optimal
decision sequence, as developed by the Maximum Principle or the Calculus
of Variations, can also be developed using Dynamic Programming., This feature
gives a degree of completeness to the area of multi-stage decision processes
and allows the examination of problems from several points of view., Further=-
more, there is a class of problems, namely stochastic decision processes,
which appear to lie in the variational domain, and yet which egcape analysis
by means of the Variational Calculus or the Maximum Principle., As will be
shown, it is a rather straightforward matter to develop the additional
properties of the optimal stochastic decision sequence by using Dynamic
Programming.




The purpose of this monograph is to present the methods of Dynamic
Programming and to illustrate its dual role as both a computational and
theoretical tool, In keeping with the objectives of the monograph series,
the problems considered for solution will be primarily of the trajectory
and control type arising in aerospace applications. It should be mentioned
that this particular class of problems is not as well suited for solution
by means of Dynamic Programming as those in other areas. The systematic
search procedure inherent in Dynamic Programming usually involves a very
large number of calculations often in excess of the capability of present
computers. While this number can be brought within reasonable bounds,
it is usually done at the expense of compromising sclution accuracy.
However, this situation should change as both new methods and new computers
are developed,

The frequently excessive number of computations arising in trajectory
and control problems has somewhat dampened the initial enthusiasm with which
Dynamic Programming was received. Many investigators feel that the
extensive applications of Dynamic Programming have been over-stated and
that computational procedures based upon the variational techniques are more
suitable for solution generation. However, it should be mentioned that the
originators of these other procedures can not be accused of modesty when
it’ comes to comparing the relative merits of their own technique with some
other. The difficulty arises in that each may be correct for certain classes
of problems and unfortunately, there is little which can be used to determine
which will be best for a specific problem since the subject is relatively new
and requires much investigation.

Without delineating further the merits of Dynamic Programming in the
introduction it is noted that current efforts are directed to its application
to more and more optimization problems. Since an optimization problem can
almost always be modified to a multi-stage decision processes, the extent of
application of Dynamic Programming has encompassed business, military,
managerial and technical problems. A partial list of applications appears
in Ref. 2.1.2. Some of the more pertinent fields are listed below.

Allocation processes Probability Theory
Calculus of Variations Reliability

Cargo loading Search Processes
Cascade processes Smoothing
Communication and Information Theory Stochastic Allocation
Control Processes Transportation
Equipment Replacement Game Theory
Inventory and Stock Level Investment

Optimal Trajectory Problems



2.2 Fundamental Concepts and Applications

Section 2.1 presented the example of a skier who wishes to minimize
the time required to get to the bottom of the hill. It was mentioned that
the Dynamic Programming solution to this problem resulted in a sequence of
decisions, and that this sequence was determined by employing the Principle
of Optimality. In this section, the Principle of Optimality and other basic
concepts will be examined in detail, and the application of these concepts
will be demonstrated on some elementary problems.

The Principle of Optimality is stated formally in Ref. 0.4 as follows:

An optimal policy has the property that
whatever the initial state and the initial
decisions are, the remaining decisions must
constitute an optimal policy with regard to
the state resulting from the first decision.

It is worthy to note that the Principle of Optimality can be stated
mathematically as well as verbally. The mathematical treatment has been
placed in section 2.4 in order that the more intuitive aspects can be
stressed without complicating the presentation. The reader interested in
the mathematical statement of the Principle is referred to Sections 2.4.1
and 2.4.2

Before this principle can be applied, however, some measure of the
performance which is to be optimized must be established. This requirement
introduces the concept of the optimal value function. The optimal value
function is most easily understood as the relationship between the parameter
which will be optimized and the state of the process. 1In the case of the
skier who wishes to minimize the time required to get to the bottom of the
hill, the optimal value function is the minimum run time associated with
each intermediate point on the hill. Here the state of the process can be
thought of as the location of the skier on the hill, The optimal value
function is referred to by many other names, depending upon the physical
nature of the problem. Some of the other names are "cost function.”
"performance index," '"profit," or "return function." However, whatever the
name, it always refers to that variable of the problem that i1s to be optimigzed.

Now that the concept of an optimal wvalue function has been presented,
the Principle of Optimality can be discussed more easily. In general, the
n stage multi-decision process is the problem to which Dynamic Programming
is applied. However, it is usually a very difficult problem to determine
the optimal decision sequence for the entire n stage process in one set of
computations., A much simplier problem is to find the optimum decision of
a one stage process and to employ Dynamic Programming to treat the n stage
process as a series of one stage processes. This solution requires the
investigation of the many one stage decisions that can be made from each
state of the process. Although this procedure at first may appear as the



*brute force" method (examining all the combinations of the possible decisions),
it is the Principle of Optimality that saves this technique from the unwieldy
number of computations involved in the "brute force" method. This reasoning

is most easily seen by examining a two stage process. Consider the problem

of finding the optimal path from a point A to the LL' in the following sketch.

The numbers on each line represent the "cost" of that particular transition.
This two stage process will now be treated as two one-stage processes. The
Princirle of Optimality will then be used to determine the optimal decision
sequence, Starting at point A, the first decision to be made is whether to
connect point A to point B or point C. The Principle of Optimality states,
however, that whichever decision is made the remaining choices must be
optimal, Hence, if the first decision is to connect A to B, then the
remaining decision must be to connect B to E since it is the optimal path
from B to line LL'. Similarly, if the first decision is to connect A to C,
then the remaining decision must be to connect C to E, These decisions enable
an optimal cost to be associated with each of the points B and C; that is,
the optimal cost from each of these points to the line LL!'., Hence, the
optimal value of B is 5 and of C is L since these are the minimum costs
from each of the points to line LL'.

The first decision can be found by employing the Principle of Optimality
once again., Now, however, the first decision is part of the remaining
sequence, which must be optimal., The optimal value function must be
calculated for each of the possibilities for the first decision. If the
first decision is to go to B, the optimal value function at point A is the
cost of that decision plus the optimal cost of the remaining decision, or,
3+ 5 =28, Similarly, the optimal value function at point A for a choice
of C for the first decision is 2 + 4 = 6, Hence, the optimal first decision
is to go to C and the optimal second decision is to go to E. The optimal

path is thus, A-C-E.



Although the previous problem was very simple in nature, it contains
all the fundamental concepts invelved in applying Dynamic Programming to
a multi-stage decision process. The remainder of this section uses the
same basic concepts and applies them to problems with a larger number of
stages and dimensions.



2.2,1 Multi-Stage Decision Problem

The basic ideas behind Dynamic Programming will now be applied to a
simple travel problem. It is desired to travel from a certain city, A,
to a second city, X, well removed from A.

Since there are various types of travel services available to the minimum cost
from one intermediate city to another will vary depending upon the nature

of the transportation. In general, this cost will not be strictly linear

with distance. The intermediate cities appear in the sketch above as the
letters B, C, D, etc. with the cost in traveling between any two cities entered
on the connecting diagonal. The problem is to determine that route for

which the total transportation costs are a minimum. A similar problem is
treated in Ref, 2.4.1.

Obviously, one solution to this problem is to try all possible paths
from A to X, calculate the associated cost, and select the least expensive,
Actually, for ¥small'"problems this approach is not unrealistic., 1If, on the
other hand, the problem is multi-dimensional, such a '"brute force" method
is not feasible,

First, consider the two ways of leaving city A. It is seen that the
minimum cost of going to city B is 7, and city C is 5., Based upon this
information a cost can be associated with each of the cities. Since there
are no less expensive ways of going from city A to these cities, the cost
associated with each city is optimum. A table of costs can be constructed
for cities B and C as follows:

10



City Optimum Cost Path for Optimum Cost

7 A=B
A=C

aQw

Now, the cost of cities D, E, and F will be found, The cost of D is 7 + 2=9,
Since there are no other ways of getting to D, 9 is the optimum value. The
cost of city E, on the other hand, is 13 by way of B and only 8 by way of C.
So the optimum value of city E is 8., The cost for city F is 10 by way of

city C. A table can now be constructed for cities D, E, and F as follows:

City ‘ Optimum Cost ‘Via
D 9 B
E 8 ¢
F 10 C

At this point, it is worthy to note two of the basic concepts that were used.
Although they are very subtle in this case, they are keys to understanding
Dynamic Programming.

First, the decision to find the cost of city E to be a minimum by choosing
to go via city C is employing the Principle of Optimality. In this case, the
optimal value function, or cost, was optimized by making the current decision
such that all the previous decisions (including the recent one) yield an
optimum value at the present state. In other words, there was a choice of
going to city E via c¢ity B or C and city C was chosen because it optimized
the optimal value function, which sums the cost of all previous decisions.
One more stage will now be discussed so that the principles are firmly in
mind, Consider the optimum costs of cities G, H, I, and J. There is no
choice on the cost of city G. It is merely the optimum cost of city D (=9)
plus the cost of going to city G from city D (=8), or 17. City H can be
reached via city D or city E. In order to determine the optimum value for
city H, the optimum cost of city D plus the cost of travel from D to H is
compared to the optimum cost of E plus the cost of travel from E to H,

In this case the cost via city E is 8 + L = 12 whereas the cost via D is

9 + 14 = 23, Hence, the optimal value of city H is 12 and the optimum path
is via city E. By completely analogous computations the optimal .cost and
optimum path for the remaining cities can be found and are shown below:

<
[
[

Optimum Cost

17
12
10
14
18
14
12
20
16
22

Q
e
lg-
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The previous computations are sufficient for determining optimum path. From
the tables that have been constructed the optimum decision can be found.
The following sketch shows the optimum decision for each point by an arrow.

The optimum path, shown by a heavy line, can be found by starting at city X
and following the arrows to the left. It should be noted that the preceding
computations were made from left to right, This construction then resulted
in an optimum path which was determined from right to left. Identical results
could have been obtained if the computations are performed from right to

left. The following sketch shows the optimum decisions for this method of
attack.

12



The optimum path can be found by starting at city A and following the arrows
from left to right. This path is shown by a heavy line in the sketch.

There is an advantage to each of these computational procedures depending
upon the nature of the problem. In some problems, the terminal constraints
are of such a nature that it is computationally advantageous to start computing
at the end of the problem and progress to the beginning. In other problems,
the reverse may be true. The preceding sample problem was equally suitable
to either method. Depending upon the formulation of the problem, the costs
for typical transitions may not be unique (the cost could depend upon the
path as in trajectory problems) as they were in the sample problem. This
may be a factor that will influence the choice of the method to be used.

To summarize, the optimal value function and the Principle of Optimality

have been used to determine the best decision policy for the multi-stage
decision process: the optimal value function kept track of at least expensive
possible cost for each city while the Principle of Optimality used this
optimum cost as a means by which it could make a decision for the next

stage of the process. Then, a new value for the optimal value function was
computed for the next stage. After the computation was complete, each stage
had a corresponding decision that was made and which was used to determine
the optimum path.

13



2.2,2 Applications to the Calculus of Variations

So far, the use of Dynamic Programming has been applied to multi-stage
decision processes., The same concepts can, however, be applied to the
solution of continuous variational problems providing the problem is
formulated properly. As might be expected, the formulation involves a
discretizing process. The Dynamic Programming solution will be a discretized
version of the continuous solution. Providing there are no irregularities,
the discretized solution converges to the continuous solution in the limit
as the increment is reduced in size. It is interesting to note that 'the
formal mathematical statement of the concepts already introduced can be
shown to be equivalent to the Euler-Lagrange equation in the Calculus of
Variations in the limit (see Section 2.4). The two classes of problems
that are considered in this section are the problem of Lagrange and the
and the problem of Mayer. The general computational procedure for the
application of Dynamic Programming to each of these problem classes will
be discussed in the following paragraphs. Some illustrative examples are
included in Sections 2.2.2,1, 2.2,2.2, and 2.2.2.3 so that the specific
applications can be seen.

The problem of Lagrange can be stated as finding that function y(x)
such that the functional

sk
J=/ Flx, ¢, %’)d,z (2.2.1)
xo’io
is a minimum, That is, of all the functions passing through the points
(x,5 ¥o) and &e, ¥o), find that particular one that minimizes J. The
classical treagmen of this problem is discussed in Reference (2.1).

The approach taken here is to discretize this space in the region of
interest, The following sketch indicates how the space could be divided.

14
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The integral in Equation 2.2.1 can now be written in its discrete form as

N
T =20 flxy yul) A%, (2.2.2)

=

The evaluation of the ith term can be seen for a typical transition in the
above sketch. The choice of y'. can be thought of as being the decision
parameter, The similarities tolthe previous examples should now be evident.
Each transition in the space has an associated "cost" just as in the previous
travel problem, The problem is to find the optimum path from (x s ¥.) to
(x%r, ¥.) such that J, or the total cost, is minimized. Obv1ously, i¥ a
fairly accurate solution is desired, it is not advantageous to choose big
increments when dividing the space. It must be kept in mind, however, that
the amount of computation. involved increase quite rapidly as the number of
increments increases., A trade-off must be determined by the user in order
to reach a balance between accuracy and computation time.

The problem of Mayer can be shown to be equivalent to the problem of
Lagrange (see Ref. 2.1). This problem will be included in this discussion
because it is the form in which guidance, control and trajectory optimization
problems usually appear. The general form of the equations for a problem of
the Mayer type can be written as

X =f(x,u«) (2.2.3)
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where x is an n dimentional state vector and u is a r dimensional control
vector., It is desired to minimize a function of the terminal state and
terminal time, i.e.,

@ (X, 4,) = minimum

subject to the terminal constraints

¥ = (x,

/ ) =1, m

s

(A more detailed statement of the problem of Mayer can be found in Section
2.4.8 or Reference 2.,1).

The approach that is used to solve this problem with Dynamic Programming
is quite similar to the Lagrange formulation, The state space component is
divided into many increments. The "cost" of all the allowable transitions is
then computed., Each diffierent path eminating of the same point in the
state space corresponds to a different control, which can be thought of as
being analogous to the decision at that point. With these preliminary remarks
in mind, some illustrative examples will now be presented,
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2.2,2.1 Shortest Distance Between Two Points

The previous travel problem was intentionally made simple so that the
concepts of Dynamic Programming could be conveyed easily. Most practical
problems involve many more decisions and many more choices for each decision.
To give the reader an idea of how much is involved in a slightly more
complicated problem, an example of a 3 dimensional problem will be given.

The problem to be considered is the Lagrange Problem of Calculus of
Variations, i.e., minimize the following functional

c,d
J = Wza'an(x, #,y’)dx (2.2.4)
a,b

This is the basic problem of the Calculus of Variations with fixed end
peoints, The classical methods of the solution are well known and are shown
in Ref. 2.2,1, The approach of Dynamic Programming is to break the interval
into many segments. FEach segment corresponds to one stage of a multistage
decision process. The object is to find the optimum choice of y' for each
segment such that

/—".Ax.

¢

4
=l
is minimized.- An example of this kind of problem is that of finding the
shortest path between two points. Although the solution to this problem is
obvious, it is informative to try to solve the problem with the techniques
of Dynamic Programming. It should be noted that the answer from the Dynamic
Programming approach will not be exact because of the discretizing that must
be performed in order to formulate the problem as a multistage decision
process, The answer will approach the correct answer in the limit as the
number of grids is increased. The -specific problem to be considered is the
shortest path from the origin of a rectangular 3 space coordinate system

to the point (5,6,7). The discretizing is performed by constructing cubic
layers around the origin, with each layer representing a decision stage.

The cost of going from a point on one layer to a point on the next layer

is the length of a line connecting the two points, i.e.,

TN - 1, # (g - ) 0 (5, - 5,0 (2.2.5)

where (%, ¥,, 2,) is the point on one layer and (xy, ¥,, zp) is the point on
1 1 1 2
the other layer.
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In order to keep the problem manageable only two such layers will be used.
The first layer will be a cube with one vertex at the origin and the other
vertices at (0,0,1) (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), and (1,1,1).
The permissible transitions from the origin to the first layer are shown
below with the corresponding costs.

From To Cost
(0, 0, 0) (0, 0, 1) 1.000
(0,.1, 0) 1.000

(0, 1, 1) 1.414

(1, 0, 0) 1.000

(1, 0, 1) 1.414

(1, 1, 0) 1.414

(0, 0, 0) (1, 1, 1) 1.732

The second layer chosen is the cube with one vertex at the origin and the
others (0, O’ 14-), (0; Lh O): (Os lh h); (h: 0, O)) (lh 0, h); (lh b, 0)3
and (4, 4, 4). In addition to the transitions from the vertices of the first
layer to the vertices of the second layer, transitions will also be allowed
to points between the vertices of the second layer, e.g. (4, O, 2). This
allows more possible choices for the transitions and thus vermits the
Dynamic Programming solution to be closer to the actual solution.

As mentioned earlier, one of the beauties of Dynamic Programming is
that the problem peculiarities can be used to simplify the problem. This
advantage will be utilized here by eliminating some of the possible transitions
from the first layer to the second layer. The vhilosophy behind this
elimination is that a certain amount of continuity is assumed in the solution.
It is not expected that the solution will consist of arcs which go in one
direction for the first transition and then in the opposite direction for
the second transition. For this reason, only the transitions from layer
"one" to layer "two!" that has been permitted are those that correspond
to light rays that would propagate from the first voint of the transition.

With these considerations in mind, the permissible transitions from the

first layer to the second will be found. The various points of the second
layer that are allowable transition points are listed below:
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(o, 0, 0) (2, 0, 0) (L, 0, 0)
(0, 0, 2) (2, 0, 2) (L, 0, 2)
(0, O, lﬁ) (2: 0, l!) (h, 0, l:,)
(0, 2, 0) (2, 2, 0) (L, 2, 0)
(0, 2, 2) (2, 2, 2) (4, 2, 2)
(0, 2, &) (2, 2, 4) (hy 2, L)
(0, 4, 0) (2, 4, 0) (4s b5 0)
(0, 4, 2) (2, 4, 2) (ky by 2)
(0, 4, &) (2, 4, &) (L, L, 4)
The cost of the allowable transitions from the first layer to the second
Tatraw ama ahartm ha'l Ar
Lo ‘YUJ. ALT OIIUNWIL VT LUW
FROM
TO\\\\ 011 100 001 010 101 110 111
OOL 3.162 3.000 3.162 3.316
024 3.162 3.605 3.741 3.316
OLO 3.162 3.000 3.162 3.316
042 3.162 3.605 3.714 3.316
OLL, L.242 5.000 | 5,000 | 5.099 | 5,099 4.358
204 3.741 3.605 3.162 3.316
224 3.741 4.123 3.741 3.316
240 3.741 3.605 3.162 3.316
242 3.741 L.123 3.714 3.316
244 4.690 5.385 5.099 | 5.099 L.358
L00 3.000 3.162 | 3.162 3.316
5L02 3.605 3.162 | 3.741 3.316
LOL 5,009 | 5,000 | 5.000 L.,2h2 | 5,009 L.358
420 3.605 3.741 | 3.162 3.316
422 4,123 3.741 | 3.741 3.316
L2L 5.099 | 5.385 | 5.385 4.690 | 5.099 4.358
L10 5.099 | 5.000 5.000 | 5.099 | L.242 4.358
Li2 5.099 | 5.385 5.385 | 5.099 | 4.609 4.358
Lbb 5.830 | 6,403 | 6,403 | 6,403 | 5.830 | 5.830 5.196

The blank areas represent transitions that are not allowed because of reasons
previously stated. The transitions from the second layer to the terminal
point are shown in the following table:
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(5, 6, 7)

Now that the cost of each transition has been established, the methods of
Dynamic Programming can be used to find the optimum path from the origin to

point (5, 6, 7).
each point.

the points on the second layer are shown in the previous table,

The first step is the definition of the optimum cost for
Working backwards from point (5, 6, 7) the optimum cost of

The optimum

cost of the points on the first layer can be found by finding the path
that gives the minimum value of the total cost of going from (5, 6, 7) to

layer 2 and from layer 2 to layer 1.
cost of point (0, O, 1).
to (0, 0, 1) through layer 2.

POINT (0, 0, 1)

As an example, consider the optimum

Table 2,2,1 shows the various paths from (5, 6, 7)

PATH

COST
4) 3.000 + 8.366
L) 3.605 + 7.071
L)  5.000 + 6.164
L) 3.605 + 7.348
L) L.123 + 5.830
4) 5.385 + 4.690
k) 5.000 + 6.782
L) 5.385 + 5.099
L) 6.403 + 3.741
Table 2.2.1

11.366
10.676
11.164
10.943

9.953
10.075
11.782

o nn

MINIMUM
COST

9.953



In a completely analogous manner the minimum cost for each of the other points
on the first layer can be found. They are shown below.

MINIMUM
POINT COST vIa
(0, 0, 1) 19.953 (2, 2, 4)
(o, 1, 0) 10.075 (2, 4, &)
(o, 1, 1) 9.380 (2, 4y &4)
(2, 0, 0) 10.144 (b, z,, L)
( o, 1) 9'571 (2, F] Ll-)
(1, 1, 0) 9.571 (bs Ly L)
(1, 1, 1) 9.145 (2, 2, 4)

The optimum value of the cost of the origin is found similarly by computing
its cost for the various paths from layer 1 and by using the optimal values
of those points. The following table shows those values:

MINIMUM
POINT (0, O, O) PATH COST COST
(0, 0, 1) 1.000 + 9.953 = 10.953
(o, 1, 0) 1.000 + 10.075 = 11.075
(0, 1, 1) 1.4 + 9.380 = 10.794 10.794
(1, 0, 0) 1.000 + 10.144 = 11.144
(1, 0, 1) 1..14 + 9.571 =10.985
(1, 1, 0) 1.4 + 9.571 = 10.985
(1, 1, 1) 1.732 + 9.146 = 10.878

The solution is now complete, The optimum path can be found by tracing back
the optimum values from the previous tables, The optimum path to the origin
from layer 1 is seen to be via point (0, 1, 1) from the previous table. With
this information the optimum path to (0O, 1, 1) can be found to be via point
(2, 4, 4) from Table 2.2.1. This path is shown in the following sketch along
with the exact solution,
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3 (5.6,7)

Solution
Dynamic

(0,0,4; (0,2, 4) Egig{lon g

—T <0, 4#)
e

(2,0,%) e -J—- < @,4,4)

%,0 | |/ '/ ks

—  _>t0,4,2)

“,0,2)

— _Zo40 ¢

(2,4,0)

7%,0,0) (4 .2,0) 4, 4,0

The exact value of the minimal distance between (0, O, O) and (5, 6, 7) can
easily be found from the Pathagorean Theorem as

J = Vi5-0F +c6-00%+(7-0° =wo =104s8

This value can be compared to the 10,794 that was obtained from Dynamic Programming
approach. This difference is consistent with previous comments which were

made on the accuracy of Dynamic Programming solutions and the effects of
discretizing the space. -

22



2.,2.2,2 Variational Problem with Movable Boundary

Dynamic Programming will now be applied to the solution of a variational
problem with a movable boundary. Consider the minimization of the functional

%.‘/ - :2
T(x,y) =f '%L) dx (2.2.6)
[

subject to the constraint that

7(0) = O

4% =x-5

This problem appears as an example in Ref, 2,2.2 to illustrate the classical
solution of a problem with a movable boundary. Note that this problem 4if-
fers in concept from the preceding problem in that the upper limit of
integration is not explicitly specified., However, as would be suspected from
previous problems, the Dynamic Programming approach still involves the divi-
sion of the space into segments and the calculation of the cost of each
transition. The set of end points is located on the line ¢, = %p -5. As
mentioned earlier, there are two ways to perform the Dynamic Programming
calculations in most problems. One method initiates the computation at the
first stage and progresses to the last stage; the second method begins the
computation at the end of the process and progresses to the first stage.

