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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports
in the series.

Volume I Coordinate Systems and Time Measure

Volume II Observation Theory and Sensors

Volume IIT The Two Body Problem

Volume IV The Calculus of Variations and Modern
Applications

Volume V State Determination and/or Estimation

Volume VI The N-Body Problem and Special Perturbation
Techniques

Volume VII The Pontryagin Maximum Principle

Volume VIII Boost Guidance Equations

Volume IX General Perturbations Theory

Volume X Dynamic Programming

Volume XI Guidance Equations for Orbital Operations

Volume XIT Relative Motion, Guidance Equations for
Terminal Rendezvous

Volume XIIT Numerical Optimization Methods

Volume XIV Entry Guidance Equations

Volume XV Application of Optimization Techniques

Volume XVI Mission Constraints and Trajectory Interfaces

Volume XVII Guidance System Performance Analysis

The work was conducted under the direction of C. D. Baker, J. W. Winch,
and D. P. Chandler, Aero-Astro Dynamics Laboratory, George C. Marshall Space
Flight Center. The North American program was conducted under the direction
of H. A. McCarty and G. E. Townsend.
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NOMENCIATURE LIST
a Semi-major axis of ellipsoid Earth model, X direction (triaxial)

8i3j Elements of a matrix (direction cosines)

8g, a; Semi-major axis of Earth's (Moon's) orbit

A Azimuth angle

b Semi-major axis of ellipsoid Earth Model, Y direction (triaxial)
c Semi-major axis of ellipsoid Earth Model, Z direction (triaxial)
E.T. Ephemeris time

E Elevation angle

€g, €p Eccentricity of Earth's (Moon's) orbit
£ Flattening of the Earth

G Universal gravitational constaat
G.S.T. Greenwich Sidereal Time

h Altitude angle

H Perpendicular distance from a point in space to surface of
spheroid Earth model (altitude)

H.A. Hour angle
i Angle of Inclination between orbital plane and some reference plane
im Inclination of Moon's equatorial plane to the Earth's equatorial
plane
i, Obliquity of Moon's orbital plane with respect to the true ecliptic
it Obliquity of true ecliptic with respect to the fixed ecliptic
at some epoch
1& Inclination of ecliptic to the mean equator of date

Ixx;Iyy,Izz Moment of inertia of Earth about X, Y and Z axes

J Jacobian operator

J.D. Julian date

J.E.D. Julian ephemeris date
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Local sidereal time

Local mean time = U.T. - A
Direction cosine

Mass of Moon, Sun, Earth
Mean anomaly of Earth, Moon

Longitude of Earth's ascending node plus the angle to the lunar
node

Gradient of Earth model surface equation

Mean angular velocity of Earth in its orbit

Unit outward normal vector to surface of Earth model
Mean angular velocity of Moon in its orbit

Frequency of Free Fulerian Nutation

The rth generalized coordinate in lagrange's equation

A vector from the origin of a coordinate system to a point in
space

Magnitude of the distance from origin of coordinate system to a
point on the Earth's surface

Sidereal time

Rotational transformation or rotational kinetic energy of Earth
Time in mean solar days from 1950,0 (J.D. 2433282.423)
Universal time

Work function for Moon-Earth system

Work function for Sun-Earth system

U, * Ug

True anomaly

Periodic nutation potential
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Unit vector in X, Y, Z direction

X, Y, Z coordinatesof ellipsoid Earth model surface definition

True right ascension angle

Right ascension angle uncorrected for precession
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1. STATEMENT OF THE PROBLEM

All of the problems to be discussed in this and subsequent monographs
of the series require that the position and velocity of the particle being
studied be describable in a simple and definitive manner. Thus, major
attention must be placed on systems of coordinate measure. The complete
description of these systems is the objective of this monograph., This
emphasis will be exhibited in the orderly progression from the basic require-
ments of measure to the definition of coordinate frameworks utilized for
trajectory problems and those employed for the description of body oriented
axis systems. This discussion will take advantage of a NASA prepared
document (Reference 1) on coordinate systems for the Apollo Project and of
its notation. However, due to the broad spectrum of problems to be encounter-
ed in this series of monographs, adaptations and additions have at times
been necessary.

Once these basic coordinate frames are described, attention will turn
to the description of the nature of the motions of these fundamental refer-
ence systems due to the motion of the moon about the earth (non-spherical
and non-homogeneous) and due to gravitational attractions on the mass anom-
alies produced by other bodies in the solar system. This analysis will take
the form of the development of a math model to be employed, the derivation
and simplification of the equations of motion and the solution of these
equations to yield the nutation and precession corrections to the basic
reference frame, This analysis, while not precise (due to the math model
employed), is singularly helpful in identifying the nature of the motion
and the primary sources of the disturbances. Equations describing the observed
motions of these coordinate systems are also included for the purpose of
completing the analysis.

The final discussion in the monograph is of time standards employed in
the study of astronomy (sidereal time, universal time and ephemeris time).
These standards, which are still employed as the basis of civil time, etc.,
(ephemeris time is a consequence of atomic clocks) are developed from the
historical as well as the physical point of view for the purpose of relating
the rotating coordinate systems described earlier to measurements of the
celestial sphere. The section includes an example which demonstrates the
relationships between these time standards and the process to be employed in
a given reduction (frequent reference is, of course, made to data available
in the American Ephemeris and Nautical Almanac).




2., STATE OF THE ART

2.1 Coordinate Systems

2.1,1 1Introduction to Coordinate Systems
2.1.1.1 The Purpose of Coordinate Systems

In the process of conducting an engineering study in the realm of flight
mechanics, trajectory optimization or guidance, the first decision to be
made pertains to the selection of a coordinate system to uniquely describe
the position of the vehicle being considered and in which the equations of
motion in a Newtonian sense can be written. (Relativistic mechanics will not
be considered since the velocities generally encountered in these problems
are much less than that of light.) Thus, at this point, a simple statement
of the purpose of such systems is in order.

A coordinate system is a framework constructed to allow the specification
of an ordered triplet of real numbers associated with the position of a
point in three-dimensional space. (The idea of using velocities as coordi-
nates of a point without distinction between velocity and position coordi-
nates constitutes the phase space approach to dynamics and is discussed in
several of the monographs which follow this, the first of the series.)

2.1,1,2 Newtonian Mechanics and the Inertial Frame

If G is a frame of reference with point O fixed in G, and P a moving
particle, its position relative to O can be described as a vector quantity
7 = 654! . (The velocity and acceleration of P are defined to be va2Z
and a-= .—; .) On the basis of astronomical observations, Newton con-
jectured that in a basic frame (an inertial, non-rotating, non-accelerating
axis system) of reference there existed a proportionality between the force

acting on a body and its acceleration. This constant of proportionality

determines the mass of the body. The equivalent of his fundamental laws are:

Every body persists in a state of rest or in uniform motion in a
straight line except if it is compelled by force to change that state.

The time rate of change of linear momentum is equal to the force

producing it and the change occurs in the direction Epe force is

acting. (In vector notation this statement becomes F:=JL(n1v) .)
¢

The mutual actions of any two bodies are always equal and opposite
in direction.

The constitution of a basic frame (in which Newton's laws are valid)
is an elusive and possibly a metaphysical concept. It is possible, however,
to establish such reference axes to a satisfactory degree of approximation
due to the almost "fixed" pattern of the stars in a given celestial field.
The extremely slow observed motions result from the large, though finite,
distances between our solar system and a typical star. These distances,



in turn, are responsible for the fact that the direction from any point in

the solar system to the star is approximately constant in inertial space
(i.e., the angle between two direction lines from any point in the system

to two such "“fixed" stars remains constant). A set of inertial axes can,
therefore,be established using these direction lines to define the non-
rotating system and the mass center of the solar system as the non-acceleratin
origin.

2.1.1.3 Coordinate System Requirements

Before describing the many systems of coordinate measurement in use,
it is beneficial to first look at the four characteristics of every coordinate
system, First, all of these systems must have an origin. In a three-
dimensional space the origin is simply the location of the null set [0,0,0]
of the coordinates. Second, there must be a reference plane which contains
this point (any of an infinite set). This plane can be defined by any two
vectors lying in it or by defining one of its two poles, (i.e., the positive
or negative normal to the surface emanating from the origin). Third, an
arbitrarily selected but identifiable vector in the reference plane must be
selected as a principal direction. Finally, a technique of measuring the
coordinates of a point in the system must be established. The methods used
for coordinate measurement to be described here are the rectangular cartesian,
the spherical polar ané the spheroidal.

2.1.1.4 Coordinate Measurement Techniques
2.1.1.4.1 Rectangular Cartesian Coordinate Measurement

One of the principal ideas leading to the establishment of the coordi-~
nate system is the idea of identifying the complete set of real numbers
with the set of points comprising a straight line; that is, to each real
number there corresponds a single line and vice versa. This idea enables
a one-dimensional coordinate system to be constructed where the coordinate
[X] of a point P on the line is given by

X = Q0P
OA

OP is the length of line from O to P and OA is a unit length

ORIGIN
NEGATIVE REAL NUMBERS POSITIVE REAL NUMBERS
‘7
1 . - >
o A P



By taking three noncoplanar straight lines intersecting at an origin 0
an oblique cartesian coordinate system, associating each point in a three-
dimensional space with an ordered triplet of real numbers » can be constructed.
If the coordinate axes intersect at right angles to each other the system is
said to be a rectangular cartesian coordinate system, A feature of the rec-
tangular cartesian system is that the length of a line Joining points
P(x,Y,z]and Q[ x,v,z] is given by the expression

PQ-[(X-X,) +(V-Y.)z+(3/— 3',):,2 (%, 40 %]

A three-dimensional space having a coordinate system with this property is
said to be a Euclidian 3 - space. Since the ordered triplet of numbers
[X,Y,z ] satisfies all the requirements of vector spaces it will be referred
to as a vector and denoted by a bar above the quanity (i.e., dp). This vector
space is called a three-dimensional linear vector space since any vector in
the space can be represented as a linear combination of three noncoplanar
vectors, If these noncoplanar vectors are chosen to be of unit magnitude
having only one non-zero coordinate (i.e.,[ l,e,0] ,Leo,1,01 and
Lo, o, iJ) they are called fundamental unit vectors. In thj’_\s monograph
the fundamental unit vectors are denoted by the symbols ‘2,9 s . Thus any
vector [‘X)»&Jab] or 6p, can be expressed as the following linear combination

—

P = 9(-9'E+t.8,\%,+46%,




2.1.1.4.2 Spherical Polar Coordinate Measurement

The basis of spherical polar coordinate measurement is an ordered
triplet of real numbers [ R, A , O ] . The first number is associated with
the distance between the point being measured and the origin. The other two
numbers are associated with two angles specifying the direction to the point
from the origin. When a reference line, of length R and imbedded in a rec-
tangular cartesian system, is rotated through these angles about two selected
axes the end of the line specifies the location of the point.

" A ansider a rectangular cartesian system determined byhthe unit vectors
X, ¥, 2. If the reference line is chosen to be along the x axis the first
angle is determined by a rotation about the z axis in a positive right-hand
manner for the longitude and right ascension techniques and in a negative
manner for the hour angle technique. The second angle is measured in a plane
passing through the rgtated reference line and the 2 axis in a direction
positive towards the 7z axis. This angle is referred to as the latitude,
declination, or altitude depending on the particular coordinate system it is
being measured in.

¢ - LATITUDE
(H.A.) - HOUR ANGIE 3 f- DECLINATION
- ALTITUDE
E - EIEVATION

-7
/

% » - LONGTITUDZ
o - RIGHT ASCENSION

From the diagram, it is evident that the spherical coordinates of a
point are unique and may not be added in the sense of rectangular coordinates.
(That is, the sum of two vectors in spherical coordinates is not the
result obtained by adding the two ordered triplets for the respective
vectors).

2.1.1.4.3 Spheroidal Coordinate Measurement
The surface defined by a second degree equation in the rectangular

cartesian coordinates [x, Y, z] is called a quadric surface. A quadric
surface given by an equation of the form

R

XG + ?Gz + ?; :/



is called an ellipsoid, since the intersection of any plane passing through
the origin with this surface is an ellipse. The subscript ; indicates these
are coordinates of a surface point.

The figure described by this equation resembles a sphere which has
been flattened along two of its axes with the X, ¥, 2 axes being the semi-
major, mean, and minor axes of the figure. The length of these axes are
respectively, a, b, and ¢. If a = b, then the figure 1is called a spheroid.
For a = b >c the figure is called an oblate spheroid. Since the figure of
a spheroid can be obtained by rotating an ellipse about one of its prineipal
axes 1t is also called an ellipsoid of revolution. The figure of most
concern to geodesy is the oblate spheroid which satisfies the equation

T ;3
X, +
& e + ¢ = | o >
a." C." b

The parameters usually chosen to describe an oblate spheroid are the major
axis length (or equatorial radius), a and the flattening f given by

boo-e

Since, for an oblate spheroid, € <@ the flattening is always a positive
number,

The basis of spheroidal coordinate measurements is the ordered triplet
of real numbers LW, A, #] . The first number¥ is associated with the
perpendicular distance of the point being measured to the surface of the
spheroid. The second number A , called the longitude is the same second
number used in the spherical polar measurement technique. The third number
¢ 1s associated with the angle measured in the plane of the axis and the
point being considered between the normal to the spheroid in the direction of



the point and the major axis. The method of spheroidal coordinate measurement
is illustrated in the following diagram.

