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Abstract

To meet the goal of developing an Inertial Navigation System for future rocket flights,
the Portland State Aerospace Society (PSAS) requires a testbed system for
developing, characterizing, and qualifying sensor and control packages.  The system
is required to be scalable and modular while meeting weight constraints and
environmental standards such as force and temperature tolerance.

This document provides an overview of previous amateur rocketry research
performed by the PSAS and describes the authors’ design of a robust, scalable, and
evolvable rocket avionics architecture. Emphasis is made on modularity, redundancy
of critical hardware and software mechanisms, testability, and the maintenance of an
open architecture to accommodate future changes to the system.

This is a living document that represents a work in progress.  Revisions will continue
to be made throughout the development of the LV2 rocket project.
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Introduction

The Portland State Aerospace Society (PSAS) has been involved in Amateur rocketry
developing a microcomputer-controlled intelligent rocket avionics package. The
current design has a monolithic architecture specific to the present launch vehicle. To
meet future launch vehicle requirements (and as an exercise in many aspects of
aerospace systems engineering), we have designed a new avionics system that
emphasizes modularity and testability and will aid in the development of an Inertial
Navigation System to be used on future flights.

This document will provide an overview of the previous amateur rocketry work by the
PSAS, a look at the work that is happening in the present, and an outline of our plans
for the future.  In the ‘Background’ section we will discuss prior rocket projects, the
state of the art in amateur rocketry today, and our need for a more advanced system.
We will then define the problem at hand, discussing the design requirements and
constraints that apply to the avionics system design project and examining candidate
system architectures.  In the ‘Implementation’ section, we describe our avionics
system design and provide an explanation of the architecture we chose to use.  In the
final section, we will discuss our plans for the future and the direction the PSAS is
headed.
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Background

 AESS/PSAS

The Portland State University (PSU) student chapter of the Aerospace and Electrical
Systems Society (AESS) was created in the summer of 1997.  The AESS is a
technical society of the Institute of Electrical and Electronics Engineers (IEEE), an
international professional organization for electrical engineers.  The PSU chapter of
the AESS was the first student chapter of the society in the United States.

In the Fall of 1998, the Portland State Aerospace Society (PSAS) was formed as a
university-recognized student group, allowing anyone from the community (not just
AESS/IEEE members) to contribute to the project.

As a group of engineering students and professionals, the PSAS seeks to gain
aerospace systems engineering experience and develop "real world" engineering skills
by tackling a challenging project.

The ultimate aim of the group is to develop a sophisticated avionics system for high-
powered amateur rockets.  Many other groups and individuals involved in amateur
rocketry are actively advancing “traditional” rocket body and motor design, but it is
apparent that few are pursuing the development of any sort of advanced avionics or
scientific instrumentation payload.

The original goal of the PSAS was to develop a proof-of-concept vehicle to
demonstrate the feasibility of the following:

• broadcasting live video using Amateur Television,
• using the audio channel of the video stream to transmit telemetry data, and
• using inexpensive sensors under microprocessor control to gather

scientific data.
 
 This goal was met in June 1998 with the development of Launch Vehicle Zero.
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Launch Vehicle Zero (LV0)
 
 Launch Vehicle Zero (LV0) was the first rocket project developed by the PSAS.
LV0's payload module was composed of 3 main systems: The Amateur Television
Video (ATV) transmitter system, a vertically aligned (Z-axis) solid-state
accelerometer that was fed into a 300 bps digital data down link, and an altimeter.
 
 The rocket-based ATV system was composed of a miniature NTSC black-and-white
CCD camera and a transmitter tuned to the 70-cm band allocated for amateur
television and radio. The signal from the CCD was fed into the transmitter, which
broadcasted at 440 MHz to a ground station equipped with the appropriate antenna
and receiver configuration. On the ground, the video signal was viewed real-time and
recorded onto videotape.
 
 The Analog Device's ADXL50 solid-state (micro-machined) accelerometer was
incorporated in a telemetry package designed to measure the rocket’s acceleration
profile and transmit the data to the ground station. To accomplish this, the output
from the accelerometer was digitized by a PIC16C73A microcontroller and directed
to a 300 bps modem. The analog signal from the modem was transmitted to the
ground via the audio channel of the ATV signal. On the ground the telemetry data was
recorded onto a computer for later analysis.
 
 Also on board the rocket was a commercially available altimeter interfaced with a
Motorola 68HC11 microcontroller and a 12-bit A/D converter.  All data from the
altimeter was stored in battery backed RAM, and retrieved for later analysis.

 
 Specifications for LV0 include:

 
 Airframe : Cardboard with 3 layers fiberglass
  Length : 72 inches
  Weight : 12.2 lbs.
  Motor  : 700 Ns solid propellant motor
  Recovery : Payload - 4-ft parachute

  Body - 3-ft parachute
 
 
 

 
 

 Figure 1: Launch Vehicle Zero (LV0)
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 LV0 contained no flight-sequencing computer.  Separation and recovery were handled
by a chemically timed motor ejection charge.  The block diagram of the LV0 payload
is shown below in Figure 2.

 
 

 

B&W CCD Video Camera
(NTSC output, Audio disabled)

Amateur TV Transmitter
(426MHz, 1W)

- Video in
- Audio in

Inverted V Dipole Antenna

ADXL50 Accelerometer
300Hz BW, +/- 20g limits

Audio FSK Modulator
Space (0) = 3KHz
Mark (1) = 5kHz

PIC16C73A Microcontroller
Fosc = 1MHz

Port A = 8bit A/D
Port B = 8bit LED output
Port C = 300bps UART

Audio In Video In

12V Power Supply
2x 6V Li-Ion Batteries

Power switch:
On (batteries) / Off /
On (External supply)

Independent Logging
Altimeter

Commercially Available rocket
altimeter. 9V, 68HC11, Sensym

SCC15A pressure sensor

 
 

 Figure 2: Launch Vehicle Zero (LV0) payload block diagram
 
 

 The launch of LV0 occurred on June 7th 1998 in Monroe, Washington.  The rocket
reached an altitude of 1200 feet, successfully transmitting live video to the ground
and internally logging altimeter data throughout the flight.  The separation and
recovery system worked as predicted, but the digital downlink system failed due to a
short in the data transmit line.
 
 The altimeter data from the LV0 flight is shown on the following page.
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 Figure 3: Launch Vehicle Zero (LV0) altimeter data
 
 

 From the experience with LV0, the PSAS developed a number of improved design
criteria for future launches.  These include:

 

• robust interconnects,
• improved flight control via onboard flight computer, and
• emergency flight control via radio uplink.

 
 Implementation of these criteria in a new rocket design led to the development of
Launch Vehicle 1 (LV1).
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 Launch Vehicle One (LV1)
 

 In addition to addressing the issues raised by LV0, the PSAS felt that it was necessary
to begin developing basic avionics systems that could grow with future designs, and
to include a scientific instrumentation payload for flight profiling and data logging.

 
 Specifications for LV1 include:

 
 Airframe : Carbon fiber body with fiberglass payload
 Length : 132 inches
 Weight : 46 lbs.
 Motor : Up to 10,000 Ns solid propellant motor
 Recovery : Payload - (3) 3.5 ft parachutes
 Body - 2 stage parachute (drogue/main)

 
 
 

 
 

 Figure 4: Launch Vehicle One (LV1)
 
 

 LV1 subsystems include a payload module and an Interface Plate Release System
(IPRS).
 
 The payload module includes the following components:

 

• A color CCD video camera with an ATV transmitter,
• a 2400bps digital data downlink for telemetry data,
• a 2m amateur radio DTMF-activated uplink for manual recovery system

control,
• accelerometers and rotational gyro's measuring 3 linear axes and 3 rotational

axes,
• pressure and temperature sensors, and
• a flight computer powered by a PIC17C42 microcontroller for flight

sequencing.
 

 The accelerometers and rotational gyros form an Inertial Measurement Unit (IMU)
with 6 degrees-of-freedom (6-DOF) which will serve as a prototype for the
development of a future Inertial Navigation System (INS).
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Amateur TV Transmitter

X Axis ADXL150 Accelerometer

TDK73M223 Modem Chip
(2400bps)

Flight Computer
(PIC17C756 Microcontroller)

Fosc = 33MHz

MAX197 12bit ADC
(8ch Mux, 8+4 out)

Backup Separation System
3bit command

Y Axis ADXL150 Accelerometer

Z Axis ADXL150 Accelerometer

α Axis EC-05V Gyroscope

β Axis EC-05V Gyroscope

γ Axis EC-05V Gyroscope

MPX7100A Pressure Sensor

LM54 Temperature Sensor

Separation Charge Igniter

Bipolar Transistor
Firing Circuit 9V Battery

 

 Figure 5: Launch Vehicle Zero (LV1) payload block diagram
 
 
 
 
 The Interface Plate Release System (IPRS) is responsible for deploying the main
rocket body's recovery chutes and is independent of the main payload module.  As
shown in the flight profile (shown on the next page in Figure 6), the main rocket body
falls toward the earth until the pressure sensors or internal timers indicate that it is
time to deploy the chutes.  Earlier release of the chutes would result in excessive
'hang-time', complicating location and retrieval of the rocket body; later release of the
chutes (known as a 'lawn-dart' landing) would simplify location and retrieval of the
rocket body but could result in unacceptable damages.

 
 Additional LV1 details are shown in Figure 6, on the next page:
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 Figure 6: Additional specification details for LV1
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 The planned flight profile for LV1 is shown below.

 

 

 

Boost
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Separation

Descent
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nosecone separation

DTMF manual separation if
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Payload
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Launch
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Backup:  PIC #2
releases interface plate.
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 Figure 7: Flight profile for LV1
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 The launch of LV1 occurred on April 11th 1999 at the PSAS launch site near
Millikan, Oregon.  The rocket reached an altitude of slightly more than 12000 ft,
successfully transmitting data and video to the ground support station throughout the
flight.
 
A total of 11,252 Z-axis acceleration data points were received from the rocket
throughout the flight, sampled by the MAX197 12-bit A/D converter.  Of these, there
were approximately 230 obviously erroneous values resulting from bit-flips; 60% of
these errors were bit-sets (a false ‘1’ detected) and 40% were bit-clears (a false ‘0’
detected).  The errors were corrected by determining whether or not an outlying data
point differed from the general trend by the addition or subtraction of a large power of
2 corresponding to one of the 4 most significant bits (MSBs).  Obviously it is likely
that there were bit-flips in the lower bits as well, but these would be more difficult to
detect since the deviation from the general trend would be less noticeable.

If we assume that bit-flip errors can be reliably detected only if they occur in the 4
most significant bits, then only one third of the errors were detected and the total
reception error is (3 times the detected error) = 3 * 230 errors / 11252 total points =
6% error.  Future systems must include cyclical redundancy check (CRC), error
correction code (ECC), or some other mechanism which is capable of detecting and
possible correcting this sort of error.
 
 Figure 8 (next page) shows the Z-axis acceleration profile for the flight of LV1.  The
numbered labels denote interesting portions of the flight; these are discussed below.
A note on terminology: all acceleration descriptions are referenced to the ground, i.e.
‘negative acceleration’ is the result of forces that push the body upwards or create a
downward pull on the sensor (such as the rocket motor, the separation charge, and the
earth’s gravitational field), and ‘positive acceleration’ is the result of forces that push
the body downward (such as wind resistance effects and the opening of the chutes
while the rocket was still ascending).

 
1. Boost phase

Prior to liftoff, the only acceleration experienced by the rocket was a steady 1
‘g’ downward.  At time t = 0s, the motor ignited and the rocket left the
launchpad.  Maximum acceleration was reached at time t = 2.17s, when the
rocket was experiencing 7.27 ‘g’s downward.

2. Ascent phase

As the motor continued to burn through its thrust curve, the diminishing
effects of the motor thrust and the increasing effects of air resistance (which is
proportional to the cube of the velocity) reduced the acceleration.  At t = 6.3s,
the air resistance component of the acceleration began to exceed the thrust
component and the net acceleration on the avionics system became positive.
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Shortly thereafter (at time t = 6.54s) the peak velocity of 596.2mph (0.795
Mach) was reached.  As the rocket continued upwards, the effects of the air
drag continued to negate the acceleration from the motor, as shown by the
asymptotic decay of the graph towards zero.

3. Separation

At time t = 26.75s, the payload/avionics system was forcibly separated from
the rocket body by the separation charge, giving the payload a slight boost in
upward velocity.

4. Chute Deployment

As the chutes deploy from the rear of the module, the payload experiences a
sudden deceleration.

5. Descent

The avionics system floats to the ground.  Acceleration oscillates around 1 ‘g’
downward due to the swinging of the avionics system on the three payload
chutes.  Note that the graph shows only the first 39 seconds of flight- the
actual time of flight was 466 seconds.

 
 

 Figure 8: LV1 Z-axis acceleration data
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Figure 9 (shown on the next page) shows the Z-axis velocity profile for the flight of
LV1.  This data was obtained by integrating the acceleration data (disregarding the
constant 1’g’ acceleration due to gravity).  Despite the accumulative errors that result
from the integration process, this profile shows the expected behavior:

1. Boost phase

Velocity was initially zero as the rocket sat on the launch pad.  At time t = 0s,
the motor ignited and the rocket accelerated upwards, rising steadily
throughout the boost phase.

2. Ascent phase

At 6.54s, the motor burn is complete and the air resistance exerts its effect on
the speed of the rocket throughout the coast phase.  The rocket is still
continuing upwards as air resistance and gravity erode its momentum.

3. Separation

At 26.75s, the separation charge ignites, giving a slight boost to the velocity of
the payload as it is ejected from the main body.  Though the rocket still has a
non-zero upward velocity, the separation effectively declared this point to be
apogee, since the rocket will not continue upwards when the nosecone is
absent and the chutes deploy.  (The rocket was not in fact going 25 mph at
separation as the graph shows.  This discrepancy is due to accumulative
integration errors).