Both methods are equivalent and yield the same answers as shown in an earlier
example., The following example will be partially solved by using the second
method., (The number of computations prohibits the complete manual solution.)
The other problems in this section use the first method.

To begin the Dynamic Programming solution, the space ig divided as shown
in the following sketch,
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The circle 4-//ax-x’ is the classical solution to the stated problem.

The line segments that follow the solution represent the expected Dynamic
Programming solution. The computation begins with the calculation of the
cost of all the possible transitions between the various points in the space.
The minimum cost of each point is then determined in the same manner as
previous problems, The difference between this and previous problems is that

there is a set of possible terminal points.

This generality does not introduce

any problems in the method of attack. It merely means that the optimum value
of all the possible terminal points must be investigated and the best one
must be selected. The following sketch shows the details for part of the
computation that begins on the line y = x-5 and progress to the left,
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EAN

The cost integral is represented by

I+ (g )*
: ' Ax,
L &%
instead of the continuous form in Equation 2.,2.6 . The cost of each transition
is shown, and the optimal value of the cost of each point is encircled. The

possible transitions that must be considered for each of the. above points
are shown below.
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@D

This process continues until the optimal path can be found by following the
decisions that were made by starting at the origin and progressing to the

right.
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2.2.2,3 Simple Guidance Problem

As an example of the application of Dynamic Programming to a problem of
the Mayer type, a simple guidance problem will be examined. Consider a
throttlable vehicle with some initial condition state vector X(0) where

x(0)
(0)
Xy = | £ 2.2.
Z (0) (2.2.7)

Ly (o)

and some initial mass m#_, It is desired to guide the vehicle to some terminal
point x(f), y(f) subjec? to the constraint that its terminal velocity vector
is a certain magnitude, i.e.

x = x,

7 # at t=¢ (2.2.8)
'z . _ : LN J
2hegt ey

where t,. is not explicitly specified.

f

Further, it is desired to minimize the amount of propellant that is used
in order to acquire these terminal conditions (this problem is equivalent
to maximizing the burnout mass). In order to simplify the problem, a flat
earth will be assumed and the wvehicle being considered will be restricted
to two control variables U, and U2. U, is a throttle setting whose range is
0 < U1 < 1. This variabie applies a thrust to the wvehicle equal to

7_= 7;,“ Z/, (2.2.9)
where T is the maximum thrust available, U, is the control variable that

governsm%ﬁe direction of thrust. This variable is defined as the angle between
the thrust vector and the horizontal. The following sketch shows the geometry
of these parameters.
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From this sketch, the following differential equations can be written for
the motion of the vehicle

X = 22y cool, (2.2.10)
»7

. /. :
q = 2 U sinll, - @ (2.2.11)
A z2

and
2 = — Z;Ez 4, (2 2 12)
4t V—— \&.‘-.A—&’

where Tmax = the maximum thrust available

v = the exhaust velocity of the rocket.

There are several ways to formulate this problem for a Dynamic Programming
solution. The method used here is to represent the state of the vehicle by
four parameters, x, ¥y, X, and ¥y. The mass is used as a cost variable. The
four dimensional state space is divided into small intervals in each
coordinate direction. The coordinates designated by all the combinations
of various intervals form a set of points in the state space. The vehicle
starts at the initial point in the state space with some initial mass., The
control and mass change that are necessary to move the vehicle from this point
to the first allowable set of points in the state space are then computed.
This computation corresponds to the first set of possible control decisions.
Each end point of the set of possible first decisions is assigned a mass
(cost) and the path that gave the cost (for the first decision the path is
obvious since it must have come from the origin ).

The second decision is now investigated. The required control and the
corresponding mass change required to go from the set of points at the end
of the first decision to the set of all possible points at the end of the
second decision must now be calculated. (The initial mass used in this
second stage calculation is the mass remaining at the end of the first stage.)
However, each point corresponding to the end of the second decision will
have more than one possible value of mass (depending on the point from which
it came). Thus, since it is desired to minimize the fuel consumed or
maximize the burnout mass, the largest mass is chosen as the optimum value
for that particular point. The point from which this optimum path came
is then recorded.
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This process continues in the same manner until an end point is reached,
In this case, the end point is a set of points all of which have the same
coordinates for x and y but have many combinations of X and y subject to
the constraint that

4
Z +%.Z= &{2

After the optimum mass is calculated for all possible terminal points, the
best one is selected. The optimum path is then traced to the initial point
Jjust as was done in previous problems.

Formulation

The equations to be used to calculate the cost of each transition can
be developed from Equations 2.2.10, 2.2.11 and 2.2,12. Since the transitions
from one point to another point in the state space are assumed to be short
in duration, it is assumed that the vehicle's mass is constant during the
transition and that the acceleration in the x and y direction is constant.
This is a reasonable assumption since the state space is divided into many
smaller parts and the mass change is not very significant during a typical
transition from one point to another. Thus, since the mass is practically
constant and the control by the nature of its computation is constant during
a transition, a constant acceleration is a reasonable assumption for a
typical transition.

The laws of constant acceleration motion can now be used for each short
transition. The acceleration that is required in order to force a particle
to position xE with the velocity xp at that position from a position xy with
an initial velocity of x; is

z-z _ )22
.- 2 ’
— T 2.2.13
x 2{x,~-%,) ( )
Similarly, in the y direction
2 .2
g = fe TH (2.2.1L)

A

Now, recalling that the x and y components of thrust are

1

.. 7
X = 22 y coo,
”

Trox

;Z(,Mllz "'?

R:
i
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equations 2.2.13, 2.2.14, 2.2.10 and 2.2.11 yield

.2 .z
»r xz"'z
4 coolly = —[—] =C (2.2.15)
2 R lxx) *
« 2 .2
Z(MA(=—7”—[ z 7 +?]—C (2.2.16)
[} 2 - . .
Ty Zlgy=4,)- 4

The control parameters are thus,

%
_ F4 2\ 2
4 =(c, *c))
C
l/2=mc2a/ﬂaz

Now that the throttle control is known, m for the particular transition is

oy = - e X
14
and the mass at the end of the transition is found to be
7, = W7 At (2.2.20)
where At can be found to be
Zlx,- %)
At = —————— (2.2.21)
Z, + %,
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The algorithm for solving this problem will now be discussed., First, the
state space must be divided properly. To do this, an increment measure for
each coordinate must be defined. Let 52‘. be the increment measure of
the ith coordinate so the extent of each coordinate is L%, M, A/X, Pi'
where L, M, N, and P are integers that are large enough to make the maximum
value of each coordinate as close as possible to the maximum value needed
by that coordinate without exceeding that maximum value. For instance, if
the maximum value required by x7 is 51, 324 ft, and it was decided to use
J?l = 1,000 ft., then L would be chosen as 51, Since there is a set of
terminal points, N and P must be chosen to accommodate max (J'cf) and max

(if) , respectively.

The cost of all points ( 4%, , mw%, , 7%, , /ﬂ,%, )
L=0,/...L
=0, /,|.. M
7=0,/4.,AN
-0,/...,

’
must be found as previously discussed. For this particular case, the initial

point will be assumed to be (0,0,0,0). The set of states that can result
from the first decision includes the following points:

(0, 0, 0, %) (%, 0, 0, 0)
(0, 0, X3, 0) (%, 0, 0, &)
(0, 0, Ry, Xy) (X1, 05 Rg, 0)
(0, Ryy 05 0 ) (Ry, 0, %3, Xy
(0, Xy, 0, Ry) (Ryy Xpy 05 0)
(0, Xy, X3, 0 ) (X1s Rp4 0, X,,)
(0, X5, Rgy Xy) (Rys Ryy Ry 0)
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As mentioned previously, the mass of the vehicle is computed for each point
and is stored along with the control that was needed to get there.

The second decision must come from a wealth of possibilities. If an
approach similar to the shortest distance problem is taken (where the only
permissible transitions eminate in rays from the initial point of the
particular transition), a reasonable set of transitions for each point is
obtained., To give the reader an idea of the number of points which are
possible, the following table was constructed to show this set of points
by using a shorthand notation for convenience (where (2) = o0, Xss 2X:).

FROM TO

(0, 0, 0, X, (@,@.@ ., 2%

(0, 0, X , 0) (@D, @,25%, @)

(0, 0, Xgy X,) (@Q. @O, @ 2%)r (@, y 2%, (@)

(0, Xy, 0, 0) (@,2%,@.,.@)

(0, X5, 0, X,) (D 2%, , @) (@R, » @D, 2wy

(0, Xpy Xz, 0) (@D, @D,2%, D) @.2%,0 ., @)

(04 X5 Xgs Xy) (D12, @ @D)er (@D, @2, D)
x((@D,®.,@ ,2%)

(Xys 0y 0, 0) (2%, , @, @ @)

(X15 0, 0, X,) (2%, @D, @, @D)r (@D, @+ @ ,2xy)

(Xys 0, Xgy 0) (2xl,@,@.@)or(@,@,2x3,@)

(X1s 05 X3, X,) (2% ,@ ., @, @)1 @, @, 2%3 » @)
r (@D, @ ,® ,2%) ‘

(Xys Xy 0, 0) (2% ,@, @, @)1 (@D ,2%,® ., @)

(X5 Xy O, Xy) (2,2, @0, @) (@ .,.2%,0 ,@)
or(@,@,@,2xu)

(X1s Xoy X3y 0) (2%, @D, @, @) (@, ,2%, D, @)
or (2D, @D 2%, @)

(X)s Xg» Xgy X) (2%, D, @D, @DVor (@D 2%, D » @)
r((D,(@D,2%,@D)10(@D,@.,Q@ ., 2x)



The reader, no doubt, has a reasonable idea of the number of points that
must be investigated for the second decision. This number continues to
grow at a tremendous rate for subsequent decisions since each point at

the end of the second stage is an initial point for the third stage and
because the@becomes a@(@ = 0, x5, 2 %3, 3 DL_-L) for the terminal points
of the third stage. This fantastic increase in computation points is called
the "curse of dimensionality" of Dynamic Programming. It stems from the
fact that as the number of dimensions of the state space increases; the
number of computation points of the problem increases as all where "n' is
the dimension of the state space and "a" 1s the number of increments used
for a typical coordinate. Section 2.3.3.1 will discuss dimensionality in
more detail.
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2.2.3 Maximum - Minimum Problem

In order to demonstrate the more analytical applications of Dymamic
Programming, a simple Maxima-Minima Problem will be examined, The procedure
utilized to formulate a problem for the application of Dynamic Programming
is not always immediately obvious. Many times the problem formulation for
a Dynamic Programming solution is quite different from any other approach.
The following problem will be attacked in a manner such that the Dynamic
Programming formulation and method of attack can be seen.

The problem is to minimize the expression

2
S=x +2x%+x? (2.2.22)

subject to the constraints

X,* X, +x, = /O

=4
X, 20

(A problem similar to this is often used by Dr. Bellman to introduce the
concepts of Dynamic Programming). At first glance, the methods of Dynamic
Programming do not seem to apply to this problem, However, if the problem

is reduced to several smaller problems, the use of Dynamic Programming
becomes apparent. Consider the minimization of the following three functions:

f=2f (2.2.23)
£ =F +r2x (2.2.24)
£ =4+ (2.2.25)

Applying the constraintsyx, = 10, x, 2 O}to the first function gives the
trivial result X = 10. This result is not so helpful, However, if the
constraints

X = A O< A < /0
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are applied to Min'(fl), the range of Min (f.) can be found for various

admissible values of Xp . This step can be tﬂought of as the first stage
of a three stage decislon process, where the various choices for x; can

be as many as desired within the limits o#X £/0.

Now that all the choices for the first decision have been investigated,
the second decision must be considered, Again, care must be taken in the
specification of the constraint equations. The optimal value function for
the second decision is

The constraints on X and X, are chosen to be

X tZx, = A

, 0% A, < /0 (2.2.27)

For each value of A, that is to be investigated, there are many combinations
of x; and x,, to be considered. More precisely, the number of combinations
of xi and to be considered is the same as the number of Al's that are
less"than or equal to the A, being considered, e.g., if A, was investigated
for Al =0, 5, 10 and A, =5 is being considered, then the following
combihations must be examined

x, X,

5
o

The third decision does not require as much computation as the others in this
case because of the original constraint equations.

X+t x, + z, =10
Z 3 (2.2.28)

=
% Z0

Since the first two decisions were investigated for many possible values of
x and x + xé, it is only necessary to consider

z + Z

2+%=/0

because the various choices for will specify x + X, = 10 = x3 and these

possibilities have already been investigated.

The arithmetic solution will now be shown so that the previous discussion
will be clear, For simplicity, only integers will be considered for the
allowable values for x %55 and x,., A table can be constructed for the

. ‘s 1’ 3
first decision as follows:
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10

16

25

36

L9

6L

81

100

The table for various combinations of X and X5 for f2 is shown below:

TR R T, NV

10

+a.
©c 1 2 3 4L 5 6 7 8 9 10
ol @ & 9| 16| 25| 36| 49 | 64| 81 |100
2@@@18 27| 38 | 51| 66 | 83
8|l 9| 12|@)|CYIGI| ub| 57| 7
18 | 19 | 22| 27 34@@
32 1 33 36 41| 48| 57| 68
50 | 51| 54| 59 66| 75
727 | 73| 76 | 81| @8
98 | 99 |102 |107
128 |129 |132
162 [163
200
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Note that each diagonal corresponds to a particular value for X1txy = Aj.
The optimum value for f5 in each diagonal is encircled. This chart will
be useful as soon as the graph for the third decision is found. It is shown
below:

£
Z, +%,

X 0 1 2 3 L 5 6 7 8 9 10
0 67
1 55

¢(7 p \O
2 0 z L7
ﬁE 2
3 N 225 h2
X
I Mof g 40
5 gog L2
6 L7
7 55
8 67
9 82
10 | 100

Since it was specified that xj + %o + x3 = 10, only one diagonal is
needed. The procedure to find the optimum values is now straightforward.
From the previous table it is seen that optimum decision for x5is X3 = L, which
means Xj + Xp = 6. This corresponds to a value of 40 for f3. The optimum
values for xj; and x, can now be determined by referring to the table for
the second decision. Since x31 + %9 = 6, the best value in the sixth diag-
onal must be selected. It is 24, which corresponds to x3 = 4 and xp = 2.
Thus, the optimum values for x3, X, and x3 have been determined to be
X] = 4y, Xp =2, xg = H,

The question arises: is any savings realized by using Dynamic
Programming for this problem? In order to answer this question, the number
of computations using Dynamic Programming will be compared to that using
the "brute force" method., (It should be noted, however, that small problems
do not demonstrate the beauty of Dynamic Programming as well as larger
problems., It will be shown in Section 2,3,3.1 that some problems that are
virtually impossible to solve by the "brute force" method become reasonable
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once again due to Dynamic Programming concepts.) The number of additions

performed in the previous problem were 66 for the second table, and 11 for

the third table -~ for a total of 77 additions., _The '"brute force" method
would require the calculation of S = X12 + 2X22 + X32 for all possible
permutations of X3, Xp, and x3 where 0 £ x; £ 10, X3 + % + x3 = 10,
and ®; 1is an integer. For this particular problem the "brute force"
method requires 66 cases or 132 additions., It is seen that even on this
simple problem the savings in additions is quite significant.

In order to compare and contrast the Dynamic Programming solution of

this problem with the classical solution, the same problem will not be

solved using classical techniques. First, the constraint equation is joined

to the original problem by a Lagrange Multiplier.

2 2
&=f+2a+g—%(;+&+%)

Now the partial derivatives are taken with respect to the independent
variables and equated to zero.

2s

=2x, -A =0
2 x,
as
— =4x, -A =
2%,
R
— =2x,-A =0
2x,
This yields

A
x = Z?

-2
zz—y
Y

2z
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(2.2.29)

(2.2.30a)

(2.2.30b)

(2.2.30c)

(2.2,31a)

(2.2.31b)

(2.2.31c)



The value of A can be found by employing the constraint equation

N .
z,+zz+z3=/0=z+3+% (2.2.32)
Hence,
A=8
and finally
8
X = E = 4 (2.2.33a)
— 8 —
Yy =4 (2.2.33b)
8
253 =E = 4
(2.2.33¢)

It is interesting to compare these two solutions., First, it should
be noted that solutions obtained using the two methods on the same problem
need not be the same. That the answers are identical for both methods in
this problem results from the fact that the answers to the continuous
problem happened to be integers and the Dynamic Programming method searched
over all the permissible integers. Had the solution not consisted of a
set of integers, the Dynamic Programming solution could have been forced
to converge to the continuous solution by increasing the number of values

employed for the variables in the process.

On the other hand, if it is desired that the solution consist of
integers, the continuous method would not be a very effective way of
determining the solution. The Dynamic Programming solution, of course,
would be constructed without modification,
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2.2.4 Eguipment Replacement Problem

The following problem is included to illustrate the use of Dynamic
Programming in solving problems in which the variables are in a tabular
form rather than expressed analytically. The problem was presented by
R. E. Kalaba in a course taught at U.C.L.A. during the spring of 1962 and
is shown in Ref. 2.2.3.

Consider the position of the person who must decide whether to purchase
a new machine for a factory or keep the old machine for another year. It
is known that the profit expected from the machine in question decreases
every year as follows:

Age at Start of Year Net Profit from Machine
During the Year

$10,000
9,000
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000
0

oOvHe~ToWMmEWNNHEFO

'—J

Table 2.2.2 Expected Profit of Machine

A new machine costs $10,000. It is assumed that the old machine cannot
be sold when it is replaced, and the junk value is exactly equal to the cost
that is necessary to dismantle it. If the machine is now 3 years old, it
is desired to find the yearly decision of keeping or replacing the machine
such that the profit is maximized for the next 15 years.

The solution of this problem proceeds in a manner quite similar to
previous problems. Instead of solving the specific problem for 15 years,
the more general problem is solved for 4 years. The results of the +# th
year then provides information for the #+ 1 th decision. The mathematical
statement of the optimization problem is as follows:

41



5 Keep: Plx) + £, (])

/]

L /ev) = “tee._
i \Ky = Aax . .
o | Reprace: P(O)-C + A, D 5 (2.2.34)
PROFIT DURING PROFIT FROM
MNEXT YEAR OF REMAINIING
OPLRATION K- YEARS
The initial condition is:
g KEEP : o i o
X) = 7 =
s ( | Reprace: o (2.2.35)

where /i(a)= the expected profit obtained during the
next k years when the machine is «
years old at the start, and an optimal
policy is used.

Pla) = the expected profit obtained during one
year of operation of a machine « years
old at the start of the year.

C = the cost of a new machine.

The numerical soltuion begins by evaluation Pla) . This is easily done
from Table 2.2.2.

P(0) = $10,000 P(6) = $ 4,000
P(1) = 9,000 P(7) = 3,000
P(2) = 8,000 P(8) = 2,000
P(3) = 7,000 P(9) = 1,000
P(L) = 6,000 P(10) = 0
P(E’) = 5,000

The cost of a new machine is $10,000 so

C = $10,000

Now a table for the one stage process will be formed using all possible
values for « .
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Keep 10,000{ 9,000| 8,000} 7,000 6,000/ 5,000|4,000{ 3,000 2,000|1,000{ O

Starting with a machine a years old, the profit for the year will be P (&)
if the machine is is not replaced. If, on the other hand, the machine

is replaced, the profit from the machine is $10,000; but it costs $10,000
to get a new machine, so the net profit for that year is O. Hence, the
result for a one stage process is to keep the machine regardless of how
0old it is in order to maximize the profit for one year.

Now a 2 stage process will be considered. Here, the question arises
whether to keep or replace the machine at the beginning of each year for
two years. Using the previous results, the following table for the 2 stage
process can be constructed.

NGE 0 1 2 3 I 5 6 7 8 9 10

£ (a) 10,000 | 9,000| 8,000]| 7,000{ 6,000| 5,000 |4,000|3,000]2,000|1,000| O

DECISION | K K K K | kK |k K K K K K

Keep 19,000 {17,000(15,000 {13,000 {11,000]| 9,000 {7,000 |5,000 {3,000{1,000} O
4 ()
Z

... _[Replace |9,000] 9,000{ 9,000 } 9,000 9,000

9,000 {9,000 {9,000 [9,000{9,000 9,000

I I‘
I

A closer look at the computation of the numbers in this table will clarify
the concepts involved. For an example, consider a = 2, The decision faced
here is to keep or replace a machine now that is to last for 2 years. If

it is decided to keep the machine, the income from the first year is

P(2) = $8,000. The decision for the last year has already been made on

the 1 stage process (keep). The income from the second year is that of a
machine 3 years old or $7,000 for a total income of $15,000 for two years.
Now consider the 'replace' decision for the beginning of the first year.

The income from the machine for the first year is $10,000 and the cost of
replacement is $10,000 so the profit during the first year is $0. The second
year starts with a machine that is 1 year old, and the profit obtained is
$9,000. The total profit for two years is thus $9,000. From Table 2.2.3
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it is seen that (for a two stage process) a machine which is less than 5
years old should be kept, ‘a machine which is more than 5 years old should
be replaced and a machine which is exactly 5 years old can be kept or
replaced. (In the indifferent case the machine will be kept by convention).