[ HJ h; d>
A7 _ .
H Ne
' OUTWARD
NORMAL TO
c SPHEROID

Z//////’/’

/A ////////

A point ['xc,‘ (. ’)J on the surface of the spheroid is given in spheroidal
coordinates by Dﬂ"’»’\:@ooj , whereas in spherical polar coordinates it is
[Re Na ®a]- It is a simple matter to express the rectangular cartesian
' 1

coordinates in terms of the corresponding spherical coordinates by means of
trigonometric functions

Xe = Rg tot P, tob Mg
"Ar(,. = -Rc,. cod 43'66/\‘;"*\ }\G

Ao = Re Am &

However, to express these coordinates in terms of the spheroidal coordinates
for any given a and § preliminary steps must be taken. It is first necessary
to compute the rect r cartesian components of the unit outward normal
vector in terms of both spherical polar and spheroidal coordinates. An
outward normal vector Ng is simply a vector lying in the direction of the
maximum rate of change of the scalar function determining the surface. N_ is

obtained by operating on the function using the gradient operator denotedgby
the symbol @ . That is
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In terms of spheroidal coordinates the unit normal vector is

R, = (coadgcoqh) X *(MCEDMM'% +(’wd€‘)%

Now equating the components of these two expressions for the unit normal
vector results in the relation
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To establish the value of cko— 4"«.35 a function of the angle < the
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Hence

Therefore

'Xj,cm"é, {‘\—*__“bf?%

2
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or expanding this expression in series
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An expression for the radial distance Rg to the spheroid can be derived as

follows:
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The average (or mean sea-level) figure of the earth 1s best represented
as an oblate spheroid with the minor axis being the axis of revolution (polar
axis). This model is not exact, however, it 1s adequate for most trajectory
studies. TFor this reason the best values of the equatorial radius a and
the flattening f are desired. These data along with the polar radii are
presented in the following table.

Table.l. Equatorial Radius a, and Flattening £

Statistical
Estimate
Baker Kaula from Available Data
Equatorial 6378.150 6378.163 6378.210
radius, a + 0.050 + 0.021 + 0.045
(Jan)
1 298.30 298.24 298.27
f + 0.05 + 0.0k + 0.03
Polar radius, 6356.768 6356. 77T 6356.826
¢ (km) + 0.050 + 0.021 + 0.045
Confidence ? ? 95%
level

In addition, Kaula's values of a and f have been utilized to construct
tables of fgp - P'cc and Rg/s (Tebles 2 and 3)

2.1.1.5 Classification of Coordinate Systems

For the purposes of this monograph, all coordinate systems (regardless
of their method of coordinate measurement) will be classified as being either
observational or dynamical in nature. Observational coordinate systems
will be considered to be fixed with respect to either an observer or a
central body and thus include most of the astronomical frames. (A central
body is a body having a very large mass as compared to a body moving under
its sole influence.) On the other hand the dynamical coordinate system
will be considered to be fixed with respect to the orbital plane of the
vehicle or some identifiable feature of the vehicle's structure. A further
classification of coordinate systems will be made based on whether the system
is rotating or fixed with respect to the "fixed" stars.

In order to asccurately describe the coordinates of a number of bodies
in the many coordinate systems described in this monograph & superscript and
subscript is given to each coordinate. The superscript gives the number of
the body being measured. For the purposes of describing an arbitrary body
number, no superscript is given. The subscript indicates the coordinate
system in whiech the body is being measured. These superscripts and subscripts
are easily read by consulting the given listing.

11
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Superscripts 1st Subscript 2nd Subscript

L Launch site G Geo A astronomical
C centric
T Observer (topos) 0 orbital D detic
E equatorial
V Vehicle S seleno ecliptic
G graphic
M Moon T +topo H horizontal
I, lunar equatorial
S Sun V vehicle P principal
S stable

Using the above notation, the coordinate YXg¢ for instance is
interpreted to be the x coordinate of the vehicle as measured in the
selenographic coordinate system. In general, the first subscript can be
identified with the center of origin of coordinates and the second subscript
associated with the reference plane. Although all combinations of the two
are not used, this notation suggests an abundance of possible coordinate
systems. Some of these systems will be discussed and illustrated later
(sections 1.1.2.2 and 1.1.2.3).

2.1.1.6 Selection Basis
The bases upon which a coordinate system is selected are the require-
ments of the particular problem under investigation, and interface consider-
ations. For problems involving the contributions of many technologies it is
generally wise to adopt a set of standard coordinate systems.

2.1.2 Observational Coordinate Systems

2.1.2.1 The Celestial Sphere

The first class of coordinate systems to be considered is that of the
observer or the observer's central body. (These are the systems commonly
associated with astronomical and radar observaticns.) In each of these
systems, the observer and the observed body are in motion. Further, the
motion can be described only with the aid of an "inertial" coordinate system
in which Newton's equations can be evaluated. Thus, since an observer has
no concept of direction except in relation to other bodies, objects, etc.;
and since the less the motion of the reference direction, the more accurately
the observer can correlate data acquired at different times, the concept of
the celestial sphere has developed. The celestial sphere is an imaginary
surface of infinite radius on which the positions of the stars are projected
(see sketch).

& -
OBSERVER
%

*
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Since the celestial sphere is considered to have an infinite radius, every
point in the solar system can be regarded as being a center and all lines

(or planes) parallel to each other will intersect the sphere at common points
(or great circles). This fact not only allows positions to be quoted rela-
tive to the "fixed" stars but it also drastically simplifies the problem of
reducing data acquired from several observers, each of which was employing a
reference system of finite proportions.

The difference in position of celestial bodies projected on the
celestial sphere due to a change of origin is known as parallax. Since the
dimensions of the Earth's orbit are known, this effect can be measured by
comparing the apparent positions of a celestial body at different times
during the Earth's transit about the Sun. For origins located within the
solar system parallax is negligible for all but the nearest stars. The
celestial sphere therefore provides a convenient framework for fixing the
relative positions of the heavenly bodies.

2.1.2.2 Origin of Coordinates

The first characteristic of a coordinate system is an origin of
coordinates; that is, the point at which the null, or zero set is located.
The origins of observational coordinate systems and their designations are:

1) The center of the Farth - geocentric, (from the Greek geo-earth
and Gr. kentron - center)

2) The center of the Moon - selenocentric (Gr. selene-moon)

3) The center of the Sun - heliocentric (Gr. helios - sun)

L) The center of Mass - barycentrie,
(Gr. barys-heavy)

5) The observer - topocentric (Gr. topos-place)

2.1.2.3 Reference Planes

Associated with every reference plane are its poles, or the points at
which a normal to the reference plane pierces the celestial sphere. The
position of the poles on the celestial sphere does not change with a change
in origin of coordinates since the celestial sphere was assumed to have an
infinite radius. There are four reference planes, known as fundamental
planes, that are the basis of most astronomical measurements. They are:

1) The plane of the Earth's equator

This is the plane perpendicular to the instantaneous axis of rotation
of the Earth. The great circle in which it intersects the celectial sphere
is called the Earth's celestial equator (or celestial equator). The poles
of the Earth's equator are known as celestial poles.

15



2) The plane of the ecliptic

The plane in which the Earth moves around the 3un (withstanding
perpendicular disturbances caused by the sun's oblateness, the Moon and
the planets) is designated as the ecliplic. Its great circle on the celestial
sphere is simply called the ecliptic.

3) The plane of the geodetic horizol

This is the plane tangent to the surface of the oblate
spheroid Earth model, at the observer. If the actual Earth coincided with
this model, it would also be the plane normal to the direction of gravity
at the observer,.

4) The plane of the astronomical horizon

This is the plane perpendicular to the direction of the loeal gra-
vity vector or the direction of a plumb line at the observer. Due to
certain anomalies, such as surface terrain effects, it does not exactly
coincide with the plane of the geodetic horizon. The great circle in which
the astronomical horizon intersects the celestial sphere is called the
celestial horizon. The pole of the plane of the horizon in the upward
direction is known as the zenith, and in the downward direction, the nadir.

In addition, the following non-fundamentel reference planes will
also be considered:

5) The plane of the Moon's equator

This is the plane perpendicular to the axis of rotation of the Moon.
The great circle in which it intersects the celestial sphere is called the
Moon's celestial eguator.

6) The plane of the Earth-Moon systems

This is the plane described by a line passing through the center of
the Earth and the center of the Moon, as the Moon revolves about the earth.

7) The plane of the Galaxy

This is the plane perpendicular to the axis of rotation of the
Milky Way Galaxy. The great circles intersecting the celestial sphere are
known as galactic circles. 1Its poles are called galactic poles.

2.1.2.4  Principal Directions

Having established an origin and reference plane for an axis system,
it is necessary to prescribe a direction to complete a unique description
of an axis system. If the chosen direction lies in the reference plane, it
is called a principal direction. All principal directions are determined by
the line of intersection between a great circle on the celestial sphere and
the reference plane. If the great circle passes through the poles of the
reference plane, it is called a meridian of the reference plane.
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DIRECTION

If the great circle is the celestial circle of another reference plane, the
line of intersection, (determining the principal direction) is culled the
line of nodes of the two reference planes. Most often, one of these ref-
erence planes is an orbital plame, If this is the case the node passed as
the orbiting body goes toward the northern hemisphere of the reference
plane is called the ascending node and the other the decending node.

DESCENDING
NCDE

ORBITAL FLANE

REFERENCE PLANE

PRINCIPAL
DIRECTION

ASCENDING
NODE

The three most common principel directions defined in terms of a
meridian are those determined by the Greenwich or prime meridian, the
lunar prime meridian and the local meridian. For sa geocentric system, s
principal direction is determined by the plane of the Earth's equator and the
meridian passing through the Royal Observatory at Greenwich, England, positive
in the direction nearest to Greenwich.
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For a selenocentric system a principal direction is determined by the
plane of the Moon's equator and the lunar meridian passing through the mean
center point (MCP) of the Moon, positive in the direction of the mean center
point,

The local meridian is the great circle normal to the fundamental plane
passing through the position of the observer. It fixes a principal direction
which is in the direction nearest to the observer.

The most useful principal direction in astronomical work is that
established by the intersection of two reference planes, that of the Earth's
equator and the ecliptic. The principal direction is taken in the direction
of the ascending node, that is, the point on the celestial sphere where the
apparent orbit of the sun crosses the celestial equator going north. Since
this occurs during the spring season of the Northern Hemisphere at the time
when sunlight and darkness intervals are equal it is called the vernal
equinox. (from the latin vernalis - spring, alquus - equal, and nox -
night). The point on the celestial sphere where the plane of the ecliptic
is nearest to the north celestial pole is called the summer solstice and
the point nearest the south celestial pole the winter solstice.

WINTER SOLSTICE

SUMMER SOLSTICE
AUTUMINAL PQUINOX

ECLIPTIC

CELESTIAL EQUATOR

Unfortunately, from the standpoint of computing the positions, or ephermerides
of the celestial bodies with the passage of time, both the poles of the
ecliptic and the celestial poles are continuously in motion. Hence, the
equinox is continuously moving on the celestial sphere. This motion will be
discussed in detail in section 2.2 of this monograph; however, the general
nature of the motion will be discussed in subsequent paragraphs.
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The motion of the pole of the ecliptic is a result of planetary
attractions upon the Earth as a whole and is called planetary precession.
It consists of a slow rotation of the ecliptic about a slowly moving diameter,
The effect of this is to decrease the angle between the pole of the ecliptic
and the celestial pole (the obliquity of the ecliptic) by about 47" a century
and displace the equinox about 12" per century. The motion of the celestial
pole is due primarily to the attraction of the Moon and Sun on the equatorial
bulge of the Earth. The theory of this motion is given in Section 1.1.3
(The Effects of Precession and Nutation). However, since the discussion of
the coordinate frames relates so closely with this material, some of
the more salient facts will be summarized for the purpose of describing the
motion of the principal direction determined by the vernal equinox. The
first component of this motion is called Luni-Solar precession and consists
of the mean or continuous motion of the celestial pole about the ecliptic pole,
As the mean celestial pole moves, or precesses, about the pole of the
ecliptic its direction line describes a conical surface (with semi-vertex
angle of approximately 23.5°) about the pole of the ecliptic. The period of
revolution is about 25,800 years.

Superimposed on this motion is a small amplitude (about 9") irregular
motion called nutation which carries the true celestial pole about the mean
pole in a period of 18.6 years. The position of the vernal equinox, dis-
regarding the effects of nutation, is called the mean equinox ( T ). The
true equinox includes all effects due to precession and nutation. Since
the mean equinox of date is not a fixed inertial direction, a principal
direction corresponding to the mean equinox of 1950,0 has been adopted
as an inertial principal direction. The notation 1950.0 is used to describe
the beginning of the Besselian year of 1950 which actually occurs 22.15
hrs,E.T., 31 December 1949 (J.D. 2,433, 282 . 423).

2.,1.2.5 Rotating Observational Systems

This section is concerned with the definition of coordinate systems
in which observations can be readily made from the Earth or Moon. The intent
is to present an orderly discussion and graphic portrayal of these systems
and to extend the basic notation and format advantages realized in Reference
1. To this end the following subsections have been prepared.
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2.1.2.5.1 Geographic Coordinate Systems (GG) (Geocentric (GC) and
Geodetic (GD) Latitudes).

NORMAL TO
SPHEROID

PRIME MERIDIAN

OBLATE SPHEROID

EARTH MODEL
EQUATOR
LOCAL
MERIDIAN

Type Rotating, earth referenced, observational
Origin Center of the earth (geocentrics)
Reference Plane Earth's equator
Principal Direction Intersection of the prime meridian with the

earth's equator.

Rectangular Cartesian Coordinates

4x66_axis is in the principal directions

'-;‘u, axis is normal to the a6 » Bac plane
in the right hand sense

,5'6-0 axis lies in the directicn of the
celestial pole
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Spherical Polar Coordinates

Spheroidal Coordinates

e

e

S -

GC

& -
ot

radial distance from origin to the point
being measured

longitude measured positive eastward from
the ‘rime meridian to the meridian contain-
ing che point of interest (local meridian)

geocentric declination (angle between the
radius vector to the measured point and the
earth's equatorial plane), measured posi-
tive north of the equatorial plane

geocentric latitude (angle between the
earth's equatorial plane and the radius
vector to the point of intersection of the
earth model and the normal to the spherord
to the point being measured)

measured positive north of the equatorial
plane

perpendicular distance of the point being
measured to the surface of the earth
spheroid model

same as longitude measured in spherical
coordinates

geodetic latitude (angle between the
normal to earth spheroid model passing
through the point of interest and the
earth's equatorial plane

21



2.1.2.5.2 Geographic Coordinate System (Astronomical Latitude (GA) )

EQUATOR

This coordinate system 1s identical to the geographic system with the
exception that the latitude of a reference point is now given by the angle
between the local gravity vector (or plumb line) and the plane of the
equator. If the earth were exactly spheroidal in shape and the mass dis-
tributed in uniform concentric layers the direction of the gravity vector
would be normal to the spheroid. However, due to deviations resulting
from surface terrain effects and other causes the astronomical latitude #,,
differs from the geodetic latitude ¢a by a small quantity §4 called
station error, where °

S¢ = ¢q.o" %A
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2.1.2,5.3 Radar AZ-EL or Topodetic Axes (TD) .