4. Chute Deployment

As the chutes deploy from the rear of the module, payload velocity decreases
to zero and then becomes negative as the payload begins to descend.  There is
a sudden impulse as the nosecone, which houses the telemetry package, is
stopped by the chutes and reverses direction.

5. Descent

The chutes quickly restrict the payload to its terminal velocity.



AESS Avionics System Design Project – Rev. 3.1 – Page 19

LV1 Velocity vs Time
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 Figure 9: Velocity profile for LV1
 
 
 Integrating the acceleration data a second time produces a graph of the position.  The
accumulated integration errors, however, severely undermine the validity of the graph,
as shown in Figure 10 below.
 
 

 
 Figure 10:Position profile for LV1
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 To more accurately determine the height of the rocket, the pressure sensor data was
analyzed as shown in Figure 11 below.  This data lent itself to a much more
meaningful interpretation.
 
 

LV1 Altitude vs Time from MPX5100A Pressure Sensor Data
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 Figure 11:Pressure sensor altitude profile for LV1

As shown in the previous graphs, it may be necessary to combine a number of sources
of data to determine the ‘correct’ telemetry.  For an actively guided system, it will be
necessary to combine data from the accelerometers and pressure sensors as well as
possible Global Positioning System (GPS) data and radio packet time-of-flight
indicators.  Other possibilities include a sun sensor mounted in the nosecone and
high-performance sensors such as ring laser gyros.

With all telemetry measurements it will be necessary to account for signal latency.
Time-of-flight, GPS satellite linkup, and even A/D-conversion delays become
significant when the rocket is moving at speeds nearing 1 Mach, since by the time a
reading has been processed a large distance will have been covered by the rocket.
This will necessitate a successive-approximation approach wherein the avionics
package will use its current position and heading data to predict where it will be when
the next reading occurs; the next reading can then be used to update the
approximation and minimize positional error.
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Launch Vehicle Two (LV2)
 
To achieve orbit (or very high altitudes) it is necessary to integrate an Inertial
Measurement Unit (IMU) with an active guidance system to create an Inertial
Navigation System (INS).  Prior PSAS rockets have taken steps to develop an IMU as
a proof-of-concept for the INS.

The development of such an INS will require modular independent subsystems which
can be individually upgraded and evolved without compromising the stability,
precision, and safety of the overall system. It is toward this end that we designed the
following architecture for Launch Vehicle Two (LV2).
 
Having observed both the present lack of advanced systems and the future need for
those systems, it became apparent that an intermediate step was required.  The
development of a system with modular components would allow for the systematic
qualification of subsystems needed for future launch capabilities.  Extending the
modularity idea to the airframe as well as the avionics will ensure that the entire
system is scalable.

Of particular importance is the validation and testing of the IMU subsystem.  The
IMU sensor suite and the data streaming algorithms used to transmit and store that
data need to be qualified for use with an INS system.  Data from this system will be
used to generate flight profiles for flight sequencing tests and flight path calculation in
future rocket projects.

The initial development of LV2 embodies a clarification of the direction and goals of
the PSAS.  Rather than being an interim design on the path to an advanced system,
LV2 will serve as a continuously upgradable modular design that allows the testing
and validation of a wide range of avionics, payload, and airframe ideas.

The airframe design for LV2 will result in a modular launch vehicle which can be
assembled into any configuration required for a flight.  Fins, motor modules, and
payload sections can be added, swapped, or removed, allowing for the testing and
validation of various flight configurations.  This modular approach will provide the
PSAS with an evolvable launch vehicle which will serve as a testbed for avionics and
propulsion design for years to come.

It should also be noted that for LV2 the concept of ‘payload’ has been redefined to a
more traditional interpretation: a payload is an independent package carried by the
rocket.  The term was previously used to describe the flight control systems of the
rocket, which will henceforth be known as ‘avionics’.  Payload development is
outside of the scope of this document.
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 Development of the avionics package began with a functional decomposition of the
overall system, which resulted in a number of functionally discrete system task blocks
that must be accomplished in a successful flight.  In keeping with our goal that the
system be as modular as possible, the avionics team chose to embody each of these
blocks as a separate subsystem.  This will ensure that replacement of a subsystem will
not affect other subsystems that are functionally distant.  If each module has a clearly
defined interface, individual subsystems can be swapped for upgrade or repair without
affecting the overall functionality of the avionics system.
 
 Based on the results of LV0 and LV1, the PSAS met to discuss the requirements for
the next launch vehicle and to clarify the focus and goals for the future.  This
discussion led to the development of a list of requirements that the avionics package
must embody subject to a list of constraints.  These requirements and constraints were
given to the avionics team to guide the design of the new avionics package.  In the
next section of this document, we will define the problem at hand and discuss the
motivating factors that influence the design.
 
 
 

 
 

 Figure 12: Possible Configuration of LV2
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 Problem Statement

 To design, implement, and validate an avionics module consisting of a flight sequence
computer, an inertial measurement unit, a solid-state data recorder, a data acquisition
package, and a communications system for the PSU Aeronautics Society’s amateur
launch vehicle LV2.  This avionics module will serve as a scalable development and
qualification testbed which can be expanded to accommodate a future active guidance
system.
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 Constraints
 

 The payload system design is subject to the following constraints:
 

• All systems must use the 'PIC' microcontroller architecture from
Microchip Technology Inc. to match existing AESS systems.

• The system must minimize weight.
• The system must minimize power consumption and operate on 12VDC

to match existing AESS systems.
• The system is subject to space requirements imposed by the design of

the existing LV2 avionics bay.
• For forward design mobility, modular boards with robust quick

disconnects should be used.
• The system must be able to withstand 20g’s acceleration.
• Critical systems should include redundant backups: 2 software

backups, and one physical backup; reliability is very important.
• The system should be inexpensive, using off-the-shelf components and

(where possible) industry samples.
• The system should be reproducible, using common parts and

construction techniques.
• Modularity is of the utmost importance.  There must be a consistent

logical and physical interface to the system.
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 Design Requirements
 

 The following requirements were developed by the avionics design team in
conjunction with PSAS team members.  The payload system must contain the
following elements and meet the goals listed below:

Overall
The entire system must be modular and evolvable to meet the functional
requirements for many future launches.

Sensors:
Sensor are functionally divided into two categories, proprioceptive and external.
Proprioceptive (‘self-perceiving’) sensors monitor the status of the rocket, while
external sensors monitor environmental conditions.

Proprioceptive sensors

Dedicated sensors must include:

• Igniter validation sensors to determine if the igniters are open, shorted,
or valid.  This information is relayed to the flight computer and the
Downlink for pre-launch systems validation.

• Launch detect monitor to determine the moment of separation from the
launchpad.  This information is relayed to data storage as well as the
Downlink for accurate ground support flight sequencing and flight-
path determination.

• Separation monitor to determine the moment of separation of the
Payload module from the main body during recovery.

• Power status sensors to monitor the on-board power supply.

Subsystem status sensors must include:

• Flight state monitors which will gather data from the on-board
subsystems and the radio Uplink.

• Subsystem status checks to update the states in the flight computer.

External sensors

External sensors must include:

• Inertial measurement sensors: accelerometers to determine linear
motion in 3 axes and gyros to determine rotational motion in 3 axes.

Data acquisition sensors must include:

• Temperature and pressure sensors
• Strain gauges to determine the physical dynamics of the rocket in flight

Imaging sensors must include:

• Video, to be broadcast to ground support.
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Communications:

Uplink
Manual recovery system which must include the ability to interface with
the flight computer for manual status checks, arming of the system, and
emergency control of the payload separation system.

Downlink
Telemetry data and video must be sent back to ground support.

Communications subsystem
This subsystem will handle the routing of all air-to-ground and inter-
subsystem communications.

Data storage:
• ‘Black box’ for raw data storage
• Raw data from the telemetry sensors and the flight computer will be stored

for later recovery and analysis.
• Telemetry sent to base station on ground
• Telemetry data and flight computer status must be sent to the ground

support for monitoring and storage.

Flight Computer:
The flight computer must control flight sequencing based on internal state
machines, input from other subsystems, and uplink data.
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 Architectural considerations
 

 To reach the goals outlined above, we examined a number of different possible
architectures.  A summary of the possibilities is shown below.

Central/Monolithic Architecture
 The current (LV1) rocket uses a monolithic payload system in which all tasks are
performed by one main computer.  The limitations inherent in this architecture, a
block-diagram of which is shown in Figure 13 below, were the primary source of
motivation for the design of a new system.

 

Uplink

Sensors Igniters

IMU

Flight Recorder
Flight Computer

Downlink

 Figure 13:Monolithic architecture block diagram
 

 Pros:
• Simple: easy to implement.
• Consolidated: all resources are part of the primary computer, so no

complex communications protocols need to be developed.
• Lightweight:  minimal component count keeps weight down.
• Small: this system minimizes the amount of space taken up within the

payload structure.
 Cons:

• Non-scaleable: future additions to the payload would place unrealistic
demands on system resources due to limited pin count.

• Too localized: a failure in non-critical subsystems could lock up the
primary flight computer.

• Overloaded: with all tasks being performed by one central computer,
the processor that is in charge of flight sequencing must spend most of
its clock cycles shuffling data.

• Requires a specific Flight Computer architecture to meet the hardware
port requirements.

 
 This architecture, while adequate for the first PSAS systems, is rapidly
approaching saturation as existing subsystems are upgraded and additional
subsystems are added.  To adequately meet the needs of future systems, a different
architecture is required.
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Serial Architecture (direct)
 Since all candidate microcontrollers have an onboard serial port, one option for
the system architecture was a serial bus.  We considered two types of serial
configurations:  a ring architecture, shown in Figure 14, and an arbitrated
architecture, shown in the next section.

 

Uplink Sensors IgnitersIMU

Flight Recorder

Flight Computer

Downlink

 

 Figure 14:Serial ring architecture block diagram
 
 

 The ring serial architecture provides all subsystems with a communications path
to all other subsystems, but it requires each subsystem to pass along a substantial
amount of data that is intended for a different target.

 
 Pros:

• Simple: very basic structure.
• Ease of implementation: uses only on-chip serial communications

hardware (SPI, USRT, and UART protocols).
• Expandable: this architecture can be ‘daisy-chained’ indefinitely as

new subsystems are added.
 Cons:

• Bandwidth: each subsystem must be capable of passing large amounts
of data, most of which is not needed by any one system, or

• Ownership: each subsystem must have knowledge of what data is
needed further down the chain.

• Fragile: this architecture is not fault-tolerant.  If one subsystem goes
offline, they all do.
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Serial Architecture (arbitrated)
 The arbitrated serial architecture uses a separate subsystem (the ‘arbiter’) to grant
access to a single bi-directional serial bus as each subsystem needs it.  When a
subsystem desires access to the bus, it asserts its REQ (request) line to announce
that it is requesting the bus.  When the bus is free, the arbiter (using some fairness
algorithm to allocate the bus where it is needed without locking out the low
bandwidth subsystems) asserts the GNT (grant) line of the subsystem, allowing
the subsystem to take control of the bus.  Various timeout protocols and
restrictions on the length of time any one subsystem can control the bus would be
implemented in an attempt to ensure that all subsystems are able to transport their
data.  Figure 15 shows a detail of the system connections.
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 Figure 15:Detail of arbitrated serial bus
 

 Pros:
• Orderly: no device contention due to the arbiter
• Scaleable: can be expanded indefinitely as new subsystems are added.
• Fault-tolerant: if one system goes offline, the other systems are not

materially affected (though the lack of information from the offline
system might affect other subsystems).

 Cons:
• Implementation: requires arbitration hardware in addition to built-in

serial communications hardware. As the number and complexity of
payload subsystems grows, the arbiter would require additional
resources and the bus would become increasingly overloaded.

• Bandwidth: one serial bus is responsible for all of the system’s data
flow, thereby creating a bottleneck when more than one system needs
to move large amounts of data.

For either of these two implementations of the serial architecture, the ‘cons’ far
outweigh the ‘pros’.  Since all of the negative aspects of this system are in direct
conflict with project constraints and requirements, we discarded this architecture
as a possible candidate.
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Distributed Architecture
 To reduce the amount of communications bandwidth required by any one
subsystem, we next considered a distributed architecture, as shown in Figure 16.
This architecture provides maximal interconnection between subsystems, thereby
reducing the load on any single bus.

 

Uplink

Sensors

Igniters

IMU

Flight Recorder

Flight Computer
Downlink

 Figure 16:Distributed architecture block diagram
 

 Pros:
• Bandwidth:  each bus has significantly reduced bandwidth;

subsystems are only presented with the data they need.
• Fault-tolerant: a failure in any one subsystem will only affect systems

that rely on the data from that subsystem.
 Cons:

• Increased hardware and software complexity: each subsystem has an
increased need for communications ports to accommodate the
distributed structure of the system.

• Requires a specific Flight Computer architecture to meet the hardware
port requirements.

The increase in complexity that this architecture provides is fundamentally
opposed to the desire to make the system modular and scaleable.  If any one
system needs to be replaced, numerous communications protocols must be
followed to ensure proper connections to the other systems.  This places
additional requirements on the communications hardware that must be supported
by each chip.  Based on this limitation, we chose not to consider this distributed
model as a candidate architecture.
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Modular Architecture
In attempt to find some optimal middle ground, we took desired features from the
previously-discussed architectures and combined them into a modular
architecture, as shown in Figure 17.
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 Figure 17:Modular architecture block diagram

Pros:
• Minimizes the complexity of the communications systems within

modules that are not primarily communications oriented.
• Modules can be upgraded or interchanged with other modules that

have the same interconnect specifications.
Cons:

• Communications computer must be able to handle significant
bandwidth through a large number of connections.

