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3 Analysis Methods and CAD Programs 

The design of even a simple rectangular microstrip antenna can be challenging.  For 

more complex antennas, the design process becomes very complicated and time 

consuming.  Only a few design equations exist for microstrip antennas, and they are 

limited in their accuracy and generally apply only to simple, single layered rectangular 

and circular patch geometries.  Moreover, once fabricated, the antennas must be tuned by 

the cut and try method.  There are complicated models and full wave solutions to some of 

the complex patch geometries, but they are often very difficult to apply in a practical 

design.  A more realistic approach for designing complicated geometries is to begin using 

the simple equations to estimate the patch dimensions and then use CAD programs to 

optimize the design.  The antenna is then fabricated and tuned by cut and try methods. 

3.1 Microstrip Antenna Analysis Techniques 

There are several common methods to analyze microstrip antennas.  The simplest 

is to treat the microstrip antenna as a transmission line.  This technique is generally 

limited to basic geometries and has only limited accuracy.  Another technique is to treat 

the patch as a resonant cavity.  This model is limited to geometries having substrate 

thicknesses much less than a wavelength.  The final method is to apply fullwave 

techniques to the analysis of the antenna.  While this method is usually very accurate and 

can be applied to complex geometries, it is much more difficult to use than the simpler 

models. 
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3.1.1 Transmission Line Model 

The transmission line model [48-53] is the simplest method used to analyze 

microstrip antennas.  Antenna design parameters can be estimated quickly.  This model is 

generally applicable to simple antennas; however, recently it has been modified for more 

complicated geometries.  The model represents a microstrip antenna as a very wide 

microstrip transmission line of limited length.  The two open ends at the radiating sides of 

the patch, between the patch and the ground plane, can be thought of radiating apertures 

or slots.  These slots are treated as two high impedance loads separated by a low 

impedance transmission line, as shown in figure 3.1.  Using this model, relatively simple 

equations have been derived for the patch dimensions, input impedance, quality factor, 

and radiation fields for rectangular patches. 

 
Figure 3.1.  Equivalent transmission line model [54] 

3.1.2 Cavity Model 

The cavity model [55-59] provides an intuitive understanding to the patch 

operation and usually provides more accurate solutions than the transmission line model.  

The main assumption for this model is that the substrate thickness is much less than the 

wavelength (h < 0.05λ).  Therefore, the electric fields are assumed to exist only 

perpendicular to the ground plane and the patch element, resulting in only TM modes.  

Under these conditions, the patch is modeled as a resonant cavity.  The patch and ground 
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plane are represented as electric walls, while the sides of the cavity represented as 
  

magnetic walls, as shown in figure 3.2. 

Figure 3.2.  Resonant cavity having magnetic walls [60]. 
 

3.1.3 Fullwave Solutions 

Fullwave solutions [61-85] use Maxwell’s equations and enforce the boundary 

conditions to account for all relevant wave mechanisms in the microstrip antenna.  Their 

accuracy depends on the accuracy of the numerical methods used to derive the solution.  

Their formulation and final field solutions are too lengthy to include here.  References 

[86-88] cover these in sufficient detail.  By far, the most common numerical analysis 

technique used in the analysis of microstrip antennas is the Method of Moments (MoM).  

However, during the past decade, the Finite Difference Time Domain (FDTD) analysis 

has been successfully applied to the analysis of microstrip antennas and appears more 

frequently in the literature.  These methods are complicated to develop and require 

intense computational resources.  Fullwave solutions lack generality, requiring that the 

integral equations be derived and numerical methods reapplied for each different antenna 

geometry investigated. 

The general fullwave procedure is to derive electric field equations for both the 

feed and the patch.  Often, these are very complicated electric field integral equations.  
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They are constructed using Green’s functions, having the basic form, 

( ) ( )tan , ' 0 ,incE E g r r J r dS= + =∫  (3.1) 

where g is the Green’s function,  is the current on the metallic surfaces,  is the 

tangential field on the metallic surface, and  is the impressed incident field (generally 

from the source signal).  The only unknown in the equation is the surface current on the 

patch.  Often, these equations can only be solved numerically.  The most common 

numerical method applied to microstrip antennas is the method of moments.  Applying 

numerical methods are complicated and require the use of high-speed computers having 

significant resources of RAM.  Once the surface currents are determined, then the far 

field radiation pattern and other antenna parameters can be determined. 

J tanE

incE

While many journal articles present fullwave solutions to a variety of patch 

geometries and parameters, applying these results requires an understanding of advanced 

electromagnetics and applied mathematics.  Moreover, the theory presented is usually 

very specific and cannot easily be applied to other general cases.  In most cases it is more 

practical to design an antenna using the simplified models and existing CAD programs. 