NORMAL TO
EARTH MODEL

OBLATE SPHEROID
EARTH MODEL

PRIME
MERIDIAN

< LOCAL MERIDIAN

Type Rotating, earth-referenced, observational

Origin Observer (topocentric)

Reference Plane Tangent plane to the spheroid earth model
at the observer

Principal Direction Local south direction on the tangent plane

to the earth model

Rectangular Cartesian Coordinates
ﬂ& axis is in the principal direction
O.xis is normal to the’&bfﬁgoaxes in the
%1€Fight hand sense !
axis is in the direction of the normal

to the earth spheroid model
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Spherical Polar Coordinates
r.o- radial distance from the observer to the point
being measured

- azimuth angle measured from the local north
direction on the tangent plane to the projec~-
tion of the point being measured on the
tangent plane, positive to the east

Iz;b— elevation angle measured between the tangent
plane to the earth model and the line from the
observer to the point, positive towards the
outward normal to the earth.
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5.1.2.5.4  Topocentric Equatorial (TE) or Radar (H.A.-Dec.)

Type

Origin

Reference Plane

Principal Direction

‘;%TE
Sre

Rotating, earth-referenced, observational
Observer (Topocentric)

Farth's equatorial plane

Intersection of the local meridian through
the observer with the earth's equatorial

plane in a outward direction from the
observer

25



Rectangular Cartesian Coordinates
A gaxis is in the principal direction
;axis is normal to the ’Xﬂ,% axes in
. [ 4
right hand sense
axis is in the direction of the north
celestial pole

Spherical Polar Coordinates
yr_ - radial distance from the observer to the
point being measured

*{T - topocentric hour angle measured from the
® %+g axis, in a clockwise manner when
looking from the positive xgaXis to the
projection of the point on the observer's
equatorial plane

ST:" topocentric equatorial declination angle
measured between the observer's equatorial
plane and the line from the observer to

the point being measured
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2,1.2.5.5 Topocentric Horizontial (TH ) or Local Astronomical Axes.

NORMAL TO

. ’////,/’EARTH MODEL

HgCAL MERIDIAN

DIRECTION OF
LOCAL GRAVITY VECTOR
(ZENITH)

al
Xyo

EQUATOR

Type Rotating, earth-referenced, observational
Origin Observer, (topocentric)
Reference Plane Plane of the astronomical horizon (the plane

whose normal is in the direction of the local
gravity vector)

Principal Direction Local south direction on the plane of the
horizon determined by the intersection of
the horizon and the plane passing through
the earth's axis of rotation containing the
observer
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Rectangular Cartesian Coordinates
" axis is in the principal direction
%H axis is normal to the ’X_m A vu
in the right hand sense '’
/ZTHaJiS is in the outward direction of the
local gravity vector (plumb line
direction)

Spherical Polar Coordinates (not shown)
[ radial distance from the observer to the
point being measured

/\T - astronomical azimuth measured from the local
North direction in the plane of the

astronomical horizon to the projection of the

point on this plane

»*Tu - astronomical altitude measured from the
plane of the astronomical horizon to the

line from the origin to the point being
measured, positive toward the zenith
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2.1.2.5.6 Selenographic Coordinate System (SG).

LUNAR PRIME

MERIDIAN
MARE
MARE
SERENITATIS CRISIUM
LUNAR
FQUATOR
LUNAR LOCAL
MERIDIAN
Lype Rotating, moon referenced, observational
Origin
Center of the moon (Selenocentric)
Reference Plane Iunar equatorial plane

Principal Directions Mean center point of the Apparent Disc

Rectangular Cartesian Coordinates
KgodXis lies in the principal direction
%“ axis is normal to the /)(“_,/}“plane in
in the right hand sense
““'a)ds lies in the direction of the lunar
celestial pole

Spherical Polar Coordinates
Voo ™ radial distance from the center of the
moon to the point being measured

Mg, - selenographic longitude measured positive
from the lunar prime meridian (passing
through the MCP) to the point being
measured in the direction of Mare Crisium.

$o~ selenographic latitude
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2.1,2.5.7 Earth-Moon Barycentric Axes (BC)

EARTH
EQUATOR

Type

Origin

Reference Plane

Principal Directions

Rotating, lunar trajectory applications

Center of mass of the Earth-Moon system
(barycentric)

Earth-Moon plane

Direction of the line from the center of the
Earth to the center of the Moon (Earth-Moon line)

Rectangular Cartesian Coordinates

Xpc axis is in the principal direction

Ypc axis is normal to the Xpc, Zpe axes in the
right-hand sense

Zpe axis is in the direction normal to the
Earth-Moon plane positive towards the north
celestial pole
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2.1.2.6 Quasi-Inertial and Inertial Observational Systems

The coordinate frames presented on the previous pages are all
tied in some fashion to the Earth's crust (or that of the Moon) and
all move with it. However, for studies of motion, it is generally
desirable from the standpoint of the complexity of the solution to
write the differential equations describing the trajectory in a frame for
which the coriolis accelerations are negligibly small. The subsections
which follow present some candidate systems defined with reference to
equatorial planes, etec. of the epoch of date. These frames are moving
very slowly (thus the terminology quasi-inertial) and in a predictable
fashion (section 2.2), Therefore, should the rotational accelera-
tions involved still be too large to be neglected for a particular
application, an arbitrary epoch in the past (generally 1950.0) can be
gelected for the definition of the basic reference frame and corrections
for nutation and precession can be made when communicating between
the frame of the reference epoch and that of date.
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2.1.2.6.1 Earth Centered Quasi Inertial or Geoequatorial (GE).

CENTER OF
THE EARTH

MEAN VERNAL MEAN BQUATOR
EQUINOX OF DATE OF DATE
Type Quasi, inertial, observational
Origin Center of the earth (geocentric)
Reference Plane Mean earth equatorial plane of date

Principal Direction Mean vernal equinox of date

Rectangular Cartesian Coordinates

lxei axes is in the principal direction
% axes is normal to the X 4, plane in the
right hand sense
et @Xes is in the direction of the mean north
celestial pole of date

Spherical Polar Coordinates
r - radial distance from the center of the
earth to the point being measured

ol ¢ - right ascension measured from theX. ¢ axis
to the projection of the line from the origin to the
point on the mean equatorial plane of date,
positive in a counterclockwise manner when
viewed from the positive ?T axis.
GE

Ei; - declination, the angle between the mean
® equatorial plane of date and the line from

the center of the earth to the point being
measured,
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2.1.2.6.2 Geoecliptic (GE€).

CENTER OF
THE EARTH

ECLIPTIC
MEAN BEQUATOR
OF DATE
MEAN VERNAL
EQUINOX OF DATE
Type Quasi - Tnertial,observational
Origin Center of the earth (geocentric)
Reference Plane Ecliptic

Principal Direction Mean vernal equinox of date

Rectangular Cartesian Coordinates
xééaxis is in the principal direction
1 axis is normal to the q&*qrﬁ plane in the
right hand sense :
’zceaxis is in the direction of the north pole
of the ecliptic

Spherical Polar Coordinates
“R - radial distance from the center of the earth
G€  to the point being measured

%G ¢ ecliptic longitude measured from the
axis to the projection of the line from the
origin to the point being measured on the
plane of the ecliptic

@%6- ecliptic declination measured between the

plane of the ecliptic and the line from the
origin to the point
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2.1,2,6.,3% Selenocentric Equatorial (Sg)

TRUE VERNAL

EQUINOX OF DATE EARTH'S EQUATORIAL PLANE

Type: Quasi-inertial, observational
Origins Center of the Moon (selenocentric)
Reference Plane: Earth's true equatorial plane of date

Principal Direction: True vernal equinox of date

Rectangular Cartesian Coordinates:

'xss axis is in the principal direction

¢r axis is normal to the A , 4. axes in the
La right-hand sense s’ Ue

’3’5!. axis is in the direction of the true north
celestial pole of date
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2.1.2.6.4  Selenocentric Lunar Equatorial (SE)

MOON'S EQUATORIAL
PILANE

EARTH'S BFQUATORIAL

PLANE
Type: Quasi-inertial, observational
Origin: Center of the Moon (selenocentric)
Reference Planet Moon's equatorial plane

Principal Directiont: Intersection of the Earth equatorial meridian
passing through the true vernal equinox of date
and the Moon's equatorial plane

Rectangg}ar Cartesian Coordinatess

‘XSL axis is in the principal direction

‘ﬁs; axis is normal to the ’Kﬂ s Qsv axes in the
right-hand sense

<. axis is in the direction of the Moon's
axis of rotation
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2.1,2.6.5 Earth-Centered Inertial of 1950,0 (GE 1950,0)

(diagram same as geoequatorial - except
equatorial plane and mean vernal equinox
are of epoch 1950.0)

Type: Inertial, observatiocnal
Origin: Center of the Earth (geocentric)
Reference Plane: Mean Earth equatorial plane of epoch 1950.0

Principal Direction: Mean vernal equinox of epoch 1950.0

Rectangular Cartesian Coordinates:

Xgr50 axis 1s in the principal direction

YGES0 axis is normal to the XGE50 ZGES50
plane in the right-hand sense

Zgpso axis is in the direction of the north
celestial of epoch 1950.0

2.1,2,6.6 Galactic and Heliocentric Coordinate Systems

The use of galactic coordinate systems is at present limited to
radio astronomy studies, When used in conjunction with this branch
of physics, the Earth is chosen as the origin of coordinates, the plane
of the Milky Way galaxy is the reference plane, and either the direc-
tion toward the center of the galaxy or the intersection of the plane
of the galaxy with the celestial equator is chosen as the prinecipal
direction, If the former principal direction is used, the axis
normal to this direction and the direction of the galactic pole is in
the direction of galactic rotation,

The reference plane for heliocentric or Sun-centered coordinate
systems is the plane normal to the Sun's axis of rotation, Except for
a slight angle of inclination, this plane coincides with the plane of
the ecliptic. Any number of principal directions can be chosen to
determine the heliocentric axes.,
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2.1.3

Dynamical Coordinate Systems

2.1.3.1 Orbital Plane Systems

It will be shown in the monograph on Theory of Motion - Two Body
that in a dynamical system consisting of a vehlicle with negligible mass
and a spherical central body with symmetric mass distribution that the
vehicle moves in a plane (known as the orbital plane) which passes
through the center of the central attracting body. Rectangular car-
tesian coordinate systems with two arbitrarily defined axes imbedded
in this plane are, thus, frequently useful in analyzing this motion;
although in the true case, disturbances such as those due to an oblate
central body produce a motion out of this plane, However, for small
disturbances it is still convenient to use coordinates based on this
plane for many orbit computations. Generally, these orbital plane
systems are right handed and are oriented such that their Z axis is
perpendicular to the orbital plane (i.e., along the angular momentum).
The X axis (the principal direction) is selected to be a readily
definable vector in the plane of motion (toward periapse, toward
X (x.,) , toward the node, etc.).

The orientation of the orbital plane is given with respect to some
reference plane associated with the central body and containing an
arbitrarily selected principal direction (with the Earth as a central
body - the aquatorial plane is commonly taken as the reference planej
and the vernal equinox of date (€Y>), the principal direction), This
orientation is given in terms of the angle of inclination ( ¢ ) between
the orbital and reference planes withIn the range o'< : <1isc* and
the longitude of the ascending node measured from the principal
direction,

In those cases in which the desired coordinate frame is selected
in such a fashion that the principal direction locates the perifocus
of the orbit, a third angle w , called the argument of perigee and
measured in the orbital plane from the ascending node to the perifocus
must be specified. The angle v (referred to as the true anomaly)
measured in the orbital plane from the direction of the perifocus now
locates the vehicle,

X0 normal to reference plane

NODE
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A summary of the principal directions of the orbital plane
coordinate systems and their coordinate measurement notation is given

below:

Principal Direction
(X-axis)

Rectangular Cartesian
Coordinates

Spherical
Coordinates

Projection of the
vernal equinox of
date on the orbital

plane, ~n*

Xb«*, ‘k?«“, ‘ko~“

RO'Y" N 'xoq-‘ > d>o
( )\yv.z_jxéfur+4r)

Ascending node

'xow ) %ON) ”J‘oﬂ

RN, ’>‘°NJ d>o
L)'ON = w-\A)'\

Perifocus

’xo‘?) "1’09) ’bvo'

(;lOPJ ,«r) c}.

frame of to)

Vehicle (rotating =R o
frame) ’X‘w) S s v °Ys 2 P
Vehicle (inertial Koo , “&‘oi. s "d—o.‘, Roc R ’Ao.; =N

In each of these orbital plane coordinate systems, the angle ¢o is
measured normal to the orbital plane (that is, in the plane containing
the Zy axis and the vehicle) and is positive toward the Z_  axis. In

the absence of disturbing forces @, = O.