• Hardware port requirements dictate Flight Computer architecture.

In keeping with the idea that individual modules should be isolated according to
function, we considered the addition of a subsystem whose sole job would be to
route communications between the other modules.  This Communications
Computer would be the only chip in the system with complex communications
needs; all other subsystems could focus on their tasks without the additional
burden of routing data packets.

The primary drawback of this architecture is that all system functionality is
dependent on the proper operation of the CC.  While it is still possible to revert to
backup mechanisms (such as internal timers) to accomplish the flight sequencing,
subsystems that are operational will be effectively disabled by a CC failure.  We
therefore chose to consider other architectures for our implementation.
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 Serial Architecture with Hardware Arbitration
Recent advances in serial bus design have resulted in the creation of hardware-
arbitrated buses that provide a modular and robust method for component
interconnection.  One specification for this type of network is the Controller Area
Network (CAN or CANbus). Originally developed for the automotive industry,
the CANbus serial protocol was designed to provide reliable real-time data
connections in non-ideal industrial environments.

CAN provides many features which will be useful in the context of avionics
systems.  Hardware arbitration, automatic retransmission of messages when an
error occurs, and message prioritization will simplify the task of developing a
robust fault-tolerant network.

Termination Termination

 Figure 18:CANbus architecture block diagram

Pros:
• Emphasizes modularity.  Any subsystem can be added to the overall

design by adding bus interface hardware to the subsystem.
• Emphasizes reliability.  Many fault recovery and prevention features

are built into the hardware specification.
• Consistent hardware interface for all modules.
• Provides a convenient mechanism for prioritizing data packets.

Cons:
• Limited bandwidth.  Maximum bus speed is 1Mbps.

The CANbus architecture allows for the creation of a scalable, modular network
which provides significant hardware-based mechanisms for ensuring the reliable
transmission of data.  As with the arbitrated serial bus discussed previously, there
is a reduction in available bandwidth when using this architecture; nevertheless
the benefits afforded by this implementation greatly outweigh the drawbacks.
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Implementation

In the final analysis, we chose to use the hardware-arbitrated serial CANbus architecture
(discussed in the previous section) as the foundation for our avionics system design.  This
architecture efficiently embodies the motivating characteristics required for the target
system, providing us with a very scalable and modular implementation that will support
hardware revisions and upgrades throughout the development cycle of the next few
upcoming launch vehicles.

Use of the CANbus allows us to embody each of the functionally separate task blocks
(listed in the Design Requirements) as physically distinct devices capable of
communicating with all other devices on the network.  This dramatically simplifies the
task of upgrading and replacing avionics components, since each subsystem can be
replaced with any device that follows that subsystem’s communications protocol.  The
functional isolation also lends itself to a modular development style in which each
subsystem can be independently qualified and tested before it is interfaced to the rest of
the network.

In this section we will provide an introduction to the CANbus, starting with an overview
of the CAN specification, some discussion on arbitration and prioritization techniques,
and a description of the method in which CAN was implemented in our design.  We will
then discuss each of the subsystems in the avionics package, describing their hardware,
software, and messaging details.

Finally, in the ‘Operations’ section we will discuss how the individual subsystems are
united to form a coherent unified avionics package, and the ‘Ground Support’ section will
describe some of our ideas for linking our airborne design to the computers on the
ground.
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 CANbus Overview
CAN (Controller Area Network) is an ISO approved standard for a low-cost, fault
tolerant, and robust real-time communication protocol.  Initially developed by
Robert Bosch for in-vehicle data transfer in 1984, silicon became available in
1987 and CAN was first used in cars in 1992.  The draft international standard
was introduced in 1991 and this became a full standard (ISO 11898) in 1994.

The serial bus structure gives two advantages over parallel bus systems: increased
transfer reliability even over large distances and more favorable costs.  The CAN
specifications define a multi-master priority based bus access which uses carrier
sense multiple access with collision detection and non-destructive arbitration.
(CSMA/CD + NDA). This hardware-based arbitration scheme provides system
wide data consistency.

CAN allows multicast reception with time synchronization error detection and
error signaling.  Corrupted messages are automatically retransmitted and defective
nodes are automatically removed from the circuit.  Nodes can make remote data
requests.  The signaling uses non-return to zero (NRZ) bit encoding and allows
full isolation of the interconnecting wires.

The CAN implementation of the arbitrated serial bus architecture is being used in
other aeronautics projects as well: the Alpha Magnetic Spectrometer (AMS),
tested aboard the space shuttle Discovery in June of 1998 and ultimately destined
for the international space station, uses the CAN architecture for internal
communications between subsystems.

How does CAN work?

Information transmitted on the CANbus is organized into small packets called
"Frames". A frame consists of some data-addressing information (a message
Identifier which also determines the priority of the message), up to eight bytes of
data, and some error checking. When a frame is transmitted, each receiving node
will acknowledge that the frame has been correctly received by inserting an
acknowledge bit into a space left in the frame by the transmitting node, which can
then determine that at least one node has correctly received the frame.

The CANbus protocol is data-addressed rather than node-addressed. The content
of the message (e.g. Acceleration data, Igniter checks, Subsystem status, etc.) is
labeled by an identifier that is unique throughout the network.  All other nodes on
the network receive the message and each performs an acceptance test on the
identifier to determine if the message, and thus its content, is relevant to that
particular node.  The "Identifier" part of the CANbus frame is used to both
identify a message and indicate the message’s priority.
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Bus arbitration is handled through CSMA/CD with NDA (Carrier Sense Multiple
Access / Collision Detect with Non-Destructive Arbitration).  When a node is
ready to transmit a message across the network, it must first verify that the bus is
in the idle state (Carrier Sense).  If the bus is idle, the node becomes the bus
master and transmits its message.  All other nodes detect the beginning of a
message frame, switch to receive mode, and send an acknowledge after correct
reception of the message.

If more than one node starts to transmit at the same time (Multiple Access),
message collision is avoided by a bit-wise arbitration scheme.  As each
transmitting node sends the bits of its message identifier, it monitors the bus level.
A node that sends a recessive bit but detects a dominant one loses bus arbitration
and switches into receive mode (Collision Detect/Non-Destructive Arbitration).
This results in a prioritization scheme in which higher priority messages are given
an Identifier with higher order dominant bits.  Nodes whose messages are
subsumed by higher-priority messages will attempt to resend the message when
the bus becomes idle.

Figure 19 demonstrates the arbitration process by which a node determines that it
has lost bus-master status.  The top signal shows the output from the node in
question, while the bottom signal shows the actual signal level present on the bus.
(Signal sense is electrically active-low, not logical; a ‘low’ level represents a
dominant bit).  When the ninth identifier bit (ID.2) is transmitted, the transmitting
node observes that the signal level on the bus is dominant, while the output from
the node is recessive.  Logically, this represents a case where the node in question
wishes to transmit a message with priority ‘11000100000’ (logical) while a
remote node on the bus wishes to send a message with priority ‘11000100100’.
The transmitting node therefore loses arbitration since the remote node wishes to
transmit a message with a higher priority.  When the transmitting node detects that
it has lost bus-master status (when it receives ID.2, in this case), it switches to
receive mode.

                                    ID.10   ID.9   ID.8    ID.7    ID.6    ID.5   ID.4    ID.3   ID.2    ID.1    ID.0

Start of frame Arbitration lost

Rx

Tx

 Figure 19:Example of arbitration/prioritization scheme
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Identifiers

As mentioned above, the unique identifier also determines the priority of the
message. The lower the (electrical) numerical value of the identifier, the higher
the priority of the message.

The higher priority message is guaranteed to gain bus access as if it were the only
message being transmitted. Lower priority messages are automatically re-
transmitted in the next bus cycle, or in a subsequent bus cycle if there are still
other, higher priority messages waiting to be sent.

Addressing and Arbitration

While an arbitrary 11-bit message identifier allows for up to 211 = 2048 unique
messages, the CANbus implementation allows for only 2032.  The 16 messages
that correspond to the case where the 7 MSB of the message identifier are
recessive are not allowed due to the fact that the Dataframe ‘end-of-frame’
delimiter consists of 7 consecutive recessive bits.

There are 2 bus electrical states: dominant, which represents ‘0’ or ‘actively
driven’, and recessive, which represent ‘1’ or ‘inactive’. The bus must be a
"wired-or": in other words, if any node transmits a dominant bit, then the bus will
be in the dominant state. All nodes must transmit a recessive bit for the bus to be
recessive.

Each node monitors the bus, and does not start a transmission if a frame is being
transmitted by another node. If two nodes commence transmission at exactly the
same time, the identifiers (which are transmitted first) will overlap. As the
protocol prohibits two nodes transmitting the same identifier, the output state of
the two should differ at some time during the identifier. In this case, the node
transmitting the recessive bit will see a dominant bit on the bus and cease
transmission. Since the MSB of the identifier is transmitted first, the lowest binary
value of identifier always "wins", hence has the higher priority.

Error-Checking

CANbus uses self-checking, bit stuffing, an "in-frame" acknowledge and a CRC
to check that messages are correctly transmitted and received. An incorrect
message will be flagged by all nodes on the bus, and a re-transmission will be
automatically triggered. The probability of a received message being erroneous is
very low.

The CAN protocol has five methods of error checking, three at the message level
and two at the bit level.  If a message fails any one of these error detection
methods it will not be accepted and an error frame will be generated which will
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cause all other nodes to ignore the defective message and the transmitting node to
resend the message.

At the message level, a cyclical-redundancy check (CRC), an Acknowledge field
within the message, and a form check are used to detect errors.  The 15-bit CRC is
carried out over the Identifier field and the Data bytes, and then compared to the
CRC filed within the message.  If the values differ, an error is generated.  The
Acknowledge field is two bits long and consists of an acknowledge bit and an
acknowledge delimiter bit. The transmitter will place a recessive bit in the
acknowledge field. Any node that receives the message correctly will write a
dominant bit in the acknowledge field.  If the transmitter does not detect a
dominant bit in the acknowledge field, it will generate an error frame and
retransmit the message.  The third message-level error check is a form check
which verifies that certain fields in the message contain only recessive bits. If a
dominant bit is detected, an error is generated. The bits checked are the start-of-
frame, end-of-frame, Acknowledge delimiter and the CRC delimiter bits.

At the bit level, each message is monitored by the transmitter.  If a bit is written
onto the bus and its compliment is read, an error is generated. The exceptions to
this rule are the Identifier field, which uses the bus contention in its non-
destructive arbitration (NDA) scheme, and the acknowledge slot, which requires a
recessive bit to be overwritten by a dominant bit when a message is correctly
received by a remote node.

An additional error detection method uses the bit-stuffing rule, wherein a node
that transmits a message that contains five consecutive bits of the same logic level
must then transmit a single bit of the complimentary level to prevent the presence
of a net DC level on the bus.  If the next bit is not a compliment after five
consecutive bits of the same logic level, then an error is generated.  Bit-stuffing is
used for bits between the start-of-frame and the CRC delimiter.

Realization

The CANbus is a multi-layer protocol.  As implemented here, there are three
primary layers:

• Application Layer
• Protocol Layer
• Physical Layer

The Application Layer is the device that needs to speak on the CANbus.  In our
design, each subsystem that requires access to the bus contains a PIC
microcontroller, which will view the entire CANbus as simple Memory-Mapped
IO (MMIO).
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The Protocol Layer maintains coherency and manages all CAN-related activities.
Duties include:

• Message filtering and validation
• Fault confinement
• Error detection and signaling
• Arbitration
• Message framing
• Transfer rate and timing management

Typically, the Protocol Layer is implemented using an off-the-shelf CAN
controller chip.  The CAN controller used in the avionics package is the
Microchip MCP2510.  This is a stand-alone controller with the following features:

• Implements Full CAN specification,
• Supports standard and extended frames,
• Programmable bit rate of up to 1Mbps,
• Remote frame support,
• Two receive buffers,
• Six full acceptance filters
• Two full acceptance filter masks
• High Speed SPI Interface
• Temperature range from –40C to +85C

The SPI interface allows for a simple high-speed connection between the CAN
controller and the PIC.

The Physical Layer defines how signals are actually transmitted, providing the
signal-level representation of the data.  This layer connects the CAN controller to
the transmission medium, which is often a shielded cable or twisted-pair to reduce
electro-magnetic interference (EMI).  The Physical Layer used in the avionics
package in the Philips PCA82C250 transceiver.  This device is capable of 1Mbps
data transfers using a differential-pair implementation that minimizes EMI and
provides hardware protection from power surges on the CANbus.  In addition,
current-limiting devices protect the transmitter output from damage in the event of
short circuit to Vcc or ground.  The PCA82C250 is rated from –40C to +125C.

Using the parts mentioned above, we developed a consistent CAN interface that
will provide connectivity to any device that has a SPI communications port.  The
circuit schematic for this interface is shown in Appendix A.
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Connection to the CAN interface is a 7 wire interconnect that provides the
essential 4-wire SPI functionality as well as 3 additional signals:

• CS# (active-low chip select)
• RESET# (active-low CAN controller reset)
• STANDBY (active-high CAN transceiver reset)

These supplemental pins can be used to place the entire system into low-
quiescent-current standby mode.  When in this mode, all devices on the bus (with
the exception of one device, whose job is to wake everyone else up) are
essentially asleep.  The appearance of a message on the CANbus causes the
transceiver to pulse its connection to the controller.  This in turn causes the
controller to wake, whereupon it triggers an interrupt in the application layer
device.

Standby mode can be used to minimize power consumption and maximize safety
by placing the entire avionics package in a harmless deactivated state.  The entire
system can then be woken up with a transmitted command from ground support.