3.2 Patch Dimensions, Input Impedance, and Quality Factor 

3.2.1 Dimensions for Rectangular Patch 

The width (dimension b in figure 2.2a) of the rectangular patch is arbitrary.  

Narrow widths become less efficient and wide widths can create high order modes.  As 
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the width is increased, the input impedance decreases. A recommended practical width, 

having good efficiency, is given by [89] 
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where fr is the resonant frequency of the patch and  is the relative permittivity of the 

substrate.  For a circularly polarized patch, the width is designed using the same design 

technique used in determining the resonating length (dimension a in figure 2.2a). 

rε

 Because of the fringing fields, the effective electrical length of the patch is 

slightly longer than the physical length.  To account for this fringing effect, an effective 

dielectric constant is used for frequencies less than 10 GHz.   
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where h is the thickness of the substrate.  Taking into account of the fringing fields, the 

resonant length of the patch is determined by 
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The resonant frequency of a given patch is determined by 

 .
2 ( 2r

eff fringing

cf
L Lε
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+ )

 (3.7) 

3.2.2 Dimensions for Single Circularly Polarized Patch 

The two most common single fed circularly polarized patches are shown in figure 

3.3.  For the truncated corner patch shown in figure 3.3a, the required perturbation is 

produced by trimming of the opposite corners on one diagonal of a square patch.  The 

patch is fed on either side, resulting in either right hand or left hand circular polarization.  

For the nearly square patch shown figure 3.3b, the perturbation is produced by making 

one side of the patch longer than the other.  The dimensions are derived using the 

variational method [90, 91].   

 
 

 
 

 

 

 

 

c c

a. truncated   b. nearly square 
 

Figure 3.3.  Truncated and nearly square patch elements [92]. 

 The size of the perturbation in both cases is related to the size and quality factor 

of the patch.  For the truncated corner patch, 

QS
s

2
1

=
∆

 (3.8) 

and for the nearly square patch, 
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1 ,s
S Q
∆

=  (3.9) 

where  is the area of the perturbation segment and S is the area of the patch.  From 

equations 3.8 and 3.9, the perturbation length ‘c’ for the truncated patch is given by 

s∆

sc ∆=  (3.10) 

and for the nearly square patch it is given by 

.sc
L
∆

=  (3.11) 

The resonant frequencies of the new modes are functions of the perturbation segments.  

For the truncated  patch,  





 ∆
−=
S
sff 2101

 (3.12) 

and 

2f f= 0. (3.13) 

For the nearly square patch, 





 ∆
−=
S
sff 101

 (3.14) 

and 

2f f= 0. (3.15) 

Because fo is the resonant frequency of the patch without perturbation, the length of the 

single fed square patch should be slightly smaller than for the linearly polarized case. 
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3.2.3 Input Impedance for Rectangular Patch 

 The input impedance of a rectangular patch can be determined using the 

transmission line model where each radiating edge is represented by an equivalent 

parallel admittance Y1 = G1 + jB1 and Y2 = G2 – jB2 at resonance.  For a rectangular patch 

at resonance, G1 = G2 and B1 = B2.  Neglecting the mutual effects of each slot, the 

resonant input resistance is given by  
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3.2.4 Input Impedance for Wraparound Patch 

The total input resistance, for the entire band, is calculated using the transmission 

line model is 
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where the conductance Gs is  
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The input impedance of the wraparound patch at each feed point is 

,F F iR N R= ⋅ n  (3.20) 

where NF is the number of feeds used in the wraparound patch design. 

3.2.5 Quality Factor for Rectangular Element 

The quality factor (Q) is a figure of merit that is a measure of antenna losses.  For 

single fed circularly polarized elements, the perturbation sections are proportional to this 

factor.  A microstrip antenna, often modeled as a parallel resonant circuit or a resonant 

cavity, has a large quality factor.  The losses are results of radiation, resistance of the 

copper, the dielectric losses in the substrate, and surface wave losses.  For thin substrates, 

surface wave losses are assumed negligible, and the total quality factor is written as 

1 1 1 1 ,
t c d radQ Q Q Q
= + +  (3.21) 

where the quality factor due to the dielectric, the conductor, and radiation are 
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Using the transmission line model, the quality factor can be approximated easier by [93], 
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where Zm is the characteristic impedance found by 
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and the mutual conductance is 
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3.3 Microstrip Patch Radiation 

3.3.1 Electric Field Equations 

 The far field radiation pattern of an antenna is described by the antenna’s electric 

field in spherical coordinates, as shown in figure 3.4.  Using the cavity model, the far-

field radiating fields for a planar rectangular patch, determined from equivalent magnetic 

current densities on the cavities’ magnetic walls, are [94],  
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Figure 3.4.  Radiated field coordinate system geometry [95]. 
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and 
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where Vo is the voltage across each radiating slot,  is limited to  because 

of the ground plane, and h is the substrate thickness.  The electric field equations get 

much more complicated for the cylindrical case [96-101]. 