All orbital plane systems have

their origin at the central spherical body and their Z axis aligned
normal to the orbital plane,
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2.,1.3.2 Vehicle Principal Body Axes (VP)

EARTH'S EQUATORIAL

PLANE
TRUE EQUINOX
OF DATE
Type: Rotating, vehicle referenced
Origin: Vehicle center of mass
Reference Planes Plane normal to the longitudinal axis of symmetry

Principal Directiont One of the principal axes of inertia in the
reference plane

Rectangplar Cartesian Coordinates:

’)(V? axis is the vehicle longitudinal axis of
symmetry

Lavp axis is a principal axis of inertia

ve axis is a principal axis of inertia normal
’3 to the A o ‘ﬁ"’" plane
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Vehicle Principal Axes (VP) Orientation With Relation to
the Geoequatorial Coordinate System (GE)

The Xvo, ¢,os Fve Vvehicle principal axes directions
are derived from the geo-equatorial axes by successive
rotations about the 4., axis, the intermediate

#vo axis, and the final Ayp axis by the angles ¥,,,
Ovp; and ¢.p, respectively. For a vehicle aligned
normal to the Earth spheroidal model at launch, the
orientation angles ¥, and ©ve correspond to the right
ascension of the launch site ( “ O¢,) and the south
geodetic latitude of the launch site.
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2.1.3.3 Vehicle Stable Platform Axes (VS)

b 3,00 %73

e
unch 81
° e — N

Type Non-rotating, translates with vehicle, guldance applica-
tions
Origin Intersection of the primary axes of the accelerometers

in the vehiecle guidance package

Rectangular Cartesian Axes
Xvs axis 1s parallel to the Earth spherold outward normal
at the launch site at the guidance reference release time

Yvs axis is normal to the X,., Fvs plene in the right-
vs s
hand sense

Jus axis is parallel to the aiming azimuth at the guidance
reference time positive downrange

Vehicle Principal Axes (VP) Orientations With

Relation to the Vehicle Stable Axes (VS)
The Xve , Yve » v Vehicle principal axes directions are
derived from the vehicle stable axes by successive
rotations about the x,, axis, the intermediate y,, axis
and the final %,p axis by the angles $,, 6. , and ¢,

Vehicle Stable Axes at Iaunch Point (TS)
The venhicle stable axes at the launch point is a non-
rotating axis system with the origin fixed to and
moving with the launch point as the Earth rotates. Its
axes are oriented in the same direction as the vehicle
stable axes.
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2.1.4

201040

Coordinate Transformations

1 Introduction to Transformations

A transformation is a group of simultaneous equations
relating a set of independent variables to a set of dependent variables,
If [U v 4w ] is the set of independent variables and [x ,¢ , 3]
the set of dependent variables, then the equations

x = f(u, v, w)
‘3«= ?«(u,(r,cu)
3= /ﬁ(u,u-,cu)

where f, g, and h are given functions, are said to determine the trans-
formation T or transformations of coordinates, This transformation
which can alsc be written as:

(%43 = Tlwuw)

is to be regarded as a law of correspondence whereby to each set of
numbers [ ,U" 4 w ] there corresponds a set of numbers [ X ,% , % 1.
To be considered as a transformation, the number of independent vari-
ables does not, in general, have to equal the number of dependent
variables; however, in transformations resulting from translations or
rotations of three dimensional coordinate systems, the number of vari-
ables in each set are the same; namely, three. The equations relating
spherical polar and rectangular cartesian coordinates are also of this
type. It will be assumed that, except at certain singular points, the
functions f, g, and h are continuous, differentiable functions; there-
fore, there exists an inverse transformation T-1 of the form

U= F(x 4 13)
U= G‘()(,o“v,%)
w=H(x% 4, 3)

if the functions f, g, and h have continuous partial derivatives and if
the Jacobian determinant
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u U W

24 24 24
178 U dw

G
1
Ufrg QJ‘-Q‘:.
8

does not vanish at any point where the inverse transformation is
defined, It is furthermore assumed that the transformation and its
inverse are single-valued; that is, there exists a one-to-one cor-
respondence between all sets of the real-valued triplets [u , v ,w]

and [x 44 ,% )

2.1.4.2 Transformation Between Spherical Polar and Rectangular Cartesian
Coordinates

A common transformation of coordinates is the one between spherical
polar [R , A , ¥ ] and rectangular cartesian coordinates [ X , ¢ , % ],
This group of equations can be written by means of the trigonometric
functions as

Rcos @ cos A

x
"

Rcos @ sin A

¢
¥

And, the inverse transformation can be written in terms of the inverse
trigonometric functions as

R sin ¢

V?..

(x’-+y‘+ %‘)

!

R

- ~90° &t )\ £ +90° /f x>0
A = S/ ‘(_E%-L)Tf‘l— { F0° &t AL 270° f x <0

$ = sm”___X_-—( i ~90° & @ £+90°
Y43

Since the Jacobian J of the transformations is found to be

2
J =R cos ¢
the inverse transformation exists for R ¥ 0 and ¢ # 20°,
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2.1.4.3 Linear Transformations

A transformation of coordinates T 1is said to be linear if:
T{alx g, 31+ 0%, %, 315 = ATLX, 4, 3] 6T Dk, %]

where a and b are constants. The general form of the equations
determining a linear transformation between [ X , ?, ' % ] and
[ '7(‘ N "g ’ ’8‘ ] is given by

4

X = Q.‘o *Q“x "alz. l?_‘,a(s'y
‘3/’= AL20 +a1(x-\—421 ?&Q:_;’é/
%/-: X zo + 0\3')(4- q37— ? + 433?

where the a's are constants., This system of linear equations can be
written in matrix notation as:

-x/. FO..,; -CLH all a\(s-1 rXT
'3;/ = RXro| ¢ |Ar¢ A2 A 23 ‘3/
§(J Cisoj leI A3z Cl;;J L%fj

or in abbreviated matrix notation as

X' =X, +[AlX

where
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-a" C(.;_ al3-

[A] = e a.u_ G 23

La’l Q’L a 33J

If the [ X’ ’ ! ’ 3{ ] are rectangular cartesian coordinates, this
transformation®can be visualized geometrically as two transformations:
a transformation due to a translation of the origin of the axis system,
and a transformation due to a rotation of the axis system,

The elements Q.4 of the matrix array [ A ] are called the direction
cosines of the linear transformation. This follows from the fact that
the unit vectors in each system are orthogonal to each other. These
direction cosines are formed by taking all possible dot products between

the unit vectors in each system, that is:

X% = a X = . z=a
\ ‘}— a2 %" 13

A A A A A

%/l X = a(’— %/'}c Qzl %/- % 4 413

A, A A, A A, A

%c x = a(s % o? = &23 % 0% = 433

Since the Jacobian of the total transformation is simply the determinant
of the [ A ] matrix, the inverse transformation

x-A (x-X.)

exists 1f

det [A] # O
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2.1.4.4 Properties of the Rotation Matrix [ A ]

Since the matrix [ A ] can be thought of as representing a trans-
formation by rotation of a rectangular cartesian axis system, it is
called the rotation matrix. By taking the dot product of two unit
vectors in the transformed axes, the orthogonality conditions of the
direction cosines can be derived., They are:

4

A A/ T ES T
X - X = Q,,+a,,_ ‘/’lezl

/

A z 2+ T
. % = a1,+a11+ a‘L3=I

/

ag»

/

~

c.(\b
o >
1"

e N a T
as( +a31+a33 =!

Ry Apy + QAiz Ran + Q.3 Qay O

K>
~

ol >
~
1

A AI
XI' % = Ry Gy + Ay Qgp + Q333 <O

A, A,
3"%—’- & o, Gy, t Lar A3z + A2z A33=0

All linear transformations having these properties are said to be
orthogonal, If successive orthogonal transformations [ A 1, [ B ] are
applied to a system, the resulting transformation [ C ] is also orth-
ogonal, Symbolically, this product is represented as:

[cl = ([(Al[B]

where [AJ[B] # [ B1L[AJ]. For orthogonal transformations, the
transposed matrix [ A 17 obtained by interchanging the rows and colums

of [ A ] is identical to the inverse matrix [ A J7' ., This fact can be
proven by comparing the transpose matrix with the transformation matrix
formed by reversing the order and sense of the rotations involved,

The rotation matrix defining a transformation by positive rotation
about the X axis has the form

K () o

[Tx) @_}:._ (®) cos @ s/n @
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Similarly, for positive rotations about the x and z axes by the angles
¢ and¥ , respectively, there corresponds the rotation matrices [Tg,e ]

and [ Ta, ¥ ], where:

CCos © o - 8|
= o { O
[Tyl
_sme @) Cos® |

noosp' sm'¥ O -‘

[T%’ Y]‘-‘-‘ »—Sl;v? Cos Y" (o]

Using this notation, successive rotations about the z, y and x axes
through the angles p , § and g respectively ylelds the transformation.

71 =[] [Tl [73.4]

and any vector is trensformed as

X'=[1]X
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2.1.4.9 Transformation by Translation

The transformations between any two coordinate systems having different
origins 1s simplified by considering an intermediete system orientated
such that its axes are aligned with the axes of one of the systems and its
origin located at the other. The transformation between thls intermediate
system and the system located at the other origin then consists of a
simple translation and is written in the form

X =X +X,

In this section intermediate axes systems will be employed to describe the
transformations between the geocentric, topecentric and vehicle-centered
systems.

2.1.4.9.1 Transformation Between Geocentric and Topocentric Systems

These transformations are accomplished by first considering an
intermediate system known as the local geocentric equatorial axes (GE')
with origin at the center of the earth and axes aligned with the topocentric
equatorial axes (TE). The transformation between a vector measured in
the topocentric equatorial axes and one measured in the locel geocentric
equatorial axes is given by

T
XGE' = XTE +XGE|
where
g cos ¢ 'ge
T 0

Xgg' =
rg sin ¢ 'ge

By means of this transformation and Tables 2.1.4.5, 6, and 10 all
geocentric and topocentric system relationships can be easily written.

2.1.,4.9,2 Transformation Between Topocentric and Vehicle-Centered Systems
The relationship between topocentric and vehicle-centered systems is

easily written once the transformation between the vehicle stable axes at
the launch point (VS') and the vehicle stable axes (VS) is established by

v
Xmpg = Xyg *X g

where
W
%xvs - VYTS
VZTS
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Tables 2.1.4.6 and 10 can then be used to write the transformation
between any topocentric and vehicle-centered system.

2.1.4.9.3 Pransformation Between Vehicle-Centered Systems and
Geocentric Systems

These transformations are established by considering the intermediate
axis system known as the Vehicle-Centered Equatorial System (VE) with
origin at the vehicle center of mass and axes aligned with the Geoequatorial
(GE) system. The transformation between these coordinate systems is
given by
v
Xeg = Xyg + XeE

where

v v v
Rgp cos by GE €08 Qg
v

V.
X = | Bgg cos YsGE sin Y*GE
VRGE sin YSGE

All other transformations between geocentric and vehicle-centered
systems can be written by consulting the tables 2.,1.4.5, 8, and 10.
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2.2 THE EFFECTS OF PRECESSION AND NUTATION

2.2.1 Description of the Various Types of Precession and Nutation

Over 2000 years ago it was discovered that the vernal equinox
moved from east to west by 50%. 2453 every year. This motion is called pre-
cession and is caused by the gravitational attraction of other celestial
bodies acting on the equatorial bulge of the earth. If the earth were
perfectly spherical and radially homogeneous, it would not experience any
deviation from its mean equatorial pole. However, since the earth has an
equatorial bulge, it experiences torques from the gravitational attraction
of the sun and the moon. Due to the fact that the lunar orbital plane is
approximately 5° oblique to the mean ecliptic, both the lunar and solar
torques tend to align the equator with the ecliptic. The earth responds to
this torque much like a spinning top responds to a torque. It precesses
about the mean ecliptic pole. This precession is called luni-solar precession.
Since the moon is so much closer to the earth than the sun, its contribution
to luni-solar precession is approximately twice as much as that from the sun.
The equatorial pole has an obliquity of about 23.5° so at the rate of pre-
cession mentioned earlier, the equatorial pole would very nearly trace a
right circular cone every 25,800 years.

Just as the sun and moon cause the equatorial pole to precess, so do
the planets of our solar system cause the ecliptic pole to precess; however,
the magnitude of this planetary precession is very small and will be considered
negligible in this discussion.

"Total general precession® is the sum of planetary and luni-solar pre-
cession and gives the changes in the mean vernal equinox of date from some
epoch. Total general precession amounts to 50". 2453/year and can be con-
sidered uniform for practical use. This is the rate of westward rotation of
the mean vernal equinox of date.

As the equatorial pole precesses about the ecliptic pole, it also
experiences further disturbances known as nutations. Free Eulerian Nutations
are those which would occur 1f the earth were simply set in rotation and left
to itself without any disturbant forces. This motion is analogous to the
torque free motion of a body of revolution in which the moment of inertia
about the spin axis 1s not equal to that about a perpendicular axis. The
body precesses about the angular momentum vector just as the earth nutates
sbout 1ts mean equatorial pole. Forced nutations sre those which are caused
by the changing positions in space of the sun, earth, and moon, which in

turn cause variations in thelr respective gravitational attractions to the
earth.

The most significant nutation is the 19 Year Imnar Nutation. This
mitation 1s caused by the precession of the moon's orbit. As mentioned earlier,
the moon's orbital plane is about 5° oblique to the mean ecliptic. The line
of nodes associated with these planes precesses with a period of about 18.6
years. The result is to change the direction of the small fluctuations in
potential experienced by the earth-moon system.
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Other forced nutations include the Semi-annual Solar Nutation and the
Fortnightly Lunar Nutation. These phenomena are the result of the decreasing
torque that the sun and moon apply to the earth as they approach the passing
of the equatorial plane. Due to symmetry, the net torque, as one of these
bodies passes through the equatorial plane, is zero.

2.2.2 Historical Background

Precession was discovered by Hipparchus in 125 B.C. by observing an
increase in the longitudes of stars with no perceptible change in latitudes.
In his Principla, Sir Issac Newton gave the first explanation of precession
in terms of dynamical theory.

Newton was also the first to note the nutation of the earth's axis
due to the influence of the sun. In 1748 Bradley discovered nutations that
were due to the movement of the moon's nodes. Shortly after, a theoretical
explanation of nutation was presented by D'Alembert. The efforts of Euler
and Laplace helped to improve his explanation. A large portion of the more
recent investigations of nutation try to correlate theoretical and observed
results by introducing earth models that account for such characteristics as
elasticity, fluidity, inner core movement, and other physical properties.
Analyses such as these were initiated when S. Newcomb pointed out that dis-
crepancies between the theoretical 10-month period of Free Eulerian Nutation
and the 1li-month period measured by S. C. Chandler were due to the effects
of the fludity of the oceans and the elasticity of the earth. Since then
many earth models have been invented. Increased geophysical data concerning
the interior of the earth has helped solve many problems that were significant
in determining a representative model of the earth.