This mode is not required; if a specific subsystem does not wish to use this mode,
the lines can be left unconnected; the CAN interface circuit contains pull-ups and
pull-downs to ensure that the pins revert to the correct default states when they are
unused.
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 Module Overview
The final avionics design embodies a functional decomposition approach by
creating a physical module to represent each functional division.  In addition, it is
possible to further decompose each of the modules along functional lines (e.g. by
dividing each module into a sensor section and an actuator section).  The avionics
modules are  listed below:

• Flight Computer (FC)
• Communication Computer (CC)
• Inertial Measurement Unit (IMU)
• Data Acquisition board (DAQ)
• Flight Recorder (FR)
• Igniters (IGN)
• Test Module (TM)
• PSAS systems

Each of the modules listed above is a self-contained independent device whose
sole connection to the avionics package is via the CANbus.  As a result,
subsystems can be upgraded or replaced without requiring any modifications of
the other subsystems or the avionics package as a whole.

The FC uses data from the other subsystems to determine flight sequencing.  Once
a flight stage has been detected, the FC is responsible for taking any necessary
action, such as triggering stage separation at apogee.

The CC provides a data connection between the avionics system and the outside
world.  In addition to handling all communications with ground support via the
Uplink and Downlink, the CC also provides communications to any third-party
scientific instrumentation devices which might be present in the payload.

The IMU has sensors to measure linear acceleration and angular velocity; data
from these is used to calculate the position, orientation, and velocity of the rocket.

The DAQ provides a view of conditions both internal and external to the rocket.
The proprioceptive sensors measure flight critical systems such as stage-
separation sensors and battery levels.  The external sensors measure quantities
such as temperature and pressure.

The FR is a solid-state data recording device.  It stores all information sent to it in
nonvolatile Flash RAM memory.  The data stored inside the FR will be used for
post-flight analysis.

The igniters are smart, self-contained devices connected to the CANbus.  Each
IGN is capable of testing its igniter pair, relaying status data to the rest of the
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system, and triggering ignition in response to a command or an internal timer
preset.

The TM provides a mechanism by which false data can be inserted into the
avionics system for testing and flight profiling.  It also allows the external
monitoring of the sensors for sensor characterization and validation.  This module
is beyond the scope of this project, and will be developed in the future.

The PSAS is responsible for following systems
• Communications package, consisting of an uplink and a downlink
• Ground support

The communications package will consist of a bi-directional high-speed serial
connection to the ground.  The uplink allows the ground station to communicate
with the rocket, providing the ability to manually command the avionics to
perform tasks such as start on-board diagnostics, go to a known state, or activate
the separation igniters.  The downlink is a digital channel that is used to transmit
data from the rocket to the ground station.  The channel includes IMU data, DAQ
data, and FC state information.

Ground support systems include a ‘smart’ launch tower with shore power, a
ground control station with flight control/monitoring computers, and radio
systems to maintain communications.
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 Flight Computer (FC)
The Flight Computer (FC) is the ‘brain’ of the system, responsible for all actions
taken by the avionics system.  This subsystem is responsible for the sequencing of
flight states based on internal state machines and inputs from other system
modules.

This modules main tasks include:

• Flight sequencing
• Launch initiation
• Stage separation

Hardware
The microcontroller used in the FC is a PIC 16F873.  The choice to use this
particular microcontroller was determined by the following criteria:

• The 16F873 is the smallest PIC that still provides the SPI
communication hardware required by the CAN interface.

• In-circuit programming and debugging capabilities
• reduced pin count
• reduced package size
• reduced weight

The 16F873 is a 28-pin device that has the following features:

• Fosc = 20 MHz clock speed (Instruction speed Fcyc = Fosc / 4)
• 4K x 14-bit program word Flash memory
• 192 byte data memory
• 128 byte EEPROM data memory
• 1 high-speed USART communications port
• 1 high-speed Serial Port (SPI)
• watch-dog timer (WDT)
• 3 internal timers

This device has advanced in-circuit programming and in-circuit debugging
features that significantly reduce program development and implementation
times.  Additional useful features include an energy-saving sleep mode and a
small instruction set.  The 16F873 is rated from –55C to +125C.

The FC is connected to the CANbus via the standard CAN interface discussed
in the CAN section of this document.

Complete schematics for the FC can be found in Appendix A.
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An internal timer system allows the FC to keep track of where the rocket is in
the flight, as well as providing a backup mechanism for initiating critical
events in case of a subsystem failure.  If the IMU experienced a failure, for
instance, and was unable to report apogee detection, the timers in the FC
would automatically trigger payload separation at a pre-calculated time.

Timers can also be used to control sensors which might not be needed until a
certain time in the flight, such as a scientific instrumentation package that is
only concerned with readings near apogee.

The internal timers in the FC consist of 8-bit free-running counters with a
frequency of 5.0MHz.  These counters roll over every 6.55mS.  Each time the
counter rolls over, an Interrupt Service Routine (ISR) is run that increments a
number of different counter registers.  These registers are used as the internal
event timers to determine time since liftoff, apogee timeout, and sensor
activation times.
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Messaging
The FC is designed to accept all valid messages that are critical to determining
flight sequencing. These include all EVENT and STATUS messages from all
subsystems:

• IMU.EVENT
IMU-originated message showing launch/apogee detection.

• IMU.STAT
IMU-originated message showing internal status of IMU.

• DAQ.EVENT
DAQ-originated message showing launch/apogee/separation
detection.

• DAQ.STAT
DAQ-originated message showing internal status of DAQ.

• FR.EVENT
FR-originated message showing status of Flash RAM.

• FR.STAT
FR-originated message showing internal status of FR.

• IGN.ICHK.n
IGN-originated message showing condition of igniter #n

• IGN.EVENT.n
IGN-originated response to arming/disarming of igniter #n.

• IGN.STAT.n
IGN-originated message showing internal status of the igniter
#n.  In addition to providing information on igniter status and
whether or not the igniter is armed or in diagnostic mode, the
STAT message also lets the FC know that the CANbus
connection to the igniter is still valid.

• CC.STAT
CC-originated message showing internal status of CC.
CC.STAT also returns a byte showing the last known state of
the FC; if the FC wakes from a watch-dog timer (WDT) reset,
it will adopt this state as its own.

In addition to these messages, the FC must respond to all manual override
commands from the CC and track (if possible) the command decisions sent
through the CC.  These commands include:

• CC.REQ.POWU
• CC.CMD.POWD

CC-originated messages requesting power-up/down of all
systems.

• CC.REQ.ACK
CC-originated message acknowledging valid FC boot-up
configuration.
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• CC.CMD.ARML
• CC.CMD.DISL

CC-originated messages requesting arming or disarming of
launch igniter.

• CC.REQ.LAU
CC-originated message requesting ignition of launch igniter.

• CC.CMD.SCHK
CC-originated message requesting status from all modules.

• CC.CMD.ARMn
• CC.CMD.DISn

CC-originated message commanding arming or disarming of
igniter #n.

• CC.CMD.IGNn
CC-originated message commanding triggering of igniter #n.

• CC.CMD.FCON
• CC.CMD.FCOFF

CC-originated messages enabling/disabling FC status output.
• CC.CMD.FKS

CC-originated message forcing FC into known state.
• CC.CMD.DIAG

CC-originated message commanding all systems to enter
diagnostic mode.

• CC.CMD.NORM
CC-originated message commanding all subsystems to enter
normal mode.

Note that some of the messages received from the CC are requests rather than
commands.  This ensures that certain critical events are never initiated unless
the FC is operational.

The FC generates the following messages:

• FC.CMD.POWU (Power up)
• FC.CMD.POWD (Power down)

Commands all subsystems to power up/down, to preserve
power and to force the system into a known initialized state.

• FC.CMD.ARML (Arm launch igniter)
• FC.CMD.DISL (Disarm launch igniter)

Arms/disarms the launch igniter.  This is accomplished by
sending a launch code which the launch igniter must have in
order to respond to an ignition command.  These launch codes
can be erased by a disarm command at any time prior to actual
ignition, thereby preventing the ignition.



AESS Avionics System Design Project – Rev. 3.1 – Page 46

• FC.CMD.LAU (Launch the rocket)
Triggers the launch igniter.

• FC.CMD.ICHK (Check igniters (masked))
Instructs igniter modules to check the validity of their igniters.
A byte-mask is included to allow the targeting of a specific
igniter or set of igniters.  Those igniter modules that are
covered by the byte-mask will respond by sending an
IGN.ICHK.n message.

• FC.CMD.SCHK (Check subsystem status (masked))
Instructs all modules to return a status check.  A byte-mask is
included to allow the targeting of a specific module or set of
modules.  Those modules that are covered by the byte-mask
will respond by sending a STAT message.  Note: modules will
respond to an FC.STAT command (discussed below) in the
same manner as they would upon receiving an FC.CMD.SCHK
with full byte-mask.

• FC.CMD.ARMn (Arm igniter #n)
• FC.CMD.DISn (Disarm igniter #n)

Arms/disarms the auxiliary igniter #n.  This is accomplished by
sending a launch code which the igniter must have in order to
respond to an ignition command.  These launch codes can be
erased by a disarm command at any time prior to actual
ignition, thereby preventing the ignition.

• FC.CMD.IGNn (Trigger igniter #n)
Triggers igniter #n.

• FC.CMD.FREN (Enable FR recording)
• FC.CMD.FRDIS (Disable FR recording)

Enables/disables FR data recording.  This functionality is
included to prevent the recording of spurious data when launch
delays occur and to provide a mechanism for initiating the
recording process when the rocket is on the launchpad.

• FC.CMD.IMUON (Enable IMU output)
• FC.CMD.IMUOFF (Disable IMU output)

Enables/disables output from the IMU.  The IMU will still
sample data, but that data will not be placed on the bus.
Allows for diagnostic modes and introduction of test signals as
well as reducing bus bandwidth and FR storage requirements
while on the launchpad.

• FC.CMD.DAQON (Enable DAQ output)
• FC.CMD.DAQOFF (Disable DAQ output)

Enables/disables output from the DAQ.  The DAQ will still
sample data, but that data will not be placed on the bus.
Allows for diagnostic modes and introduction of test signals as
well as reducing bus bandwidth and FR storage requirements
while on the launchpad.
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• FC.STAT (FC status frame)
Informs the system of the status of the FC.  This message is
sent out regularly at a frequency of 100Hz, corresponding to
the frequency of the master control loop within the FC.  Allows
for fault recovery, since systems that do not hear from the FC
for a specified amount of time can assume that either the FC is
damaged or their CANbus connection to the FC is severed, and
can therefore transfer control to their internal timers.  All
modules on the CANbus are required to accept this message.
This message is the ‘heartbeat’ or synchronizing pulse of the
system, and contains the primary system timestamp.  Upon
receipt of this message, all modules on the CANbus must
return their own STAT messages, thereby resulting in a
continuous time-stamp-referenced data block in both the FR
and the Downlink stream that contains the status of the entire
system.  FC status bytes include a time-stamp, the current flight
state identifier (discussed below), and the status of the system.
If other modules on the CANbus wake from a WDT reset, they
can utilize the system status information to resynchronize their
internal states with the FC.

A summary of all system messages and commands is given in Appendix B.
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Software
The basic functionality of the FC comes from an internal state machine that uses
data from other subsystems and an internal timer to trigger state flow.  The state
machine is responsible for all flight sequencing including launch initiation, sensor
activation, and stage separation.  All command decisions in normal operation are
made by this subsystem in response to messages from other subsystems and
internal timers.  In the event of an emergency, the FC state flow can be subsumed
by manual commands via the CC.

The FC accepts STAT messages from all subsystems on the CANbus.  The status
bytes from these messages are parsed and used to create a system-wide status
indicator that is included in the FC.STAT message.

The FC state machine is at all times in one of five possible modes :

• Initialization
At power-up, a number of tests are performed to ensure that the
entire system booted correctly and all communications pathways
are operating correctly.

• Pre-flight
Prior to launching, additional tests are performed and the primary
launch igniter is given the authorization codes (without which it is
not possible to launch the rocket).  This is the idle state for the
rocket; deviations from the ideal state flow will result in a return to
this mode.

• Launch
Launch mode covers the time from the moment the launch
command is given to the moment primary ignition occurs.  This
mode, which roughly corresponds to the ‘10-second countdown’, is
initiated by a CC.REQ.LAU request from the CC.  In response, the
FC performs igniter checks and status checks on all subsystems,
starts a 10-second countdown (which is transmitted to ground
support), and enables data output from all sensors.  If any tests fail,
the FC will disarm the primary launch igniter and revert to pre-
flight mode; otherwise, the FC will initiate the primary launch
igniter at time t = 0s.

• Flight
Flight mode covers the time from the actual launch of the rocket to
the time when the avionics system lands on the ground.  All actual
flight sequencing takes place in this mode, including sensor
management, payload management, and stage separation.
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• Recovery
When the system lands after a successful flight, all sensor data
(with the possible exception of GPS data) will be silenced.  The FC
will continue to broadcast FC.STAT to provide a beacon for the
recovery team.

These modes are discussed in more detail in the flight sequencing section of this
document.

Critical FC tasks utilize a number of backup mechanisms.  The most catastrophic
failure that can occur in the course of a normal single-stage flight is the lack of
separation or untimely separation of the stages from the rocket body.  If separation
occurs while the rocket is accelerating, the chutes will be destroyed and the
resulting collision (between the rocket sections or between the rocket and the
ground) will most likely result in the complete loss of the system.  The flight
computer uses a number of independent indicators to determine the suitable time
to deploy the recovery system.  This is accomplished by the following
mechanisms:

• Z-axis position begins to decrease.  If the IMU detects a negative Z-
axis  velocity for 10 consecutive samples, the rocket is near apogee and
the IMU will send an EVENT notification.  Resolution of the IMU
sensors is approximately 10ft.

