Bootstrapping Embedded Linux

Josh Triplett

July 16, 2008



What does “bootstrapping” mean?

@ The entire boot process of a system, from application of
power to performing its intended function. Usually just called
“booting” .

® Manually setting up a system to bootstrap itself in sense 1.



Overview

Comparison of PCs versus embedded systems

Walkthrough of the embedded boot process

New technologies introduced for each step of bootstrapping
Summary of embedded Linux bootstrap process

Summary of embedded Linux boot process

All information based on experiences with the PowerPC flight
computer for the Portland State Aerospace Society rocket
avionics system



PC boot process

e Power on



PC boot process

e Power on

e BIOS gets control



PC boot process

e Power on
e BIOS gets control
e BIOS initializes some hardware



Power on

BIOS gets control

BIOS initializes some hardware
BIOS loads bootloader

PC boot process



PC boot process

Power on

BIOS gets control

BIOS initializes some hardware
BIOS loads bootloader

Bootloader loads operating system kernel



PC boot process

Power on

BIOS gets control

BIOS initializes some hardware

BIOS loads bootloader

Bootloader loads operating system kernel

Kernel probes hardware



PC boot process

Power on

BIOS gets control

BIOS initializes some hardware

BIOS loads bootloader

Bootloader loads operating system kernel
Kernel probes hardware

Kernel finds and mounts root filesystem



PC boot process

Power on

BIOS gets control

BIOS initializes some hardware

BIOS loads bootloader

Bootloader loads operating system kernel
Kernel probes hardware

Kernel finds and mounts root filesystem

Kernel runs init



PC boot process

Power on

BIOS gets control

BIOS initializes some hardware

BIOS loads bootloader

Bootloader loads operating system kernel
Kernel probes hardware

Kernel finds and mounts root filesystem
Kernel runs init

Init gets userspace up and running



How does an embedded system differ?

e No BIQOS; initial control passes to bootloader



How does an embedded system differ?

e No BIQOS; initial control passes to bootloader

e Limited options for storage



How does an embedded system differ?

e No BIQOS; initial control passes to bootloader
e Limited options for storage

e Hardware normally doesn’t change



How does an embedded system differ?

No BIQOS; initial control passes to bootloader
Limited options for storage
Hardware normally doesn’t change

Constraints on storage and memory; want minimal root
filesystem and userspace



Embedded Technologies

U-Boot, a powerful embedded bootloader

Memory Technology Device (MTD), a flexible storage medium
Compiled device trees, for static hardware configuration
initramfs, for the root filesystem

BusyBox, for a lightweight userspace



U-Boot

BIOS, bootloader, diagnostic tool

Very popular for embedded systems

Stored in flash; booted from flash

Upgradable, but need a JTAG if something goes wrong
Not generic; compiled for specific system board
Portable to most architectures

Drivers for various hardware needed to boot

Uses uImage kernel format;
apt-get install uboot-mkimage

Highly scriptable



U-Boot scripting

Accessible via serial or network

Can run commands interactively or automatically
U-Boot commands can:

e Read/write MTD flash, memory, disk filesystems

o Use the network: IP configuration, telnet server, ping, tftp
e Probe hardware or perform diagnostics

e Boot kernels

“Environment” system of key-value pairs

Environment variables can contain U-Boot commands
U-Boot runs the environment variable bootcmd on boot
Environment transient unless explicitly saved

Save environment to flash when working as desired



Memory Technology Devices (MTD)

Memory-mapped flash device
Non-volatile
Accessible from U-Boot and Linux

Partitioned by convention. Regions for U-Boot, U-Boot
environment, kernel, device tree, filesystem

Use U-Boot to load kernel or other file from TFTP into RAM,
write to flash, and load from flash on future boots



Compiled device trees, for static hardware

Embedded hardware typically doesn’t change
Embedded hardware often not probed, or even probe-able
Compile a static device tree with hardware information