The earth model that will be used in the following analysis is a rigid
ellipsoid which is later simplified to an oblate spheroid. This model does
not account for elasticity, fludity and other physical properties of the
earth; but it is sufficient to use for a fairly complete derivation of pre-
cession and nutation. It must be noted that the results of an analysis using
such a simplified model will not be exactly correct, but are sufficient for
most practical purposes. The complications that arise with a more complex
earth model are quite extensive,and it is not thought that such considerations
would significantly add to the discussion. However, empirical results from the
American Ephemeris and Nautical Almanac are shown with the theoretically
derived equations for precession, nutation, and coordinate correction. This
presentation provides a set of best fit equations that correlate theory
and observation.

The method of analysis used in the derivation and solution of the
precession and nutation equations is basically the method presented by
W. M. Smart in his Celestial Mechanics.

2.2.3 Equations of Motion of an Ellipscid Earth Model in a Potential Field

2.2.3.1 Kinetic Energy of a Rotating Body

Consider an ellipsoid whose semimajor and semiminor axes, for purposes
of generality, are all unequal. A body fixed coordinate system that is
aligned with the principal axes of the ellipsoid and has its origin at the
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center of the ellipsoid can be constructed. If the ellipsoid has some angular
velocity, w , it can be shown that the rotational kinetic energy, T , of

this body is

= ¢ ¢ P ] 1
T Vi [ uJ‘ I‘x-i—w.‘Ig’-thIz‘] (1)
where T = rotational kinetic energy
« = moment of inertia about x axis
.'I,"1 = moment of inertia about y axis
Iu = moment of inertia about z axis

W, = body fixed angular velocity - x direction

£
i

body fixed angular velocity - y direction

w, = body fixed angular velocity - z direction

The total kinetic energy is required in lagrange's Equation. However, the
trangslation component is not a function of the variables of this analysis.
For this reason it need not be considered.

2.2.3.,2 Buler Transformation

The body fixed angular velocity can be related to an inertially fixed
coordinate system by an Euler Transformation. This will enable the solution
of angular rates that are equal to the precession and nutation angular rates.
The axis system XGG Yee Z¢ce Trepresents the geoecliptic inertial axis
system and T{G ZGG represents the body fixed system as illustrated

in the follow:mg sketch
zae Z co
, ROTATION SEQUENCE (INERTIAL TO BODY)
¢ ¥ ABOUT - Zg
© ABOUT -~ X INTERMEDIATE
@ ABOUT - Zgg

Xé6
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This sketch jllustrates the order of rotation from the inertial refer-
ence to body fixed axes. The corresponding relation between the body fixed
angular velocities and the Euler angle rates is as follows:

wy = ¢8in @ 8In @ - 6 cos P (2)
wy = #8in © cos P + © sin ¢ (3)
Wy s § - ¥ cos @ ()

The inertial axis system that is moat useful in precession analyses
is the geoecliptic system. This system is defined for some epoch, t,, and
can be considered fixed in space for all future derivations.

2.2.3.3 Application of lagrange's Eguatien
The model of the solar system to be employed in the analyses of
precession and nutation 1s conservative (i.e., the forces can be expressed as

the gradient of a potential function). Thus, Lagrange's Equation can be
written in generalized coordinates as:

AE)E-Y

vhere for this study T =2 total kinetic energy of rotation

(5)

U = total potential energy of earth-moon and earth-sun
systems (U for this definition of potential is
opposite the sense normally employed in potential
theory. Thus, U is in reality the work function.
This convention will be employed throughout this
monograph. )

Qp:z the rth generalized coordinate

Applying Iagrange's Equation to the Euler angle, #, Equation (5)
becomes

_4(11)_)1 - (6)
dt( 38/ dp 4P
But
S Y ANV A . a7 ﬂa?{f
-gJ{;’- dw, a¢ i Iy +)':;+3w; o (7)
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Similarly

Q/lo
L i |
0
Ul@)
v
K
“E
’
Ulu
AN
K
‘E
h
Ulb
"8 =
('Y
e

but

%{’, = w, L, aad 3—3“ Wy Lyy
thus

gl; = wWwy C I“-I,”)

Substituting Lagrange's equation,

g’ii_(wzrzz) - wxwg(rxx'rqq) = g‘g
50
Wolsz —wow (Ta =Ty ) = %‘é

This is Lagrange's equation for the angle ¢ . In a similar manner, the
following equations for the Euler angles @ and )"' can be obtained as:

gl 0 w, cos P + I‘” Q‘J sm@ + (Ixx'rzz) w,

+*

(I,‘,“ Izz)“"ﬁ"’; cos § = %%
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(9)

(10)

(11)

(12)

(13)

w sm@

(14)



I‘Kobx.SmQ + I'J‘! d)v cosp-( 1',“- Izz) wﬁ"’l sm?

T ¢ I”'Izz) w,w, cos P = Colsg%fs”’,eg_‘.;(b)

2.2.3.4 Potential Energy due to Ellipsoid Earth Model

The potential of a point mass, M , at a distance f from the center
of an ellipsoid earth model is

dJU = GM j é dm (See Page 58) (16)

where the geometry used for the potential energy formilation is defined in
the following sketch:

It can be shown that the potential energy of the moon, assumed to be a point
mass, with respect to the ellipsoid earth model is

U.. <G, [ # + Tyy* Taz-2Tu , 3 (T - 1777.1;‘ - (I;, 'Ixx)”:E;_e
For 2h 2 A

(17)
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where U,,. potential energy of moon-earth system

G = gravitational constant

m, = mass of the moon

Me = mass of the earth

ms = mass of the sun

APm = distance between centers of gravity

See Appendix A for a detailed derivation of Equation (17). Similarly, the
potential energy of the sun with respect to the earth is:

U = G"‘ :"_3.4 Tyy+ I‘.‘ZIM + 3 (Ixx‘IY'rfﬁA'(Izz‘ Ivfz;b](ls)
3 /os 2,;: 2 /i‘

Since for the present purposes the potential energy expressions will be
utilized in Lagrange's equation, the first two terms of each potential expres-
sion may be dropped since they are not functions of the Fuler angles. The
abbreviated potential expressions may now be written as:

Um

3262.., [ (1.,- I,,,,)("'y‘"‘ - (1, I,,,)('E“)] (19)

c

3 1 s_z¢
.___13Gm l_ ( Ty 'Ivv)( ?“)- ( I;;' Ix'l)( ZG@\] (20)
2p5
)

2.2.3.5 The Oblate Spheroid Approximation

The earth can be considered to be an oblate spheroid. This approxima-
tion results in a simplification of the equations that have been derived thus
far. The moments of inertia about the X and Yy axes are now equal, and

Lagrange's equation reduces to the following:

a. Lagrange's equation for (<4
(-4

IZZ l:i)z - ( IXV/I-’O’) w,wﬂ = ;—Q (21)
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Y (22
39

‘;,1 Izz s

Since ¢ is the Euler rotation about the Z body axis, and the spheroid is
symmetric about the Z axis, there is no change in potential due to a change

in ¢ only. The term U/ 9@ is zero.

Now o, Izz = O (23)

and wy = constant = w‘o (24)

It should be noted that this result is for the rigid body model and that the
earth does experience very small changes in its angular velocity due to the
effects of tidal motion, elasticity, and other physical properties.

b. Llagrange's equation for Y (For simplicity, the energy
equation will be used directly in Lagrange's equation)

T ’/L [ I« w; + I, u',; s I, w; } (25)
= [ Ixx(w;i-u;) ¢ Ige gy ]
Now .J__.(E) - oT - D__q (26)
dt oV oV v
and .g%; = Ixx V s © - Izz cos © ( ? - ?6039) (27)
or = o7 dwy , Jdwy oT Jdw, = O (28)
5% Se L 5% 55, oV

so Lagrange's equation for V beconmes

I, v sint® r 2 L, €& V sin@cos© + I, wzoé sin @

-Izzcase(ﬁ-ﬁ'case-féy'fsine) = %_;J‘, (29)
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It can be shown that '!;/ B O]r, 9 are small when compared to w“e
In this light, the equation for Y becomes

3 = / 1Y) 0

c. Lagrange's equation for @ : direct application of Lagrange's
equation yields

"l s @ b Tyl sin@ v (Ty -I.) ww s @

’(Ixx- )u u cos? 3_% (31)

which can be simplified to

Tex e - b w‘,mo cos® -1, z V Sn6 = éag (32)

. .2 .
Now assuming that © and Y are small compared with &, Y the equation
becomes

(33)

Wi
ole

- .
v - L,; Wy, 5/in O

The abbreviated potential equations of the moon and sun can similarly
be simplified via the oblate spheroid approximation.

m L

Um = 'ﬂm (I, - Tex) Z“ (34)
2p}
U - ;’_Ci_'_"fs Cr,-I,) ‘Z;G (35)

2 £
so that the total potential is ( U = Unt U‘s )

U = '3(Izz'zxx) [ Gmm €6
2 4 A

or in a form to be used later

- Gz}

LEIN ] (36)
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Mo R G G GG 1o
K = '?i (1,,-14) 65 / (1, alw )

[+ = semimajor axis of earth's orbit

0-,, ™= semimajor axis of moon's orbit

2.2.4 Solution of Equations

2.2.4.1 Free BEulerian Nutation

If an approximate evaluation of the potential is performed, it can be
shown that the ratio of the potential energy to the kinetic energy is very

small

NIH -7
—:r_—-— < 2 x 10

and, if use is made of the fact that 1'“ - IY x0 , Equations (14) and (15)
reduce to L4

L we - (Ix:r - Izz) W, w: =0 (38)
I, w, - (1,, - L) Wy, Wy = 0 (39)
or
. I,, - Txx)
Wy ¢+ [ ( ZZI‘x x¥ Uzo J ws = 0 (LLO)
mJ,J - [ (Tzz - Iyy) Wy, ] wy =0 (41)
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The solution to these differential equations is:

wy * B cos ( pt + &) (42)
(...3ﬂ =B sin ( pt + ¥ ) (43)
where p = “"z,(Il?- - Ixx) / IXX (44)

8 and ¥  ore mff.’ra.foon constanls
But, it is known that

Tga- L, )/ Iz = 1/ 304.2

and since W, = 2 7r radians/sidereal day,
0

s W Izz - Lxx Izz
P F T2 T xx
] ]
= 2r (30,/,2 ) (,99‘71 ) radians/sideral day

This value of P corresponds to a period of
T - 2'_-:.7 = (304.2) (.99671) = 303.91 sideral days
which is approximately 302 mean solar days. Hence, the theoretical

value for the kulerian free period of nutation is about ten months.

From the above derivation, a variation in the instantaneocus latitude
would be expected equal to

?’¢,* C cos ( pt + 2) (45)
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where ¢L = the mean latitude of some reference point
C

el

Observations, however, reveal that the actual variation in latitude is given
as the sum of two periodic terms:

Il

amplitude of the Eulerian Free Nutation

I

frequency of the Eulerian Free Nutation

-, +c,coslpt+?) +c, cos(pt+?,) (46)

in which the period of the first periodic term is one year and that of the
second about 14 months. Furthermore, the maximum deviation from ¢L is

On.3. Since the perioed of the observed nutation differs from the theoretical
value, some individuals have ignored the Eulerian Nutation and have attributed
the observed nutations to meteorological causes producing periodical changes
in the principal moments of inertia of the earth. Other individuals have
theoretically shown that the elasticity and fluidity of the earth, when taken
into account, can significantly extend the theoretical period of Eulerian
Nutation. T, H. Sloudshydetermined a period of 12 or 14 months for Eulerian
Nutation using a simplified theory of rotation of the Earth with a fluid core.

The fact remains that the earth does experience a variation in latitude
of the order of

=G+ 009cos (fHt+x)+ 018 cos(pt+Y,) ()

where 4, = 2T radians/year

P
7,
4

2.2.4.2 Solution of Equations for Precession and Forced Nutation

%ﬁradians/ year

phase constant

]

phase constant

Equations (30) and (33) describe precession and nutation; however,
since these equations must be integrated, they will be repeated for convenience.

; -1
v= I,z W sue _%D‘/’— (48)
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S = / PivA
©-= Toal NS oY (49)

The solution to these equations can be found when the potential can be
expressed in terms of € and ¥ . This operation is very tedius, however,
and does not supplement this discussion. Thus, the development has been
placed in Appendix B. and the expression for the abbreviated form of poten-
tial energy in terms of the Euler angles is repeated below:

- I:a]“)e,z F sw'e +[6(g, cos ¥- 3 smw ¥)sme Cosd +Hswelt +V  (50)

where F = K[L(i"%c‘;’% SWz‘;)*t"'zs’e:]
G, = kK(L+)
H=3Ke,€

¢, = secular constant (£, cosL= 3/st+,£,t7' )
- . T
% = secular constant (A, S/w~.{l= %,,t'f’l;t )

A_= obliquity of true ecliptic with respect to the fixed
ecliptic at some epoch

L = longitude of the earth's ascending node

¢, = obliquity of moons orbital plane with respect to the
true ecliptic

= adjusted eccentricity of the apparent orbit of the sun
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Qs eccentricity of earth's orbit at epoch

€, = eccentricity of moon's orbit
o~
R, = €, sm W,

V = K{L S/ 4'.("& sm"c;-f %e:) siwe cos 6 cos(n+ V’)

-zL sw g swo cos(en+2¥) - (L Cos(aM;a&'J,,;‘ 2V)
+cos(2 M54 Z.L‘Z'{,+ 2."/")] s/;/"e + -ZZ [Lencos Mm+e5 Ccos /ﬂ smle}

N = + the angle between the earth's ascending node and
the lunar node

M, = mean anomaly of moon

longitude of perihelion of moon's orbit

&
Il

mean anomaly in earth's orbit

o
]

&
[

longitude of perihelion of earth's orbit

Equation (50) contains two significant groups of terms. The expression
for "y is solely a collection of periodic terms that represent the fluctua-
tions in the potential that are associated with nutations. The rest of the
potential expression consists of terms that are associated with precession.
The significance of the two-part potential expression is that it enables a
two-part solution. The general solutions may be written as follows:

Y = m+ ¥ (51)

e = e-m-f'e" (52)
or (/’ = ‘P—,.ur'&;’ (53)
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S, +© (54)

I

luni-solar precession

S
where ¥
=

obliquity associated with the luni-solar precession
as contrasted with i, which is the corresponding
obliquity for the true case

'

H

]

principal terms for nutation in longitude

I

obliquity associated with nutation

When the potential energy equation is combined with the precession and
nutation expression, the result is:

- 20
¥=2Fcos @ +[G,(?sc_osV’— 9, SN ) csc,’j,e +2Hcoso]t (55)
/ oV
Sen 20
oV

e Gcos 9(?5 sw¥+ %,cos ¥t — (56)

rra(; E>VV

The solution of Equations (55) and (56) can be simplified by choosing
the epoch €, such that ¥ is a very small angle. This can be accomplished
by choosing the Xge axis to be very close to the lunar node at t. . Using
the simplifications mentioned above, and neglecting V, the expressions for
precession reduce to:

S‘;’n= 2F cos e°+(6,3, Los28, 2. H cos e,)t (57)
Slﬂe
&, = (G,?"Cos e,)t (58)

Integration of these equations yields

W = ¥ +(2F cos®,)t +(G,g, 2 29 + 2 H cos eo)ﬁ (59)
=) Z
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kS
Om = 6, +(G,9,ces ©.) % (60)

For an epoch to = 1950 January O, Greenwich Mean Noon, and the unit of time
taken as the Julian year of 365.25 mean solar days, the following values for
the coefficients for the above expressions have been determined by

Dr. J. G. Porter of the H. M. Nautical Almanac Office. For convenience,
they are shown with their respective equations.