• Pressure begins to increase.  If the DAQ detects an increase in pressure
over 10 consecutive samples, the rocket has passed apogee and the
DAQ will send an EVENT notification.  The pressure sensor outputs
an analog voltage proportional to the pressure, with a resolution of
approximately 15ft.

• Manual intervention via the Uplink.  If the ground crew determines
that the rocket has reached apogee (via visual observation using
theodolites), a manual separation code (CC.CMD.IGNn) can be sent to
the rocket to force separation.

• Internal timer.  If the timer onboard the FC determines that apogee
must have been reached (based on a comparison of the time since
liftoff to a pre-calculated value), the FC will deploy the chutes.  This is
a final fail-safe that will only be used if all other avenues have failed.

In addition to the above-mentioned mechanisms, it is possible to force the FC into
any specific state via the Uplink.
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Communication Computer (CC)
The Communications Computer (CC) is responsible for all communications with
the world beyond the avionics system.  This module must route all data between
the avionics package, the communications system, and the payload. This module’s
main tasks include:

• Collect and package relevant data for distribution to the payload and
ground communications.

• Route commands and requests from ground support to the CAN bus.

Hardware
The microcontroller used in the CC is a PIC 17C756.  This high-end
microcontroller was chosen since it provides all of the communications
hardware required by the CC.  The 17C756 is a 64-pin device that has the
following features:

• Fosc = 33 MHz clock speed (Instruction speed Fcyc = Fosc / 4)
• 16384 x 16-bit program word memory
• 902 byte data memory
• 50 digital I/O ports
• 2 high-speed universal synchronous/asynchronous (USART)

communications ports
• 1 high-speed serial peripheral interface (SPI) communications port
• watch-dog timer (WDT)
• brown-out reset
• 4 internal timers

Communications to and from the ground station come from an off the shelf
RF modem channeled through a serial port on the PIC.  To facilitate the use of
a modem supplied by the PSAS, the interface between the modem and the CC
consists of a standard RS232 connection.  The signal level shifting (between
RS232 and digital levels) is handled by a MAX 3221 transceiver.

Control and information passing to the payload is supported primarily through
another UART port on the CC.  The exact data, commands and
communication protocol sent via this port are customized according to the
needs of the payload.  In addition, one 8-bit parallel port is available as
needed.

The CC is connected to the CANbus via the standard CAN interface discussed
in the CAN section of this document.

Complete schematics for the CC can be found in Appendix A.
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Messaging
The CC must be able to monitor all inter-module messaging to perform its role
of communicating with the ground station and payload.  The CC accepts and
processes all messages from all subsystems.  Additional details can be found
in the Software sections.

Messages originating from the CC are primarily the result of commands sent
from the ground.  They include:

• CC.REQ.POWU
A request from the CC to activate the FC.

• CC.CMD.POWD
Requests power-up/down of all systems.

• CC.REQ.ACK
Acknowledges valid FC boot-up configuration.

• CC.CMD.ARML
• CC.CMD.DISL

Requests that the launch igniter be armed or disarmed.
• CC.REQ.LAU

Request ignition of launch igniter.
• CC.CMD.SCHK

Requests status from all modules.
• CC.CMD.ARMn
• CC.CMD.DISn

Commands that igniter #n be armed or disarmed.
• CC.CMD.IGNn

Commands the triggering of igniter #n.
• CC.CMD.FCON
• CC.CMD.FCOFF

Enables/disables FC status output.
• CC.CMD.FRON
• CC.CMD.FROFF

Enables/disables the FR status output.
• CC.CMD.FREN
• CC.CMD.FRDIS

Enables/disables the recording of data by the FR.
• CC.CMD.FRERA

Commands the FR to erase the contents of the Flash, and
reinitialize the device.
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• CC.CMD.IMUON
• CC.CMD.IMUOFF

Enable/disable IMU status and data output.
• CC.CMD.FKS

Forces the FC into known state.
• CC.CMD.DIAG

Commands all systems to enter diagnostic mode.
• CC.CMD.NORM

Commands all subsystems to enter normal mode.
• CC.STAT

Status message that shows the current state of the CC.  It also
includes information for the FC in order to recover from a
WDT.

Note that some of the messages sent by the CC are requests rather than
commands.  This ensures that certain critical events are never initiated unless
the FC is operational.
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Software
The functionality of the CC is broken down into providing communication to
three areas: the ground station, CANbus devices, and the payload.  The CC
must parse messages from all sources to determine the appropriate routing
measures and to generate the necessary CAN messages.

All CAN messages are monitored to determine which of those messages are
appropriate for packaging into frames which can be sent to the ground station
via the serial downlink.  All command decisions will be sent as well as a
selected sampling of the data generated by the IMU and the DAQ.

Commands originating from the ground via the uplink are parsed for content
and the appropriate CAN messages are generated.  This allows ground support
to intervene manually in emergency situations.  The CC can generate
messages having the same functionality (but a higher priority) as the
corresponding FC messages.

The CC provides the payload with data gathered from a sampling of the data
generated by the IMU and DAQ.  This data is sampled and forwarded to the
payload to aid it in its operation.  Pertinent data includes current state of the
avionics system, current rocket position, flight time information, and the
current flight state.
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Inertial Measurement Unit (IMU)
The Inertial Measurement Unit (IMU) is the guiding force behind many of the
engineering decisions made in the avionics package.  The modularity
requirements that dictate an easily-implementable upgrade/development path to a
functional INS were a major determining factor in the use of the CANbus in the
avionics package architecture.

This module’s main tasks include:

• Measure raw linear acceleration (X,Y, and Z axes)
• Measure raw angular acceleration (α, β, and γ)
• Calculate acceleration
• Calculate velocity (integrate acceleration)
• Calculate position (integrate velocity)
• Calculate orientation
• Detect apogee events
• Transfer all data to the FR and CC

Hardware
The microcontroller used in the IMU is a PIC 17C756.  In addition to
providing us with the processing capabilities we need for this generation of
payload, the 17C756 will allow for scalability in the future.

The primary goal of the IMU is to monitor the linear acceleration and angular
velocity sensors to determine as precisely as possible the position, orientation,
and heading of the rocket.  The sensor package designed to facilitate this
consists of three sections:

• 3 linear accelerometers
• 3 angular velocity sensors
• 1 multi-channel A/D converter

These sections are described below:

Linear accelerometers
The linear accelerometers are micro-machined monolithic components
with on-chip filtering and a selectable ±25g or ±50g full-scale range
(Analog Devices, Part Number #ADXL150AQC/ADXL250AQC).  The
ADXL150 is a single axis accelerometer; the ADXL250 contains two
independent accelerometers physically arranged in quadrature on the plane
of the chip.  The ‘AQC’ suffixed parts have a temperature rating from –
40 °C to +85 °C.
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The payload module will contain one ADXL150 for Z-axis monitoring and
one ADXL250 for X- and Y-axis monitoring.  The accelerometers will be
configured for ±25g full-scale operation to increase the resolution.

Subjecting the accelerometer to an acceleration causes a small change in
the capacitance between a fixed plate and a force-sensitive plate within the
device.  This change in capacitance is then used to determine an
appropriate change in output voltage.  The output voltage varies by
approximately ±38mV / g.

A diagram of the internal structure is shown below in Figure 20.

 Figure 20:Internal structure of linear accelerometers

The accelerometers are each sampled at approximately 1.5kHz and the
resulting data is passed through an A/D converter before entering the IMU
for processing and distribution.

Angular velocity sensors
The angular sensors used in the payload are ceramic angular rate gyros
(Tokin, Part Number #CG-16D0).  The sensors output voltage is
proportional to the rate of spin, with a sensitivity of 1.1mV/degree/S.  The
CG-16D0 is characterized for operation from –5 °C to +75 °C.  The
frequency-phase characteristics of this device (shown below in Figure 21)
limit the maximum sampling rate to approximately 150Hz.
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 Figure 21:Frequency-Phase characteristic
of Tokin angular rate gyro

A/D Converter
The A/D conversion is handled by an 8-input, 12-bit, switched-capacitor,
successive-approximation analog-to-digital converter (Maxim, Part
Number #MAX197).  The 8 input channels are multiplexed (MUXed) to a
single A/D converter and are selectable via serial input line from the IMU.
The device returns a 12-bit digital value via a separate serial line.  The
MAX197 is characterized for operation from 0 °C to +70 °C.

The IMU-A/D connection consists of 13 wires:

• CS# Chip select, active low
• WR# Write signal from IMU
• RD# Read signal from IMU
• HBEN High-bit enable
• INT# ‘End of conversion’ signal from A/D
• D0-D11 12-bit (multiplexed) Data bus

The A/D converter utilizes a standard chip select signal, with WR# and
RD# controlling writes and reads respectively.

The HBEN pin selects whether the least significant byte or the most
significant nibble is output on the data bus.
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 Figure 22:Connecting to the A/D converter

Conversions are accomplished as follows:

• The PIC selects a MUX channel by placing the channel code on
the data bus and writing (asserting WR# and CS#).

• The ADC samples the sensor connected to the selected MUX
channel (the conversion phase typically lasts 4µS).

• The ADC asserts INT# to alert the PIC that the operation is
complete.

• With HBEN deasserted, the PIC latches in the 8 LSB’s of the
reading from D0-D7.

• With HBEN asserted, the PIC latches in the 4 MSB’s of the
reading from D8-D11.

The IMU is connected to the CANbus via the standard CAN interface
discussed in the CAN section of this document.

Complete schematics for the IMU can be found in Appendix A.
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Messaging
The IMU accepts only those messages that directly affect its own operation:

• FC.CMD.POWU
• xC.CMD.POWD

FC- or CC-originated messages requesting power-up/down of
all systems.

• xC.CMD.SCHK
FC- or CC-originated message requesting status from all
modules.

• FC.STAT
FC-originated message showing internal status of FC as well as
status bits for the rest of the system.

• CC.CMD.IMUON
• CC.CMD.IMUOFF

CC-originated messages enabling/disabling IMU data output.
• CC.CMD.DIAG

CC-originated message forcing all systems into diagnostic
mode.

• CC.CMD.NORM
CC-originated message forcing all systems into normal mode.

The IMU generates the following messages:

• IMU.XYZ (X,Y, & Z-axis accelerometer data, raw)
• IMU.ABC (α, β, & γ-axis gyrocompass data, raw)

Raw data packages from all inertial navigation sensors.  This
data will be stored in the FR and broadcast to ground support
via the CC.  Each message contains 3 12-bit values
corresponding to the X,Y, & Z or α, β, & γ readings.

• IMU.ACC.n (n-axis acceleration data, n = {X,Y,Z})
• IMU.VEL.n (n-axis velocity data, n = {X,Y,Z})
• IMU.POS.n (n-axis position data, n = {X,Y,Z})
• IMU.ORI.n (n-axis orientation data, n = {α,β,γ})

Acceleration, velocity, position, and orientation data.  This data
has been highly processed by algorithms in the IMU.

• IMU.EVENT (Event flags)
Event flag message generated when the IMU determines that
apogee has been reached.

• IMU.STAT (IMU status frame)
Status message that shows the current state of the IMU (i.e.
enabled/disabled, diagnostic/normal mode).

A summary of all system messages and commands is given in Appendix B.
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Software
The IMU will use the raw sensor data to calculate the absolute position
(relative to the launchpad) of the rocket.  This will involve numerous
calculations; an overview of the operation is shown below.

Linear acceleration data is integrated to obtain linear velocity using a
midpoint-rule approximation as shown below in Figure 23.  A second
integration is then performed to calculate the position.
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 Figure 23:Integration approximation in the IMU

Further algorithms will be developed in the future to incorporate the angular
measurements into the position calculation.

The IMU will also send an EVENT message when it detects apogee.  This
occurs when the IMU detects a negative Z-axis velocity for 10 consecutive
samples, implying that the rockets upward velocity has decreased to zero and
is beginning to become negative. The EVENT messages will be used by the
FC to determine flight sequencing.

When the IMU is operational, it will constantly sample the sensors regardless
of whether or not data output has been enabled by the FC or the CC.  The
sampling rate will be substantially higher than the rate at which data is output
from the IMU; this will allow for higher resolution input to an internal
Kalman filter which will preprocess the data before transmitting on the
CANbus.

In future implementations, the IMU will be part of a larger Inertial Navigation
System (INS).  This INS will be capable of actively guiding the rocket along a
pre-established flight profile and delivering a payload to a specific target.  The
INS will also be an experiment in Control Engineering, allowing the removal
of the stabilizing fins from the rocket; this will in effect create a high-speed
‘inverted pendulum’ model which must be actively stabilized throughout the
flight.
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Data Acquisition Module (DAQ)
The DAQ is the main subsystem by which the rocket avionics system gathers
information about the physical state in and around the rocket.  This includes the
sensing of both proprioceptive and external conditions.

Proprioceptive measurements gather information on conditions internal to the
rocket, while the external measurements gather information on conditions external
to the rocket.  Proprioceptive sensors include sensors to measure and detect:

• power system status,
• module separation, and
• shore power disconnect.

External sensors monitor:

• temperature, and
• air pressure.

Hardware
The microcontroller used in the DAQ is a PIC 17C756.  This device is
compact, but still provides many ports for monitoring multiple digital signals,
and interfacing with external circuitry such as A/D converters.  The primary
connections to the DAQ are described below.

A/D Converter
The A/D converter, a MAX197 from Maxim, is identical to that used in
the IMU. All analog signals will be converted through this device.  The
internal A/D on the 17C756 will not be used.