Repeating this procedure for a three stage process yields the following
table,
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o 0 1l 2 3 ‘% 5 6 7 8 9 10
Fl (a ) DECISION K K K K K K K K K K K
F, (a) 19,000{17,00015,000| 13,000}11,000{ 9,000| 9,000| 9,000| 9,000 9,000{ 9,000
DECISION K K K K K K R R R R R
KEEP 27,000 24,000 (21,000 18,000|15,000{ 14,000 13,000 12,000 [11,000 |10,000] 9,000
Fa (a)
REPLACE 17,000(17,000 17,000 17,000|17,000| 17,000} 17,000 |17,000 |17,000 |17,000 |17,000




The optimal policy can now be found by referring to the table. Note that
the general solution is given; that is, the problem can begin with a
machine of any age (not just 3 years old as in the original problem). This
generality is the result of the fact that Dynamic Programming solves a class
of problems rather than a specific problem. For a 15 stage process, the
correct initial decision for the problem in which the machine is 3 years
old is found in the grid 15 ( @ ) and & = 3 (marked by (@). For the

next decision, Flb, (a), the machine is 4 years old since it was kept for
an additional year. The correct decision for this stage is again "keep"

as shown by the grid marked by & . The third decision is to "replace"

as shown by the grid labeled by (3). The fourth decision is shown by ® .
The unit that was replaced in the third decision is one year old at the
beginning of the fourth decision so the grid to use is Fi, (& ) and a =1,
This process continues as is shown by the remaining circled numbers. The
final policy for the l5~-stage process that starts with a unit 3 years old
is keep, keep, replace, keep, keep, keep, keep, replace, keep, keep, keep,
replace, keep, keep, keep. The maximum profit for this problem is seen

to be $91,000.

Similarly, for 15 stages, the following table results:

46



Ly

AGE

| 3 i 5 6 7 8 9 10
: : .
F, (a) K K « | x@ K K K K K | K K
Fy (a) K K K@ K K K R R R R l R
Fy (o) | K K@ K K R R R R R IL R R
F, (@) K K K K R@ R R R R L R R
Fg () K K K K@ K R R R R | R R
Fo (@) K K i 1< K K K R R R R R
Fp (a) K K@ | K K K R R R R R R
Fg (@) K K | K K R R R R R R R
Fg (a) K K K K K@ R R R R R R
Fip (@) K K K K@ K R R R R R R
F1; (a) K K K@ K K K R R R ‘R R
F12 (a) K K@ K K R R R R R R R
Fi13 (@) K K K K K R@ R R R R R
Fiy (@) X K K K K@ R R R R R R
Fi5 (@) K K K K@ K R R R R R R
100,000 | 96,000 | 93,000 | 91,000 | 90,000 | 90,000 | 90,000 |90,000 | 90,000 | 90,000 | 90,000




2.3 COMPUTATIONAL CONSIDERATIONS

So far, the principles of Dynamic Prograrmming have been applied to
both discrete and continuous problems. It was shown in Section 2.2.2
that Dynamic Programming is an alternative method of solving certain
variational problems. In fact, the use of Dynamic Programming sometimes
enables the solution of problems that are normally very difficult, if not
impossible, by classical techniques. It should not be assumed, however,
that its use is free of difficulties. Dynamic Programming does indeed
suffer from difficulties that are inherent in any scheme that discritizes
a problem or performs a combinational search. This section discusses
the relative advantages and disadvantages of Dynamic Programming as applied
to both continuous and discrete problems.
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2.3.1 MERITS OF DYNAMIC PROGRAMMING

The classical techniques used in optimization theory are subject to
many complications when they are applied to physical problems. These
difficulties result from applications of the theory based on continuous,
well-behaved functions to problems involving discontinuities and relation-
ships for which there are no closed-form analytical expressions. This
section deals with these classical techniques and discusses the relative

merits of Dynamic Programming on these points.

2.3.1.1 Relative Extrema

The difficulty in trying to distinguish between relative extrema,
absolute extrema, and inflection is well known to the calculus student
who sets the first derivative equal to zero. This difficulty, which is a
nuisance in functions of one variable, becomes almost unbearable for
functions of many variables. (Such cases are encountered in the optimi-
zation of a multi-variable problem.) The use of Dynamic Programming on
problems such as these avoids this difficulty completely. The very nature
of Dynamic Programming deals only with absolute maxima or minima; so far
as the Dynamic Programming solution is concerned, other extreme do not
eéven exist.

This property of Dynamic Programming turns out to be the only salva-~
tion in the solution of multi-dimensional problems in which there are many
extrema.

2.3.1.2 Constraints
Classjical technigques fail to give the necessary extireme when they occur

on a constraint point. This fact can be seen most easily by examining the
following sketch of one variable that has an extrema on a constraint point.

£(x)

Al e ==
p,——_—_——_

o
o—‘-———_—
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If classical techniques were to be used to determine the extrema, the values
of £(v), f(c), and f(d) would be obtained. That is, since the derivative

at x = e is not zero, the extremum is not located with classical techni-
ques. Such a function is guite common in practical problems such as

control problems or economic problems where there is a very distinct limit
to the range that a variable can have. This fact poses a problem to the
engineer who attempts to optimize a process that includes functions of

this sort; therefore, he must be very careful when using classical techni-
ques. If he is aware of the possible existance of other extrema, precautioery
measures can be taken to guarantee that the extremum which is located
analytically, in fact, is the extremum.

Again, the techniques of Dynamic Programming avoid these problems
completely. The reason for this is that all functions are represented
discretely and the optimum values are found by a search technique over a
set of numbers that represent the cost of a various number of policies.
Thus, the procedure escapes the problems associated with the introduction
of an imprecise condition by merely selecting the optimum number.

2.3.1.3 Continuity

The application of classical technigues on problems involving functions
with discontinuities and with discontinuous derivatives also introduces
difficulties. Since the tools of calculus are directed at continuous
variations in variables, it is sometimes useful to smooth the discontinui-~
ties in physical problems so that classical techniques can be used. Howvever,
in some cases, the accuracy of the solution is seriously affected by such
smoothing. Further, many functions that are ideally represented by dis-
continuities in the variables must be handled in a special manner in the
analytical solution.

The techniques of Dynamic Programming also surmount these problems
since the discrete manner in which the functions are used is not affected
by discontinuities so long as the representations of the discontinuities
are not ambiguous.

2.3.2 DYNAMIC PROGRAMMING VERSUS STRATGHTFORWARD COMBINATIONAL SEARCH

The application of Dynamic Programming techniques to a problem of
more than two dimensions usually provokes some thought on the advantages
of Dynamic Programming over the so-called "brute force" method of search-
ing all of the possible combinations of decisions and selecting the best.
Surely, the overwhelming number of computations involved appear to classify
this approach as a near "brute force" method even when using the techniques
of Dynamic Programming. If a calculation comparison is made, however, it
will be seen that such a statement is not justified. The computational
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savings offered by Dynamic Programming makes soluble some problems that
are physically impossible to attempt with a straightforward combinational

MUYoo LY LCHILL 2tV LWl Ll

search because the exorbitant number of computations.

In order to see the relative merits of Dynamic Programming in a
small problem, consider the problem of finding the optimum path from point
A to point B in the following sketch.

[] N Y T T

1 2 3 L 5 6 T
Decision Points (Stages)

The brute force method of solving this problem would be to evaluate
the cost of each of the 20 possihle paths that could be taken. Since there
are six segments per path, there will be five additions per path or a
total of 100 additions and one search over 100 numbers for a complete
solution. The same problem can be solved by Dynamic Programming (see
Section 2.2.1) by performing two additions and one comparison at each of
the nine points where a decision was needed and one addition at the re-
maining six points. This approach results in 24 additions and six
comparisons as opposed to 100 additions and one search which were necessary
with the brute force method.

This comparison can be performed for an n stage process (the previous
example was a six stage process). The expression for the number of addi-
tions for the Dynamic Programming approach is ﬂf*n . The brute force
method involvesmq)nV(g!V'additions. Using theSe expressions, the merits
of Dynamic Programming begin to become very evident as n increases. For
instance, the 20-stage process would require 220 additions using Dynamic
Programming as opposed to 3,510,364 additions by the brute force method.

2.3.3 DIFFICULTIES ENCOUNTERED IN DYNAMIC PROGRAMMING

It should not be assumed that because Dynamic Programming overcomes
the difficulties discussed in Section 2.2.1, that it is the answer to all
optimization difficulties. To the contrary, many problems are created by
its use. The following section discusses some of the difficulties encount-
ered when Dynamic Programming is applied to multi-dimensional optimization
problems.
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2.3.3.1 The Curse of Dimensionality

In Section 2.2.2.3 a simple guidance problem is presented. It is
pointed out in that section that the number of computations involved was
quite large because of the four dimensional nature of the state space. In
general, the number of computation points increases as all, where a is
the number of increments in one dimension and n is the number of dimen-
sions in the space. With the limited storage capabilities of modern
digital computers,it is not difficult to realize that a modest multi-
dimensional problem can exceed the capacity of the computer very easily,
even with the methods of Dynamic Programming. This impairment does not
prevent the solution of the rroblem; however, it means that more sophisti-
cated techniques must be found in order to surmount this difficulty.
Although this field has had several important contributions, it is still
open for original research.

One of the more promising techniques that can be used to overcome
dimensionality difficulties is the method of successive approximations.
In analysis, this method determines the solution to a problem by first
assuming a solution. If the initial guess is not the correct solution, a
correction is applied. The correction is determined so as to improve the
previous guess. The process continues until it reaches a prescribed
accuracy.

The application of successive approximations to Dynamic Programming
takes form as an approximation in policy space. The two important unknown
functions of any Dynamic Programming solution are the cost function and
the policy function. These two equations are dependent on each other, i.e.,
one can be found from the other. This relation is used to perform a
successive approximation on the solution of the policy function by guessing
at an initial solution and iterating to the correct solution. (This tech-
nique is called approximation in policy space.) It should be noted that
such a procedure sacrifices computation time for the sake of reducing
storage requirements. '

The use of approximation in policy space will be illustrated via an
allocation problem. Mathematically, , the two dimensional allocation problem
can be stated as finding the policy {xi} that minimizes

A
L (%, 4) =[§: 9 (%5 ;) (2.3.1)
subject to the condition
A
[=Z/ ]C‘- = X x Z0 (2.3.2)
N .
,Z, o T4 4, 20 (2.3.3)
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In order to give an appreciation for the need for more sophisticated tech-
niques, a sample problem will be worked by the Dynamic Programming techniques
which have been discussed. The presentation will serve two purposes: first,
it will illustrate the use of Dynamic Programming on a multi-dimensional
allocation prohlem and, second, it will demonstrate the rapid growth of
storage requirements as a function of the dimension of the problem. The
method of approximation in policy space will then be discussed in order to
illustrate the savings in storage requirements and the increase in computa-
tion time.

Consider the problem of minimizing the function

f = (Z,lf/,z) » (xf *ﬁz) # (e 7,2) (2.3.4)
subject to the constraint that
Z v 2, + x, =3 (2.3.5)

and

3 (2.3.6)

R 77

Obviously, using Dynamic Programming to find a solution to this problem is
not very efficient. The method of Lagrange multipliers is by far a more
suitable method. However, the Dynamic Programming solution will be shown
for illustrative purposes.

First, the problem is reduced to a series of simpler problem.

£= 22, 2 X, €4, 4£3 (2.3.7)
1 4 }/’ %égl BI-L—\.?
Xk, £ 4 A,4 3
£=f + 28+ Z:Z’ £ 72 2 2.3.8
272 TRy ey, 48, 8,45 (2.3.8)
% o+ -3
f=hrz +4f { 2 % (2.3.9)

w

N

X
»
G
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Next, f] is evaluated for all allowed values of X1 and ¥1- The results
are shoxm in the Tollowing table. . :

Yoo | 2|3

xl
0 0 / 4 9
/ / 21 &1
2 4 S | 8 | 13
3 9 { /0 | /13| /8

The second stage must not be evaluated for x7 + Xp
2, 3 subject to 2ll the possible values for yi + ypo.

shows the values of f2 for the second stage.

54

= Ap where Ap = 0, 1,

The following table



3¢

x1+x2=0(A2=0) xl+x2=l (A2=1)

X3 =0,x,=0 x1=0,x=1 x =1, x5

V327 B % 72 f2 f2 f3
0 0|0 © @ ®
L 01 @ @ 2
10 gy 3 2

0|2 I 5 5

2 11 ©) ©) ©
2|0 L 5 5

0|3 9 10 10

3 L ® ® ®
2 ® ©® ®

310 9 10 10

(O indicates optimum value for stage

(:‘; indicates redundant optimal values for different policies at

the same stage
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X) + X =2 (4 =2) X, *x3=3 (4 =3)
x1=0, x5=2 [x;=1, x2=l x3=2, x=0 || x,=0, x=3[x1=1, X2 |x=2, xp=1 |%;=3, x2~0

¥y + ¥, =Balyy V2 fa ) fo fa £, £y fa
0 oo b @ A 9 ® o 9
011 5 ©) 5 10 ® % 10

: 10 5 3 5 10 6} 6 10
0|2 8 6 8 13 9 9 13

2 1)1 6 @* 6 11 @) G 11
210 8 6 8 13 9 9 13

03, 13 11 13 18 14 14 18

12 9 @) 9 14 @ %) 14

’ 2 1 9 @) 9 14 10 ag 14
3/0 13 11 13 18 14 14 18

*

optimal value for problem




So far, the principle of optimality has not been employed. This
principle is introduced in the evaluation of the third stage since the
‘optimal values from the second stage must be used. These values are
determined by finding the minimum values of fp within a particular Ap
classification for a particular Bp. In other words, the use of the optimal
value theorem for the third stage recuires the knowledge of the optimal
value of fo for various values of x1 + xp as in previous problems. This
information must be known for various values of yj1 + y2 because the process
is attempting to maximize over two variables. The number of cases that
must be examined for the third stage is relatively small sinece it is no .
longer required to investigate A< 3 and B < 3. 1Instead, only .cases for
A =3and B = 3 must be considered. The computation results for the third
stage are shown below.

gl O ) | 2| 3
4t F2 | 4y 3 2 / 0

3 |/8 |4 |/2 | /4
/ 2 0/4 19 |8 1/0
] (/218 | 68
310 /4 |/0|8 |10

The optimal combination of the x5's and y;'s is now determined. From
the previous table, it is seen that the optimal policy for the third
decision is y3 = 1 and x3 = 1 and an optimal value function of 6 results
for the entire process. This selection restricts the choice of xq, s,
y1 and yo to the cases where y; + yp = 2 and x| + Xp = 2 and focuses
attention on nine numbers which satisfy these constraints. The optimal
value of these numbers has already been selected; it is 4 and is marked
with an asterisk. The corresponding values for x31, xp, y1 and yp are

yp =1
yo =1
Xl=l
X2=l

The total solution, including the optimal value of the final result, is
now known. It is comforting to know that this result agrees with answers
obtained by the use of Lagrange multipliers and intuitive results.

The same problem will now be solved using the method of approximation
in policy space. This method starts by assuming a solution for the policy
function (yi). The next step then uses the conventional technigues of
Dynamic Programming to find the sequence of (xi) that minimizes f, assuming
the previously mentioned y4's. The techniques of Dynamic Programming are
again employed, now using the sequence (xj) and finding the sequence (yi)
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that minimizes f. This interchange of the roles of xj and y4 continues
until the change in the value of f reaches some predetermined value (just
as a convergent series is truncated after higher order terms are no longer
useful to the accuracy desired).

It is seen that the approximation in policy space method sacrifices
computation time for storage reguirements. This trade-off enables multi-
dimensional problems to be solved even though their core storage requirements
far exceed current memory capabilities when the straight forward Dynamic
Programming approach is used. Hence, the increase in the computation time
is a small price to pay the difference betwren a solution and insoluble
problem.

Another method of overcoming the core storage requirements of the
computer is to take advantage of the one stage nature of the solution by
the use of blocks of logic and thus avoid storing any unnecessary data.
This is done by constructing a logical flow chart that is used repetitively
by incrementing index numbers for subsequent stages. Also, during the
search procedure of the optimal value for a particular state, many unnecessary
numbers can be immediately omitted by performing a comparison as soon as
the number is computed. If it is the best value so far, it is retained.

If it is not the best so far, it is immediately omitted. Thus many core
locations can be saved as opposed to a maximum search over a section of
the core memory. Still, it must be remembered that two pieces of infor-
mation must be retained for each decision point. They are the optimal
value at that point and the optimal decision at that point. The following
sketch shows how a typical allocation problem would be formulated by using
a flow chart and an immediate search procedure in order to conserve storage
requirements. (I1lustration on following page.)
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[}nitialize K = 1 for first stagEJ

|Initialize A = A; for 1?14

Initialize optimal value function
(set equal to % )

Y

Initialize %
X1 (A) =0
|
Compute
gx (x) + fx-1 (A - Xy)
ff =0

Is new computation better than

no

previous computation?

yes

Store best value and value of
Xy that acquired it
Y

Increment allocation of Xi

yves

XR-!- Al"lk
Y
Store optimal values for the
particular XI{
Y
Increment resources
Ay + 4o A4
Y

Resources within

constraints?

no

Record best values of fx (Aj) and
the x (Aj) that yields this value

Y
Increment stage index
K+1 X

no

K = N7 |—

yes

stop
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2.3.3.2 Stability and Sensitivity

It was previously noted that the Dynamic Programming approach solves
a family of problems rather than a specific problem. Although this may
appear to be wasteful at first, a closer evaluation would point out some
definite advantages of this type of solution. The construction of mathe-
matical models to represent physical phenomenon frequently involve
approximations and uncertainties and hence the parameters of the models are
not exactly known. It is, therefore, desirable to conduct studies for a
variety of parameter values in order to determine the sensitivity of the
results to these parameter changes. The uncertainties of the solution can
then be evaluated. These solutions are in effect families of solutions
and are obtained from Dynamic Programming applications, in many cases with-
out extra effort beyond that required for a specific problem.

A precautionary note on the approximation of functions is in order
at this point because of stability considerations. A very popular techni-
que in many analyses involves the approximations of discrete functions by
continuous functions or vice versa depending on the demands of the
analytical tools being used. In many cases, such approximations are per-
fectly valid and the results are acceptable. In other cases, care must be
taken to insure that the small differences between the actual function and
its approximation do not introduce unacceptable variations in the solution.
In general there are no stability theories available for Dynamic Programming
and one must experiment with a particular problem to determine its peculiar-
ities.
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2.4 LIMITING PROCESS IN DYNAMIC PROGRAMMING

The previous sections have delt exclusively with the computational
aspects of Dynamic Programming and have shown how the Principle of Optima-
lity can be used to systematize the search procedure for finding an optimal
decision sequence. As mentioned in Section 2.1, Dynamic Programming is
also a valuable theoretical tool in that it can be used to develop additional
properties of the optimal decision sequence. For example, it is well known
that the optimal solution for the problem of Lagrange (Section 2.2.2) must
satisfy the Euler-Lagrange equation. This differential equation, as well
as other conditions resulting from either an application of the classical
Calculus of Variations or the Pontryagin Maximum Principle, can also be
developed through Dynamic Programming.

To develop these additional properties, the multi-stage decision
process must be considered in the limit as the separation between neigh-
boring states and decisions go to zero (i.e., as the process becomes continuous).

That is, the problem is first discretized and a finite number of states and

decisions considered just as in the computational approach of the previous
sections. The Principle of Optimality is then used to develop a recursive
equation by which the numerical values of the optimal decision sequence
are computed. (This equation was not given an explicit statement in the
previous sections since it was reasonably obvious there how the Principle
of Optimality was to be used in the search process.) By considering the
discretized process in the limit (i.e., allowing it to become a continuocus
process again), the recursive equation which governs the search procedure
in the discrete case becomes a first-order, partial differential equation.
From this partial differential equation, many additional properties of the
optimal decision sequence can be developed.

It should be mentioned that in some cases the limiting process outlined
does not exist and the passage to the limit leads to an erroneous result.
While this situation does occur in physically meaningful problems and, there-
fore, cannot be classed as pathological, it occurs infrequently enough as
to cause little concern. Some examples of this phenomenon will be given
later on.

2.4.1 Recursive Equation for the Problem of Lagrange

Consider the one-dimensional Lagrange problem of minimizing the
integral

s ¥
J = f flx, ¥s 7,) dx (2.4.1)
X fo
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Let the lower limit of integration (X,, }4,) be the point (0, 0) and the
upper limit be the point (/0,/70) . As illustrated in the graph to the
right, the problem consists of ,o’f _________

selecting from all curves (x)
connecting the points (0,0) ‘and
(104 /0) , that one curve for
which the integral J in Eq. (2.k4.1)
is a minimum.

0 *
Sketch (2.'4.15)
Consider the discrete form of the problem with the integral in Eq.

(2.4.1) replaced by the summation

9
{
J = a
lzw: F(zé' L] %(K") ’ %I(Z‘))Ax /0 t0,10)
and with the grid selected, as ]
shown to the right, so that y
Ax=/ . Now, let R(X,,4,) = R(0,0)
denote the minimum value of the ¥
summation in (2.4.2); that is 2
2 10 x

4 ¢ 8
Sketch (2.4.2)

9
R(xyy g ) =R(0,0) = Mm D] Fly;, glx), 4 )ax (2.4.2)
éi=0
The arguments of R, x, and A indicate the starting point of the curve
which is the point (0,0) . 8Since the minimization is achieved by selecting

the appropriate slope 4’ at each state of the process (that is, the decision
variable is the slope ¢’), Eq. (2.4.2) is sometimes written

4
R (x4 4,) = R(0,0) =/1:{UZ Fla, s gtxo, y ) 8x (2.1.3)
L=0

Let 4 denote the slope on the section of the curve from X, to
X {%=2 +ax} . Theny, =y(¥%,) is given by

g(x) = b *;(,’Ax (2.k4.4)
with

£ = X o+ Ay (2.4.5)
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Using this notation, Eq. (2.4.3) can be rewritten as

R (x4 %) M/u{{»(x”%’ , 4 YA +E Floag, gle), g’ (,_«‘))AxZ(z L.6)

Let P(z,, ,) be the minimum value of the summatlonz f(Z, ’ (Z ), / (Z ))A,Z
where the arguments X, and ¢ again denote the startlng /p01nt of the

curve. Thus
Xy Yp

R(x,, y) A//NZ Fle; s glz:), g2 )ax = Mm:/ Fle, g, ytde . (247

I, 74

Note from the grid size in Sketch (2.4.2) and Egs. (2.4.4) to (2.4.5) that

¥,=/ { x=%+4x=0+/} but that 4 can take any value from 6 to /0. Suppose
the optimal curve connecting the points (x,,,,) and (xf,;({) has been cal-
culated and the function R (x,,y) evaluated Tor x,=/ and 4 =0,/,2,...,/0. Then,
using the Principle of Optimality and the grid (which 1s partially shown
to the right) allows the optimal %
solution to the original problem 2o
(namely the value of R(xg, y,)
to be located. 20

R(1,3)

Again letting o

= e
} 7 % # f, dx 1'¢1,1,0) AX R(1,0)
and ° 10 20

Rx,q)= RA(% s o »gd 4x) Sketch (2.4.3)

it follows thatE(x‘,,y)ls given by }
/ Ax)

Rltorg = 10 { Sy o+ ROG 1.7 5

That is, the slope, at the point (¥%,,4) would be selected so that the

sum of the two terms f(x,, 44 4/ )ax + R(x, s4) is & minimum where g =y ry’ax.
This is exactly the computational procedure which was followed in the example
problems of the preceding sections.