Y = 50,3732t — o/ooco /o072 t* (61)

6, =23 26" 44”84 + 5"c08x10 ¢ (62)

The equations for nutation are derived by utilizing the remaining
periodic terms of Equations (55) and (56), i.e., those terms containing V .

-/ v (63)
Srw S ae
sv © a SU

Now upon replacing & by ©, after differentiation, the nutation equations
become

Y}=KL sm[.(l-'i s:ut(:o*ie.:) c;’%?i cos (N+¥) (65)
©

~KeosQ HL st (,cos(2N+2W) 4+ L c.os(Z.Mm+2.l3"+ 2 ¥)

+cos(am+2 D, +2.¥) - 3(Le,cos Mt e cos "‘k)—l
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= KL s, (-3 sentl, +%e:') cos, s (wty)

~K sen Q[i L S/N‘-L'o siv(2Ne2W)+ L sm(2 M’;& (4?”*1‘/}1‘ SIAI(ZA‘-I-ZQ‘%-GZ%) (66)

But, the lunar node retrogrades on the ecliptic in a period of about 18.6
years, so A can be written in the form

N=n,—nNt (67)

And for present purposes, it is sufficient to write the precession angle as

=¥ + Kt (68)

Thus, by adding Equations (67) and (68)

N+Y =V -§<€ (69)
where Y = N +¥,
and E = N~k

In order to simplify the algebra in dealing with Equations (65) and (66), the
following substitutions are introduced:

ED =KL swe(1-% swiqp g &) Cos 2o, (70)
n s,

TE= KLswwg(1 -4 s+ % e:‘) Cos €, (71)
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Integrating Equations (65) and (66) now yields the expressions for the
forced nutation in longitude and the associated obliguity.

T.
Y= - D sin(N+¥)+K coseo['l':;ﬂg;—b"" sww(2N+2¥)

- L L - 4 2
anms/x(Z.M,” Z_wﬁ-‘-&(b) 27’5 S/a (2M3+2_5.}s+2.(0) (7 )

+3 (L-’%'In SIA//‘z”-I- _3_7.:. S/n /\?,)]

x,
r =€ cos (Wt¥) - K simw [ "_':‘i’o_:i_‘: cos (2w +2¥)

-L cos (Z.MM4Z.QM+ %) - cos(z_/v!’+2.(:as+2_%-)] (73)
2Ny, 27
where 7?,,, = the mean angular velocity of the moon about its orbit

915 = the mean angular velocity of the earth about its orbit

The Nautical Almanac lists the calculated values for the nutation equa-
tions to be:

(4 " L]
}[J‘= - /7_'a3, siv(as¢)+ 0721 s (an+2, ¢ — 127 s/ﬂ(ZMJ-f-Z“{,)

- 0Y21 siw (2M+ZC") + O.07 Siw M, O 13 s/n M, (74)

({3 ”
= 921 coswr¥) - 009 cos (2 N+Z‘P)+O,S'S'co5(2%+2u?,)

fe L
+ 0,09 cos (?.Mm-t- z.ca,’) (75)

All terms of amplitudes less than O%.05 have been neglected.
2.2.5 Coordinate Correction
Consider a point in space the position of which is measured with respect

to an earth fixed coordinate system by the angles Ko and ga ,» the Right
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ZGE = //'/ S/ar fo ’ (78)
-t

where//'/ is the magnitude of the vector discussed.

The components of this vector may now be expressed in terms of inertial
components as follows:

Xe s coo ¥m 200 By 20t V't aut Om.ccn ¥y /;/woa:coodo
Yoseo| = -at Pom Cooo,,,m%” Mgr es0 Py /;7 MJ;MO
Z., o -0z Oy oo Om /;/MJ}
SO
- .
Xc,,g/r/[aogwoo{,w-o@,,rcooJ; Gt X, €00 B airz ¥m (79)

y“’;/;h/[_m% Co0 X, it Foy * C00 §, airz %o Co0Bay Co0 P (80)

*aun s, aon Om coo(ﬁ-m]

Zores | F][ 0 S satre o ot Ong 1 atwr f, €20 Om | (81)

But, the coordinates of the vector with respect to the inertial refer-
ence can be expressed by the Right Ascension and Declination coordinates o ,

g s or

X giso /7] eoo I o0 X (82)
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Ascension and Declination, respectively. If it is desired to find the corres-
ponding position of this polnt with respect to some inertially fixed coordin-
ate system Xgr50 Ygr50 2gE50s the angular corrections for precession and nuta-
tion must be taken into account. The following is a derivation of the correc-
tion terms for precession. Correction terms for nutation will be presented
following the precession discussion.

2,2.5.1 Precession Correction

The previously defined Euler angle rotations must be used to relate
the inertially fixed reference to the precessing coordinate system of date.
This can be accomplished by using the known precession angle and its associated
obliquity, ¢ and 6y, respectively. The inertial reference in this case
would be the one from which the precession is referenced, i.e., the one
determined by the mean equinox at epoch, the mean equatorial pole at epoch,
and a perpendicular to the previous two. The coordinate system of date is
the one determined by the mean equinox of date, the mean equatorial pole of
dete, and a perpendicular to the previous two.

A vector,'?, in the equatorial coordinaste system defined by the mean
equinox of date can be transformed to the inertial reference by the following
operator:

XGEa'oT cos ¥, Cos Oy siw ¥ S O, Stu Yo X GEJ
Yeeso | = - s V¥ cos 6, cos ¥, Stat Oy CO5 Yo Y ee
z,. ° ~ Sin Om Cos O P
- e -l L . MEAN
or Taeso = (M ToEmean

The above operator transforms any vector measured in the coordinate system
of date to an inertial system in which the precession angle ¥, and the
obliqu%ty angle 6y define the transformation as a function of time (equation
61, 62).

The quantity that is measured in a sighting is in the true reference
frame of date. If Right Ascension and Declination Coordinates are used, the
vector can be expressed in rectangular components which are also in a true
frame of date.

XG' = //-'../ Cos f, cos X, (76)

Yoo =/[F[] cos S, sw s (77)
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Yeeso = [Fl cos § smec (83)

Zeese = |T) siw of (84)

so that equating the two sets of inertial components for the point, a relation-
ship between the measured and inertial Right Ascension and Declination coor-
dinates is found.

Cos § Cos X= COS o, Cos %, Cos Yo + C05s &, SIN o, COS Op S/t ¥y (85)

TSIV S, SIN Gy SN (ﬁ”

Cos 8§ SINOL =~ Cos f] Cos o, SIN Dy * Cos [ S Cos Gy €osh,  (86)

+ SIN Sy SIN By Cas

SN S = - Cos 8y SIM X, Sin &, *+ Sw jo Cos &y, (87)

In order to solve these equations for the correction term, « -o¢,
the first equation is multiplied by &/as o, and the second equation by
cos %,. The first is then subtracted from the second. The results on the
left side of the equation are as follows:
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CoS sIn X Cosog, — CoS f Cos o SIN X,

-

(88)
Cos J(S//VO( Cos X, ~ CoS < S/N °(o>

=los J J/A/(c><- °<a)

Now this equation can be solved for <- o which is the correction term for
the Right Ascension term for precession.

The detailed equation follows:

(°<_ °<o)=ARCS//U = Cos S, Cosoly(Sin Yoy COSs KXy + Cros Yy _,,,,,c{.’)
VI —swz S

COS f, SIN oL COS On, [ COS Vo COS Xy =~ SIN Py S/A/c><,)
+

S @)

+ SIN S, SIM Oy [Cos Y Cos X, =~ S Pm SIN o,) )}

JI-sm*d

where s/)v §  is defined in Equation (87). Since &, and %, are explicit
functions of time, the correction term,e«- o, , is a function ofac o,
and ¢ .

The correction term for the Declination, S - J, , coordinate may be
derived by expressing s, g5 as follows:

snS s SN[E (8- 8)] = sm o cos (,;’-J;) (90)

t Cos of .S/A/(f—;o)

Now since &-d, is very small, the following approximations are valid:

cos(g—ofo) </



sii(d-d) Ed o (radians)
Equation (87) thus reduces to

SIV (1) rcosL)(I-d;) = - Cosf SimS, Sim 6y * S, Cos6,  (91)

and  (£-): ~Coscf, SIM O, S/ Gy + SIM [ COSOpy — SIM, (92)
Cos [
(4

The declination correction term is seen to be a function of & , &, and £ ;
this is analogous to the Right Ascension correction term.

2.2.5.2 Nutation Correction

The correction matrix for nutation is obtained by taking rotations of
&+ gbout the true + Xgg axis and ¥ about + Zgg . Thus, the nutation
correction matrix 1is:

X1l [ /| ¥(COS8, e SING,) | W(o-Casen +SINGy | [ Xad
-——--—_———_—————T ——————————
" | COS 6 (COSOn € SING,) 1| COS6, (8 COSO, SIN 6n) .
Yoo | = | ¥COm | L SiNOn(SIN B, +9°COS8,) | -SIIGn (16" SN 1COS On) e
w : S By (€05 Om - 'O swe,,,) : SIM O (64 COS O + SIN 6m) 7
| Zae Mean b SIM G | oSO (5B COSOm) | +COS O (46 SINO + COSOm) | =¢* |
r ;GEMsAu : [M] Fos rrws
(93)

Equations (74) and (75) give the detailed expressions for '+ and ¥ . When
these values are used with 6, and ?’m in N , the appropriate nutation
correction matrix is obtained for an orthogonal transformation from the
true geographic frame of date to the mean geographic frame of date. Once
the nutation correction is performed, the correction for precession may be
made with the matrix (P] .

The Right Ascension and Declination correction terms for nutation can
be derived in a similar manner to that of the precession correction terms.

f / )
cos q,[yz, cos §, cos * Zaz 605,;; SInm O 1/(23 S/A./Jo']

N/ .Suuij°

(- %)= ARCSIN{

— S &[4, Cos &' COSL 10,y COSE SOy 2 hyy S &'] }

ViI-sm?* g

(i



B /
(5. 8) 7, cos & cos o My, o5 & SO 7y, sm &Sm0 G,

005<£'

where 7, .= the elements of [NJ]

R
"

Right Ascension value uncorrected for nutation

&l Declination value uncorrected for nutation

o,= Right Ascension value corrected for nutation but not
corrected for precession

8= Declination value corrected for nutation but not corrected
for precession.

If 1t 18 desired, a direct transformation may be performed from the true
reference to the inertial reference in one transformation.

7GE50 =[P)I[N] "GEtrue

[?.Vca.s b rs100 %) ! [(?cas b s %,) |
* (o5 O, -*O s10s Bm (6 cos 6 fs/,ua,,,)l

— e ——— — - — — — e e s e - — — -—— e - e m———

[P [N/ = - : [(‘V&u $u #COS Ym) (‘Vuu % reos?)
-3/As % Yeos | -(do.s Oy, 15100 9,,,)] (:9-: cos ;,,,f sm/;,,,)]

: ~ 5/al By, -6 €05 6, 6" 5/0/ B * Cas Op,

[

[}

This matrix accounts for both precession and nutation.

Due to the orthogonality of all the transformations used above, it is
possible to determine the inverse relationships easily by employing the
transpose of the matrices.

- -l -

TGEmean " P TGEs50

- =] »

TGEtrue " [N] TGEmean
.;GEtrue [N] -1 [P) -1 ‘;GESO

2.2.5.3 Empirical Correction

The Ephemeris contains the empirical equations for total general
precession. It must be noted that the previous analysis developed all
equations with the assumption that planetary precession was negligible.
Therefore, extremely small deviations would be expected in certain elements
of the transformation matrices (e.g., terms that were theoretically zero
will be extremely small numbers).
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The values for the elements,p; , of the precession correction

matrix,

[P], as listed in the Ephemeris are as follows (epoch 1950.0)

Py = 1 - (29696 T2 + 13 13) X10-8

Pio
P13

Po1

(22340k1 T + 676 T2 - 221 T3) x10°8
(971690 T - 207 T2 - 96 T3) x10~8

- P1o

- (24975 T2 + 15 13) x10°8

(10858 T2) x10-8

- P13

Py3

1 - (4721 T2) x1078

where T is measured in tropical centuries from 1950.0.