Battery level
The health of the power system will need to be monitored.  This is
particularly important while the rocket waits on the launch pad prior to
pre-flight and launching.  The power system consists of off the shelf 12V
Lithium batteries and a series of linear regulators and bypass capacitors.
(The power system will be provided by the PSAS).

The test circuit for the power system will employ a simple voltage divider
that drops the 12-volt supply down to the 5 volts range of the A/D
converter.  See Figure 24 below for the interface circuit.  The interface will
access the 12 volt power from the system bus.
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 Figure 24:Power Monitoring Circuit

Separation monitors
The separation monitors verify that rocket modules have physically
separated.  An example of this would be the payload and body modules
separating at apogee.  This measurement is required to determine the need
for a manual intervention in the case of a FC failure.

The sensor used is a slotted optical switch, (QT Optoelectronics, Part
Number #QVB11123) that returns a logic high value until separation has
occurred.  The DAQ will poll the sensor to determine its state.  Figure 25,
below, shows the switch and interface circuitry.

 Figure 25:Separation Sensor Schematic

Temperature
The temperature data will be gathered from various points in the rocket.
This will be accomplished via a 3-terminal adjustable current source
(National Semiconductor, Part Number #LM234).  This device produces a
current source proportional to the temperature when wired as shown in
Figure 26 below.  The LM234 features a 10,000:1 range in operating
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current, excellent current regulation and a wide dynamic voltage range of
1V to 40V.

 Figure 26:Temperature Sensor Schematic

The sense voltage used to establish operating current in the LM234 is 64
mV at 25°C and is directly proportional to absolute temperature (°K).  The
LM234 is specified as a true temperature sensor with guaranteed initial
accuracy of ±3°C.  In addition, the LM234 is guaranteed over a
temperature range of -25°C to +100°C.  The subcircuit shown above in
Figure 26 produces a voltage change of 10mV/°K.

Pressure
The pressure sensor used is an integrated silicon pressure sensor with on-
chip signal conditioning, temperature compensation, and calibration
(Motorola, Part Number #MPX5100A).  Device characteristics include:

• on-chip signal conditioning,
• on-chip temperature compensation,
• absolute pressure measurement,
• 15 to 115 kPa range,
• maximum error of +/- 2.5 kPa,
• 1m Sec response time,
• temperature operating range from –40° to 125° C,
• output voltage range from 0.2 to 4.7 V,
• consumes 10mA max.

Interfacing this device to an A/D requires a simple R-C circuit to provide
low pass filtering, as shown in Figure 27 on the next page.
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 Figure 27:Pressure Sensor Schematic

Upon sampling the sensors, the DAQ processes the signals as needed and
outputs the data to the CC via a high-speed serial interface. The DAQ also
has an input channel that provides a means of enabling and disabling
sensors and/or third party systems during the flight.

The DAQ is connected to the CANbus via the standard CAN interface
discussed in the CAN section of this document.

Complete schematics for the DAQ can be found in Appendix A.
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Messaging
The DAQ accepts only those CAN bus messages that pertain to its
functionality.  Accepted message are:

• FC.STAT
• xC.CMD.SCHK

These commands signal the need for status information, and
cause the DAQ to generate a DAQ.STAT message.  FC.STAT
acts as a trigger for all subsystems to send their status
messages.

• FC.CMD.POWU
• xC.CMD.POWD

These commands cause the FR to go into and out of the low
power sleep mode.

• xC.CMD.DAQON
• xC.CMD.DAQOFF

Enable/disables output of data from the DAQ.  Events are still
generated in response to critical flight stages, but DAQ.TEMP
and DAQ.PRESS readings are not sent over the CAN bus.

• CC.CMD.DIAG
• CC.CMD.NORM

CC-originated message commanding the FR to enter or leave
diagnostic mode.

To capture in flight data, and help in flight sequencing, the DAQ has the
capability to generate data and event messages.

• DAQ.TEMP (Temperature data)
The temperature readings around the rocket are included in this
data message.

• DAQ.PRESS (Pressure data)
Pressure data from the pressure sensor.

• DAQ.EVENT (Apogee/separation detect)
This event message marks the occurrence of apogee, stage
separation or a WDT reset by the DAQ.  The apogee detect is
based on the pressure sensor and is used by the FC to aid in
flight sequencing.  Stage separation is used for flight sequence
verification.

• DAQ.STAT (DAQ status frame)
The DAQ.STAT message is generated when the DAQ receives
a FC.STAT, CC.CMD.SCHK, or FC.CMD.SCHK message.  It
contains information that indicates the internal state and status
of the DAQ, the voltage of the avionics power system, and the
condition of the systems it monitors.
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Software
The DAQ software has several tasks to perform.  It must sample and send all
environmental and proprioceptive sensor data over the CAN bus, monitor the
pressure data for apogee detect, and monitor and act on commands from the
FC and CC.

The flow chart for the DAQ is shown below:

Send
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Send
DAQ.PRESS

Sample &
filter

Sensors

Loop

Send
DAQ.STAT

Sleep Mode

Reset Data
and Timers

xC.CMD.SCHK
FC.STAT

100 Hz

100 Hz 10 Hz

xC.CMD.POWD

Send
DAQ.EVNT

10 Decreasing
samples

 Figure 28:DAQ Flowchart

The main loop for the DAQ involves sampling the sensors at 100 Hz,
performing any digital filtering on the readings, and sending messages.  The
pressure data message (DAQ.PRESS) is sent at a frequency of 100 Hz, the
temperature data (DAQ.TEMP) is sent at 10Hz, and the battery level is sent as
part of the DAQ status message (DAQ.STAT).  The flow diagram also
illustrates the DAQ’s response to the commands xC.CMD.POWD and
xC.CMD.SCHK.



AESS Avionics System Design Project – Rev. 3.1 – Page 66

Flight Recorder (FR)
The Flight Recorder (FR) is designed to function as a “Black Box,” recording any
and all data it sees.  It is composed of three parts: the processor, the CAN bus
interface, and the Flash bank.  It functions by capturing all messages from the
CAN bus, processing them as necessary, and writing them to the bank Flash
memory.  Retrieving the FR data is done on the ground as a post-flight activity.

Hardware
The microcontroller used in the FR is a PIC 17C756.  The choice to use this
particular microcontroller was determined by the following criteria:

• The 17C756 has 50 I/O pins and allowed us to interface with the Flash
bank without any support logic, providing a single chip solution,

• remain in the ‘17C’ family, thereby allowing us to use a command set
common the other avionics subsystems,

• hardware based SPI and USARTs are available for communications,
• reduced package size,
• reduced weight, and
• the capabilities of the chip still exceed  performance requirements for

this module.

The Flash RAM selected is the AMD Am29F032B with the following
characteristics:

• CMOS 5.0 V single power supply operation,
• Access times as fast as 70ns,
• reduced package size,
• reduced weight,
• Flexible sector architecture,
• Minimum 1,000,000 write/erase cycles, and
• Ready/Busy output signal.

The FR is connected to the CANbus via the standard CAN interface discussed
in the CAN section of this document.

Complete schematics for the FR can be found in Appendix A.
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Messaging
To perform the function of recording all messages on the bus, the FR is
designed to accept and record all valid messages.

In addition to recording all messages, the FR must also act on command
messages specific to it.  Command messages can come from the CC or the FC
and include:

• xC.CMD.POWU (Power up)
• xC.CMD.POWD (Power down)

Wake up from, or go into power saving sleep mode.  This
command can come from ground control (CC.CMD.POWx) or
from the FC (FC.CMD.POWx).

• FC.STAT (Message containing FC status)
• xC.CMD.SCHK (Check subsystem status)

These commands signal the need for status information, and cause
the FR to generate a FR.STAT message.  FC.STAT acts as a
trigger for all subsystems to send their status messages.

• CC.CMD.DIAG (Enter diagnostics mode)
• CC.CMD.NORM (Enter normal mode)

CC-originated message commanding the FR to enter or leave
diagnostic mode.

• xC.CMD.FREN (Enable FR recording)
• xC.CMD.FRDIS (Disable FR recording)

This command pair originates from CC and is used to control when
the FR records CAN bus message traffic.

• CC.CMD.FRERA (Erase FR Flash memory)
Commands the FR to erase the Flash memory.  After the erase
procedure, all registers are reset and the FR restarts as if just
powered up.  The Flash erase is a privileged command and can
only be initiated by ground control via the uplink and CC.  The FC
cannot initiate a FRERA.

The FR must generate the following messages:

• FR.STAT (FR status frame)
The FR.STAT message is generated either in response to a specific
status check command from the FC or CC (xx.CMD.SCHK), or
after a FC.STAT is sent.  The FC.STAT message is used to
synchronize and trigger status messages from all modules.  It is a 4
byte message with 1 byte for state information, and 3 bytes for the
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amount of Flash memory used.  Listed below is the state
information contained in the FR.STAT message:

• Recording on/off,
• FIFO is more than ½ full,
• Flash is full, and
• FIFO is full.

• FR.EVENT
The FR.EVENT is generated in response to internal FR errors and
commands from the FC or CC.  The event message has 1 byte of
data indicating a change in the following states:

• Recording On/off, and
• WDT occurred.

To allow the FR status and events to be recorded, the FR will write its status
and event information directly into its internal output FIFO, as well as to the
CAN controller.

A summary of all system messages and commands is given in Appendix B.
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Software
The FR software has several groups of tasks that it must be capable of
performing.  It must initialize internal ports and registers, initialize the CAN
controller, and interact with the Flash memory. The algorithm for the FR must
accomplish all of the following:

• Initialize FR internal registers and ports
• determine operation mode,
• initialize the CAN controller,
• find the first available memory location on bootup and WDT reset,
• send and receive messages from the CAN bus controller,
• strip out all unnecessary  message information,
• prepend a Flight Recorder header,
• place the message in an internal FIFO buffer,
• increment the Flash address counter,
• recognize and act on FR commands,
• generate and transmit events messages,
• write the data to the Flash,
• execute chip erase command, and
• execute data dump command.

The FR is implemented with two modes of operation: flight mode, and ground
mode.  The mode of operation is selected at system boot by detecting the
presence or absence of a hardware jumper.

Ground mode is used in post-flight processing to transfer the data from the FR
to a PC for storage and analysis.  Upon activating this mode, the FR simply
transmits the entire Flash memory contents over the UART port at 19.2Kbps.
To connect to a PC via a serial cable, the signal will need to be shifted to
RS232 levels.

In flight mode, the FR performs its primary function of data recording in a
CAN bus environment.

The details on configuring the CAN controller are covered in the CAN
implementation section and will not be discussed here.

Finding the first available memory location in the Flash is necessary to allow
the FR subsystem to recover from a WDT or other restart conditions. The
microcontroller will walk through the Flash memory until only blank memory
locations are encountered, at which point the memory address will be noted
and used as the start of new data.  In the event of discontinuities in the data,
the FC.STAT message will be used during data processing to resynchronize
the data.
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The FR is connected to the CANbus via the standard CAN interface discussed
in the CAN section of this document.

To minimize the amount of wasted space used in the Flash, the processor will
strip the control, data length and CRC bits from the CAN header.  The
remaining message will consist of the message ID and data bytes only.  This
compacted message will have a 5 bit header prepended to it before it is written
to the Flash.  The 5 bit header rounds the message to a byte boundary and
provides a mechanism to identify the beginning of each message.

The typical write time is specified in the data sheet as 7µs.  This permits a
maximum data throughput between the microcontroller and the Flash of about
140K Bytes/second, which is approximately twice the bandwidth required.
Any variation in the Flash write time is further compensated by buffering all
incoming data in an 800 byte  First-In-First-Out (FIFO) buffer.  The
microcontroller will manage its register use to provide the FIFO functionally,
including monitoring for overflow and other error conditions.

The Flash bank has special programming requirements that the processor must
take into account when writing a byte.  Specifically, programming the Flash is
a four-bus-cycle operation.  The program command sequence is initiated by
writing two unlock write cycles, followed by the program’s set-up command.
The program address and data are then written.  Once the Flash has completed
its programming cycle, the RY/BY# signal is asserted.  This process is
highlighted in the diagram below.

 
 Figure 29:Programming the Flash RAM
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The default mode for the Flash device is ‘read’ mode. In this mode the device
is similar to any memory device.  To read from the device, the system must
drive the CE# and OE# pins low.  CE# is the power control and selects the
device.  OE# is the output control and gates the data to the output pins.  WE#
should remain high.  Reading will only be done on the ground.

Erasing the device is similar to writing to it, requiring a six-bus-cycle
operation which erases the entire contents of the chip.  The Flash’s chip-erase
command sequence is initiated by writing two unlock cycles, followed by a
set-up command. Two additional unlock write cycles are then followed by the
chip erase command, which erases the chip.  The Flash device verifies the
erase process and asserts the RY/BY# pin when done.

As long as the FIFO has data, the main software loop will be going through
the Flash write process.  This consists of writing two unlock command
sequences, followed by an initialization command, the address, and the data.
The main loop cannot continue with the next write until the Flash chip has
completed the write process, as signaled by the RY/BY# pin.  The Flash
address must also be incremented, preparing for the next data write.

Another task is to monitor the incoming messages for FR command messages.
A command message can come from the FC or the CC and instructs the FR to
perform a specific action.  See the FR Messages section above.

Figure 28 shows a state flowchart of the FR program.
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Write Status
to FlashErase Flash
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Reset
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Figure 30: Program flow chart for the Flight Recorder
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Igniters
The igniters are smart, self-contained devices connected to the CANbus.  Igniter
activation is accomplished by sending CAN messages from the FC or CC to an
igniter that has received a valid authorization code (as discussed below).

This module’s main tasks include:

• Igniter validation/testing
• Primary launch ignition
• Stage separation ignition

Hardware
The igniter modules consist of a PIC 16F873 connected to a pair of igniters
via an ignition circuit and a separate test circuit.  The igniters are embedded in
either a separation charge or a launch ignition charge, depending on their
application.