Eθ 0 / 2θ π≤ <

3.3.2 Losses Due to Polarization Mismatch 

The polarization of a radiated field is defined as the orientation of the electric 

field vector.  The general case is when the field is elliptically polarized, as shown in 
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figure 3.5.  If the polarizations of a transmitting and receiving antenna are equal, there 

will be no losses due to polarization mismatch.  However, for linear polarized antennas, 

the loss is infinite when the transmitting and receiving antennas are orientated 

orthogonally.  For circular polarized antennas, the loss is infinite when their electric 

fields are rotating in opposite directions, or different by 180 degrees.  Therefore, to 

minimize or eliminate any losses that result from polarization mismatch, it is important to 

match the polarizations of the transmitting and receiving antennas.  In special cases, it 

may be impossible to guarantee the orientation of an antenna.  This is the case for an 

antenna on a sounding rocket.  A sounding rocket’s orientation and position is not static, 

but continuously changing.  This movement results in changes in the polarization of the 

signal received by the ground station.  Therefore, to ensure signal reception, it is 

necessary that the ground station’s antenna be circularly polarized.   

 
 
 
 
 

 

 
 

Figure 3.5.  Polarization ellipse at z = 0 [102]. 

With the assumption that the ground station’s antenna is circularly polarized, this 

section will investigate the losses due to polarization mismatch between the transmit and 

receive antennas.  The two extreme cases are when the polarization of the sounding 

rocket’s transmit antenna is either linearly or circularly polarized. 
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The first case is when the sounding rocket uses a linearly polarized antenna and 

the ground station uses a circularly polarized antenna.  Since the rocket moves over time, 

the orientation of linearly polarized antenna with respect to the ground station will vary 

between vertical and horizontal.  Because the receiving antenna is circularly polarized, 

the resulting mismatch losses are constant over time, irrespective of the orientation of the 

linearly polarized transmit antenna.  The magnitude of this constant mismatch loss is 3 

dB, assuming zero tilt angle.  In contrast, if a linearly polarized antenna replaced the 

ground station’s circularly polarized antenna, the losses would not be constant, but would 

vary between 0 dB and infinity over time.  Therefore, when the rocket has a linearly 

polarized antenna, to guarantee that the ground station receives the signal, the 3 dB 

mismatch loss resulting from the linearly to circularly polarized antennas is acceptable. 

The second case is when the sounding rocket uses a circularly polarized 

microstrip antenna and the ground station uses a circularly polarized antenna, both having 

the same polarization sense.  As the rocket is in motion, the orientation of the rocket will 

change with respect to the ground station.  Because the rocket’s circularly polarized 

antenna is only circularly polarized broadside to the patch, and only over a narrow 

frequency range, there will still be polarization losses between the rocket and the ground 

station.  Off from broadside, the polarization becomes elliptical, ultimately becoming 

linear along the longitudinal axis of the rocket.  The mismatch in this second case results 

in a 0 to 3 dB loss in signal strength over time received at the ground station.   

Generally, a circularly polarized antenna is only circularly polarized for limited 

bandwidth and beamwidth.  For the case of a microstrip antenna on a sounding rocket, it 
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is only circularly polarized broadside to the cylinder.  The degree of circular polarization 

is described by the axial ratio, which is determined by, 

Major Axis Electric Field20log .
Minor Axis Electric Field

AR


= 
 


  (3.32) 

When an antenna is circularly polarized, the axial ratio magnitude is 0 dB.  As the 

antenna polarization becomes elliptical, the axial ratio increases in magnitude.  If the 

axial ratio continues to increase in magnitude, the antenna’s polarization will eventually 

become linear. 

 In the first case of a linearly polarized antenna on the rocket (ARLP = ∞) and a 

circularly polarized antenna at the ground station (ARCP = 0 dB), the mismatch loss is a 

constant 3 dB.  In the second case of a circularly polarized microstrip antenna on the 

rocket (0 dB > AREP > ∞) and a circularly polarized antenna on the ground (ARCP = 0 

dB), the mismatch loss varies from 0 to 3 dB. 

To quantify the loss resulting from polarization mismatch as a circularly polarized 

antenna becomes elliptical, the polarization loss factor can be calculated using the 

following equation, 
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The unit vectors  and  represent the sounding rocket and ground station ˆrockete ˆgrounde
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electric fields having the general form, 

  (3.34) 0
0 0ˆ ˆ( ) jk z
x yE E x E y e−= + .