(2.4.8)

Equation (2.4.8) can be developed directly from Eq. (2.4.6) by noting
that the operation MM nmeans the minimization is to be performed over all
slopes 7; with ¢ running from O to ¢. Thus,

Mmw = Mw
’ yl‘. (‘.‘0’9)
Now, substituting this expression into (2.4.6) prov1des

R (%4 4,) = M ;f{101 for #574% *Z Tl yex)y g2 )Ax)  (2.4.9)

ll' (130,9)

=M s Mus {/’(z, ' fo s %')Ax + E ;F(x‘.,,«(z‘.-),/’(%.))dz
* 7.’ (£=49) =t
‘ ,
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But

%’?ﬁwm Py or ') ax = P, o1 474X (2.k4.10)

since the function on which the Mias operator is operating is not depended
onz.’([= /,9) . Also, from the deflnltlon of »Q(x,,;/) given in (2.4.7)

R(x,. (/) = .44//./ T f(r ! g2 ) AX (2.4.11)

Yy les /9) s 2

where 4t */,’AX
Thus, substituting (2.4.10) and 2.4.11) into (2.4.9) provides the desired
result

(X, 4,0 = AZW{/’(Z”%,y) X+ R(x,, 4 f/aA,K)} (2.k.12)

Ao I =] 4:n Tha amrhascden A +haeat +Fhdo amiatrdiAan o o+ -n'l-n- +hha mathamaodd Anl
hE’,G\.J.ll, LU LD v UC Clilpiias . oo uua.u LllLO CLiU.G LIl 1o DJ. 1LY LT {HavliTida L iUl
statement for the search procedure as suggested by the Principle of Optimality.

To develop the solution of the problem using Eq. (2.4.12), the values
of /?(x,,y){y % } must be calculated. However, these quantities can
be calculated in prec1sely the same manner as /Q(z,,%) ; that is, ,@(x/,%)
must, according to the Principle of Optimality, satisfy a recursive equation
of the form

Rz, 4) =Mw{;"/z 27 ) R, , ,,ry’.d)é)} (2.4.13)
7[/

and similarly, for all points (1.,5(,) in the grid,
/Q(z‘.,%-) M/u{f(l v His 4 )+ R(x X s Bo " 4o 4}:)} (2.4.14)

Thus Eq. (2.4.14) repr€sents a computation algorithm for finding the optimal
decision sequence. Note that all curves must terminate at the point (x ,{) 5
the upper limit of integration, which for the particular problem here 1s
the point (/0,/0) . This condition can bezezq}{ressed mathematically as

£ 0

R(%, s 4,) =Rlx., 4.) = Mus Flr, gy, g')dx =0 (2.h.15)
¥ s ¥p

 2.4.2 Recursive Equation in Limiting Form

In this section the recursive equation of (2.4%.14) will be considered
in the limit as Ax+0 . It will be shown that under certain relatively
unrestrictive assumptions, the limiting form of this equation becomes a
first-order, partial differential equation.
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Again, the problem under'cons}deration is that of minimizing the integral
1 %

J =f Flrs gy, 4% (2.4.16)

. 3 fo
as in the preceding section, let E{z;,,,)denote the minimum value of this
integral. Thus %o 4 ' '

.BKZ‘,,“) = wa f(l,;( s y)dx
. %03 4
or alternately }z‘}, 4r
R(x,, %,) = A,;//uf [‘(x,,,/’) dx (2.4%.17)
xo’

where the g’ under the My symbol denotes the value of the decision variable
4’ on the dnterval(x,<x ;‘.xf); that is

7,=:7I(§) ; X £ 5 £ fo (2.4.18)

Now, note that R(X, ¢ ) is simply a number; namely, the minimum value of
integral J , with the arguments (x,, ;(o) denoting the point at which the
integration begins.

Proceeding as in the discrete case, let R(x, ) denote the minimum
value of the same integral but with the integration beginning at the point

(7"5() : that is %y 4
R (x, ;1) = M/uf f(z,y,/')dx i ¢ ={y’(§); R X- zf}(E.h.19)
¢OoRE

Again, R is simply a number but a number which changes in value as the
initial point of integration (the argument of R ) changes. Now

ey Yy Xrax, yrof l:r;,.?. )d
Flayyogom = [ Fepoy)ox Sivadrgraf P
X, 4 ¥ s 2 (2.4.20)

= Flz, g, yIax +OG ) [ Flx, g, glax
whereO(AX) denotes terms of brder Ax ; that is,X79%¥ ¥ 74¥
oax) = O
ax+0 AX
Substituting (2.4.20) into (2.4.19) provides

v i
Rix,y) =M ’ /'/x,,,,’) ax+O0Bbx) +f f(x,y, y’)dz!
f’ Xiax, ytay
g
i y;!’I(Mf,) 74(4' ) ; /‘/x”’ fl)ax* 0lax) +_£‘f(7‘s ¥ f') Ix
(s §éxrax) (xeoxt £%x) %, pray
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Now, noting that the second Min operator on the right does not operate
on flx,4,4’)ax, it follows that

Rixy y) = Mw ;"(z,y,y')ax #000x) *R(Xrax, ytray)y (2.4.21)

(X2 §£4xax)
This equation is essentially the same as the recursive relationship of

Eq. (2.4.14). However, it can be reduced to a simpler form under the
assumption that the second derivatives of »Q(z,y) are bounded; that is

%R

212 < oo

IR

_— < 0

3fl

2R (2.4.22)
< ®

x 47;'(

This assumption allows for the expansion
Rlx+aox tay) = Rlx )+2'—QAx+z€A +0(4x)
» ¢ ’7,Q dx g 7
- 7= — ydx +0(Ax) 2.4,2
=R(xyy)r o AXt L g AX 4 ( 3)
since 4y =%21x . Substituting (2.4.23) into (2.4.21), yields

/?(x,f) = /1/4;4}/,)

R e
{‘(z,y, /’)A/Z * P(z,}) * 274;: * 57,4: fO/dz);.'
(24§ € xrdx)

Noting that the My operator does not operate on R (X,é() and factoring
out AX, this expression becomes

-—

a

M ;‘(L,y’%')ﬁ—g *E%,.ﬁ O(AX, }

;(/},’) X ﬁy 4x
€5 xrax)

Finally, taking the limit as 4x — O provides the desired result

R A
)/t/;g{f(l,y,/’)-/- 5—*— -4 }—O (2.4.24)

Equation (2.4.24) is the continuous analog of the recursive computational
algorithm of Eq. (2.4.14). Since it is a first-order (non-classical) partial
differential equation, one boundary condition must be specified. This
boundary condition is the same as that which was applied in the discrete
case; namely,

X #r
’?(z,m %‘.) =/1//.uf F(x,i, y’)d}f =0 (2.4.25)
¥ oy
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The combined solution of (2.4.24) and (2.k4.25) yieldsP(x,y) which is the
minimum value of the integral starting at the point (x,g). Evaluating R
at the point (z.,y,) provides the solution to the problem.

Two questions arise at this point. First, how are Egs. (2.2.24) ana
(2.4.25) solved; and secondly, once the function R(x,y) is known, how is
the optimal curve ¢(x) determined? Both questions arz interrelated and
can be ansvered by putting the partial differential equation in (2.4.2k)
in a more usable form.

Note that the minimization in Eq. (2.4.24) is a problem in maxima -
minima theory: that is, the slope g’(x)is to be selected so that the quantity

flx,y,y’)f;’;f £ 4 is a minimum. Assuming that f is differentiable and
noting that 2’ does not depend on é(' , it follows that

. { iRk AR
/ 7('(1, ,i’)"_* - /}-—-0
or ay 7 ax ﬁf ?
ar ar
t* — =0 (2.14.26)

oy’ Iy

Thus, Eg. (2.4.24) is equivalent to the two equations

, R R,
7(’(1, y, 7 )+ 3_X_‘ + -a—i- f =0
ar e
a—/ * 7. = 0 (2.4.27)

which, when combined, lead to a classical partial differential equation in
the independent variables X and {71 is eliminated by Eq. (2.&.26)} and
the dependent variable )?(x, ) . This equation can be solved either ana-
lytically or numerically, and then BEq. (2.4.26) used to determine the
optimal decision sequence }/'(x) for (x,éxﬁxf).

2.4.3 An Example Problem

The problem of minimizing the integral

¥
J = ’F(x’flof'/d%
zn,o
has been shown to be equivalent to solving the partial differential equations
R IR
Flx P+ —t —y’'=0 (2.4.28)
*#0 Y Jx Iy 4
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where 7' is determined from

7
ad L’y (2.4.29)

Qy' %y
and with the boundary condition.

/Q(z;,,%r ) =0 (2.4.30)

To illustrate this equivalence, consider the shortest distance problem
treated in Section 2.2.2.1 where

flx, 4 y') = /eyt (2.4.31)

In this case, Egs. (2.4.28) and (2.4.29) become

7
By straight-forward substitution, it can g; verified that the function
satisfying these equations and the boundary condition of (2.%4.30) is given

by

Rx,4) = Vix-z,)? g4 )2 (2.4.32)
with
g’ = 4 (2.4.33)
IR
At the initial point
, _fr p )
£'(%) 2 - %, (2.4.34)

while at the succeeding point along the solution,
¥ =x *dx
A

VL N LB T el

=y '(z)
Y X K X -Jdx 4

]

y?i)

In a similar fashion, it can be shown that for each succeeding point along
the optimal solution emanating frmn(jL,,?J}

Z2) =y'l2,)
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thus, verifying that the solution is a straight line with slope given by
Eq. (2.4.34),

2.4.4 Additional Properties of the Optimal Solution

The solution to the problem of minimizing the integral

% be
= 2.4,
J [ Fx, 4,510 (2-4.35)
) Yo .

is usually developed by means of the Calculus of Variations with the
development consisting of the establishment of certain necessary conditions
which the optimal solution must satisfy. 1In this section, it will be shown
that four of these necessary conditions resulting from an application of
the Calculus of Variations can also be derived through Dynamic Programming.

In the previous sections it was shown that the function F?(x,7)<iefined

Rixyy) =M/5vf Fle, gy, y?)ax (2.4.36)
7 xy ’
satisfies the partial differential equation
R IR
M { fix, Yt ——+ —y’ } = 0 (2.4.37)
’,,‘;’,g 777 ox 2y /

Setting the first derivative with respect to ?’ to zero in this equation
provides the additional condition
ar IR
-+ —— = 0 (2.4.38)
4 ¥
Also, if y’ is to minimize the bracketed quantity in (2.4.37), then the
second derivative of this quantity with respect to y’ must be greater than
or equal to zero. Hence the condition,
2
ar
2;/2
nust be satisfied along the optimal solution. This condition is referred
to as the Legendre condition in the Calculus of Variations.

=N, (2.4.39)

A slightly stronger condition tham that in (2;h.39) can be developed
by letting 5(,”, denote the optimal solution and Y’ denote any other
solution. Then from (2.4.37)

. oR . aR _
f(z,y,;(,,,)*az * ax 70;{ = 0

)4 IR
£ ‘) o e - /o
(z,y,Y) > 5 z 0
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Now, combining these two expressions provides
. R
f(,z,;,,)’) f‘(x,y,%,#)f-%lf %Ptf 7 20  (2.4.40)

But from Equation (2.4.38)

. ay P a
Thus, substituting this equation into (2.4.40), yields the Welerstrass
condition of the Calculus of Variations.

P,y V- Flayy, ) - (Yt ,«,pt) (z,;/,/,pl) (2.4.41)

When the slope t/' in (2.4.37) is computed according to the optimiz-
ing condition of {2.4.38) it follows that
V"4 ar
Flx Jr o=t — gy’ =0 '
' 70 ¥ Py 9;‘ f (2.4.42)
Note that y’as developed from (2.4.38) will be a functlon of X and %
At points (%, 4) for which (X,4fis differentiable, (1.e., 2 ana
exist). BEgs. (2.4.42) and 2.4.38) can be combined to ylefé a thif nec-
essary condition. Taking the total derivative of (2.4.38) with respect
. to X and the partial derivative of (2.4.42) with respect to 4 yields
g(af')+ IR, IR, 5
ox\ay) oy~ 3yt d
3;‘" aF ¢’ 2 2
+—F—Z+ a£+a/@/,fg£g‘a_
ay iy’ Iy Iz 3y 372 2} 2;
Subtracting and meking use of (2.4.38) provides

rd

of af
—(~) -— =0 (2.4.43a)
dx 3, ﬁy
which is the Euler-Lagrange equation, an equation which must be satisfied
at points (x,y) where ¢’ is differentiable. Across discontinuities in ¢’ ,

the required derivatives do not exist, and (2.4.43A) does not hold. However,
at such points Q(x.y) is continuous and so is -35- accordlng to -the original
assumptions of (2.4.22). Thus, from Eq. (2.L4. 8) r , is also continuous
and the Weierstrass- Erd.ma.n corner condltlon

,f” 7/0)): .a;_; (X, y, y’(") (2.4.43B)

nmust hold.
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Collecting the results of this section, the curve 360'#hich minimizes

the integral ¥y g,
1 ¥r
J=f )p(x,}/,j/}dx

Xor ¥o
must satisfy

(1) Euwler-Lagrange Egquation

i( 9"“)_ #_ 0 (2.4.1kA)
dx\ oy’ 3#
(2) Weierstrass-Erdman Corner Condition

af af

(y 4, g™) = (X,4, y"") (2.4.44B)

2?,
(3) Weierstrass Condition
f‘(x,}/9 Y’) - {’(x, y,f')_ (Y’_y,) z_r, (x,?,?l) =0 ‘:2‘)_!_.)_‘_)_“0)
(4) Legendre Condition ?
a%F

;;’_2 ()-”‘%/') zZ0 (2.4.44D)

9,’

In addition to these four conditions, a fifth necessary condition,
the classical Jacobi condition, can also be developed by means of Dynamic
Programming. Since this condition is rather difficult to apply and fre-
quently does not hold in optimal control problems, it will not be developed
here. The interested reader should consult Reference (2.&.1), page 103.

2.4.5 Lagrange Problem with Variable End Points

In the preceeding sections the problem of minimizing the integral

z,.,”,
J=f f{x,y,yz)a’x
zc,f.

was considered where the limits of integration,(xo,ﬁg)and (x;,4,) were fi.ed.
In this section a minor variation on this problem will be considered in
which the upper limit of integration is not fixed precisely, but is required
to lie in the curve

y(x,y) = ?(’—’;’/f)’o (2.4.454)
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2%, p=o

The situation is pictured to
the right. Note that the
minimization of the integral .
involves both the selection of
the optimael curve yrx) and
the optimal terminal point
(%, Y, ) aloig the 1f:luvae

x =0. s in the fixed
gr(xd'fagﬁzat case, let (%2 50) N
Sketeh (2.4.4)

Q(z,}/)=M/,uf fll’f’f’)a'x
# Try
where the terminal point (x,, ¥, )} lies on the curve of Eq. (2.4.454).
Following the procedure of Section (2.4.2), it can again be shown that R(x,y)
satisfies the partial differential equation

IR a,@y,z

(2.4.458B)

s —

M/ugf(x,;(,i’)*‘ax B,

y’(z)

However, the boundary condition on AR is slightly different in this case.

Since /P(x, ) is the minimum value of the integral starting from the
point (x,4) and terminating on the curve g(Xx, 5/)=0, it follows that R(x,s()
is zero for any (175/) satisfying Z(X 5{)=0 ; that is, the value of the
integral is zero since both limits of integration are the same. Hence, the
boundary condition for Eq. (2.4.45B) is

E(x,y) =0 ow ?(x,;)=0 (2.k.46)

This condition can be put in an alternate form if the equation_f(,z,yho
can be solved foryg[_ e, i.’i # 0! . In this case
4

glr,y)=0&=> y-A4x) =0 (2.4.47)
and Eq. (2.4.46) becomes
/Q(x,‘y) =0 ov 4 = A(x) (2.4.48)
or
Rlx, #cz)) = O (2.4.49)
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Alternately, for two neighboring points along the curve /= Z Cx)

say x and x +§x

R(x+8x; Alx+ Sx)) ~R(x, Atx)) = 0 = ,Q(z,«é‘x,yfa”;) —Q(z;f)

where

Thus, dividing by

But from (2.4.47)

oA

8"-‘-;;6%

o0X and taking the 1limit provides

f£+ a_Qd =0:= 9'——Q+ J—QC/—J
ox ‘a; dx ox J/ dx
%2
dy _ It _ 3%
dx Ix 3
%

3

3

(2.4.50)



Hence, the boundary condition

4
o IR | ax
— e |—1 =0 e (x,4) =0 2.4,
x|\ % NN (2.4.51)
%
results. Setting e [ 22 = 4 and substituting into (2.%4.51) provides
J, iy Y
9_ /4 :iz =0
X ax .
R 92 0 ons y(x,;);-o (2.4.52)
o ik

which indicates that the gradient of E(x,é/) and the gradient of FIEH%)
are co-linear along the curve ;(x, }/) =0

Egs. (2.4.46), (2.4.49), (2.4.51) and (2.4.52) are different but
equivalent representations of the boundary condition that the /2 function
must satisfy when the terminal point is required to lie on the curve

(Xyy)=0 . From this boundary condition the transversality condition
which the Calculus of Variations requires can be derived. This is shown
next.

From Eq. (2.4.45B) it follows t1_1at the optimal slope must satisfy

ad + R 0 (2.4.53)
3,' c?f

at all points (x,y4) including the terminal point. Using this equation,
Eq. (2.4.45B) becomes

IR R
Y LY St ;;/= o (2.4.54)

and must also hold at every point including the terminal point. Combining
Bgs. (2.4.51), (2.4.53) and (2.4.54) provides

’ / a_f‘ _Jz e
on ; (x, /) =0
aFf ?2 (2.4.55)
3;(' Jf
which is the transversality condition which the optimal solution must satisfy;

that is, Eq. (2.4.55) specifies which of the points along ?(x,é()=0 is the
point for which the integral J is a minimum.
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2.4.6 N-Dimensional Legrange Problem

The concepts of Sections (2.%.1) to (2.4.5) which have been developed
in connection with minimizing the integral

Xrs Y
J“/f(z,y,y’)a’;&
Yoo

where y is a scalar (l-dimensional) variable, can be extended to the case
in which y 1is an n dimensional vector

_ 7_; (2.4.56)
7\
and the integral to be minimized is ’
x.r, ;,y,’,yz‘_, -+ Ynp
J ff(z,y y)dx ff‘(x, }‘,,}’z---f,,;%l,y;,---;;(,.')dx (2.4.57)
Z.,;. 47’:,)7,:05-"’}7

Again, let R satisfy the equation
gain, X54) y q Yy 4y

Rk, y) = Rlx, 4y 4y rth) = M/,uff(y,, ) 4% (2.4.58)

Then, following a procedure identical to that employed in Bgs. (2.4.20) to
(2.4.24) but with the scalar replaced by the vector as indicated in
Eq. (2.4.56), it can be shown’that Rix,y) satisfies the’equation

M//u{f(x,;/,,yz,...,}/”,y/’,/l’,. ,;/” Z }0(2459)

4
or in the vector notation ,
IR IR
o {10, g, )0 22 o(28) g |- x
//;/{ (1,7,7 Py » Y 0 (2.4.60)
¢
where superscript T denotes the transpose and gf and 9;’ are the vectors
g@
4 [ 9, (2.4.61)
7 _ 7; . 3_2 _ ig
?/ ’ ? 3{‘,’ = 3.,2
4 72
3’,
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The boundary condition to be satisfied by ;Q(x.,éz) will in all cases
take the form

R (%, o )=0 (2.4.624)

whether the point (x;,y) is fixed or allowed to vary on some surface in
the (x,¢) space. In tfle latter case, however, Eq. (2.4.62A) has several
alternate representations similar to those developed for the l-dimensional
problem ‘e.g. Egs. (2.4%.46) to (2.4.52) . For example, if the terminal
point (x_r ,yf) is required to lie in the surface specified by the m con-
straint equations

f,(i,;()
Glx,y) =(7‘”f’f') =0: m<nsl (2.4.628B)
3m (‘X,f) ’

the boundary condition of- 2 as given in (2.4.62A) can also be written as

Rlx,4)=0 ow Glx,y)=0 =>,‘ﬂ.(x,,)=o;¢=/,m,’ (2.4.638)

or analogous to Eq. (2.4.52), as

R, (aa) IR N~ d
r _ =l=0=—- 2 =0 Xy y)
ox ““ \ox ox Y ‘?(z,#)
on G lxg) = % By | =0
" :

R_um 8 0B W0 L
9y, Ix % 7y (2.4.63B)
where /L( is the » dimensional vector

A

He (2.4.64)

w=l

Thus, by combining (2.4.63B) with (2.4.60) and using the optimization con-
dition inherent in (2.4.60), that

f 7 )
__9/+_Q=O , =1y » (2.4.65)
the transversality conditions of the Calculus of Variations, corresponding
to the terminal constraints of Eq. (2.4.62B), can be developed. These
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conditions, which are essentially the 7 dimensional equivalent of the one=~

dimensional transversality condition of Eq. (2.4.55), take the form

n ”

aF 9q . :

£ - ! + R £ (x

,z,: # oy Z}/{“ Ix ?’( ’i)) 4.66

I e Te

ow | B2F¥ | =0 - 2 )

af - g ' :
—'—; + Z - 7 ‘—‘L = O "(1-’, /
3%. J=/ /(.’ ;/L' f %

One final remark regarding the n-~dimensional Lagrange problem is
appropriate. In Section (2.4.4) it was shown that in the l-dimensional prob-
lem, the partial differential equation governing the function R could
be used to develop some of the necessary conditions usually developed by
means of the Calculus of Variations. The same thing can be done in the
n-dimensional case. The vector form of the necessary conditions in the case
which corresponds to Egs. (2.4.44A) to 2.4.44D), is as follows:

(1) EBuler-Legrange Equations

o’( c?f') aF ,
—_— —_—) - = . :/ .
92\ 77 7% O ; =/, 72 (2.4.674)
(2) Weierstrass-Erdman Corner Condition
ﬁ( /(H} — a_f,( 7¢-] .
3;(" X, }/, ¥ = 3‘- Z,y’y ') ; (5 (2.4.67B)

(3) Weierstrass Condition .
Fx Y) - Ffix )2 (Y'-y) iy ) 20 (2.4.67C)
1 F s ¥ ¥ < ;T4 J/l ]{,i,;/ Z 4.