Compiled from a text description in device-tree source (dts)
into a format similar to Open Firmware

apt-get install device-tree-compiler

Also contains configuration information, such as MTD
partitioning or function of multi-function ports

U-Boot passes the device-tree binary (dtb) or “flattened
device tree” (fdt) to the kernel

Need semi-recent U-Boot to use compiled device trees



Finding a root filesystem

e Can attach a disk or CF/SD card, and use that as root.
e Can use MTD flash as root
e Read/write with flash filesystem like JFFS2

e Can store initramfs in flash and use as root filesystem



initrd and initramfs: background

e root on disk:



initrd and initramfs: background

e root on disk: easy enough to deal with in kernel



initrd and initramfs: background

e root on disk: easy enough to deal with in kernel
e root on NFS:



initrd and initramfs: background

e root on disk: easy enough to deal with in kernel

e root on NFS: possible, but need network configuration and
NFS client in kernel



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM:



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM: too much configuration to handle in kernel



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM: too much configuration to handle in kernel

root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM: too much configuration to handle in kernel

root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM: too much configuration to handle in kernel
root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out

Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM: too much configuration to handle in kernel

root on encrypted LVM on RAID with hibernation image on

swap in the same LVM: Right Out

Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

Need userspace before root filesystem available



initrd and initramfs: background

root on disk: easy enough to deal with in kernel

root on NFS: possible, but need network configuration and
NFS client in kernel

root on LVM: too much configuration to handle in kernel
root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out

Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

Need userspace before root filesystem available

Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd - the old solution

initial ram disk
Disk image with filesystem
Kernel mounts initrd and runs /linuxrc

/linuxrc must make real root device available, then return;
kernel then runs /sbin/init from new root

Inflexible: invoked in the middle of the in-kernel algorithm to
find the root filesystem

Inefficient: in-RAM block device “cached” elsewhere in RAM



initramfs - the new hotness

gzipped cpio archive

Extracted into a tmpfs - Linux disk cache used as filesystem
Kernel runs init, userspace does the rest

Can mount a filesystem and exec another init

Can provide all necessary functionality itself



BusyBox - lightweight userspace

A standard GNU/Linux userspace takes up a lot of space
Busybox provides replacements for many useful programs

o Essential programs: init, coreutils, shells, ...

e Extra services: httpd, dpkg, udhcpc, ...
All programs in one binary for maximum code sharing
busybox checks argv[0]; just link it to many different paths

Configurable via Kconfig, like the Linux kernel
Fine-grained choices:

e Which commands do you need?
e Which command-line options do you need?
e What functionality do you need?



Summary of embedded bootstrapping

e Build cross-compiler for target architecture (PowerPC)



Summary of embedded bootstrapping

e Build cross-compiler for target architecture (PowerPC)

e Build current U-Boot for the target architecture



Summary of embedded bootstrapping

e Build cross-compiler for target architecture (PowerPC)
e Build current U-Boot for the target architecture
e Flash new U-Boot using old U-Boot, and hope it boots (it did)



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)
Build current U-Boot for the target architecture
Flash new U-Boot using old U-Boot, and hope it boots (it did)

Cross-compile Linux kernel as a ulmage (need mkimage)



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)

Build current U-Boot for the target architecture

Flash new U-Boot using old U-Boot, and hope it boots (it did)
Cross-compile Linux kernel as a ulmage (need mkimage)

Configure and cross-compile BusyBox



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)

Build current U-Boot for the target architecture

Flash new U-Boot using old U-Boot, and hope it boots (it did)
Cross-compile Linux kernel as a ulmage (need mkimage)
Configure and cross-compile BusyBox

Build the initramfs from BusyBox and some config files



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)

Build current U-Boot for the target architecture

Flash new U-Boot using old U-Boot, and hope it boots (it did)
Cross-compile Linux kernel as a ulmage (need mkimage)
Configure and cross-compile BusyBox