Due to the location of the igniters, which may often be physically distant from
the avionics package or located in rocket stages that will be separated from the
avionics package as the flight progresses, each IGN has its own internal power
supply with linear voltage regulator and battery monitor.

The actual charges are currently Estes model rocket igniters which have been
modified for high-stress environments and embedded in a black-powder
capsule.

The IGN are connected to the CANbus via the standard CAN interface
discussed in the CAN section of this document.

Complete schematics for the IGN can be found in Appendix A.
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Messaging
The IGN accept only those valid messages that directly affect IGN operation:

• FC.CMD.POWU
• xC.CMD.POWD

FC or CC-originated messages requesting power-up/down of all
subsystems on the CANbus.

• FC.CMD.ARML
• FC.CMD.DISL
• FC.CMD.LAU
• xC.CMD.ARMn
• xC.CMD.DISn
• xC.CMD.IGNn

FC or CC-originated messages requesting arming, disarming,
or ignition of an igniter.

• xC.CMD.ICHK
FC or CC-originated message requesting that an igniter module
perform a validity check on its igniter pair.

• xC.CMD.SCHK
FC or CC-originated message requesting status from all modules.

• FC.STAT
FC-originated message showing internal status of FC as well as
status bits for the rest of the system.

• CC.CMD.DIAG
CC-originated message forcing all systems into diagnostic mode.

• CC.CMD.NORM
CC-originated message forcing all systems into normal mode.

The IGN generate the following messages:
• IGN.ICHK.n (Igniter check #n, n = {0…7})

Data resulting from an internal igniter validity check.
• IGN.EVENT.n (Igniter #n event)

Event generated by an IGN when armed, disarmed, or fired.
• IGN.STAT.n (IGN status frame)

IGN status, including whether the igniters are armed or
disarmed, and in diagnostic or normal mode.
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Software
The IGN are the most critical actuators in the system.  If the stages of the
rocket fail to separate, the flight will end in catastrophic failure; if the IGN
trigger at an inappropriate time, there is a potential for damage to the rocket
and a considerable safety risk.  It is therefore necessary to ensure that the IGN
trigger only at the desired times.

When the IGN first boot up, they will perform an internal status check to
ensure that the actual igniters are operational and that the CANbus connection
is sound.  A status message will be generated that lets the FC know the
condition of the IGN.

The IGN will then become idle, during which time it will respond to status
requests by generating an IGN.STAT.n message.  This status message contains
information on the state (armed or disarmed) of the IGN and the mode the
IGN is currently in (more on modes in the Operations section of this
document).

IGN are unable to trigger their igniters until an authorization code is received
via a valid xC.CMD.ARMx command from the FC or CC.  Proper decoding
of a launch code places the IGN into a ready state in which it will respond to
an xC.CMD.IGNx trigger command.  Upon proper receipt of an authorization
code, the IGN generates and IGN.EVENT.n message to inform the FC and the
CC that it is armed.

Each IGN is capable of testing its igniters to determine their condition,
returning an open/short/valid status indicator.  Tests can be initiated via the
FC (in normal process flow) or the CC (manual intervention in emergency
situations).
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Operations
Messages
The efficiency and functionality of the CANbus are heavily dependent on the
judicious allocation of message identifiers.  These identifiers not only provide the
message with a label, they also dictate the priority of the message and therefore
determine the arbitration and timing the message will be subject to.

Each message identifier is an 11-bit field.  When the CANbus becomes idle, all
nodes requiring the use of the bus simultaneously transmit the identifiers for the
messages that must be sent.  Hardware-based arbitration causes any node with a
lower priority message to detect this circumstance and switch to receive mode.
As a result, it is necessary to allocate message identifiers with an eye toward the
relative urgency associated with each message.

To this end, we subdivided the identifier field into three subfields:

• Message type ID[10:9]
• Message priority ID[8:7]
• Message ID ID[6:0]

These subfields were then further divided into priority levels.

(Note: in the following discussion all binary values are logical, not electrical.)

The Message Type field was prioritized as follows (from highest to lowest
priority):

• Commands 11
• Events 10
• Responses 01
• Data 00

The Command type is used to send flight sequencing commands.  Due to the
extremely volatile and fast-acting nature of the rocket, commands must be given
the highest Message Type priority to prevent them from being subsumed or
delayed by the flood of data from the IMU and DAQ.

Events are generated by subsystems in response to some flight-critical occurrence
such as apogee detection or stage separation.  These messages are therefore of
extreme importance in flight sequencing, and have as a result been assigned the
next lower Message Type prioritization level.



AESS Avionics System Design Project – Rev. 3.1 – Page 76

Responses are Data messages that have been requested by the FC or the CC.  To
differentiate these from the flow of Data messages, they were therefore assigned
the third Message Type priority level.

The final Message Type is Data.  Data is not needed for flight sequencing, since
the subsystems that generate the data also generate events whenever an interesting
or important occurrence takes place.  As a result, Data messages are assigned the
lowest Message Type priority.

Within each of the message types, additional prioritization is accomplished with
the use of the Message Priority field.  This secondary field assigns relative priority
to the messages within a specific type.

The Message Priority for the Command message type can take one of the
following values:

• CmdHi Command High 11
• CmdLo Command Low 10
• ReqHi Request High 01
• RegLo Request Low 00

The CmdHi message priority is only assigned to Command type messages that
originate from ground control via the CC.  These represent critical manual
intervention commands that must have immediate access to the CANbus.

The CmdLo message priority is assigned to Command type messages that
originate from the FC.  These represent normal flight sequencing commands that
occur when the launch is proceeding as planned.

ReqHi denotes a request from the FC or CC.  These messages are used to request
data from a remote subsystem, such as when the FC request igniter check data
from the IGN.

ReqLo is assigned to requests that have lower priority, such as status requests.

The Message Priority for all other message types can take one of the following
values:

• Critical 11
• High 10
• Medium 01
• Low 00

These prioritizations have been assigned to specific messages to promote a
continuous flow of messages on the CANbus.  For instance, temperature and
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pressure data from the DAQ could be easily drowned out by the flow of data from
the IMU (which represents 95% of all bus traffic).  The data messages from the
DAQ are therefore assigned a High priority, while the IMU messages are allocated
a Medium priority.

The remaining 7 bits of the original identifier field are then allocated as
appropriate among the messages within each of the classifications outlined above.
The four Message Types, each of which can have one of four Message Priorities,
result in 16 priority levels that have been predefined by our design.  Within each
of these 16 priority levels, individual messages can be prioritized with one of the
27 = 128 remaining identifiers.

It should be noted for future reference that due to the presence of the bit-flip errors
(discussed in the LV1 section) it is advisable that the Hamming distance between
critical messages and any other system message within the same priority level be
greater than one.

Modes
At any given time the avionics system will be in one of three defined modes.
These include Diagnostic mode, Scrub mode, and Normal mode.

Diagnostic mode
Diagnostic mode allows ground support to safely examine the workings of
each of the subsystems by placing them into a state in which critical
messages (such as the triggering of an igniter) are acknowledged but not
acted upon.  This provides a method whereby communications and status
can be checked, and a ‘dry run’ of the flight sequencing can be performed.

Scrub mode
Scrub mode is entered when an error occurs.  This mode will be activated
when a mission-critical event (such as an igniter failing a check) occurs
while the rocket is on the launchpad.  In Scrub mode, all launch
authorization codes are revoked and the system is disabled.  This provides
ground support with maximal safety, rendering the rocket essentially
harmless and inert to allow power-down and debug.

Normal mode
Normal mode encompasses all states in which the avionics package
process flow is proceeding as expected.  This mode can be further
subdivided into five functionally discrete task phases: Initialization,
Preflight, Launch, Flight, and Recovery.  These task phases are discussed
below.
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Initialization:
When the system is first powered up, all modules perform an internal
status check and update their status bits.  A CC.REQ.POWU command
causes the FC to assert an FC.CMD.POWU command which in turn
wakes all subsystems up.  The FC then enters a status loop in which
the entire system continually sends status messages which are relayed
to ground support.  Initialization phase can only be exited by a
command from the CC that either authorizes the next phase or changes
the mode.

Diagnostics

 Figure 31:Initialization State Flow Diagram
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Preflight:
In the Preflight phase, the system enters a stable status loop.  During
this phase ground support can authorize the arming or disarming of the
primary launch igniter.  This process causes an igniter check to be
performed; if the igniter check or the communications channel fail the
system will enter the Diagnostic or Scrub modes.

 Figure 32:Preflight State Flow Diagram
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Launch:
The Launch phase roughly corresponds to the ‘10-second countdown’
phase.  The Flight Recorder is enabled, the primary launch igniter is
checked, and provided all system status is satisfactory the FC will start
the countdown.  Igniter failure will cause the system to enter scrub
mode.

 Figure 33:Launch State Flow Diagram
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Flight:
The Flight phase involves the actual flight of the rocket from liftoff to
chute deployment.  After launch is detected by the internal sensors,
flight sequencing begins.  The diagram below shows the stateflow for a
single-stage rocket; the process flow for a multi-stage launch vehicle
would be correspondingly more complex.

 Figure 34:Flight State Flow Diagram
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Recovery:
In the Recovery phase, unessential subsystems are disabled while the
FC continues to transmit status frames which show the last known
position of the launch vehicle. GPS systems, if used, will provide
additional location information to provide ground support assistance in
finding the launch vehicle when it lands.

 Figure 35:Recovery State Flow Diagram
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Ground Support
A computer based ground support system that can seamlessly communicate
with the rocket avionics must be developed to assist in the tracking and
controlling of the rocket throughout its flight.  The envisioned system will
consist of a computer communicating with the rocket over the
uplink/downlink channels.  A GUI based interface for displaying flight
information and data, as well as providing a means of activating commands,
will need to be available to the flight operations team.

As the performance capabilities of the rocket increases, the practicalities of
visually tracking its trajectory make it impossible to determine such
parameters as altitude, position and velocity.  With an intelligent ground based
support system it will be possible to gather, display and record position,
heading, velocity, flight staging, and error modes.  In the event of a failure in
the FR, flight data from the IMU and DAQ will be received and recorded
(although at a reduced resolution).

To implement such a ground support system while assuring fault tolerant
operation two computers operating with functionally identical software will be
employed.  The primary computer will display and record all data received
from the rocket and function as the command originator, transmitting to the
rocket when manual intervention or acknowledgement are required.  The
secondary unit will also display and record all data, but not be permitted to
transmit and interfere with the primary computer.  In the event of a failure in
the primary ground support computer, the secondary computer will be allowed
to continue where the primary left off, and send the appropriate commands to
the rocket.

The software for the ground support system will utilize Labview as the
software development platform.  It has the capabilities to immediately display
the data from the rocket in a variety of forms, and provides a familiar interface
for control commands.
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Plans for the future

The PSAS hopes to achieve much in the arena of high-powered amateur rocketry.
The design we have created provides us with a platform that can be used as a basis for
many future flight systems.  To achieve our goals we plan to incrementally improve
on our knowledge, systems, and processes.

A large portion of the engineering yet to be done will be an exercise in Control
Engineering.  The PSAS will use the lessons learned from the design of the Inertial
Measurement Unit (IMU) to develop an Inertial Navigation System (INS) that realizes
control of a rocket and actively guides and corrects the rocket’s flight path.  The
ability to follow a pre-defined flight plan will provide valuable functionality for
launches with scientific payloads having specific needs or that reach very high
altitudes.  The ultimate result of the development of an INS will be an actively
guided, fin-less launch vehicle capable of maintaining stability throughout an
extended flight.

Prior to implementation of the design outlined in this document there will be a
number of launches (using the LV1 airframe) in which our design ideals will be
incrementally qualified and airframe modifications will be tested.

The first launch of the modified LV1 will take place during September 1999 at the
Black Rock, Nevada dry lakebed. Improvements will include a new communications
system utilizing off the shelf spread-spectrum RF modems, more advanced and
comprehensive IMU algorithms, and rollerons (gyroscopic stabilizers mounted in the
fins) for improved spin rate control.

Subsequent flights of the modified LV1 will incorporate the modules designed in this
document, allowing for validation of the avionics systems and exercise of the
CANBus in a real-world environment.