7

where , }f
Y ;l' Y'
y = Zz Y: :2
\% Y/
(k) Legendre-Condition n
?”r o 2%
2%,2 ’ J;_Iaﬁ' RERE 2m (2.4.67D)
% :
| =0
32’(‘ ?2/‘ JZ_F
a %/ J%l 2 9%/ 3/‘, | IR ai,‘l 2
a*r

That is, the matrix 202 must be positive semi-definite.
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2.4.7. Discussion of the Problem of lagrange

In the preceeding five sections, it has been shown that the computational
algorithm inherent in the Principle of Optimality is, under certain relatively
unrestrictive assumptions [see Eq. (2.4.22], equivalent to a first-order,
partial differential equation. This partial equation goes by a variety
of names, one of which is the "Bellman" equation. The solution to the
original problem of minimizing an integral is easily generated once the
solution to the Bellman equation is known. It is to be emphasized that
the source of this equation is the computational algorithm, that is, the
equation is simply the limiting statement for how the computation is to be
carried out.

It is a relatively rare case in which the Bellman equation can be solved
in closed form, and the optimal solution to the problem developed analytically.
In most cases, however, numerical procedures must be employed. The first
of two available procedures consists of discretizing the problem and repre=-
senting the partial differential equation as a set of recursive algebraic
equations. This approach is just the reverse of the limiting procedure
carried out in Section (2.4.2) where the recursive equation (2.4.15) was
shown to be equivalent to the partial equation of (2.4.24). Hence, in this
technique the continuous equation (2.4.24) is approximated by the discrete
set in (2.4.15) and the solution to (2.4.15) is generated by using the same
search techniques that were used in the sample problems of Section (2.2) and
(2.3). Thus, the computational process implicit in Dynamic Programming is
simply a method for solving a first~order, partial differential equation,

A second procedure for generating a numerical solution for the Bellman
equation consists of integrating a set of ordinary differential equations
which corresponds te the characteristic directions associated with the
partial differential equa..on. For example, the solution to the partial
equation

2 ( * s
x 7 Fop! 7 Zz (234) =0 (2.4.68)

for 5(;(.,51) with the boundary condition

S(%,4)=Cclx,,y) o {(xa,ﬁpo (2.4.69)

involves the introduction of the variable t where
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¥
R Ay L

» (2.4.70)
(%)
Substituting (2.4.70) into (2..L.68) provides
S dx as E’Z _ ds _
o by ot b 0 (2.4.71)

Hence, along the characteristic directions in Eq. (2.4.70), which emanate from
points (%, , 4, ) satisfyingﬁ(zo,;!a)=0, S(xay) =0(2% ,4% )e This
fact is derived from Eq. (2.4.69) and (2.4.,71)., Therefore, integrdtion of
Egs. (2.4.70) for all ( %, , ¢4,) for which % ( z,, ) = 0 yields the solu-
tions s (,z,;f) to Eq. (2.4,68), If, in addition, “x is monotonic and

0

g,( Ly ) # » the characteristic direction in (2.4.70) can be represented
more simply by

dy 9, (%, )
j:é B ;Llﬁ,'% (2.4.72)

A similar procedure to that outlined in the preceding paragraph can be
used to solve the Bellman Equation, which for the l-dimensional Lagrange
problem is equivalent to the two equations

R a
/‘(z,i/,,q’ﬁ j? * 2—'Qy’=0 (2.4.73)

d

of , R

93’ a;
The characteristics for this set of nonlinear equations are somewhat more
difficult to develop than those for the linear example in Eq. (2.4.68).

However, by referring to any standard text on partial differential equations
see for example, Ref. (2.4.2), pages 61 to 66 it can be shown that the

= 0 (2.4.74)
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characteristics associated with Egs. (2.4.73) and (2.4.74) are

oy ¥ (2.4.75)
R

oy lx, g, 5) (2.4.76)
E(L@.):——aﬁ (2.4.77)
dx \ Ix ox o
1( Z’E) -2

Iz a# 9?/ (2.4.78)

The meaning of the first two equations is obvious. They are simply a restatement
of the definitions of 4’ and R(x,y). The last equation, when coupled
with Eq. (2.4.74), reduced to the Euler=lagrange equation

ALSRE

Equation (2.4.77) is also equivalent to the Fuler-Lagrange equation. This
equivalence can be shown by differentiating (2.4.73) with respect to x

and using (2.4.7L). Thus, the characteristic directions associated with
the Bellman equation are determined by solving the Euler-=Lagrange equation.
Since the value of R at the point (Za,ya ) .and the associated curve y (x)
(i.e., the curve emanting from the point (x,,¢, )) is of primary interest,
it is only necessary to solve for one characteristic; namely, that one
starting at ( Z;,#b). Thus, the solution to the problem of minimizing the
integral

(2.4.79)

x£s e
J =f f/x,;(,éz’)a’,t (2.4.80)

Lﬂ’ ’l

can be achieved by integrating Eq. (2.4.79) to determine the optimum curve
y(x), and then substituting this value back into (2.4.80) to evaluate J.

This is the normal procedure and is followed in the Calculus of Variations.

It should be mentioned that the solution to the Euler-Lagrange equation
cannot be accomplished directly due to the two-=point boundary nature of the
problem (i.e., curve y(x) must connect the two points ( x,,¢, ) and ()&, 2 )
while the determination of this curve by numerical integration of Eqg. (5,4‘79)
requires a knowledge of the slope y'ﬂxo) . Hence, it may be more

80



efficient to develop the solution by means of the first numerical technique
of discretizing the problem and solving a set of recursive algebraic
equations.

From this discussion, it is seen that the Bellman equation of Dynamic Programming
and the Euler-Lagrange equation of the Calculus of Variations are equivalent
approaches to the problem of Lagrange and that the equivalence exists on

both the theoretical and computational levels, The other necessary conditions
(e.g., Weierstrass, Legendre, etc.), generally enter the optimization problem

in a less direct manner, in that once a solution has been developed, they

serve to test if the solution is indeed minimizing. The fact that these
conditions can be developed from the Bellman Equation lends a degree of
completeness to the area of optimization theory.
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2.4.8 The Problem of Bolza

The preceding sections have delt with the Dynamic Programming formulation
of the problem of Lagrange, In this section the Bolza Problem will be
considered, since optimal trajectory and control problems are usually cast
.in this form. The Bellman equation for this case will be -developed and
some solutions presented. Also, some comparisons and parallels will be
drawn between the Dynamic Programming approach and the Pontryagin Maximum
Principle (Ref. 2.4.3).

The problem of Bolza is usually stated in the following form: given
the dynamical system

Z’l- = {/z, U) ; L=/ 0 (R.4.814)
or in the vector notation
2=z, u) (2.4.81B)

where the state x is a n-dimensional vector,

4
Z,

X =\ (2.4.82)
Xn

and the control u is a r-dimensional vector,
U=\ - (2.4.83)

which is required to lie in some closed set U in the r-dimensional control
space; determine the control history u(t) for which the functional

1
;
J =f ,g(x,U)dé +¢(x/"£f) =  minimum (2.4.84)
4
is minimized subject to the terminal constraints

3‘;(1’,{[) =0 ar {£=1¢ ;y=/,/)r (2.4.85)
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where the final time tf may or may not be specified. The initial state is
assumed specified with

° ar  {=¢,

(2.4.86)

If ¢lxpyt,) is zero in Eq. (2.4.84) the Problem of Bolza reduces to the
problem of Lagrange. If k(x,u) is zero the Mayer problem results. The

type of physical situation which is implied by such a problem is illustrated
in the following two examples.

Example (1) - Simple Guidance Problem

Consider the problem of maneuvering a T= T
rocket over a flat, airless earth ?
which was treated in Section
(2.2.2.3). The equation of motion in
+hlo Aanca harAmao ]
Lillo Caott vocuLullco 174
W A
7/
"¢
X
Sketch (2.4.5)
.. 7. V7
X = MAax coo az (2.14..87)
V4
. Inax U
. f .
= —— aru, - (2.4.88)
4 n 2 7
. 7w
»”w=- ALA X /
v (2.4.89)

where x and y represent the horizontal and vertical position, m the
mass, V the exhaust velocity (a constant), and u; and u, are control
variables denoting the throttle setting and steering angle. Since the
thrust varies between zero and some maximum value, T __, the throttle
setting u must satisfy the inequality max

O <€w </ (2.4.90)

()
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The initial position, velocity and mass are specified by

X = x
z = Z,

;T £=4 (2.4.908)
T #

LA

and at the terminal point, the position vector and the velocity magnitude
are specified by

x = x,
f =
Y 4 (2.4.91)

where the final time itself, t_, is not specified. The problem is to determine
the control u, and u_ such tha€ the fuel expended during the maneuver is a
minimum, Since the Buel is equal to the difference between the initial

and terminal values for the mass, and since m, is specified, minimizing

the fuel is equivalent to minimizing the negative value of the final mass

with

@ = -, = minimm (2.4.92)

To put this problem in the Bolza format of Egs. (2.4.81) to (2..4.86)
define the new variables X15 X5, X35 xh, and x5 by

X, = ¥
Xy = %
X, = v
X, = m

The state equations then beome

s rou
7? Zs X, = = auw uy —3
¥, =z, X5

(2.4.93)
. 7;“,, « } x —_  May ,
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with the initial condition

X,o
x = 2‘; =3 %zo
Z
and the terminal condition a
’;ol" = ]{I - Z/. = O
¥ o= Zz—ff=0 ArZ[=l[/.
= 2 z _ =
Y, = % +r ¥ -C 2

The admissible control set U is given by

ue U e===0%u </

4, arbitrary

The optimizing criterion is

J=P(x, b )= -x

r

Note that the integrand in Eq. (2.4.84) (i.e., the function #(x,«)) is

identically zero for this problem,

Example (2) - Attitude Control Problem

Consider the simple single-axis d P

attitude control system represented \
by the equation

Sketch (2.4.6)

16 = FL
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(2.4.954)

(2.4.95B)

(2.4.96)

(2.4.97)



where I is the moment of inertia, F is the jet force and 1 is the
lever arm. Letting

F =u
61
X,-T
=6r
X, ZL
2 2
the state equations become
% =z,
2.4.98A
£, = U ( )

It is assumed, in addition, that the magnitude of the jet force F can vary
from zero to a sufficiently large value so that essentially no constraint
on the contral action need be considered, Hence, the admissible control
set U will be taken as the entire control space. The angular position
and rate are specified initially with

X = X,
° S ar l= é (2.4.99)

X
2 2,

and no terminal constraints are imposed (but, the final time, tf, is specified).
The control action u is to be selected so that the integral

4
J=f (x?-2f +u*) dt = minimum (2.4.100)
{D

This function corresponds physically to keeping a combined measure of both
the fuel and the angular displavement and rate errors as small as possible,

In subsequent sections both the above problem and the simple guidance
problem will be analyzed using Dynamic Programming, Next, however, the
partial differential equation, analogous to the Bellman equation for the
problem of Bolza, will be developed.
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2.4.9 Bellman Equation for the Bolza Problem

In this section a procedure very similar to that in Sections (2.4.1)
and (2.4.2) will be followed. It will be shown, to begin with, that the
Principle of Optimality, when applied to the problem of Bolza, is equivalent
to a set of algebraic recursive equations. Next, it will be shown that
under relatively unrestrictive assumptions, the limiting form of these
recursive equations is a first-order, partial differential eguation,

Let R4, x,) =R, % X, , ..., x, ) denote the minimum value of the
performance index ? ° 4
4
R4, x)=Mn {f %(x,u)o’z"‘ P(x ,a})} (2.4.101)
%
for the solution X(¢) which begins at the point
X,
o
Y,
(-]
X=2 = . (2.4.102)
.z”o
satisfies the differential constraints
X =Ff(x,u) (2.4.103)
and the terminal conditions
¥ (xg,4) =0 55 =/)imecns/ (2.4.104)

and for which the control u (t) lies in the required set U . In other
words, R(¢,,x,) is the minimum value of the performance index for the
problem of Bolza as expressed in the preceding section. Egq. (2.4.106)

is some times written either as

i
R(L, 2, ) =Mmn ;f {(x,u)dz‘fﬂxf,{f)} (2.4.105)
{,

Ty
(4« 74)
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or, as

R, %) =M 3

ur)eU

¢, .
[ Ao, w0t v 4014, 40 (2.4.106)
(2 76¢)

¢

to indicate that the minimization is performed through the selection of fhe
control u and that this control must lie in the set U

To generalize Eq. (2.4.106), let R(t,x{)) denote the minimum value of
the performance index for the solution which starts at the point (t, x(t))

and satisfies the constraint conditions of Egs. (2.4.103) and (2.4.104);
that is,

i
R(¢,x®) =M gf ;g(x,u)df*¢(x{,,if)$
(¢ f(;’fz,) t (2.4.107)

Similarly,

i
/2 +alt . ;z(z.’+d¢‘) =a%’£v 3_[ ﬁ(x,u)dé+¢(xf, éf)} (2.4.108)
({ratsT 48 ) " Leat

where the solution starts at the point (#s4¢, X(¢+at)) and satisfies
constraints (2.4.103) and (2.4.104). Now, the Principle of Optimality states
that if a solution which starts at the point (t, x(t)) is at the point

(t+2¢, x(¢+4¢)) after the first decision £ or the first set of decisions {,

all the remaining decisions must be optimal decisions if the solution itself

is to be optimal, Putting this statement into mathematical form, leads to
the equation

178G X R4
(£ £ T5%¢vad)

R, xt)) = M ’ L (¢+at, x(teat))t .‘k(Z,U)Atg (2.4.109)

Note the similarity between this equation and Eq. (2.4.21) developed for the
problem of Lagrange. Again, it is to be emphasized that Eq. (2.4.109) is

simply a mathematical statement of how the search procedure for the decision
sequence is to be conducted.
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To reduce (2.4.109) to a partial differential equation, one must assume
that all second derivatives of R with respect to t and x are bounded; that

is,
°R o
242
l 2R < oy
6o L = ”
a¢ 3z‘. ¢ ?
20 (2.4.110)
a <L 0o-. [ =
9)& 32% 1 s f

Under this assumption,®@({+af, X(¢+4¢))has the series expansion

R /%
R +at, x (t+at)=R(t,x(t)+ Kfu) dx * fdé +Q(at) (2.4.111)
where T denotes transpose and

: 22

1 i,

¢ R T RE

z,, .

R

ix,

Substituting (2.4.111) into (2.4.109) along with the values for x from
(2.4.108), provides

n

Y 2R 0

Min i(x,u)+§ : — {/z,u)* —t .(Aé) 4t =0 (2.4.112)
aTIeV — dx: ot 4¢

(L5 T5trat) = ¢

In the limit asg A2 - O this expression becomes

(2,4,113)

IR aiz) L
Miv. Vhix ayr — Fx,u)e =Mm_ 1% af( )fx =0
ult)e VU %) o °x; ! ? 3tj ua‘) U (%) (x,u 3t
which is a first~order, partial differential equation and will be referred to
as the Bellman equation for the Problem of Bolza. The boundary condition
which R(t, x(t)) must satisfy, will be considered next.
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Since R(t, x(t) ) is the minimum value of the performance index for the
solution which starts at the point (t, x(t)), it follows that R must
satisfy the terminal condition

R, z(é,))=P(£;.lp)= @ (X, 4) (2.4.114)

However, in addition, the terminal point (tf, b (t )) must satisfy the
terminal constraints

Vlln) =0 ar b=ty j=ihm (2.4.115)

Hence, the boundary condition on R becomes

Rlt,x(d) =@(xtryt) o ¥ (x(z) £)=0 5i</hm  (2.4.116)
4

Anatogous to the development of Fgs. (2.4.63B) from the boundary condition
(2.4.63A) for the problem of Lagrange, the above expression can be reworked
to yield the equivalent condition

R P ”
TR 2L P Y s W (i t)=0 5 il (20.117)
dx; lx; 1 A ox, v
4 (] J [={
where/a is the vector
A,
u = /‘z (2.4.118)
My

If the final time tf is itself not specified, then the additional boundary
condition

< VAl
2% 2¢* Z/(J Y3 (2.4.119)

must hold.

90



Collecting the results of this section, the solution to the problem of

minimizing the performance index

t
J=f f(x,u)dz‘+¢(xp,z.}) = minimum
{0

subject to the boundary conditions

X = X, Aar / =‘é
Vg, 4,)=0 ar ¢4,

and the state equations

Z;=7{‘(Z,U) l.=/...,}?

)

can be generated by solving the partial differential equation

Mins £(Z,a0 IR /Yx,u) + éf?f =0
wlt) €U rx dt

(2.4.120)

for R(t,x(t)) subject to the boundary conditions of Eq. (2.4,116) or Egs.

(2.4.117) and (2,4.119) where Eq. (2.4.119) is to hold only if the final

time tf is not explicitly specified.
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2.4,.,10 Linear Problem with Quadratic Cost

To illustrate the method of solution by means of the Bellman partial
differential equation, consider the following linear problem,

Let the system
state be governed by
D 5
¥, = a. x. * 2.4.,121A
[ j:l [¥) x./ Knl Zk ak ( )

or in the vector notation

x =Alt) x +G(t)u (2.4.121B)

where A is an n x n matrix and G is an n x r matrix. The initial state is
specified, while the terminal state must satisfy the m constraint conditions

n
ZCL':, X, (é/‘)-a:'=0 i (=/ym

S (2.4.1224)
i’tr

which can also be written as
Cro-d =0 at #=4, (2.4.1228)

where C is an m x n constant matrix and d is an m=dimensional constant vector.
The problem is to select the control u so that the integral

&
n r
J =f 5 “ 2z * 2)
4 ([’J"/ ?"J ¢ J Z ?4'0.)' [(‘- aJ) ot
[-]

& =1
¢
£ (2.4.123)
= r r
[ Q" Qu) ot
)
with Q,, a n X n symmetric matrix with elements ¢ and Q, a r x r symmetric

matrix ®with element 32“; . It is required that Q. e a

matrix (i.e., '@, u ~1s always greater than zero %or any control u not equal
to zero). Furthermore, the admissible control set Y is the entire r-dimensional

control space; or in other words, no constraints are imposed on the components

positive, definite
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of the control vector u.

Also, the final time, t;, is expllc:l.tly specified.
Note that the simple attitude controller which was con51dered in Section (2.4.8)
is a special case of the above problem,

Substituting the state expressions of (2.4.121B) into (2.4.120) provides

v V(2R 7 L 2R\ _
a%:lvl(ax)(Ax+Gu}r(x Q,x+arqza) 9&‘] 0

Since the admissible set U/ is the entire control space, the minimization

operation in (2.4.124) is accomplished simply by differentiating with respect
to w . Thus (2.4.,124) is equivalent to the two equations

(2';1,».12&)

(;—f)T(AX*Gu)+ (er,xfuera)+

(2.4.125)

IR\T TO =
(?)2) G+2u” @, =0 (2.4.126)

Using Eq. (2.4.122B), the boundary condition on R as given in Eq. (2.4.117)
reduces to

(g)r=ﬂrc ow Cx-d =0

(2.4.127)
t =4,
where « is the m-dimensional constant vector
Vool
p= |
Ho (2.4.128)
Try as a solution, the function
R = x"S()x+zd)x (2.4.129)
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where S(t) is some n x n symmetric matrix and z(t) is an n vector. By the
appropriate selection of S(t) and z(t), the R function in (2.4.129) can be
made to satisfy both the differential equation and the boundary conditions
of (2.4.,125) to (2.4.127). This point will be illustrated next.

Substituting (2.4.129) into (2.4.125) and (2.4.126), it follows that
the optimal control must satisfy

107 98
U"“'—ZQzG ax

-/
--Q, G S(¢) x(2) (2.4.130)
with S and z satisfying the ordinary differential equations

$=-Q-SA-AS+SGQG™S

(2.4.131)
Z=-A"Z+56Q'G=Z (2.4.132)
For the Boundary condition of (2.4.127) to hold, it follows that
- T =
2Sx+Z c u ar { z’f (2.4.133)

where the m—dimensional multiplier/u is selected so that the constraint
conditions

Cx-d =0 a {4 (2.4.134)

are satisfied.
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Equation (2.4.131) governing the evolution of the matrix S is nonlinear
and, hence, difficult to solve. However, the matrix 3 need not be explicitly
evaluated to determine the optimal solution which from (2.4.130) to (2.4.135)
depends only on the terms SX and z. It will be shown next that these terms
satisfy a linear equation and can be evaluated rather easily.

Let P be the n-dimensional vector

R
IR
p = (8] = - — (2.4.135)
: ox
A
Substitution of this variable into (2.4.130) to (2.4.134) and using the
state equation for x provides
Q' G’
= —22F (2.4.136)
2
p=-Ap+2Qx (2.4.137)
. GQ, G
x —Ax———é—— (2.4.138)
with the boundary conditions
X = 2, AT = (2.4.139)
. 'l
prCu=0
Cx-d = of £ (2.4.140)

Note that the new equations in p and x are linear and that the two-point
boundary problem as represented in Eqs. (2.4.137) to (2.4.140) can be solved
directly (i.e., without iteration). The optimal control is then evaluated
using Eg. (2.4.136). The method will be illustrated next on the simple
attitude control problem of Section (2.4.8).

95



The governing equations for the attitude controller are

x, = x, :
. (2.4.141)
2& = u
with the initial conditions
z (L) = X,
° ° (2.4.142)
2, (4) = X,
o

and with no terminal conditions imposed; that is, all the 7; in Eg. (2.4.118R)
are identically zero. The matrices A, Qs Q2 and G for this problem are

' /
~(50) o))
o O 2 /
(2.4.143)
/0
Q’-(O /) v @y =
Hence, Eqs. (2.4.138) to (2.4.140) become
u=p/z .
] p x, = 1&
p = 2x, .
%~ e (2.4.141)
P~ TR RX e
Since no terminal constraints are imposed, it can be shown from Egs. (2.4.117),
(2.4.133), and (2.4.140) that at the terminal point
R
p = )= 0 ar {=4, (2.4.145)
R
The solution to this system can be written
x(t)) . (lfé))
= 2.4L.146
(p(z‘) X 6) () (2.4.146)
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where ?(’ is the 4 x L(matrix fundamental matrix solution)

coak(

) o VT sind (a,) 0

wi="] #-4)
0 c(”)cooi(a,) ) I & 2 sin# (o)

X (44,) = 24

1% VZ dink () 0 cook () 0

;5 d)
—. &  unk(a,) O e % coof (a,)

and wherep(f )is the initial value of p and is to be selected consistent
with (2.4.145).
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2.4,11 Dynamic Programming and the Pontryagin Maximum Principle

For the Bolza problem under consideration, the state system is given
by

i, =4 (x, «) (2.4.148)

and the boundary conditions by
X =1x, ar t=4 (2.4.149)
V(2 b ) =05 j=lim ar €77, (2.4.150)

where t_ may or may not be specified, The control action u is to be selected
so that an integral plus the function of the terminal state of the form

&
J=f {(x,u)da‘ + ¢(X,-,z‘,)= minimum (2.4.151)
¢

(4

is a minimum, An application of the Pontryagin Maximum Principle to this
problem (Ref. 2.4.3) leads to the following requirements:

(1) the control u is selected fromJ so that at each instant the
quantity H where

Ho=p-F e, -kt = 2 p f(x u)-Kix,u) (2.4.152)

J=/
is maximized.
(2) the adjoint vector 4p- satisfies the differential equations

a4 L # ot :
;= - T = - ) 4+ c=nn (2.14-.153
7 2x. JZ=/ Jodx. ey ’ )
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#(3) the boundary conditions on the p vector are

o = %
2 ,;*JE/% ;z_f =0 ; t=4¢ (2.4.154)
¢ ) ‘

L=/,

where &« is an m-~dimensional constant vector which is
selected so that the m terminal constraints
are satisfied.