Build the initramfs from BusyBox and some config files

Copy and customize device-tree source template for our board



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)

Build current U-Boot for the target architecture

Flash new U-Boot using old U-Boot, and hope it boots (it did)
Cross-compile Linux kernel as a ulmage (need mkimage)
Configure and cross-compile BusyBox

Build the initramfs from BusyBox and some config files

Copy and customize device-tree source template for our board

Compile device-tree source with device-tree-compiler



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)

Build current U-Boot for the target architecture

Flash new U-Boot using old U-Boot, and hope it boots (it did)
Cross-compile Linux kernel as a ulmage (need mkimage)
Configure and cross-compile BusyBox

Build the initramfs from BusyBox and some config files

Copy and customize device-tree source template for our board
Compile device-tree source with device-tree-compiler

Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash



Summary of embedded bootstrapping

Build cross-compiler for target architecture (PowerPC)

Build current U-Boot for the target architecture

Flash new U-Boot using old U-Boot, and hope it boots (it did)
Cross-compile Linux kernel as a ulmage (need mkimage)
Configure and cross-compile BusyBox

Build the initramfs from BusyBox and some config files

Copy and customize device-tree source template for our board
Compile device-tree source with device-tree-compiler

Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded boot process

e Power on



Summary of embedded boot process

e Power on

e U-Boot gets control



Summary of embedded boot process

e Power on
e U-Boot gets control

e U-Boot initializes minimum necessary hardware



Summary of embedded boot process

Power on
U-Boot gets control
U-Boot initializes minimum necessary hardware

U-Boot runs environment variable “bootcmd” on boot



Summary of embedded boot process

e Power on

e U-Boot gets control

e U-Boot initializes minimum necessary hardware

e U-Boot runs environment variable “bootcmd” on boot

e bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb



Summary of embedded boot process

Power on

U-Boot gets control

U-Boot initializes minimum necessary hardware
U-Boot runs environment variable “bootcmd” on boot

bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

U-Boot loads Linux, initramfs, and dtb from flash into RAM



Summary of embedded boot process

Power on

U-Boot gets control

U-Boot initializes minimum necessary hardware
U-Boot runs environment variable “bootcmd” on boot

bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

U-Boot loads Linux, initramfs, and dtb from flash into RAM

bootcmd boots Linux, passing initramfs and dtb



Summary of embedded boot process

Power on

U-Boot gets control

U-Boot initializes minimum necessary hardware
U-Boot runs environment variable “bootcmd” on boot

bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

U-Boot loads Linux, initramfs, and dtb from flash into RAM
bootcmd boots Linux, passing initramfs and dtb

Kernel finds hardware via dtb



Summary of embedded boot process

Power on

U-Boot gets control

U-Boot initializes minimum necessary hardware
U-Boot runs environment variable “bootcmd” on boot

bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

U-Boot loads Linux, initramfs, and dtb from flash into RAM
bootcmd boots Linux, passing initramfs and dtb
Kernel finds hardware via dtb

Kernel extracts initramfs into tmpfs



Summary of embedded boot process

Power on

U-Boot gets control

U-Boot initializes minimum necessary hardware
U-Boot runs environment variable “bootcmd” on boot

bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

U-Boot loads Linux, initramfs, and dtb from flash into RAM
bootcmd boots Linux, passing initramfs and dtb

Kernel finds hardware via dtb

Kernel extracts initramfs into tmpfs

Kernel runs init



Summary of embedded boot process

Power on

U-Boot gets control

U-Boot initializes minimum necessary hardware
U-Boot runs environment variable “bootcmd” on boot

bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

U-Boot loads Linux, initramfs, and dtb from flash into RAM
bootcmd boots Linux, passing initramfs and dtb

Kernel finds hardware via dtb

Kernel extracts initramfs into tmpfs

Kernel runs init

Init gets userspace up and running