The empirical results for nutation correction are slightly more
complicated but can be expressed as functions of time. The Nautical
Almanac uses the following parameters to describe nutation:

r

= mean longltude of the lunar perigee, measured in the ecliptic

from the mean equinox of date to the mean ascending node of the
lunar orbit and then along the orbit.

geometric mean longitude, mean equinox of date.
mean longitude of perigee, mean equinox of date.

mean longitude of Moon, measured in ecliptic from mean equinox of
date to mean ascending node of lunar orbit and then along the orbit.

longitude of the mean ascending node of the lunar orbit on the
ecliptic measured from the mean equinox of date

79



where

Q = 127112790 -.05253922D  +.0020795T +.002081T° +.000002T3
{ = 6:°375452 +13.176397D  -.001131575T  -.00113015T2 -.000001ST3
™ = 208784399  +.11140408D  -.010334T -.010343T°  -.000012T3
T = 282908053  +.000047068D +.000L553T +.0004575T2  +.00000373
L = 280%08121  +.98564734D  +.000303(T+T2)

and

D = Days since reference epoch (1950.0, J.D. 2433282.423)
T = Julian centuries past reference epoch

The Nautical Almanac also separates the short period nutations and the long
period nutations as follows:

Y= A¥¢¥ +ar

- e + de

where A€ = long period obliquity of nutation
A¥ = long period nutation in longitude
de = short period obliguity of nutation
d? = short period nutation in longutide

and gives the values for these parameters as:
av x 104 = -(4798927 + .0h82T) sinQ
+ .5800 sin 2} - 3.5361 sin 2L - .1378 sin (3L -T*)
+ .0594 sin (L +T) + .034k sin (2L -1 ) + .0125 sin (21" -()
+ .3500 sin (L -T*) + .0125 sin (2L - 2T')

d¥x 104

#
'

75658 sin 2 - .0950 sin (2€ -0)
.0725 sin (3€-T') + .0317 sin (Q+T*")
+ .0161 sin (€ -T' +0) + .0158 sin (£ - ™ -0Q)

.01k sin (3¢ +T°' - 2L) - .0122 sin (3¢ -T' -Q)
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.1875 sin (¢ -1°') + .0078 sin (2 - 2P ")

+

+ .41k sin (€ + 1 - 2L) + .0167 sin (24 - 2L)

.0089 sin (4€ - 2L).

de x 10% 25.0581Lh cosf) - .2511 cos 2}

L]

1.5336 cos 2L + .0666 cos (3L -T*)

4

.0258 cos (L +T*) - .0183 cos (2L -Q1)

.0067 cos (2" -0)

de x 104 92456 cos 2 + 0508 cos (2¢ - £)

+

.0369 cos (3-T') - .0139 cos ({ +T")
.0086 cos ({ -T*' +0)) + .0083 cos (¢-m™ -N)

+ .0061 cos (3 +T ' - 2L) + .0064% cos (3(-T' -)

The nutation correction matrix can be approximated as:

1 Ycos ig ¥sincg
N = - ¥ cos ¢, 1 o
- ¥ sinde - - 1

where ¢e¢ is utilized rather than 6y due to the fact that it represents
general precession better. This quantity is numerically equal to

la = 23?&&57587 - .0130940LT

-~ .00000088T2 + .00000050T3
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243 TIME STANDARDS, MEASURE AND CONVERSION

2.3.1 Astronomical Time Standards

Time in the most basic sense is a measure of the elapsed interval
between two observed events relative to the period of a stable oscillation
referred to as the time reckoner. Thus, time measurement may be based on
any of a number of observed uniform and periodic phenomenon (for example,
the decay of radiocactive isotopes, the observed motions of some man-made
periodic system, the observed motions of celestial bodies, etc.). However,
until the advent of the atomic clock, no system was devised which was
capable of approaching the accuracy obtained by employing the astronomical
time reckoner. Since this system of measure is still employed as the time
standard, the paragraphs which follow are considered essential for the
successful interpretation of material presented in all of the remaining
monographs of this series.

2.3.1.1 Sidereal Time

This measure of time is based on the apparent motion of the stars
relative to an observer on the earth and uses for the fundamental period the
interval between two successive transits through the observer's meridian of
any selected star (1 sidereal day = 86164.09054 mean solar seconds = 360 degrees).
This interval (or the corresponding spin rate of the earth) thus defines the
spin vector for, or angular momentum corresponding to the earth's rotation at
the epoch in question. Discussions elsewhere in this monograph pertaining to
the rate of change of this angular momentum shows that the vector is not
constant but rather nutates and precesses. These discussions do not indicate,however,
that the magnitude of the spin is variable; References 2, 3, 4%, 5, and 6
indicate that the mathematical model utilized to derive these results was
slightly in error; and that tidal friction and other forces of similar nature
are producing secular and periodic changes in the rotational rate of the earth.
The observed effects on a day-to-day basis are, however, almost completely
inappreciable. For this reason, the sidereal day mentioned previously or a
uniform measure of the perturbed day will be considered to be known; and the
effects of the earth's spin variations will be enumerated when they are
significant.

While the star which is selected for the definition of this period is
seen to be unimportant, the base of measure for each of several observations
must be known in order to incorporate a data acquired by others in any given
analysis. Thus, to aveoid numerous problems, the vernal equinox or first
point of Aries (though the vernal equinox no longer lies in the constellation
Aries) has been selected as the reference for all sidereal times. In the most
general sense tlien, sidereal time is the hour angle (angle between the
observers meridian and the meridian of the object being observed measured
positive toward west) of the vernal equinox. But since two observers at
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different longitudes could measure the same sidereal times (at different times,
of course), it is also necessary to differentiate between the various local
sidereal times. This step is accomplished by establishing a reference meridian
(that of Greenwich) and correcting all times in such a fashion that the instan-
taneous position of the reference meridian is computed

Greenwich Sidereal Time = local S.T. + longitude ( \)

where: longitude is measured in hours (1 hour = 15 degrees) in the astronomical
convention, i.e., positive to the west,

N
A NORTH CELESTIAL

POLE
MERIDIAN OF
GREENWICH
OBSERVER'S —|
MERIDIAN
ECLIPTIC
FLANE
Y
EQUATORIAL

PLANE

LocaAL s.T.

T G.5.T.
MEAN VERNAL

EQUINOGX ()
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and by adopting the convention that zero hours Greenwich sidereal time corres-
ponds to the upper transit of the vernal equinox through the meridian of
Greenwhich.

There is, however, a problem arising from the referencing of sidereal
times to the vernal equinox since a unit vector in this direction moves due
to the motion of the ecliptic plane and the change in orientation of the
spin vector of the earth. This fact has lead to the definition of two sidereal
times: (1) apparent sidereal time and (2) mean sidereal time. Apparent
sidereal time is referenced to the true equator of date and, therefore,
includes adjustments for both nutation and precession. However, since the
nutation correction is itself a variable, this definition of sidereal time
is nonuniform and is not generally employed. Rather, a correction tabulated
in the ephemeris and known as the equation of the equinox is applied to the
apparent sidereal time to reduce it to mean sidereal time (referenced to the
mean equator of date which precesses at a uniform rate).

2.3.1.2 Universal Time

From the standpoint of the sequencing of civil functions, the most
obvious time standard is the apparent motion of the sun about the earth.
Unfortunately, due to eccentricity of the earth's orbit, such a time standard
would be nonuniform. This situation leads to the definition of a fictitious
sun moving in a circular orbit in the plane of the earth's equator with a
period exactly equal to that of the true sun (the equatorial year or the
interval between upper transits of the sun through the mean equator is
365,242,198,79 - ,000,006,14T, where T denotes Julian centuries since 1900.0,
zero hours January Zero on the Besselian Calendar). Successive upper transits
of this fictitious sun (referred to most frequently as the mean sun) through
the meridian of an observer tren defined the mean solar day and its divisions
(1 mean solar sec = 1/86400 mean solar day).

With the introduction of Newcomb's Tables of the Sun, terminology
changed slightly and a standard solar time referred to as Universal Time was

defined. In his table, the Right Ascension of the mean sun was given by
(Newcomb's Notation)

h  m s s s 2
R = 18 38 45.836 + 8640/8%.542T + 0. 0929 T

where T is centuries from Greenwich mean noon January O, 1900.
Corresponding to this expression for R , Universal Time (or Greenwich mean
time, GMT) referenced to mean midnight rather than noon was defined to be

h
U.T. 12 -+ Greeawich hour angle of R

h
=12 + H.A. (R)

Now expanding the hour angle (by referring to the following sketch), U.T. can
be related directly to Greenwich sidereal time and R
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qﬂ GREENWICH

uT -12"« 6.5.T. - R

This equation, thus, shows that universal time and sidereal time are equiva-
lent measures.

Unfortunately, Newcomb considered T to be a measure of mean solar
time (though he did not specify the manner in which T was to be measured)
and did not have information available to him pertaining to the variable rate
of rotation of the earth. Therefore, the value of R predicted utilizing
these assumptions does not correspond to the true position of the mean sun
(it is noted that the errors are very small compared to the hour angle of the
true sun with respect to the mean sun). However, since the mean sun itself
was an artificial means of defining a uniform time, Newcomb's equation for
R has been retained in the definition of U.T. with T now defined to be
Julian centuries (36525 days of U.T.) elapsed since 12 hours E. T. on
January O 1900, Thus, Universal Time is a precise measure of time,
by definition. Further, since it is precise, and since the predicted Right
Ascensions of the time reckoner correspond so closely to those of the mean
sun (and thus to the true sun), U.T. is the most logical standard to be
utilized as the reference for all civil times.

Now since there is a uniform time defined for points along the Greenwich
meridian, a local mean time for other meridians (not to be confused with zonal
time which is the local mean time for a 15° interval of longitudes equal to
time along the bisecting meridian) can be defined by subtracting the longitude
of the local station from U.T., i.e.,

LMT. = UT - X

where AN is measured in hours, etc., positive to the west of Greenwich to be
consistant with astronomical convention.

2.3.1.3 Ephemeris Time
Based on the observations of the introductory sentences to this section

of the monograph, it can be argued that there is no absolute time scale. Thus,
in periodic dynamical systems, the problem becomes one of measuring time on
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some arbitrary scale convenient for the problem at hand. The dynamical systems
of astronomical interest are no exception since here a uniform time depending
on the equations of motion for determination can be adopted and time defined
by matching the predicted and observed behavior of the system. This step has,
in fact, been accomplished in the definition of Ephemeris Time by requiring
that the motion of the sun relative to the earth be observed and by selecting
a time scale which agreed as well as possible with the actual solar motions
(any other body could have been employed without loss of generality) and
universal time during the 19th century.

The fundamental epoch from which Ephemeris Time is reckoned was adopted
by Newcomb as 12 E.T. January O 1900 when the mean longitude
(= mean anomaly plus argument of periapse plus longitude of the ascending node)
of the sun was 279° L1' 48" .04. At the same time Newcomb defined the funda-
mental period as the tropical year (i.e., the interval required for the sun's
mean longitude to increase by 360 degrees) and expressed the mean longitude
in the following equation

L= 279" 4/ 48" on + 129602768 13T + 1 089 T*

where T 1is centuries of 36525 ephemeris days elapsed since the fundamental
epoch. This equation exhibits the fact that the tropical year is not uniform.
Thus, to conserve the system of time used by Newcomb in his theories of motion
and assure its uniformity, the Comite Internationale des Poids at Mesures in
1957 adonted the ephemeris second of mean noon E.T. January O 1900 as the funda-
mental invariable unit of ephemeris time (this unit is 1/31556925.9747 tropical
year of 19003.

Ephemeris time at any given instant is obtained empirically by comparing
the observed and gravitationally predicted positions of some body. When,
after interpolation, the argument in the tabulated ephemeris is found, Ephemeris
time is known and the empirical correction to universal times can be computed.

AT = ET -UT

Raw (that is, unsmoothed) data for AT can be found on Page 89 of the
Explanatory Supplement to the Ephemeris.® These data and the least squares
parabolic which fits them are presented in Figure [ for the time period of
1930.5 to 1960.5. Therefore, an approximate value of AT can be computed
for any time in the vicinity of the interval for which there was data and
universal time corrected to yield the desired ephemeris epoch.

As may be seen, ephemeris time is not connected to the rotational rate
of the earth and is thus not suitable for the computation of quantities which
depend on this rotational rate. However, a meridian on an imaginary ellipsoid
enclosing the earth's surface and rotating at a uniform rather than a variable
rate has been introduced and defined as the ephemeris meridian. This ephemeris
meridian was selected in such a manner that had the earth rotated uniformly
since mean noon January O 1900, the Greenwich and ephemeris meridians would
coincide. Actually,

86



ppass
py

Babbadhes

sEe

87



they differ and the ephemeris meridian is 1.002738 AT sec east of the Greenwich
meridian. Thus, while E.T. is not generally employed in such problems, it can
be adopted and the results related to the true earth. This approach is not
recommended for most problems; however, for those jobs in which a great deal

of ephemeris lookup is encountered, it may be convenient to operate with a
single time standard.

2.3.1.4 Julian Date

A1l of the previously defined times have been described in such a manner
that no readily available chronological time record exists. This deficiency
requires cumbersome conversion of dates and greatly magnifies problems of
analysis, since in order to relate any two measurements in time, they must
first be referred to the same epoch. This step, in turn, requires only that
some epoch pre-dating the time period in question be selected and that universal
time be recorded on a continuous basis from this epoch. But, rather than
selecting a new epoch for each problem attacked, an arbitrary date sufficiently
far in the past to pre-date recorded history was adopted (Greenwich mean noon
1 January 4713 BC on the Julian proleptic calender) and given the name Julian
Day (J.D.) zero.

It is noted before passing that since ephemeris time and universal time
differ only by the small empirical correction, the Julian Day numbers can
also be interpreted as Julian Emphemeris Dates (J.E.D.) if the initial epoch
is reckoned to be 12 E.T. 1 January 4713 BC.

2.3.2 Determination and Conversion of Astronomical Times

As was apparent in the discussions which preceded, the various time
scales were equivalent (or were relatable if observed empirical corrections
could be estimated). Thus, in order to define any of the three, it is neces-
sary to determine at least one. While this determination itself may not be
of great interest in most problems connected with this study, the reduction
of the observed data and the interrelation of these time scales is of direct
interest. For this reason, a modified numerical example based on the example
presented in the "Supplement to the Ephemeris® (Page 84} will be presented.
This numerical example assumes that local apparent sidereal time is available
and progresses through mean sidereal time to universal time to ephemeris time.
However, it must be noted that the process can be inverted at any point in
the sample should one of the other times be given.