L+ - . . . . . e . .
(4) = 7‘}( ’{L.e.,p is continuous across discontinuities in u}

(2.4.1554)

It is not difficult to verify that the p vector used in the preceding
section, in connection with the linear optimization problem, does satisfy
these conditions. It will be shown in this section that the Bellman
equation, Eq. (2.4.120), can be used to develop the above equations of
the Maximum Principle for the general Bolza Problem. The approach to
be taken is essentially the same as that used in Section (2.4.4) to relate
the Calculus of Variations and Dynamic Programming for the problem of
Lagrange.

From Eq. (2.4.120), the Bellman equation for the Bolza Problem is

¢ R
Min 3§ Bx )+ (E) flx,u)+ — ¢ =0 (2.4.155B)
ude v { (2’- ax XU ot }

with the boundary condition

IR as o ay.

—_— ) — —L = =

ox; Iz +J§ A ax, o &4 (2.4.156)
o R 79 ” ¥

7 - .y 27
3f at J =/ /é(-’ 9f
% If the final time is not explicitly specified, the terminal condition
must hold:

d IP_ =~ Iy
: B A sdgn =2 2.4.154A
‘Z; 2 £lx,u) Aix,u) Py J};;/{/ 7 =O ( 54LA)

38t this equation is valid only if the final time is unspecified.
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&=

-z

£=/

Z: ax,

R
Since ¢ does not depend on u explicitly, the control u which minimizes
the bracketed quantity in Eq. (2.4.155) also minimizes the quantity

IR
f()é Uu) +1(z,u) , or alternately, maximizes the quantity

X
R
9 7[\ (X,u)-#x,). Let the p vector be defined by
l
o =-2R (2.4.157)
Z az[

Then, it follows that the optimal control is that control in the set which

n
maximizes >, 2f(%,m) - K(x,u) . Thus, condition (1) of the

Maximum Principle is satisfied. With the definition of Eq. (2.4,157), the
boundary condition in Eq. (2,4.156) is

. o9 AL ov; izlqun (2.4.158)
f‘ r X, JZS. a J ’
And since from(2.4.156)

2 n -
LS WL SR B TCRS ICT MR SR AR

at (= al
” ”
Loyl = 2,5 9% +Kxw) (2.4.1584)

which agrees with condition (3) of the Maximum Principle.

To demonstrate that the p vector satisfies Eq. (2.4.153), a technique
developed by S. Dreyfus [Ref. (2.4.1)] is used., From (2.4.157),

d d IR
e =T gz i i=lyn (2.4.159)
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R
But from (2.4.155B) it follows that the quantltyl(z,a)+23x £lx,w)+ 57
has a minimum of & =¢,,, and that this minimum value is zero. If u
is held fixed at its optlmum value which corresponds to some point (X,2)

{ ie, = Upps (z,é)} then this bracketed quantlty, considered as a function
of x,t , will have a minimum at the point £, £ . Hence,

l ) < IR
é(l U Z -_— . ) = 0 - / ”
22% 319X Cort Bé ¥=% / ’
- 3 2 IR I 2p
B Z(a . on oz, )’}j 7z ¢

and substituting this expression into (2.4.159), yields the desired result;

namely,
) of IR no % I*R n
LR A R A Y Pty B R
b/ dé\Fx,/ {4 9% dz% ’ ) ys! 31} 22
24 n
I R D/ (2.4.160)
L ;(=/ ¥ 9Z{

The fourth condition follows directly from the original assumption on the
R function needed to develop the Bellman equation. This assumption [see
(2.4.,115)] required that the second derivatives of R be bounded; hence,
the first derivatives must be continuous. Thus,

(—9__2_)(” — r) _ (‘ 9/9)“ _ =)
91£ 2? BZ[ 7

and condition (4) is satisfied. As discussed at the start of this section,
this requirement in the second derivatives is not always satisfied, a point
which will be treated later on.

The conditions of the Maximum Principle as developed from the Bellman

equation and represented in (2.4.152) to (2.4.155) will now be used to
solve the first example problem in Section (2.4.8).

The guidance problem of Section (2.4.8) is represented by the equations

x, = % . Toax 4 .
b4 = MAX ! aun u‘ —?
% = ¥ * *s
2 4
T Y . = Tran Y
Z, = "_;;___woaz X = "—‘_;’/.-— (2.4.1604)
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with

4y
X=X, 4 ¢ =4
¢(7[;”{{') =_Zsr—MIU
¥ o= z- x; =0 (2.4.160B)
LA P2r 70 : =4
- 2 -, =
2; a %f 7 1%’ c =9
The P vector for the system is
7 =0
P =0
A=
, » (2.4.161)
P =" Pa
o BT 0l | 5y gty tin
5 z
and the boundary conditions 1; Z;
Py = A,
7y = A
Pyt 2l 2z, =0
f ¥ (2.4.162)
P% * 24 2@7 =
=/
%

where the/pQ are constants to be

selected so that the boundary conditions on

the state variables { Le’,?f =0 at t = tf} are satisfied, Since the final
¢

time is not explicitly stated, the additional condition

Lplflx,u) =0 ar ¢=4 (2.4,.1624)
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must also hold,

From Eq, (2.4.152) the control u is to be selected to maximize

H=L 24 (x, U) =X t B2, +x5 ];47"“’&”“2

£xf 5
7. u 7w
- -/-;g MAX T o L, — f_ MAx "1
) — ., v e Vs v
Let Xy 4 v
5 _

Z = coo ¢ JL =
2 g F

then

Jraay
A -~

Xs
Thus, for the control to maximize H, cos (u2 - @) =1and

%

coo U, = g;_:;ij

_ B

with the H function

X

"'AX“ 2 /ﬂz
H:-—* 2 - S Ty
(g -f?;( —).’-ﬁz_,"" ,p7

Ve %

Hence, for u, to maximize H
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where

. ST s g - B
P=vr A -VJ (2.4.165)

With the control known as a function of the state and P vectors, the
solution to the problem can be achieved numerically on a digital computer
with the boundary conditions of (2.4.160B), (2.4.162) and (2.4.1624) just
sufficient to determine a unique solution to the differential equations in
(2.4.160A) and (2.4.161). The solution to this problem is considered in
some detail in Refs. (2.4.4) and (2.4.5).
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(2,4,12) Some Limitations on_the Development of the Bellman Equation

The preceding paragraphs of this section have been primarily concerned
with reducing the computational algorithm inherent in the Principle of
Optimality to a certain partial differential equation called the Bellman
equation, From this equation various additional properties of the optimal
decision sequence have been developed and shown to be equivalent to the
necessary conditions normally developed by means of the Calculus of Variations
or the Maximum Principle. In some special cases, however, the Bellman
equation, which resultis from considering the Principle of Optimality in the
limit as the separation between states and decision goes to zero, is
erroneous.

In developing the Bellman equation which, for the Bolza problemn, tock
the form

M ] Bix L ;E ;f.’(x,u)J-z;Q}

uye v = X t

1l

0 (2.4.166)

it was necessary to assume that all second derivatives of R exist and are
bounded (see Bqg. 2.4.115) which implies, among other things, that all

first derivatives of R exist and are continuous. It is shown in Ref. (2.4.3)
that occasionally the derivatives 5;2 do not exist at all points in the
(t, x) space and hence, that Eq. (2.4.166) is not always correct. The

type of problem in which this may happen is one in which the control action
appears linearly in the state equations; that is, the state equations take
the form

&)

X =t (x,u) = (0 +{."2’(z) u (2.4.167)

with the result that the optimal control is bang~bang in that it jumps
discontinuously from one boundary of the control set U to another boundary.
If there exists a curve in the (x, t) space (called a switching curve) with
the property that all optimal trajectories when striking the curve experience
a control discontinuity, and if furthermore a finite segment of the optimal
solution lies along the switching curve, then the derivatives %ﬁ may

not exist along the switching curve and Eq. (2.4.166) may not g applicable,

As an example of such a problem, consider the second order integrator

Z = X,
(2.4.168)
Z,= u
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with

lu) </ (2.4.169)
and with the boundary conditions
X, = x,
o (2.4.170)
- £=0
Yo = Xy
% =0
t=+¢
X, = 0 ; 4 (2.4.171)

The optimizing criterion is time, with

¢( %, ip) = 4 = Mm (2.4.172)

It can be shown using the Maximum Principle that the solution to this problem
consists of segments along which u = + 1 and segments along which u =« 1
with the two types of control separated by the switching curve as shown on
Sketch (2.4.7). Since the switching curve is the only curve which satisfies
both the state equations and the optimal control condition, and which goes
through the origin, it follows that all optimal trajectories have segments

lying on the switching curve.

Xz

L I

/ —
4
N s ——
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Now if the Maximum Principle is used to determine the optimal solution
for a variety of initial conditions, the minimum time t, can be developed
as a function of x, and x, and this time is equal to the function
R, x,) appearing in the Bellman equation. Thus, /(#,x(#) can be
developed from the Maximum Principle, and what'!s more, the development is
straightforward and can be accomplished analytical%yx It is then just a
matter of differentiation to show that —13 and g; are discontinuous
across the switching curve and that the ﬁgilman equation does. not apply
along this curve.

Dreyfus, in Chapter 6 of Ref. (2.4.1), shows how problems of this type
can be handled using Dynamic Programming. The method consists essentially
of solving Eq. (2.4.166) on both sides of the switching curve and then
patching the solution across the curve through the use of a specialized
form of the Bellman equation which is valid along the switching curve. To
use such an approach, however, one must know that the problem possesses
a switching curve and also the equation of this curve -- knowledge which
one usually does not have until after the solution has been developed.
Hence, while a modified Bellman equation can be developed in these special
cases from which a solution to the problem can be generated; the development

requires a priori knowledge of the solution structure —- a rather imperfect
state of affairs to say the least.

This shortcoming of the limiting form of Dynamic Programming is by no
means severe, The class of problems to which the Bellman equation of
(2.4.166) does not apply appears to be rather small with the problem
themselves atypical. Hence, one can feel reasonably confident that the
Bellman equation as developed for a particular problem is indeed correct,
unless, of course, the problem possesses the linear structure indicated
in Egq. (R.4.167) and there is evidence of the existence of a switching
curve. In such cases one should exercise some caution in working with
the Bellman equation.
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2.5 DYNAMIC PROGRAMMING AND THE OPTIMIZATION OF STOCHASTIC SYSTEMS

2.5.1 Introduction

The previous sections of this report have dealt exclusively with the
optimization of deterministic systems. In this section, some optimization
problems are considered in which the equations describing the system
contain stochastic or random elements. This extension is considered
desirable, if not necessary, since all phenomena occurring in nature are
stochastic. That is, every physical process contains some parameters or
elements which are not known exactly but which are known in some statistical
sense. Fortunately, in many systems, the total effect of these random
parameters on system behavior is negligible and the system can be approxi-
mated by a deterministic model and analyzed using standard procedures. In
other cases, however, the random elements are not negligible and may
dominate those elements which are known precisely. The midcourse correction
problem encountered in lunar and planetary transfer maneuvers 1s a case in
point.

Due to injection errors at the end of the boost phase of a planetary
transfer, the vehicle's trajectory will differ slightly from the desired
nominal condition, and hence, some correction maneuver will be required.

To make such a maneuver, the trajectory error must be known;

and so radar and optical measurement data are collected. This data will
lead to a precise determination of the trajectory error only if the data
itself are precise. Unfortunately, the measurements and measuring devices
are not perfect. Hence, the midcourse maneuver which is made will not

null the trajectory error. Rather, it will null some estimate of the error,
for example, the most probable value of the error. The determination of when
and how to make these corrections so that the fuel consumed is a minimum is
a problem of current interest in stochastic optimization theory. Note that
if a deterministic model of the planetary transfer problem were used, the
problem itself would cease to exist.

At the present time, the area of optimal stochastic control is Jjust
beginning to be examined. Thus, there are no standard equations or
standard approaches which can be applied to such systems. In fact, the
literature on the subJect contains very few problems which have been solved.
One reason for this limited amount of literature is that the fundamental
equations which are encountered are of the diffusion type; that 1s, they
are second order partial differential equations. Hence, the method of
characteristics, which is used in the deterministic case and which reduces
the Bellman equation to a set of ordinary differential equation, can not be
applied; rather, the partial differential equations must be utilized
directly.

A second factor contributing to the difficulty in handling stochastic
problems is that the type of feedback belng considered must be explicitly
accounted for. This situation is just the opposite of that encountered
in the deterministic case. If the initial state is known along with the
control to be applied in a deterministic system, then all subsequent states
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can be determined simply by integrating the governing equations. In the
stochastic case, the inltial state and control are insufficient to determine
all subsequent states due to the presence of disturbing forces and other
random elements. Hence, only an estimate of the state can be generated

and the estimate will be good or bad depending on the rate, quality and
type of information which is being gathered. This estimate or feedback

loop must be included in the analysis of the stochastic system.

Finally, a third factor which complicates the stochastic problem is
the inclusion of terminal constraints. In the deterministic case, the
presence or absence of terminal constralnts has little effect on the
analysis involved. In the stochastic case, the inclusion of terminal
constraints makes the analysis much more difficult since the means
employed to handle the constraints is not unique. For this reason, most
of the literature on optimal stochastic control does not consider the
terminal constraint problem.

In the following paragraphs, only one very specialized type of
stochastic problem will be analyzed; namely, the stochastic analog of the
linear-quadratic cost problem treated in Section (2.4.10). While this

problem is not typical of all stochastic optimization problems; it can be
solved rather easily and 1s frequently used as a model for stochastic
problems occurring in flight control systems and trajectory analyses.
Also, three different feedback loops or types of observability will be

considered:

(1) Perfectly Observable: +the state or output of the system can be
determined exactly at each instant of time.

(2) Perfectly Incbservable: no knowledge of the state or output of
the system is available once the system is started.

(3) Partially Observable: observations of the state or output of
the system are made at each instant but the observations them-
selves are contaminated by noise.

Of the three, the partlally observable case 1s the most representative

of the type of situation which would occur in an actual system. The

other two are limiting cases, with the perfectly observable or perfectly
inocbservable system resulting as the noise in the observations becomes zero
or infinite, respectively.
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2.5.2 Problem Statement

Tet the system be described by the differentlal equation
X =Ax+Gu (2.5.1)

where x is an n vector denoting the state of the system, u is an r vector
denoting the control, § is an m vector denoting noise or disturbing

forces andA and G are nxn and nxr matrices, respectively. The
state of the system is not known initially.

Rather, the initial state,
X, , is a Gaussian random variable with mean X%, and covariance matrix
V, ; that is,
A
E(Xo)= Xo
A
E{(X — %o ) (%o~ X,) } Vo (2.5.2)

where £ denotes the expectation operator defined over the entire ensemble

of states. Alternately, the Gaussian random variable can be represented
by its density function

) "/l{(XO';J-Vo_‘(xo' ;(o)}
P (%e)= PGiyyXeos %) = Tpmi\lg] € (2.5.3)
with
N - (2.5.4)
E {(xo ';o) (xo_,‘;’)'r} f; 520)(’(0' )?a)TP(xo)dxo

Note that the case in which k; is precisely specified can also be
included in this formulation by requiring that

E(Xe) = ;o
. R (2.5.5)
E{(xo-Xe)(xo-%) } = 16 = 0

where now X’ denotes the specifled value of X, . In thls case, the

density funetion in Eq. (2.5.3) becomes a product of » Dirac delta
functions with

P(Xo) = 8 (Kig- X,,) 8 Rag Ra) oo+ (X %00) (2.5.6)
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The noise'vector, 13 , Which appears 1n the state equation is required
to be a Guasslian white noilse with zero mean and covariance matrix X (¢) .
Thus

£() =0

EE()E (1)) == (8)6 (- 7) (2.5.7)

where S8(t-T) 1is again the Dirac delta function denoting the "white"

or uncorrelated property of the nolse. Note that X (¢) is a symmetric
matrix and will be positive definite in the case in which § is truly
an n vector. In the case in which ¥ is not n dimensional, additional
components of zero mean and zero variance can be added to make 1t n
dimensional. In such cases, the 27xn symmetrix matrix Z(¢) is only
positive semi-definite, An example of this will be given later.

The optimization problem is to determine the control action
such that the expected value of a certain functional J is a minimum; that
is,

te
E{J’} = F Jf (xfa|x+uTQ,_u)d-£+7‘IAx{. (2.5.8)
<o

where , 18 a positive definite symmetric matrix and @, and /l are
positive semi-definite symmetric matrices. The admissible control set U
is the entire r dimensional control space. Thus, no restrictions are
placed on the control vector w . Also, it i1s assumed that no constraints
are placed on the terminal state.

This problem is quite similar to the linear quadratic cost problem
treated in Section (2.4.10). The state eguations are the same except for
the disturbing force 14 , while the problem of minimizing a quadratic
functional J has been replaced by the problem of minimizing the average
or expected value of J .

To illustrate the type of physilcal situation that can be represented
by Egs. (2.5.1) to (2.5.8), consider a stochastic version of the simple
attitude control problem treated in Sectlion (2.&.8). TLet the system
equation be [see Hg. (2.4.97) and Sketch (2.4.6) J.

I06 = Fl‘f'gz

where- I is the moment of inertila, F is the applied force, A is the lever
arm and f is a Gaussian white noise (one dimensional) with zero mean

and variance ¢; ; that is,

¥ . As stated previously, only quadratic cost will be consldered at this time.

111




£E(2)=0
E{éz W&, (1)} = o5 (6 - 1)

Now, introducing the variables

6r
= T
5 I
X1 s
F = W

and letting § denote the 2 vector

T
€2
where 5 ig identically zero; equlvalently, § is a Gaussian white

noise with zero mean and zero variance. Under this change of wvarlables,
the system equation becomes

(G4 (0 )(0)er(5)

E (gz) =0
Ele )E(r) =Zw)s (e-T) - (”
o

t

with

(7]
(r,_) & (£ -7)

Now, the performance index is deflned to be
¢
E (TJ) = E{j;(x.‘-rxha‘)d-e} = Ml
© °

It 1s observed that this problem attempts to keep the expected value
of a combined measure of the fuel and angular dlsplacement and rate errors
as small as possible.

112



In order to proceed with the solution for the general problem glven in
Egs. (2.5.1) to (2.5.8), the feedback or cbservation loop must be
specified. The reason for this is that the averaging process, that is,
the expectation operator in Eq. (2.5.8), varies as the type and quantity
of the cbservational data varles. As Indicated In the introduction,
three different types of observabllity will be consldered and these are
treated in the three succeeding sections.

2.5.2.1 Perfectly Observable Case

In the perfectly observable case, 1t 1s assumed that the entire
output of the system (i.e., all the components of the vector x ) can
be determined exactly at each instant of time. This type of situation is
represented in the sketch below.

lg (Disturbing forces)

g System
(EF}— Dynamics = X (Output)
4 X = Ax+Gu+é
~-G6uw Control x
—~ Logic Sensors

Sketch (2.5.1)

The state equations are

X = Axtoutt (2.5.9)
vhere ¥ is a Caussian white nolse with
E(¢) = o
’ E{ﬁ(‘ﬂﬁ(“')f} = T (t)S(¢-T) (2.5.10)

But, since the system is perfectly observable, 1t is assumed that the
Initial state of the system is known exactly with

A
X = Xpoat €t = ¢, (2.5.11)
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Thus, the performance index takes the form

€y
£ {J} - L;%/(x‘"a,x-ru’a,_'u) dt + X A x4; = mv. (2.5.12)
to

where the variable § has been placed under the expectatlon operator to
indicate that the "averaging" is to be conducted over this particular
variable, the only random element appearing in the problem.

