
Bootstrapping Embedded Linux

Josh Triplett

July 16, 2008



What does “bootstrapping” mean?

1 The entire boot process of a system, from application of
power to performing its intended function. Usually just called
“booting”.

2 Manually setting up a system to bootstrap itself in sense 1.



Overview

• Comparison of PCs versus embedded systems

• Walkthrough of the embedded boot process

• New technologies introduced for each step of bootstrapping

• Summary of embedded Linux bootstrap process

• Summary of embedded Linux boot process

• All information based on experiences with the PowerPC flight
computer for the Portland State Aerospace Society rocket
avionics system



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



PC boot process

• Power on

• BIOS gets control

• BIOS initializes some hardware

• BIOS loads bootloader

• Bootloader loads operating system kernel

• Kernel probes hardware

• Kernel finds and mounts root filesystem

• Kernel runs init

• Init gets userspace up and running



How does an embedded system differ?

• No BIOS; initial control passes to bootloader

• Limited options for storage

• Hardware normally doesn’t change

• Constraints on storage and memory; want minimal root
filesystem and userspace



How does an embedded system differ?

• No BIOS; initial control passes to bootloader

• Limited options for storage

• Hardware normally doesn’t change

• Constraints on storage and memory; want minimal root
filesystem and userspace



How does an embedded system differ?

• No BIOS; initial control passes to bootloader

• Limited options for storage

• Hardware normally doesn’t change

• Constraints on storage and memory; want minimal root
filesystem and userspace



How does an embedded system differ?

• No BIOS; initial control passes to bootloader

• Limited options for storage

• Hardware normally doesn’t change

• Constraints on storage and memory; want minimal root
filesystem and userspace



Embedded Technologies

• U-Boot, a powerful embedded bootloader

• Memory Technology Device (MTD), a flexible storage medium

• Compiled device trees, for static hardware configuration

• initramfs, for the root filesystem

• BusyBox, for a lightweight userspace



U-Boot

• BIOS, bootloader, diagnostic tool

• Very popular for embedded systems

• Stored in flash; booted from flash

• Upgradable, but need a JTAG if something goes wrong

• Not generic; compiled for specific system board

• Portable to most architectures

• Drivers for various hardware needed to boot

• Uses uImage kernel format;
apt-get install uboot-mkimage

• Highly scriptable



U-Boot scripting

• Accessible via serial or network

• Can run commands interactively or automatically

• U-Boot commands can:
• Read/write MTD flash, memory, disk filesystems
• Use the network: IP configuration, telnet server, ping, tftp
• Probe hardware or perform diagnostics
• Boot kernels

• “Environment” system of key-value pairs

• Environment variables can contain U-Boot commands

• U-Boot runs the environment variable bootcmd on boot

• Environment transient unless explicitly saved

• Save environment to flash when working as desired



Memory Technology Devices (MTD)

• Memory-mapped flash device

• Non-volatile

• Accessible from U-Boot and Linux

• Partitioned by convention. Regions for U-Boot, U-Boot
environment, kernel, device tree, filesystem

• Use U-Boot to load kernel or other file from TFTP into RAM,
write to flash, and load from flash on future boots



Compiled device trees, for static hardware

• Embedded hardware typically doesn’t change

• Embedded hardware often not probed, or even probe-able

• Compile a static device tree with hardware information

• Compiled from a text description in device-tree source (dts)
into a format similar to Open Firmware

• apt-get install device-tree-compiler

• Also contains configuration information, such as MTD
partitioning or function of multi-function ports

• U-Boot passes the device-tree binary (dtb) or “flattened
device tree” (fdt) to the kernel

• Need semi-recent U-Boot to use compiled device trees



Finding a root filesystem

• Can attach a disk or CF/SD card, and use that as root.

• Can use MTD flash as root
• Read/write with flash filesystem like JFFS2

• Can store initramfs in flash and use as root filesystem



initrd and initramfs: background

• root on disk:

easy enough to deal with in kernel

• root on NFS:

possible, but need network configuration and
NFS client in kernel

• root on LVM:

too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS:

possible, but need network configuration and
NFS client in kernel

• root on LVM:

too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS:

possible, but need network configuration and
NFS client in kernel

• root on LVM:

too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM:

too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM:

too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM: too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM: too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM:

Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM: too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM: too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM: too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd and initramfs: background

• root on disk: easy enough to deal with in kernel

• root on NFS: possible, but need network configuration and
NFS client in kernel

• root on LVM: too much configuration to handle in kernel

• root on encrypted LVM on RAID with hibernation image on
swap in the same LVM: Right Out

• Also used in generic non-embedded GNU/Linux distributions,
who want to build everything as modules, including disk and
filesystem drivers

• Need userspace before root filesystem available

• Bootloader loads initrd/initramfs into memory and provides
address to kernel



initrd - the old solution

• initial ram disk

• Disk image with filesystem

• Kernel mounts initrd and runs /linuxrc

• /linuxrc must make real root device available, then return;
kernel then runs /sbin/init from new root

• Inflexible: invoked in the middle of the in-kernel algorithm to
find the root filesystem

• Inefficient: in-RAM block device “cached” elsewhere in RAM



initramfs - the new hotness

• gzipped cpio archive

• Extracted into a tmpfs - Linux disk cache used as filesystem

• Kernel runs init, userspace does the rest

• Can mount a filesystem and exec another init

• Can provide all necessary functionality itself



BusyBox - lightweight userspace

• A standard GNU/Linux userspace takes up a lot of space

• Busybox provides replacements for many useful programs
• Essential programs: init, coreutils, shells, . . .
• Extra services: httpd, dpkg, udhcpc, . . .

• All programs in one binary for maximum code sharing

• busybox checks argv[0]; just link it to many different paths

• Configurable via Kconfig, like the Linux kernel

• Fine-grained choices:
• Which commands do you need?
• Which command-line options do you need?
• What functionality do you need?



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded bootstrapping

• Build cross-compiler for target architecture (PowerPC)

• Build current U-Boot for the target architecture

• Flash new U-Boot using old U-Boot, and hope it boots (it did)

• Cross-compile Linux kernel as a uImage (need mkimage)

• Configure and cross-compile BusyBox

• Build the initramfs from BusyBox and some config files

• Copy and customize device-tree source template for our board

• Compile device-tree source with device-tree-compiler

• Use U-Boot and TFTP to copy kernel, initramfs, and dtb to
RAM, and flash them to appropriate addresses in MTD flash

• Configure U-Boot bootcmd to boot Linux from MTD flash



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running



Summary of embedded boot process

• Power on

• U-Boot gets control

• U-Boot initializes minimum necessary hardware

• U-Boot runs environment variable “bootcmd” on boot

• bootcmd tells U-Boot to boot Linux from flash with initramfs
and dtb

• U-Boot loads Linux, initramfs, and dtb from flash into RAM

• bootcmd boots Linux, passing initramfs and dtb

• Kernel finds hardware via dtb

• Kernel extracts initramfs into tmpfs

• Kernel runs init

• Init gets userspace up and running