It is assumed that an identifiable portion of the celestial sphere has
been observed from a known and calibrated station and that the observed posi-
tion data have been correlated with an ephemeris of the apparent positions
of the observed stars for the purpose of computing the position of the vernal
equinox of date, the corresponding local apparent sidereal time, and the
values of universal and ephemeris time. Data for the sample are as follows:
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Date: 7 March 1960 (J.D. 2437000.5 = O U.T.)
Longitude: 5% 08™ 155,75 W
Local Apparent S.T.: 130 05m 378,249

Approximately 28 local mean time (= 70 U.T.)

and reduction proceeds as:
observed local apparent sideral time 13h o5
equatlon of the equinoxes (interpolated to

7M U.T. obtained from the American
Ephemeris and Nautical Almanac (AENA) -

375.249

.046

local mean sidereal time 13 05

longitude (add if W) 5 05

37 .295
15 .750

Greenwich mean sidereal time 18 13

minus right ascension of time reckoner +12h

J.D. OMU.T. of epoch date 243 7000.5
J.D. 1900.5 241 5020.0
elapsed time T. 21980.5
Julian centurles T= 060179329227
-R +12h = -gh 38M 158,836

-8640184,. £A2 T

~0,0929 T

-10 58

53 .045

50. 971

universal time of observation,
sidereal units ( 1 sidereal day =
86164.09054 mean solar sec) 7 15

conversion to mean solar time units
(1 day = 86400 MSS) direct conversion
or by Table VIII AENA (reduction to
mean solar time) - 1

2. 074

11, 269

universal time of observation (solar units) 7 13

A T (the empirical correction to convert
U.T. to Ephemeris Time) from Fig. 1

50. 805

35.

Ephemeris Time 7 14
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2.3.3 Dynamical Time

As was pointed out in the discussion of Ephemeris time, the time scale
is not absolute and may be selected arbitrarily to simplify the solution.
Thus, in problems concerning the motion of a small satellite in the vicinity
of a large mass, it is sometimes desirable to adopt a measure of time other
than one of those discussed (for internal ccmputations) and defer relation
to these standards until a later point in the computation. In these cases
it is convenient to consider the equations of motion for a particle whose
position vector is ¢ in a central force field of a mass whose gravitational
constant is 4 -

-l
[}
|
3
Sl

and note that if T is defined to be "=y ¢ then

0_2 B4 -y
r s 5_1; = - T
T r?
and
o - ! L
= er -
Foz 42 = vV = X

The gravitational constant has, thus, been absorbed (note that the new time
variable 7 has the units of (¥* ). This absorption process appears, on
its face, to accomplish little other than the removal of scaling operation
at various points in the numerical solution of the equations of motion by
substituting a scaling at the two extremes of the calculation procedure.
However, it is important to note that the trajectory in terms of the variable
T can be computed to any precision desired and that the results become
more accurate as the uncertainty in At is reduced (References 7, 8, 9, 10
11). 1In this sense, then, the trajectory is universal, and the process is
akin to that employed in the preparation of the ephemeris where again the
accuracy improvement is not obtainable without the absorption process.

Since time now has the general units of length, it is important to
specify this measure. Various standards of length have been employed;
however, the most desirable standard for studies of motion in the vicinity
of the earth is the earth's equatorial radius (Rg). The advisability of
this selection is apparent when it is realized that Re like _& is uncer-
tain (thus subject to improvement) and that all vector components (cartesian)
both relative to points on earth and to some base frame can, thus, be rescaled
as R, becomes better known. Best values of these constants in conventional
units are (Reference 11)

M= (398, 601.5 21.) Km/(men solar sec)?
R, ( 6378./63 t.02) Km
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3. RECOMMENDED PROCEDURES

The material presented in this monograph pertains primarily to defini-
tion and standardization of terminology to be employed in the remaining
monographs of the series. Where this material duplicates information in the
literature and where previously accepted standards exist, no alteration has
been proposed. However, there are several areas (principally within the
discussion of coordinate systems) in which it has been necessary to adopt a
notation, for example, the manner of identifying coordinate frames. These
adoptions are the result of careful attention to matters pertaining to the
entire series of monographs and with minor exception are recommended for
these applications.
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Appendix A

Potential Energy of an Ellipsoid Earth Model

Referring to the skete#h on Page 61 for geomemetrical definitions and
to W, M, Smart (Celestial Mechanics) for the basic theory leads to the
development of the potential energy of an ellipsoidal earth, This
development will be presented below,

From the sketch it is seen that

A=€-r (A1)
L
If the dot product of each side is taken with itself equation (Al) becomes

[A[2-[€[22€.5+ |72 (A2)
A new right handed orthogonal coordinate system is now chosen with its

principal direction in the € direction, The T vector is expressed as
(§,7, ¥) in this new system, In this light

-2—5-?--2[@§+9ﬂ+§/’§]=-2[?!§ (A3)
vow [A[ 2= [€[2-2]C[& +(3[ 2 (A4)
or A2x CT_2€84 T (A5)

1

The vector notation has been omitted for simplicity., It is understood
that the symbols stand for the magnitude of their respective vectors,
Equation (A4) can be used in Equation 16 if it is expressed as

A =C(L-28 +r2Y)1/2
.( 28 5) i
or —z1 1-2§c-p2) (A6)
& ?( x

It is possible to expand equation (A6) in a binomial series and get a
close approximation for x because ¥/@ and Y@ are very small (the distance
to dm as compared to distance to the Sun or Moon), Carrying terms to the
order of (_g_) 4, equation (16) becomes

<

v :%!‘i{dn( 1+ _?_ + ggc}r? + §_§32- 3§12

+ 3564 - 30€2r2 + 3r”’) (A7)
5ev

where mg = Mg or Mgy
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Let (1, my, n) be the direction cosines for € with respect to the body
fixed axes. Since the § axis was chosen to be in this direction, a
unit vector, ‘g' , may be defines to be

A

€ = (4, mn) (A8)
In terms of the body fixed axis system, the T vector can be expressed as
T = (xy ¥y 2) (A9)

Since § is the component of r in the @ direction, it can be found as
follows!
A

—

€= €.7=2x+ny +nz (AL0)
Now the various terms of equation (A7) can be evaluated,
(1) fdm =m, (A1)
v,
(2) ﬁdm = (Ix +my +nz)dm =0 (A12)
v

(due to symmetry)

(3) ﬁ3§2 - r?) dm =f{2r2 -3 (9t '52)} dm (A13)
v v

Now from the definition of moment of inertia, the following is true:

Iiw * Iyy * Iag = {2 (x2 + y2 + 22) dm = {21‘2 dm (Al4)
and f(qi’ +¢€2)dm = 1" (A15)
vwhere I' is the moment of inertia about the g axis,
Hence £(3§2 - r?) dm = Iy + Iy + Igg = 31 (A16)
(%) fésgfi - 3¢ r2) dm = /
‘£:[5 (8% + my + nz)3 -3 (dx + my + nz) (!?';A“/:';’) (?il;)y2 + 22) 1dm

All terms of this expression integrate to zero when taken over
the entire volume because of symmetry.,

So ‘f(sg3 -38r2)dm=0 (A18)
v
(5) ﬁBSf" - 30 §2r2 + 3r%) dm is of the order of m, a*, where
v

a is a semi axis of the ellipsoid earth model,

Similarly,

f(3§2-r2) dm is of the order ofmea2.
\ 4
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Comparing the contribution of the third and fifth terms of
equation A7, it 1s seen from the above expressions that the

order of magnitude of the fifth term is a< times as small as

the_third. Since this corresponds to
(3%)2, the fifth term may be neglected.

The expression for potential correct to order(a 3 may now be written as

U = om [%s + Ixx + ;ﬁ + Igg - 31'] (A19)

It is well known that the moment of inertia about any axis in terms of the

principal moments of inertie is:

I' o Ing 12 + Iy 12 4 I, w2 (A20)
also 24+ 422y (A21)
so I' = Ly - (Ige - Iyy) m2 + (Igg - Ipy) @ (A22)

The position in space of the body m; is related to the earth fixed
axis system by the direction cosines.

m:yYy n -
€

MNn

Finally, (A19) becomes:

U= Gﬁ[}!‘ + Iyv + I - 2L
e ’ng‘“Efo‘“‘"xx

+ 3(Ty - Iyy) -3LIu-Ixx)z2] (A23)
2
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APPENDIX B

Expansion of U in Terms of © and Yy

If reference is made to the figure on page 58 for the definition of
Euler angles and to W. M. Smart (Celestial Mechanics) for the basic method
of analysis, the expansion of the potential energy of the ellipsoidal earth
model can be expressed in terms of the angles@ and ¥ . This derivation is
shown below.

From a cartesian coordinatée transformation it is seen that

m _ . . n . Lo
ZGG mXGe sin@ siny¥ m’YG sine cos¥ ZGe cos © (B1)
s s . . s m
A =X + °Y + 7 = B2
oG e Sine sin¥ Ge sin@ cosy¥ ce COF (B2)

Also, the standard polar spherical to rectangular transformation can be used
to find XGG,’ YG’E and ZGG'

Xse = PcosL cos B

Xge = @sinL cos B (B3)
Zge = €sin B

Hence,
Zgg = cos B sin@® sin (L +¥) + sin B cos © (BL)

¢

The following sketch defines the geometry to be used in the subsequent analysis.
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If equation (BL) is expressed in terms of the variables used in equation (50),
then the expression for U can be found in terms of the Euler angles © and ¥
by using equation (37). The following angles are now defined:

KZO = iT

ZOM = M/2 - B

KM =®/2_-0b

KZM = /2 +L -2

%
N

/2 - (2 -2v)
where

2 = XA + AE

b = EM

Also, the following identies are true:

sin B = sin b cos ip + cos b sin ip sin (£ -£1) (B5)
cos B sin (L -Q) = -sin b sin ip + cos b cos ip sin (£ -£2) (B6)
cos B cos(L.-Q) =cos b cos (f-q) (B7)
Define Xoh +AC = N
N+CM=1U
80 MC =y- N
ME =b
CE=g-N
MCH = io
MEC = /2
Now cos(u- N) =cos b cos (£ -WN) (B8)
sin(u~ N) cos i, = cos b sin (£ - N) (B9)

sin b (B10)

]

sin(y~- N) sin i,
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Writing (L -~) + (¥+A) for (L +¥), _.Zg_G.

becomes Zoc = sin@cos(L+¥) [cos B sin(L —_n_)]

———

e
+sine sin(+Y¥) [cos B cos(L -_0.)] + cose@sin B (B11)

Since ip is a very small angle, it is sufficient to write:

sin ip = ig
cos ip =1
Now equation (B6) becomes
cos B sin(L -q) = -ip sin b + cos b sin (£ -0) (B12)

Writing (£-N) + (N -0n) for ( £-0) and using equations (B8), (B9), and
(B10), equation (B1l2) becomes

cos B =-ij sin i  sin (- N) +cos i_ sin (y- N) cos (N -q)

(o]

+ cos (U= N) sin (N -.0) (B13)

Since the angle i, is approximately 522, cos i, can be written as
cos 1, =1 - 1/2 sin® i

with sufficient accuracy (using a binomial expansion and neglecting terms of
higher order than sin3 ij).

Now

cos B sin (L -f1) = (1 - 1/4 sin? i ) sinkr-q) (BL4)
- 1/k sin® i sin (¥ - 20 )

cos B cos(L - = (1 - 1/4 sin? iy) cos(r -.n)

+1/4 sin® i_ cos(u- 2N +M) (B15)

(o)
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sin B = sin i, sin(v-- N) + <, sin(V--0) (B16)
The expression for z__é_GG now becomes
g?f (1 - 1/4 sin? i,) sin®@ sin(2r+¥) + sin ip cos@ sin (¥- N)
+ ip cos® sin(z-n) - 1/ sin® i, sin®@ sin(v- 21 +¥)  (B17)

Equation (37) requires an expression for (.@)2 in order for it to be useful.

If equation (Bl7) is squared a very complex expression results. However, all
periodic terms whose ccefficients are of greater order than ip or sin© i, do
not contribute a significant amount in the end result when an integration of

lagrange's equation is performed.

Hence,

(@2 =1/2 sin? iy + (1/2 - 3/4 sin? 1) sin‘@
¢
~(1/2 - 1/4 sin? 1) sin@ cos(2¥ + 2¢)
-1/l sin? i, sin®@ cos(2N + 2¥)
+ 8in? in(1 - 1/2 sin? i,) sine cose@ cos(N +F)
+ iy 5in® cose cos(-a+¥) (B18)

The other term needed in order to express equation (37) as desired is (%)3.
Fxpressed in terms of the mean anomaly (M,’= n,t +€ -Q) s

(?-)‘z 1 +3/2 2 +3e,c08 M + 9/2 ef cos Mp, (B19)
e

Now

@ (B2 = (/2 +3/4 & - /i sin? 10) sin®®

+ sin i, (1 - 1/2 sin? i, +3/2 e,;?') sin@® cos® cos(N +¥)
-1/ sin? i, 5in“@ cos (2N + 2¥) + i 8in @ cose cos(N +F) + (continved)
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+3/2 e sin%g cos My 1/2 sin@ cos(Mu 28 + 2¥) (B20)

A1l terms which do not contribute to a—-U or %g have been neglected.

06

Employing a subscript m for Moon and s for Sun and recalling that i, is zero
for the Sun, the following expression is written:

- %}nz [L(l/z +3/k e - 3/L sin? i) +1/2 + 3/k e§] sin*@
+[L sin ig (1 -~ 1/2 sin? iy + 3/4 e,%i' sin@ cos® cos(N +¥)

- 1/k sin® i, sin@ cos(2N + 2p) L

-1/2 [1_ cos( My + 25)m +2¥) + cos(2g + 2Wg + 2?)] sine
+ ip(L + 1) cos(¥ +.A) sin® cose

+ 3/2(l.ey cos My, + e, cos M) 5in@ (B21)
where K and L are defined on Page 59.

Using the substitutions defined on Page 62 and 63, equation (50) may now be
written,

- =F sin29+ [G’l(gl cosf-g sin¥) sine cose + H, sinzejt
Izz Who

+V (50)
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The following is & list of some of the more importent terms that are
used in this monograph. The page numbers show the location of the definition
of the term. Subsequent uses of terms are not referenced.
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