To determlne the solution to this problem, the Principle of Optlmall‘by
can be employed essentially as 1t was in the deterministic case. Let
,?(x ) denote the minimum value of the performance index for the system
which starts in state X at time ¢ ; that is,

<
B (X, €) =M. E ‘. - .
«l(T) f(T) (x &l X+M‘Zlu)d{+x_‘ AX_F (2.5.13)

'(:STﬁ‘tf +

Now, this expression can be rewritten as

t+Aot 'é.‘
R(x,t) = Mim. - T
“m 5‘” f(x TQx+ W QW) dt + [(XTQX+U Q) dtt X AXe
t =T &t
< £+Lt
= MIN, E MM, E
u(r) s(rl) W(rz) E(Tz.) '(xra'x.f U.TQz_U.)dt +0 (Aé)

t2T, 2 t+8t\ €+ AL ETa = £

t¢

+ /(x"a,x-f U'awydet XTAX
t+4t

(245.14)

But, since the first term in the square bracket on the right of (2.5. )
does not depend on ¥(7,) or f(Z’ )for L+at4 7 ¢ ¢, Ea. (2.5¢14) can be
wrltten in the form
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’ T
R(X t) = um E (K@, X+ UG, UYL+ o@ty+ MiN £ €t )
& (nyér) ucrs) §0%) (x@iX+U Qs Udt+ X AX,
te T, «¢tat t+ALETy = ¢ | €Fat
= MIN £
wry m)

(XTQx+URMU) At + 0(8¢) + R (x+4x, €+4¢) (245.15)
t£ 7 £€+8¢

Finally, since the first term on the right of (2.5.15) does not depend on
§(7) for t*=7 % t+4¢

R(xt) = MM
uer,) (xTalx-f-u’ézu)At-r £ [E(x+ax,t+a-é)+ o(A'f.)]
LT 2ttat &)

+ f.‘l;’ft+4{:

(245,16)

Equation (2.5.16) is essentilally a mathematical statement of the
Principle of Optimality for the problem at hand. It Indlcates that the
minimum average value for the functional ls achieved by an optimum first
control decision followed by an optimal sequence of control decislions which
are averaged over all possible states resulting from the first decision.
Note that AR (x#4x, #+a4af) has the expansion

= 28 RT N perx TR % gtH .-
R(x+ax,t+at)= R(X t) + (u * X x)A Y e

Using the expression for X and § in (2.5.9) and (2.5.10) and taking the
expected value of R(xtax,teat)over §(7,) fori £ 7 ¢¢é+at provides



;
R
£ /?(xmx,hm‘)’?=Q(x,t)+§(—_) (Ax + Gu)

§tx) o
T 4f14¢ (Z(U —)}A{ + O(at) (2.5.17)
2R
where tr denotes the trace of the matrix X() ;.2 + This last term is
derived from the expected value of the quantity
., R . r %R
£ {x’ > 2atte=E ér[xx 7 at? (2.5.18)
£ Ix %7 ox
LT Shray ¢ < Y etrat

The Dirac delta appearing in the variance expression for § in Eg. (2.5.10)
causes this term to reduce to first order in 4t . Substitution of

Eq. (2.5.18) into (2.5.16) and taking the limit as Af goes to zero
provides the final result

0=M/~{ Qx a@a*-f"(x)(A +Gu )+——r[):§:—§-]} (2.5.19)

w(t)

The boundary condition on R(x,¢) is easily developed from the
definition of R given in (2.5.13). Thus,

T
or alternately

R(xy1,) =x"NAx (2.5.,20)

Eg. (2.5.19) is similar to that developed in the deterministic case
[ see Equation (2.4.113)] , the only difference being the appearance of
the term é,—(z zl?) + This, however, is a major difference,
Jx2

While the Bellman equation is a first order partial differential equation
and can be solved in a straightforward manner using the method of
characteristics, this equation is a second order equation of the diffusion
type. As a general rule, diffusion processes are rather difficult to
solve. Fortunately, Eg. (2.5.19) solves rather easily.
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Performing the minimization indicated in (2.5.19) f.e., setting the

derivative with respect to a4 to zero provides
T

IR
2uq (256 =0

which can be rewritten as

; 1 R
u=‘2—Q2G 7% (2.5.21)

Substituting this expression in (2.5.19) ylelds

T T 2
qr-2(2)oqic” o L axs 2. tr(p 78)-
2@ x 41( , 3x+ 7 A;uﬂ 2 L 3 0O (2.5.22)

ax

It can be shown that (2.5.22) has a solution of the form

Rx,t)=x"S(t) x+ B(¢) (2.5.23)

where S¢¢) is an pxn time dependent symmetric matrix and A&c¢)
a time varying scalar. This expression will satisfy the boundary condition
of Eqe (2.5.20) provided

is

S) =
(2-5-24)

Also, by substituting Eq. (2.5.23) .into (2.5.22), it follows that the
proposed R function will satisfy Eq. (2.5.22) if

$+Q-SGQ/G'S+8A+A'S = O (2.5.25)

B+ér(8)=0 (245.26)

Collecting results, the solution is achieved by integrating Egs.
(2.5.25) and (2.5.26) backwards from f; to 7, and using the boundary
From (2.5.21) and (2.5.23), the optimal control

conditions in (2.5.24).
action 1s then determined from.

u=-g, G Sz (2.5.27)
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The minimum value of the performance index is given by

M EST] =R(Z,,8)=%8(4)% +8(4) (245.28)

Two observations concerning the control law of Eq. (2.5.27) can be
made. First the control law in the stochastic case 1n identical to the
control law for the deterministic case in which the random variable § in
Eq. (2.5.9) is set to zero and the criterion of minimizing the expected
value of J is replaced by minimizing J itself. Dreyfus in Reference (2.4.1)
refers to this property as "certainty equivalence" and points out that
it occurs infrequently in stochastic problems. However, a non-linear
example of certainty equivalence is given in Reference (2.5.1). A second
observation is that the control law is an explicit function of the state,
the actual system output. To implement this law, the state must be
observed at each instant of time, a requirement that can be met only in the
perfectly observable case; that is, the control law could not be
implemented if something less than perfect knowledge of the system output
were available. This point clearly demonstrates that the optimal control
law in a stochastic problem is very much a function of the type of
observational data being collected.

For the treatment of additional stochastic problems in which perfect
observability is assumed, the reader is referred to References (2,1.3),
(2.4.1), (2.5.,1) and (2.5.2).

2.5.2.2 Perfectly Inobservable Case

In this case, 1t is assumed that no knowledge of the output of the
system is available for ¢ >4, . A diagram of this type of controller
is given in Sketch (2.5.2) below.

¢§ (Disturbing forces)

namics
r by b= X {(Qutput)

Z X = AxtGu+&

—-Gu Control
Logic

Sketch (2.5.2)
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Note that since there is no feedback loop, the optimal control can be
computed only as a function of time and whatever knowledge i1s avallable
concerning the initial state xz, .

Again the state equations are

Z=Ax +GU + ¥ (2.5.29)

with § a Gaussian white noise with

E(F) =0
E{¥@ §02)] = L) 8(2-7) (2.5.30)

The initial state %z, 1s assumed to be a Gaussian random variable with
mean X, and covariance vV, , that is

£x,) = ;Ca
Eftx,- %0 -2} =y

The performance index is again

(2.5.31)

faf
f{‘]{ =E{f(xr<2,x+uTQ2u)dt+ ;zFT/L xr} (2.5.32)
4

There are two means available for evaluating the expected value of
the functional J . First, the state equation can be solved to develop
the function relationship between X and the random variables ¥ and Xy
Following this development, the expected value of J can be computed by
using the appropriate density function for & and X, » & second approach
is to develop the probability density function for x , plx,¢) , glven
the densities of x, and ¥ . Thls approach 1s more direct and will be
used here since it leads to the rather simple relationship

&
VX000, =E{f(erzfaTan)df rz;/lzp}
&

f

%

. (2.5.33)
¥ o °°

{f”(x’“["r@-x *UYQ“JdXPi olx, L) 2 A xdx
-0 -0

from which the'optimal control can be readily determined.

Since the state equation is linear and since ¥ and X, are Gaussian,
it follows that the random process Z{¢) is also Gaussian¥*, The mean and

¥ See Reference (2.5.3) for the demonstration that linear transformation
on Gaussian random processes lead to Gausslan random processes.
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varlance characterizing z(¢) can be evaluated either from the Fokker¥*-Planck
equation (also called the forward Kolmogorov equation) or by direct
caleulation as follows. Iet X denote the mean of X and let V denote

the covariance. Thus

¢ ” .5.3k
Z(t) = E(xct) =f 2po(x,4)dx (2.5.34)

po-
;
Vit) = E{(x(u-;z(u)(&(e)—f(u) }=f(z-2m)(z-iu))}(x,udx 2.5.35)

Differentiating these two equations, and using Eq. (2.5.29) yields

=43
xrGu (2.5.36)
V=AVs V4 + 5 '
while from Ege (2.5.31), the boundary conditions
x(t,) = % (2.5.37)
v, =
must hold. Thus, the density for X is
/ 2 {(x-2) V) (-2 )]
(x,4) = e (2.5.38
PCEAL o) e/ TV )
with X and V satisfying Egs. (2.5.36) and (2.5.37).
Proceeding with the optimization problem, let
z=x-% (2.5.39)
Note that
E(z)=FE(z2")=0 (2.5.40)
and from Egs. (2.5.29) and (2.5.36) that
Z=Ax +¥ (245.41)

* See Reference (245.4)
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thus, substituting the expression

X=X+2

into Eq. (2¢5.32) and making use of (2.5.40) reduces the optimizing
criterion to

f{ ] ; ‘#‘ . : , _ .
£{J{ =["”Q £+ u Quuldt %ﬂf‘*‘g{éf(f Qb HA "f} (2.5.42)

Furthermore, since

77Q % = tr(ZXQf

where tr denotes the trace operator, and since

E(227) = E{tx-2)x-2T} =y

Eq. (2.5.42) can be rewritten as

¢

tr
E(J) =f (2 QX+t Qu)dt+ ifTA % +.[é’(VQ)dt rtr (A )(205.43)
‘ 0

0

Now since the covarlance V does not depend on the control ¢ [ see Eg.
(2.5,36) J , it follows that minimizing the expected value of J is

equivalent to minimizing the first two terms on the right hand side of
(2+5.43). Thus, the optimal control is that control which minimizes the
functional J where

J =f£(ff762£+ur6> w)dt + 2N %
: ' o 4 f (2.5.h1)

subject to the conditions

[
A

Z=Ax+Gu _
(2.5.45)
Z(L)= %,
This reduced problem is deterministic and can be solved using the methods
of Section (2.4.10).
Letting R(X,t)

denote the minimum value of J for the trajectory
starting at the point (2,4)

s 1t follows from Dynamie Programming that
R(x,t) gatisfies the Bellman eguation and boundary condition glven by
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— A7 4 r aQr " 32
0 —/Z:)u{x @ Z+u"Qu *(9—{)(/475 +Gu}+ — (2.5.46)

R(Z, &) = 2N (2.5.17)
The solution takes the form
R(Z,4)=x"8(¢)2 (2.5.18)
with S satisfying
§+Q -SGQ'CE +8S4+4%S =0 (2.5.49)
Slé) =N (2.5.50)
and the optimal control given by
/ -1 _r oK < T oA
= - — = - 2.5.51
u 202632 QGS% (2.5.51)

Thus,

R, ) =2 S

Substitution of this expression into Eq. (2.5.43) now gives the minimum
expected value of J as

A if
EWT) =2, S(L) 2 +[ r(VQ)dt + ¢r (Y N) (2.5.52)

%

Two comments on the form of the control law given in Eg. (2.5.51) are
in order. Filrst, it is the same form as that which would result for the
deterministic problem, but with the state X replaced by the expected
value of the state. This result, while interesting, is not surprising in
view of the similar findings for the perfectly observable case of the
preceding section. Secondly, the variable X on which the control depends
is a function only of the expected initial state and time. No feedback
information is used in the computation of % , a result consistent with the
perfectly inobservable guality of the system.
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It is interesting to compare the value of the performance index for
the perfectly observable and perfectly inobservable cases. Since more
information is available and is used in the perfectly observable case, the
performance index for the perfectly observable case is the smaller of
the two. Let the covariance of the initial state, V, is Eq. (2.5.3]_.) be
taken as zero. Hence, the initial state is known exactly in both the
perfectly observable and inobservable cases and is given by

=%, ar {=4

From Eq. (2.5.28) and the expression for g in (2.5.24k) and (2.5.26),
the performance index in the perfectly observable case is given by

tf‘
£ J} =2'5) %, +f£r (L5)d¢ (2.5.534)

OBSERVABLE £

0

while from Equation (2.5.52)

t
"SE) % +fér(VQ)d£ +¢r(Y. N) (2.5.538B)

£{J} =

/Ay OBSERVABLE

QN LY
o™~

Since the matrix .5 satisfles the same equation and boundary condition in
both cases, it follows that

4
[ﬁ(l/Q—&)ath;A) (2.5.54)

£4{J] ~£{J}

INOBSERVABLE 0BSERVABLE

This difference can be shown to be positive by noting that & and V from
Egs. (2.5.49) and (2.5. 36) satisfy

55,{)/5}:{,-{25—1/47, +VJGQ2"G’ZS'Z (2.5.55)

Integrating this expression with the condition that V(t )=0 and
combining with (2.5.54) yields

Z
£{J}/uoas:nvnu -E{ingsggwe‘; =;f tr {V‘S G Qz-/ G TS} dt (2.5.56)
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Since V is positive definite for ¢ >4 and 4; is positive definite,
it follows that the right hand side of (2.5.56) is positive and that the
performance index in the perfectly inobservable case is always larger than
that for the perfectly observable case. '

2.5.2.3 Partially Observable Case

The partially observable case differs. from the preceding cases in
that some knowledge of the system output is available at each instant, but
the knowledge is imperfect due to the presence of noise and the possibility
that only a part of the output can be measured. The system is again given

by
Z2=Ax+Gu+¥% (2.5.57)

with X, a Gaussian variable with mean and covariance given by

A

£(x) = %

(2.5.58)
E{(zo - 20)(150_20)T} = %

The fact that some data are being collected (i.e., some observations are
being made) is represented by the equation

¢ = ﬂ4z:f%7

where is the m dimensional observation vector (mén}) , M is an mxn
time varying matrix andAf is a white Gaussian noise with zero mean and
variance ["(t) ; that is,

E(p) =0

(2.5.59)
E(pit) ?Tn—)) =) 8(4-7)
The physical situvation is pictured in the sketch below.

‘E (Disturbing forces)
‘ Dynamics X . M »Mx(Gutput)
- %=Ax+Gut
—Gu Control ¢ Sensors

Logic

7: MZ*?

Sketch (2.5.3) 77 (sensor noise)
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Iet (L) denote the observations that are made on the interval
(¢,,¢) , that is

?(é) ={%‘4) oY < 4'4;}} (2.5.60)
The expected value of the fltmctional J can be written as
73
£{d} = {f(kTQ,xm'Qza)dt +x;/1 X,
_f ’ffp (x, ? INEQx+u Qza)dzd?} (2.5.61)

+ff;a(x )z/lza’xa’%/

where p(x,?{é) is the Jo:Lnt density function for x and
from the density functions for

? as developed
§ ,f and %, » The variabl
included since the control «(#)

must be
will depend on, and vary with, the

observations. Now the density oz, ?,/) can be expressed as

olx, g/,z‘) = p(x, i/}/)/ﬂ(?)

where w(x, é/?/) is the probability density of x conditioned on
Also, the expected value of some function K (x, 5/)

can be written a

f{/«x,;/)} =/7/<(z, Y) iz, Yot )dxa Y
[ [xenp pisirgion| oy
=?£ E[K(x, ;/)/?}

Using this result, the performance index in Eq. (2.5.61) can be written

125



£{J} =£{£(J/{/)f - é{[[f?erxfaeru)dé+xp’Axp/?} (2.5.62)
? and

where the first expectation on the right is taken with respect to
the second with respect to x conditioned on ?’ .
It is well known that the conditional density pix, ¢/Y) for the
problem under consideration is Gaussian with mean Z and covariance VY
satisfying the differential equations and boundary conditions

Z=AZ+*Gu+ YM'I" _'(i-Mi) (2.5.634)
V =AV+ VA + S -VYM T Wy (2.5.638B)
x(t) =X,
(2.5.64)
VL) =

These results can be derived either directly by differentiating and reworking

(2.5.654)

the defining expression

A { z(f)/y(z)}

2 =
v =£{(x—i(t))(z—ifé))r/?(é)} (2,5.65B)

as in Ref. (2,5.5) or through the modified Fokker-Planck equation as
As in the perfectly inobservable case, let

developed in Ref. (2.5.6).
x=R+1X (2.5.66)
with X satisfying the differential equation
. -/ -
Z=Az+5-vM I {Mip} (2.5.67)
(2.5.68)

and with

Eizy) - £z 274} -0
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Then, substituting (2.5.66) into (2.5.62) and making use of (2.5.68)
reduces the performance index to the form

EJ) = {f(zQx»‘a Qu)dt + zf Ax}

*;{[/zQxdt+z/LF/g(]}

%

(2.5.69)

Note that the terms in the second bracket do not depend on the control «

or on the observations since the variable X is not a function of .

or . In fact, these terms can be immediately evaluated using x as
defined in Egs. (2.5.65B) and (2.5.68). The final result for the performance
index is

& s
£(J) =§§{f(;2’q,;2 m’Qzu)dtnzp’A;z,fur(%A)+f£r(VQ)df (2.5.70)

¢

(]

From this equation, the optimal control is that control which
minimizes the expression

£.;‘ AT A T AT , A

é’{ (2'Qz +uTQ2u)d£+£;,T/L xff o ’ (£Qx+u Qza)déu;,/lez

Z 4
$%7

Let

AT a T aT A
QR Z,u Qzu)dz‘v*zr/lz‘.}

te L (2.5.71)
for the optimal solution starting at the point (X, t) . Then R(%,%)

satisfies the boundary condition R(Z,4)=X Ax . Using the Dynamic
Programming approach

R(2,4)=Mm EF {Mu  E [iTQ;E +u'Qu)at +0(at)

wm) gz U dyg) gUz)

£4 T 4ebrat trat b g g 7 )
f(xc?x*u Qu)dt+ % x;]
¢rat
= M {(72’4’, +u’Q, u)at +0(4t) + £ {Q(f*di,émt}}i
¢ ‘u‘ér’e)émt ¢ l‘riémt
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Taking the limit and using the expression for Q in Eq. (2.5.63A) provides

. 2R [IRY,, . . 2R }f
°- %ﬁf’i Q’“at (a}?)(/?foupi,{ = VM MY (2.5.72)

where the second order term arises in exactly the same manner as in
Egs. (2.5.18) and (2.5.19) for the perfectly cbservable case. Performing
the minimization as indicated in (2.5.72) provides

! - TaE
" 7% G 53

Thus, substitution of this expression for 4 back into (2.5.72) yields

(2.5.73)

ar oy JIRY . ag() R s )=
27q 2 ;(ai)-c;@za i LRt (e Z M MY =0 (2.5.748)

Equation (2.5.74A) is essentially the same as the diffusion equation
which resulted in the perfectly observable case and has a similar solution.
Letting

r
R(£,¢)=2S()L+48(2) (2.5.74B)

and substituting this expression into (2.5.74A) provides

$+Q-56Q/G'S +SA+AS = 0

y (2.5.75)
B +ir{SYMT MV} =0
The boundary condition on & is satisfied for
S(t) = A
(2.5.76)
Bt) =0
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while the optimal control takes the form
-/ r A
u=—Q2 G Sx

Note that the optimal control is a function of the estimate of the state
which in turn depends on the observations as indicated in Eq. (2.5.62).
Using Egs. (2.5.74B) and (2.5.70), the minimum value for the performance
index is

i
AT )
Flo} = 278808 +4 ey )+ [ B(VQIdt (a5
to
The minimum performance index for the partially observable case falls
somewhere between that for the perfectly observable and that for the
perfectly inobservable system; that is

£E(JT) < £(J) ZL(T) (2.5.78)
OBSERVABLE PARTIALLY Y noBssevagLE NEeAe
OBSERVABLE

This statement can be shown by considering the case where the initial
state is known (i.e., the variance for the inltial state is zero, ¥ =0 ).
Since the matrix & is the same in all three cases, it follows from

Eq. (2.5.534), and the definition of 48 in (2.5.75) and (2.5.76) that

¢
ED sy~ £ hpssemsne = J 1ASYMT M-S L+ V@Y at +4rty 1) (2.5.79)
O0BSERVABLE

éO

But from the definitions of V and S in (2.5.63B) and (2.5.75)

d ) .

= (s Vi = ér {scqc"s-QIVes(E-YMT mv)}  (2.5.80)
Thus, integrating with Vo =0 and substituting into (2.5.79) yields

%
E pgrmisy ~E@ rgsronsars= J tr(SGQ]G'S V)t
io

OBSERVABLE
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Since V is positive definite for ¢ >¥4, and Q: is positive, one half of
the inequality in (2.5.78) is established. To establish the other half,
note that from Egs. (2.5.33B) and (2.5.77)

tr
[(J)/UOGSé'EVAELE_E(J)PABTIIILLY =gfér(VQ )aé + L‘r(l{../l)
OBSERVABLE & INOBSERVABLE
& (2.5.81)
- % fér(va,)dz * zr(v,/l)f
ta PARTIALLY
OBSERVARLE

Note, also, that the variance functions, V , are different in the two
cases, However, making use of Eg. '(2.5.55) for the inobservable case and
Eq. (2.5.80) for the partially observable case reduces (2.5.81) to

&
EZ]-)/AIOBSERVAEZE —£J) PARTIALLY ={ f ¢r ( Vs GQ:G 15') at }
OBSERVABLE f INOBSERVABLE
4
- ; ftr( VSGQ'G'S) ot }
¢ PARTIALLY
° 0BSERVABLE

Now, since Y in the partially observable case is less than V in the
perfectly incbservable case (i.e., the observations y reduce the variance
in the estimate of X ) the inequality

£(JJA/DE.SE‘EV/43LI —E(J)PAET//‘MCY Z 0 (2 * 5 ‘ 82)
OBSERVABLE

is established.
2.5.2.4 Discussion

In all three cases, perfectly observable, perfectly inobservable and
partially observable, the form of the optimal control action is the same.
Specifically, the optimal control is a linear function of either the state,
or the expected value of the state, with the proportionally factor being
the same for each case. This is a rather striking simildrity, but one
which appears to hold only for the linear -~ quadratic cost problem.

Note that theé performance index, which is to be minimized, decreases
as a quality of the observational data increases. The two limlting cases,
the perfectly observable and perfectly inobservable systems, provide lower
and upper bounds, respectively, for the performance index value which can
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be achieved by a partially observable system.

The analysis through which the optimal control action is determined
consists of a rather straightforward application of Dynamic Programming.
While it 1s not difficult to formulate the perfectly inobservable problem
using other methods, therz appears to be no way of treating the perfectly
observable or partially observable case using the Variational Calculus.
Hence, the stochastic optimization problem is one area where Dynamic
Programming is not an alternate procedure, but frequently the only procedure
available for conducting the analysis.
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2.5.3 The Treatment of Terminal Constraints

In the preceding section, the optimal control action was developed
under the condition that no constraints were placed in the terminal
state Xg . In this section, a slightly modified version of the linear-
quadratic cost problem will be analyzed in which the expected value of the
terminal state is required to satisfy one or more conditions. Specifically,
the system is again governed by the state equation

with ¢ Gaussian white noise satisfying
£ {5 (€) F(‘l”)} =E(f) S(¢t-T) (2.5.84)
This time, however, the performance index takes che form
+¢
£ {J}={[(x*@,x+u"@zu)df} (2.5.85)

Note that no measure of the terminal error is included in E (7)) ;3 that is,
the performance index is a sub-case of the previous performance index in
which the matrix A has been set equal to zero. The reason for this change
will become apparent ‘shortly.

Let Z¢ = T(t¢) denote a P vector which is linearly related to
the terminal state through

Z2(ts) = 2y = fo (2.5.86)

where H 1is a constant Pxw matrix and where P=m, Three different types
of terminal constraints will be considered.

(1) w& {Zf- z:} =¢ ; € is a scalar (2.5.874)

(2) (E{g‘ il"l/., zc: ; L= 3,7 (2.5.87B)
fi/ce C X

(3) (£ {ififr})a cc; P EELPAE<P, (2.5.870)

In the first case, the symbol ¥ denotes the trac_erof the matrix £ {zf z_;r},
Hence, the sur of the diagonal elements of £ Z_F Zf !is required to be less
than or equal to some number C . In the'second ¢case, the individual diagonal

- . - . i
elements of . {Z{ f,-.r} that is, (E {Z_, zf-%)i,i. S i= 1, P ) are required
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to satisfy an inequality condition while in Case (3), only the first p,
diagonal elements of £ ( z zT are constrained. To clarify the physical
meaning of these constraint§, §o)me examples will be considered.