In September 2000, the first launch of LV2 that incorporates a new and redesigned
airframe and all of the avionics system specified in this design will occur.
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 Figure A1: System Overview Schematic
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 Figure A2: CAN Interface Schematic
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 Figure A3: Flight Computer Schematic
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 Figure A4: Communication Computer Schematic
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 Figure A5: Inertial Measurement Unit Schematic
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 Figure A6: Data Acquisition Module Schematic
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 Figure A7: Flight Recorder Schematic
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 Figure A8: Flash RAM Unit Schematic
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 Figure A9: Igniter Module Schematic
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Unit MSG MSG MSG Packet Packet Data Target 
Name Type Priority ID Name Description Size System(s)
IMU DATA Low 00000000000 IMU.XYZ X,Y, & Z-axis accelerometer data, raw 5 FR, CC

DATA Low 00000000001 IMU.ABC α, β, & γ-axis gyrocompass data, raw 5 FR, CC
DATA Med 00010001001 IMU.ACC.X X-axis acceleration data 4 FR, CC
DATA Med 00010001010 IMU.ACC.Y Y-axis acceleration data 4 FR, CC
DATA Med 00010001011 IMU.ACC.Z Z-axis acceleration data 4 FR, CC
DATA Med 00010010001 IMU.VEL.X X-axis velocity data 4 FR, CC
DATA Med 00010010010 IMU.VEL.Y Y-axis velocity data 4 FR, CC
DATA Med 00010010011 IMU.VEL.Z Z-axis velocity data 4 FR, CC
DATA Med 00010011001 IMU.POS.X X-axis position data 4 FR, CC
DATA Med 00010011010 IMU.POS.Y Y-axis position data 4 FR, CC
DATA Med 00010011011 IMU.POS.Z Z-axis position data 4 FR, CC
DATA Med 00010100001 IMU.ORI.a α-axis orientation data 4 FR, CC
DATA Med 00010100010 IMU.ORI.b β-axis orientation data 4 FR, CC
DATA Med 00010100011 IMU.ORI.c γ-axis orientation data 4 FR, CC

EVENT High 10100000000 IMU.EVENT Event flags 8 FC,FR,CC
RESP Med 01010000001 IMU.STAT IMU status frame 2 FC,FR,CC

FC CMD CmdLo 11100000000 FC.CMD.POWU Power up 0 ALL
CMD CmdLo 11100000001 FC.CMD.POWD Power down 0 ALL
CMD CmdLo 11100000010 FC.CMD.ARML Arm launch igniter 1 LIGN,FR,CC
CMD CmdLo 11100000011 FC.CMD.DISL Disarm launch igniter 1 LIGN,FR,CC
CMD CmdLo 11100000100 FC.CMD.LAU Launch the rocket 1 LIGN,FR,CC
CMD ReqHi 11010000000 FC.CMD.ICHK Check igniters (masked) 1 IGN
CMD ReqLo 11000000001 FC.CMD.SCHK Check subsystem status (masked) 2 ALL
CMD CmdLo 11100001001 FC.CMD.ARM1 Arm igniter #1 1 IGN,FR,CC
CMD CmdLo 11100001010 FC.CMD.ARM2 Arm igniter #2 1 IGN,FR,CC
CMD CmdLo 11100001011 FC.CMD.ARM3 Arm igniter #3 1 IGN,FR,CC
CMD CmdLo 11100001100 FC.CMD.ARM4 Arm igniter #4 1 IGN,FR,CC
CMD CmdLo 11100001101 FC.CMD.ARM5 Arm igniter #5 1 IGN,FR,CC
CMD CmdLo 11100001110 FC.CMD.ARM6 Arm igniter #6 1 IGN,FR,CC
CMD CmdLo 11100001111 FC.CMD.ARM7 Arm igniter #7 1 IGN,FR,CC
CMD CmdLo 11100010001 FC.CMD.DIS1 Disarm igniter #1 1 IGN,FR,CC
CMD CmdLo 11100010010 FC.CMD.DIS2 Disarm igniter #2 1 IGN,FR,CC
CMD CmdLo 11100010011 FC.CMD.DIS3 Disarm igniter #3 1 IGN,FR,CC
CMD CmdLo 11100010100 FC.CMD.DIS4 Disarm igniter #4 1 IGN,FR,CC
CMD CmdLo 11100010101 FC.CMD.DIS5 Disarm igniter #5 1 IGN,FR,CC
CMD CmdLo 11100010110 FC.CMD.DIS6 Disarm igniter #6 1 IGN,FR,CC
CMD CmdLo 11100010111 FC.CMD.DIS7 Disarm igniter #7 1 IGN,FR,CC
CMD CmdLo 11100011001 FC.CMD.IGN1 Trigger igniter #1 1 IGN,FR,CC
CMD CmdLo 11100011010 FC.CMD.IGN2 Trigger igniter #2 1 IGN,FR,CC
CMD CmdLo 11100011011 FC.CMD.IGN3 Trigger igniter #3 1 IGN,FR,CC
CMD CmdLo 11100011100 FC.CMD.IGN4 Trigger igniter #4 1 IGN,FR,CC
CMD CmdLo 11100011101 FC.CMD.IGN5 Trigger igniter #5 1 IGN,FR,CC
CMD CmdLo 11100011110 FC.CMD.IGN6 Trigger igniter #6 1 IGN,FR,CC
CMD CmdLo 11100011111 FC.CMD.IGN7 Trigger igniter #7 1 IGN,FR,CC
CMD CmdLo 11100001000 FC.CMD.FREN Enable FR recording 0 FR,CC
CMD CmdLo 11100001001 FC.CMD.FRDIS Disable FR recording 0 FR,CC
CMD CmdLo 11100001010 FC.CMD.IMUON Enable IMU output 0 IMU,CC
CMD CmdLo 11100001011 FC.CMD.IMUOFF Disable IMU output 0 IMU,CC
CMD CmdLo 11100001100 FC.CMD.DAQON Enable DAQ output 0 DAQ,CC
CMD CmdLo 11100001101 FC.CMD.DAQOFF Disable DAQ output 0 DAQ,CC
RESP Critical 01110000000 FC.STAT FC status frame 5 ALL
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Unit MSG MSG MSG Packet Packet Data Target 
Name Type Priority ID Name Description Size System(s)

CC CMD CmdHi 11110000000 CC.REQ.POWU Power up (request to FC) 0 FC
CMD CmdHi 11110000001 CC.CMD.POWD Power down (request to FC) 0 ALL
CMD CmdHi 11110000010 CC.CMD.ACK Acknowledge boot status 1 FC,FR
CMD CmdHi 11110000011 CC.REQ.ARML Arm launch igniter (request to FC) 1 FC
CMD CmdHi 11110000100 CC.REQ.DISL Disarm launch igniter (request to FC) 1 FC
CMD CmdHi 11110000101 CC.REQ.LAU Launch the rocket (request to FC) 1 FC
CMD ReqHi 11010000000 CC.CMD.ICHK Check igniters (masked) 1 IGN
CMD ReqLo 11000000001 CC.CMD.SCHK Check subsystem status (masked) 2 ALL
CMD CmdHi 11110100001 CC.CMD.ARMn Arm igniter #1 1 FC,IGN,FR
CMD CmdHi 11110100010 CC.CMD.ARMn Arm igniter #2 1 FC,IGN,FR
CMD CmdHi 11110100011 CC.CMD.ARMn Arm igniter #3 1 FC,IGN,FR
CMD CmdHi 11110100100 CC.CMD.ARMn Arm igniter #4 1 FC,IGN,FR
CMD CmdHi 11110100101 CC.CMD.ARMn Arm igniter #5 1 FC,IGN,FR
CMD CmdHi 11110100110 CC.CMD.ARMn Arm igniter #6 1 FC,IGN,FR
CMD CmdHi 11110100111 CC.CMD.ARMn Arm igniter #7 1 FC,IGN,FR
CMD CmdHi 11110101001 CC.CMD.DISn Disarm igniter #1 1 FC,IGN,FR
CMD CmdHi 11110101010 CC.CMD.DISn Disarm igniter #2 1 FC,IGN,FR
CMD CmdHi 11110101011 CC.CMD.DISn Disarm igniter #3 1 FC,IGN,FR
CMD CmdHi 11110101100 CC.CMD.DISn Disarm igniter #4 1 FC,IGN,FR
CMD CmdHi 11110101101 CC.CMD.DISn Disarm igniter #5 1 FC,IGN,FR
CMD CmdHi 11110101110 CC.CMD.DISn Disarm igniter #6 1 FC,IGN,FR
CMD CmdHi 11110101111 CC.CMD.DISn Disarm igniter #7 1 FC,IGN,FR
CMD CmdHi 11110110001 CC.CMD.IGNn Trigger igniter #1 1 FC,IGN,FR
CMD CmdHi 11110110010 CC.CMD.IGNn Trigger igniter #2 1 FC,IGN,FR
CMD CmdHi 11110110011 CC.CMD.IGNn Trigger igniter #3 1 FC,IGN,FR
CMD CmdHi 11110110100 CC.CMD.IGNn Trigger igniter #4 1 FC,IGN,FR
CMD CmdHi 11110110101 CC.CMD.IGNn Trigger igniter #5 1 FC,IGN,FR
CMD CmdHi 11110110110 CC.CMD.IGNn Trigger igniter #6 1 FC,IGN,FR
CMD CmdHi 11110110111 CC.CMD.IGNn Trigger igniter #7 1 FC,IGN,FR
CMD CmdHi 11110001001 CC.CMD.FCON Enable FC status output 0 FC
CMD CmdHi 11110001010 CC.CMD.FCOFF Disable FC status output 0 FC
CMD CmdHi 11110001011 CC.CMD.FREN Enable FR recording 0 FR
CMD CmdHi 11110001100 CC.CMD.FRDIS Disable FR recording 0 FR
CMD CmdHi 11110001101 CC.CMD.FRERA Enable FR erase 0 FR
CMD CmdHi 11110001110 CC.CMD.IMUON Enable IMU output 0 IMU
CMD CmdHi 11110001111 CC.CMD.IMUOFF Disable IMU output 0 IMU
CMD CmdHi 11110010000 CC.CMD.DAQON Enable DAQ output 0 DAQ
CMD CmdHi 11110010001 CC.CMD.DAQOFF Disable DAQ output 0 DAQ
CMD CmdHi 11110010010 CC.CMD.FKS Force FC state 2 FC,FR
CMD CmdHi 11110010011 CC.CMD.DIAG Enter diagnostic mode 0 ALL
CMD CmdHi 11110010100 CC.CMD.NORM Enter normal mode 0 ALL
RESP Med 01010000001 CC.STAT CC status (+status for UL, DL, PL) 4 FC,FR

FR EVENT High 10100000001 FR.EVENT FR events (recording on/off) 1 FC,CC
RESP Med 01010000010 FR.STAT FR status frame 2 FC,CC

DAQ DATA High 00100000010 DAQ.TEMP Temperature sensor data 2 FR,CC
DATA High 00100000011 DAQ.PRESS Pressure sensor data 2 FR,CC

EVENT High 10100000010 DAQ.EVENT Event flags 8 FC,FR,CC
RESP Med 01010000011 DAQ.STAT DAQ status frame +battery monitor 2 FC,FR,CC
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Unit MSG MSG MSG Packet Packet Data Target 
Name Type Priority ID Name Description Size System(s)

IGN RESP Critical 01111100000 IGN.ICHK.0 Igniter check #0 1 FC,FR,CC

RESP Critical 01111100001 IGN.ICHK.1 Igniter check #1 2 FC,FR,CC

RESP Critical 01111100010 IGN.ICHK.2 Igniter check #2 3 FC,FR,CC

RESP Critical 01111100011 IGN.ICHK.3 Igniter check #3 4 FC,FR,CC

RESP Critical 01111100100 IGN.ICHK.4 Igniter check #4 5 FC,FR,CC

RESP Critical 01111100101 IGN.ICHK.5 Igniter check #5 6 FC,FR,CC

RESP Critical 01111100110 IGN.ICHK.6 Igniter check #6 7 FC,FR,CC
RESP Critical 01111100111 IGN.ICHK.7 Igniter check #7 8 FC,FR,CC

EVENT High 10100000000 IGN.EVENT.0 Igniter event #0 2 FC,FR,CC

EVENT High 10100000001 IGN.EVENT.1 Igniter event #1 3 FC,FR,CC

EVENT High 10100000010 IGN.EVENT.2 Igniter event #2 4 FC,FR,CC

EVENT High 10100000011 IGN.EVENT.3 Igniter event #3 5 FC,FR,CC

EVENT High 10100000100 IGN.EVENT.4 Igniter event #4 6 FC,FR,CC

EVENT High 10100000101 IGN.EVENT.5 Igniter event #5 7 FC,FR,CC

EVENT High 10100000110 IGN.EVENT.6 Igniter event #6 8 FC,FR,CC

EVENT High 10100000111 IGN.EVENT.7 Igniter event #7 9 FC,FR,CC

RESP Med 01010000000 IGN.STAT.0 IGN status frame #0 4 FC,FR,CC

RESP Med 01010000001 IGN.STAT.1 IGN status frame #1 5 FC,FR,CC

RESP Med 01010000010 IGN.STAT.2 IGN status frame #2 6 FC,FR,CC

RESP Med 01010000011 IGN.STAT.3 IGN status frame #3 7 FC,FR,CC

RESP Med 01010000100 IGN.STAT.4 IGN status frame #4 8 FC,FR,CC

RESP Med 01010000101 IGN.STAT.5 IGN status frame #5 9 FC,FR,CC

RESP Med 01010000110 IGN.STAT.6 IGN status frame #6 10 FC,FR,CC

RESP Med 01010000111 IGN.STAT.7 IGN status frame #7 11 FC,FR,CC
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Microcontrollers:

“PIC 17C75X – High-Performance 8-Bit CMOS EPROM Microcontrollers”
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“Stand-Alone CAN Controller with SPI Interface”
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Components:

“Am29F032B 32 - Megabit CMOS 5.0 Volt Uniform Sector Flash Memory”
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http://www.amd.com/products/nvd/techdocs/21610.pdf

“LM50 – 3 -Terminal Adjustable Current Source”
National Semiconductor Corporation, 1998
http://www.national.com/pf/LM/LM50.html
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“MPX5100 – Integrated Silicon Pressure Sensor”
 Motorola, Inc. 1998
http://www.mot-sps.com/cgi-bin/get?/books/apnotes/pdf/an1653*.pdf

“QVB11123 - Slotted Optical Switch”
QT Optoelectronics,
http://www.qtopto.com/ir/i0901.htm

“TLC2543I  - 12bit A/D converters with serial control and 11 analog inputs”
Texas Instruments Incorporated, 1997
http://www.ti.com/sc/docs/folders/analog/tlc2543.html

“ADXL150/ADXL250 Low-Noise/Power, Single/Dual Axis Accelerometers”
Analog Devices, 1998
http://www.analog.com/pdf/ADXL150_250_0.pdf

“CG -16D0 - Ceramic Gyro”
TOKIN SENSORS,
http://www.intercraft.co.jp/tokin/ENGLISH/t_file/data/gl_07e.pd
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