Suppose the state, %R , is six dimensional and the matrix H 1in

Equation (2.5.86) is the row vector H = (1,00,000) {C,e, P::} . In
this case, Z,=X,(te) 2andall three constraint conditions takes the
form

£ (x, (t.f)t) £C

For a matrix H possessing the 2 rows

</, 0, 0, 0, 0, o')
H =
0, I, 0, 0, 0, 0
E,_f_ X, (‘t.;)
zZ = =
* 25, "z“ﬂ)

E (1) £ (e "zf))
( £ (X” Xz.f) E (x:'f)

it follows that

with

T
Eiz_’z_f } =
In this case, the terminal constraint of Equation (2.5.87A) takes the form

2
E (X)) TE (xze) 2 €
while (2.5.87B) reduces to the two conditions

EXL)Z S

£ (x:f)"’ Cz
As a third example, suppose H is the identity matrix. Then Equation
(2.5.874) states that

£ {x,f‘+ Xpg t oo +x‘:} £ C
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while Equation (2.5.87B) requires
E(xlzf) —‘-' C,
E (xzg) £ Ca
E(rLY% ¢

Alternately, if the constraint of Equation (2.5.87C) is imposed, then
only p; of the above conditions must hold where p, is some integer less
than six.

These three possibilities by no means exhaust the types of &
matrices that may be used. Rather, they are introduced simply to indicate
the types of physical situations that can be represented by constraints
of the form of Equations (2.5.874) to (2.5.87C). In the following de-
velopment, it is only required that H be some constant matrix with
dimensions less than or equal to N , where h is the number of components
in the state vector X .

As a further simplification, it will be assumed that the symmetric
matrix R, in the performance index of Equation (2.5.85) can be
expressed as

Q =¢" (te,t) Hiau P (te,t)

(2.5.88)
vhere @ (4, ,;t) is the fundamental Mxnm matrix solution
d
T P (k) == P(tg4)A (2.5.89)
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[

(In what follows, the symbol ¢ will frequently be used to denote ¢ (4,0 )
Since H is a P»n matrix, 1t is necessary that Q be a Px P symmetric
matrix. Also, since @, 1s positive semi-definite, it follows.that Q

is also positive seml-definite. The reason for thls assumption as to

the form of Eg. (2.5.88) will be made clear subsequently and it will be
shown that Eq. (2.5.88) is physically consistent with the terminal con-
straints of Eq. (2.5.87).

Following the usual procedure of the Calculus of Variations, the

problem of minimizing the functional £ !J ) subject to a terminal
constraint on the quantity "

T
is equivalent to minimizing the modified functional E ;J% where

E{J}: z{J,+ ‘h—(_ﬁ.i:fi_:)} (2.5.91)

where A 1s a pxe constant diagonal matrix of Iagrange multipliers
(recall that H is a pxn matrix), and selected so that the specified
terminal variance condition is satisfied. The particular form of the
matrix A will depend on the particular terminal constraint which is
imposed [i.e., Equation (2.5.87A) or (2.5.87B) or (2.5.87C)], For example,
if X is a six dimensional vector and M is the matrix

H = IIOIO,O,O)O)
0,1,0,0,00
the terminal constraint of Eq. (2.5.8TA) becomes
3 b N x F
£ {x.( + x,_‘}= E {z,,+ ztf}z_-c

and the quantity to be adjoined to Eg. (2.5.85) to form (2.5.91) is

2
AE {z,+ + -z:‘} =F {A ., +z;'*)}

This form is equivalent to E{L\— Q\.i_f -i!:) provided
A O

¢

i
"A'—O)\

Alternately, if the terminal constraint of Ed. (2.5.87B) is imposed, the
guantity to be adjoined to Eq. (2.5.91) is

2 2
A £ (‘!:4) +As E(”u)j Ai, A3 are scalars
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which will equal to E'{)(A_ (,L 2, z;’)}

N
o A,

In any event, whatever the form of the matrix H , if the terminal
constraint is to satlsfy one of the conditions in Eg. (2.5.87), then the
problem can be handled as is indicated in Eq. (2.5.91). Using the
definition in Eq. (2.5.88) and noting that
T T
wWAZ Z )= £, N2,

the performance index can be written as

T
E()-E ;[[x'rféryraﬁwx_, UTQzL(J de + ZI.A.-Z.‘}@'S'%)

One further simplification is necessary before proceeding with the
optimization problem. Let

2W)=F = H P (4+e,E)k= HPY
(e (2.5.93)

Thus, differentiation of this expression with respect to time and using
Egs. (2.5.83) and (2.5.89) provides

f. = M
¢deu + ,q¢;- (2.5.94)

with the boundary condition

Z,= Z(t) = W (e rta) b, (2.5.95)

Now, since Xo is a Gaussian random variable with mean X, and covariance
Vo it follows from (2.5.95) that #, 1s Gaussian with mean and covariance
given by

~

£(2) = 2o = H io
E {(g.o-i.) (2- io)r) = HPYdTHT (2.5.96)
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The developments in the preceding paragraphs, while algebralcally
complex, considerably simplify the terminal constraint problem. Sub-
stituting the definition of Eq. (2.5.93) into the performance index of
(2.5.92) provides

t¢ . .
E{J} = E {l (ZTe2 + WQU)dt 12 AZ ;:MIN (2.5.97)
o

The problem is now one of selecting the control W to minimize E'{J{
subJject to the new state equation

and where #o is a Gaussian random variable given by Egq. (2.5.96). The
elements of the diagonal matrix A are to be selected so that the
particular terminal constraint specified by one of the equations in
(2.5.87) is satisfied. The number of independent or free diagonal
elements in A is equal to the number of constraints contained in Eq.
(2.5.87). For example, if Eq. (2.5.87A) is imposed, (1.e., one constraint)
then all the diagonal elements of A are equal with their particular value
chosen so that (2.5.87A) is satisfied. If Eg. (2.5.87B) is imposed, then
the first P, diagonal element are independent and the remaining p- p,

are zero.

Since the form of the expectation operator in the performance index
depends on the type of observations taken, the perfectly observable,
perfectly inobservable and partially observable case must be treated
separately. This treatment follows in the next three sections.

2.5.3.1 Perfectly Observable Case

In the perfectly observable case, perfect knowledge of the state X
1s avallable at each instant of time. Since 2 and %X are related by the
deterministic transformation of Egq. (2.5.93), the vector # is also known
at each lnstant. Hence, the problem is one of minimizing & (J) where

te
_ =27 T T
£ (v) Efz eo( QZ U QU)dt +Z, A2, (2.5.99)

subject to the differential equation

2 = HP6U + HPE (2.5.100)

It is assumed that Z¢ 1is knowg initially, or alternately, that Ze is
a Gausslan varlable with mean £_ and variance zero.

This problem is the same as that treated in Section (2.5.2.1) except

that A 1s not known; rather, this matrix must be selected to satisfy a
terminal condition. However, the analysis is essentially the same once A

137



is determined.

Let p(;)f) be giveﬁ by

te

R(Zt)= /‘\‘4({:; f(r) f(z.,. 24 7 T (2.5.101)
Q2+ U w)d+t tor
RSN Qzl) *E A2,

then proceeding exactly as in Section (2.5.2.1)

L 4

R(2,¢)= M [(aT@z s uTQ, u)at + o@e) +& [,e(zf-az)-éf‘st)]]

-l:‘.:‘t"-_-t-l-At" Tt + At
Taking the limit as At —=0 and using Eq. (2.5.100) provides

R R .
O = MIN z’ QZ+U.61 u+ -a-- + (a ) (HecUu)+ — d (a—:: He ilﬁrh‘j

with -'R(i, t’) satisfying the terminal condition

-
ECf}tf) = Z2 _AZ

(2.5.103)
Thus, differentiating Eq. (2.5.102) with respect to & yields the
optimal control
: T,T 6 2
w= - ¢ 6 ¢TH
(2.5.104)
and substitution of this expression into (2.5.102) provides
7 / T T 2R L 2R I: g
o = QE - — H G 2= R L M
z 4(5%) ¢6Q ?H 3= +at+ z | az? ne 2TH”
This equation has a solution of the form
R = 2'5(¢) 2+ B (¢) (2.5.105)

where § 1is a Pxf symmetric matrix and B is a scalar satisfying the
differential equations

S FR -~ SHP6Q;'6'0THS = o (2.5.1064)

g ++ (SHOZPH) = o (2.5.106B)

138



and the boundary conditions

S (¢ =
(ke) = A (2.5.1060)
B(tg) = 0
The optimal control takes the form
- ~! _T,T T
L =-,6 ¢ H s2 (2.5.107)

The one remaining consideration is the selection of the matrix A
so that the terminal constraint of Eq. (2.5.87) is satlsfied.- This
point will be treated next.

Tet z denote, the expected value of ® conditioned only on the initial
information #o= &, , but using the optimal control of Eg. (2.5.107);
that is, -t (€) would be the value whlch would be predicted for E(¢) if

the prediction were being made at time to . Similarly, let P denote
the variance of Z conditioned on the same information. Thus,

Z2 = ¢ (2) (2.5.108)
and

P=c(z2T) (2.5.109)

Differentiating these expressions and making use of Egs. (2.5.100) and
(2.5.107) provides

Z= -H$6Q,' 6o s i (2.5.110)
P= -H§6a,'c'¢p"H 5P psneca, cdp™w” +#bZ¢HT (2.5.111)

while the boundary conditions are

z (¢5) = 2, (2.5.1124)

P (¢o) =

|
L
-]
w
o

(2.5.112B)

Thus, a terminal constraint on £ (2, ;") has been reduced to a con-
straint on P (tg) since

y
£ [*f zéf=p () (2.5.113)

The correct value of A , that is, the value of A which will satisfy the
terminal constraint, can now be determined by the simultaneocus solution
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of the P and S equations (i.e., Egs. (2.5.106A) and (2.5.111) with the
initial condition of Eq. (2.5.112B), the terminal condition of Eg. (2.5.106C)
and with A selected so that P (%) satisfies the terminal variance

constraint which is imposed. ' :

In most cases, the solution will have to be achieved iteratively.
Thus, the process might proceed as follows:

(1) Guess the diagonal matrix A . As has been noted, the number of
independent diagonal elements (i.e., the number of different
guantities that can be guessed) is equal to the number of terminal
constraints imposed. For example, if Eq. (2.5.87A) is used,
then only one constraint is imposed and all the diagonal elements
of A are equal to some number, say A . This number would be
guessed to start the iteration.

(2) Integrate the equation for & backwards in time with g (¢ ) = A
[ i.e., integrate Eq. (2.5.106A) 1 . ¥/ =

(3) Set P (to) = :1-, E:and integrate the P equation forward from
+t, to t li.e., Eq. (2.5.111) 7.

(4) Test P (t;)to see if the specified terminal constraints are
satisfied.

(5) If the constraints are not satisfied, adjust A and go back to
Step (2).

Since the terminal constraints are inequality constraints [see

Eq. (2.5.87)] , this iteration scheme will not lead to a unique solution.
However, it can be shown, using standard methods from the Calculus of
Variations, that A must he a negative semi-definite matrix, with the
diagonal elements all less than or equal to zero. This condition
suggests that the iteration loop above should start with the condition

A = 0 ; furthermore, it generally allows for a unique solution to the
iteration problem.,

Summarizing the results for the perfectly observable case, the optimal
feedback control is given by Eq. (2.5.107) where the matrix S is determined
from Eq. (2.5.106A). The Lagrange multiplier matrix A is selected so that
the simultaneous solution of Eg. (2.5.106A) and (2.5.111) lead to a control
which satisfies the specified terminal constraints.

2.5.3.2 Perfectly Inobservable Case

The treatment of the perfectly inobservable case parallels that given
in Section (2.5.2.2) where no terminal conditions were imposed. Again,
the problem is to minimize the performance index

t+
E (J): E{f(z’a-z-fu_r@zu_) d¢ + i:_/\.f{} (2.5.111}>
to
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subject to the state equations

2 = Hé¢ou + HPE (2.5.115)
and a terminal constraint on the quantity £ (% z} ) . The initial
state 24 1is a Gaussian variable with mean and covariance given in

Fg. (2.5.96).

Iet é denote the expected value of £ and P its covariance; that is,

7 = E (2) =HPEX)
E{(i‘- i) (a-i)r} = H¢E{(x-§) (X-f)T} 74" (2.5.116)

P

Now, the expected value and covariance of X were calculated for the
perfectly inobservable treatment given in Section (2.5.22) [see Eq.
(2.5.36) ] . Substituting these expressions into (2.5.116) provides

A
Z = HPG L
) ¢ , (2.5.117)
P =HOZ¢H
with the boundary conditions
2o = HEX .. (2.5.118)
R = HOVD'H
Also, letting
z = 2+ Z (2.5.119)
it follows that
E(E) =6 (%' M=o (2.5.120)
F = HOE (2.5.1204)

Thus, substituting the value for Z given in (2.5.119) into (2.5.11k4)
reduces the performance index to

te

A A A tf
£ (J) = A (ZT@Z+u'Qzu)de + 24 A Z, +E[f(§Ta§)dt + 5:_,1.2{]
° to

te . -tf
L a AT A
=[f( =z aZ+UQuuydt + 2, A7, + [44 (Ag)+f %(QP)dt]
t, te
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(2.5.121)

Thus, the control is to be selected to minimize the quantity inside the
first set of brackets in Eg. (2.5.121) (the quantity in the second bracket
does not depend on W ), and the stochastic problem has been reduced to

deterministic form.

-

let te
A AT A r A A
£ (2,¢t) =mn (ZT@Z+ U@ L)dt+Z, AL,
L¢m (T
t s et

Then, using the Dynamic Programming approach, 1t follows that

T ]

A "
o=mn{ zTag+u @uu+ 3—’; + (_a_g) HoGu
sy ® 2 J

with the solution

E(i}{): ETS(f);-
SHR-5HEGR, G BHE = 0
S ('ﬁf)*./\u

The optimal control is glven by

- T A
u = - Qe HTsz

|

(2.5.122)
(2.5.123)

(2.5.124)

(2.5.125)

To determine the value of A for which the terminal constraint is

satisfied, note that

A AT

E{(-z- Ef)(z-%‘f} +2 2,

A AT
= @ (te)+ 2, 2,

T
E(2eZg)
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Since the quantity p(te) is indgpenden; of the control action
(see (2.5.117)), a constraint on F(Z¢%;) 1is equivalent to a constraint
on the quantity #.zT . Let

W(f) = iéT

then from (2.5.117) and (2.5.125)

- T, T (2.5.126)
W = -HpoRz's ¢THSW - W5H¢6Q:_6¢HT

with

~ AT
w, = 2,2, (2.5.127)
Thus A is to be selected so that the simultaneous solution of the § and w
equations, which satisfies the boundary conditions of Eq. (2.5.12L4) and
(2.5.127), provides a value of W(%¢) which satisfies the terminal
constraint., As in the previous case, the solution will usually require
iteration. However, the matrix A is again negative semi-definite and

this condition will aid in the iteration process.

2.5.3.3 Partially Observable Case

The problem is to select the control W to minimize the functional
te
T T T
E(J) = E {J;(z QZ+UQ,U)dt+ -Zf_A.-Z_F} (2.5.128)
(]

subject to the state equation

7z = HPcU + HPF

and a terminal constraint on £ (Z¢ i;) In this case, however, observations
of the state variable X are made continuously as represented by the
observation equation

y = Mx + R (2.5.129)

where 7 is a Gaussian white nolse with zero mean and variance Iﬂ(t) ;
that is,

g(o;j = 0

E {7((*.:) 0[(?)1}: I ) 5(.,:,_ ) (2.5.130)
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Note, as in'Section (2.5.2.3), the performance index can be written as

£ )=¢ {e [v/4])

e
= L;(ﬂ {E [fo(zTai + UTQylL) dt + z:./uz% / 3:”(2.5.131)
tf‘P£t¥

Thus, letting

TW=£ (2 )]/500); x()=£(x@/5) (2.5.132)

and

P (+) =E{(z- Z)(z- E)T/‘a(tj}
Vv (&) :E{(x-i) (% - R)T/z,(t)} (2.5.133)

it follows that

A

Z < Hox
(2.5.134
P = novd™s’ )

But the quantities X and v are given in Egs. (2.5.63A) and (2.5.63B).
Thus, using these expressions provides

A T A

72 = Hoou + HPUM [ (Y- My)
. . T -1 rT T T 2.5.1
P =-HpyM T Mvd'H + HOZ¢H (2.5.135)
Note that these two equations contain the mean and covariance of the
vector X . This fact will not effect the aralysis since the matrix

does not depend on the control. Thus, if X is evaluated at any point,
the corresponding value of 2 can be readily determined. Flnally, let

Z=2+ Z (2.5.136)

and observe that

E (2/y) =€ (£27[9) =0
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Substituting this value for # into (2.5.131) yields

t

(’AT o T, 37 p
(Z'@z + U Qu)dt+ E AL

- |
corg, |

o

t, = TEt (2.5.137)

”
+f T (aHdVOTH At + 4 (A HHD)
t,

Since only the first term in this expression depends on the control, the
problem of minimizing £ (J) has been reduced to minimizing

& + +

te
AT A T A AI
Z Q2 =
%f (2 aZ+u'Qu)dt+ % _A.E‘ Min (2.5.138)

E
4 (™)
t, 2 T’ft+

[

Follgwing a procedure identical to that used in Section (2.5.2.3),
let R (Z,t)be the minimum value of the performance index in (2.5.138)
for the solution which starts the point (Z,¢). Using the Dynamic
Programming approach, it follows that

14 (%t) = MIN %(%TQ 2+ W, u)at +o(at) + E( [?(é +A2)t+A1{|}
o) y(r)

+t£ ML e+t t&tvtt+at

Thus, taking the limit and using Equations (2.5.134) and (2.5.135) provides

o0 = MIN Z27@z+ uT+a,u+ 28 4
W (+) N 2t e (§F)adeu
© [2°R T 77|
+ 3 ) HOUM' T M@ # ‘

This equation has the solution

R=2TS@Z+8&) (2.5.139)
where

5 + Q-5SHP6Q, 6 ¢ = o (2.5.1%0)
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€+ (SHPvMT MV4>T T)=

S5 (-(: Y = A
B (te) =0 (2.5.141)
The optimal control takes the form
U = — -1 T, T 7.2
=R, G Q@ HSE (2.5.142)

The selection of A to satisfy terminal constraints on the quantity
E (2, zf'") is accomplished as follows. Note that

ry _ .| - iy 3
E(Z¢2]) _g-ls(zsz/g)f —g {E[(zf—é)(zf-zf)Vﬂ

But, since the covariance P= Hd’l//ﬁr/fr does not depend on Y , this
expression becomes

E(Z*Zfr)=H'¢HT+f(£f+ ,%:) (2.5.143)

Further, since the quantity H VH is Tdetermlnlstlc and independent
of the control, a constraint on E(i'f Z,) is equivalent to a constraint
on £ (£, 2T . Thus, if W @) 1is given by

1‘“1‘)
w(e) =
. 3(1-) [é 2 () ]

Then, using Egs. (2.5.135) and (2.5.142), it follows that

W = - He6QY'e 0 sw-wsHdea; c'¢™HT
_ (2.5.14h)
+ HOrm r mydnT
with
A £T
W, = 2,7, (2.5.145)
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The matrix A is to be selected so that the simultaneous solution of the w
and S eguations, together with the boundary conditions in (2.5.141) and
(2.5.145), yields a value of w (¥¢) which satisfies the terminal
constraints. As In the preceding two cases, iteration will usually be
required to accomplish the solution. Ref. (2.5.7) contains an interesting
application of this partially observable case to the interplanetary guidance
problem,

2.5.3.4 Discussion

The inclusion of the terminal constraints does not appreclably alter
the problem, except that the solution must be accomplished iteratively,
rather than directly. However, the iteration loop appears to be no more
difficult than that normally encountered in optimal control problems.

In some cases, when the number of terminal constraints is small, closed
form solutions may be possible [ see Ref. (2.5.7) ] .

As mentioned at the beginning of this section, the linear-quadratic
cost problem 1s not typical of stochastic optimization problems. The
reason for this is that the analysis is concerned with the solution of
partial differential equations. The linear-quadratic cost problem is one
of the few cases in which the variables separate, and the partial differential
equations reduce to ordinary differential equations.

For additional treatments of stochastic control problems, the
interested reader should consult Refs. (2.5.1) to (2.5.7) as well as
Chapter (7) of Ref. (2.4.1). Refs. (2.5.8) to (2.5.10) also contain an
elegant application of stochastic control theory to the mid-course
correction problem.
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3.0 RECOMMENDED PROCEDURES

The preceding sections of this report have illustrated the dual nature
of Dynamic Programming as both a theoretical and computational tool. It
is the general consensus of opinion (see Ref. (2.4.1)) that on the theore=-
tical level, Dynamic Programming is not as strong or as generally applicable
as either the Calculus of Variations or the Maximum Principle. However,
the relative strengths and weaknesses of Dynamic Programming when compared
with the variational methods are of little importance. What is important
is the fact that Dynamic Programming is a completely different approach to
optimization problems and its use can provide perspective and insight into
the solution structure of a multistage decision processes, Furthermore,
there are some problems that are rather difficult to attack using the
classical methods, but which readily yield to solution by means of Dynamic
Programming. One such example is the stochastic decision problem treated
in Section (2.5).

On the computational side, Dynamic Programming has no equal as far as
versatility and general applicability are concerned., Almost all optimization
problems can be cast in the form of a multistage decision processes and
solved by means of Dynami¢ Programming., However, it frequently happens
that certain problems, or certain types of problems, are more efficiently
handled by some other numerical method., Such is the case, for example,
in regard to the trajectory and control problems normally encountered in
the aerospace industry.

It has been amply demonstrated in the last few years that optimal
trajectory and control problems can be solved using a variational formulation
procedure coupled with a relatively simple iterative technique such as
quasilinearization (Ref. (3.1)), steepest ascent (Ref. 3.2)) or the
neighboring extermal method (Ref. (3.3)). The voluminous number of papers
and reports dealing with problem solution by this method attest to its
effectiveness. On the other hand, there are relatively few reports which
treat trajectory or control problems using Dynamic Programming. The reason
for this can be partially attributed to the '"newness! of Dynamic Programming
and the fact that other numerical procedures were available and were used
before Dynamic Programming "caught on." More important, however, is the
fact that solution generation by means of Dynamic Programming usually
requires more computation, more storage, and more computer time than do
the other numerical methods.

The role of Dynamic Programming in the flight trajectory and control
area should increase in the not too distant future. Presently used techniques
have been pushed almost to their theoretical limits and leave something to
be desired as more complex problems are considered and more constraint
conditions included. Dynamic Programming, on the other hand, is limited
only by the computer, a limitation which is continuously on the decrease
as more rapid and flexible computing equipment is developed.
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