A plot of the polarization loss factor is shown in figure 3.6.  The plot relates the 

axial ratio to the mismatch loss assuming one of the two antennas is perfectly circularly 

polarized.  In our case, the ground station’s antenna is assumed ideally circularly 

polarized.  If the sounding rocket has an antenna that is also perfectly circularly 

polarized, then its axial ratio will be 0 dB.  This corresponds to a polarization mismatch 

loss of 0 dB.  If the sounding rocket has an elliptically polarized antenna, having an axial 

ratio of 10 dB, then the polarization loss will be approximately 1 dB.  Finally, as seen in 

the plot, an axial ratio of greater than 40 dB results in a loss of approximately 3 dB.  

Therefore, a rough guideline is that an axial ratio of 30 dB equates to the performance of 

a linearly polarized antenna. 
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Figure 3.6.  Loss versus AR for sounding rocket antenna. 
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3.4 Hertzian Electric Dipole (HED) Formulas 

 The following analysis formulas for the rectangular microstrip antenna are 

derived from analytical approximations of exact formulas, not empirical formulas [103].  

They become more accurate as the substrate thickness decreases. 

3.4.1 Radiation Quality Factor 

 Assuming no conductor loss and no dielectric loss, the radiation efficiency that 

accounts only for the power loss due to surface waves is  

 0 r
r

sp
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where the radiation quality factor is defined as  
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The space and surface wave quality factors can be approximated using the radiation 

efficiency of a horizontal electric dipole, , on the top of a lossless substrate.  The 

analysis formula for the space wave quality factor is 
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and 

 1 r rn ε µ= . (3.41) 

The array factor p, which relates the efficiency of the HED to the efficiency of a 

rectangular patch, is defined as 
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3.4.2 Radiation Efficiency 

 The radiation efficiency of the horizontal electric dipole is, 
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where the power of the HED space wave is 
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and the power of the HED surface wave is 
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with  
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The rectangular patch radiation efficiency is  
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where the surface resistivity is 
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3.4.3 Input Resistance, Bandwidth, and Directivity 

Using methods based on the cavity model, the input resistance of a rectangular 

patch is 
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where  
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1tan eff
totalQ

δ = . (3.55) 

The bandwidth formula of the patch is 
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The gain and directivity of the patch is 
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3.5 Description of Relevant CAD Programs 

There are several CAD programs available for microstrip antennas.  They range 

from simple and inexpensive DOS programs to complicated and expensive fullwave 

analysis programs.  The ones that will be used in the subsequent chapters are described in 

this section.  The DOS based CAD programs are available with Sainati’s microstrip 

antenna text [104].  An accurate, fullwave CAD program from Ansoft is Clementine, 

which analyzes microstrip patches on a cylinder.  While these patches can be of any 

dimension, they are restricted to only a single substrate layer.  In other words, Clementine 

is unable to analyze patches with aperture coupled feeds or superstrate overlays. 

3.5.1 DOS Based CAD Programs 

Several DOS programs are available with Saintia’s text, which quickly determine 

basic parameters and radiation patterns for microstrip patch elements and arrays.  The 
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more relevant ones include PATCHD and PATCH9 for analyzing rectangular patches, 

WRAPRND for analyzing a wraparound patch, and CPPATCH for analyzing either a 

nearly square or a truncated corner circularly polarized patch element. 

3.5.1.1 PATCHD 

PATCHD calculates the basic parameters for both rectangular and circular patch 

elements.  These parameters include the resonant dimensions, input resistance, efficiency, 

and quality factor.  The calculations are based on closed form expressions derived from 

full wave solutions, which include the surface wave effects of the patch but not the feed.  

The accuracy of the results is expected to be within a few percent and is valid for a 

limited range of permittivity, substrate height, and patch width.   

3.5.1.2 PATCH9 

PATCH9 calculates basic parameters for rectangular patch elements.  It has two 

modes, one used for design and the other for analysis.  In the design mode, the length and 

input impedance is determined as a function of frequency.  In the analysis mode, the 

input impedance is determined based on the patch dimensions and parameters entered.  

Based on the transmission line model, PATCH9 is expected to have an accuracy of 2 to 3 

percent over a limited range of permittivity, substrate height, and patch width.  In contrast 

to PATCHD, PATCH9 includes the feed in its calculations, including edge, probe, and 

inset feeds. 
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3.5.1.3. WRAPRND 

WRAPRND calculates the length, resonant frequency, number of feeds for a wrap 

around patch.  The input impedance is not calculated.  The accuracy of the results is 

expected to be better than five percent. 

3.5.1.4 CPPATCH 

CPPATCH calculates the resonant frequency and input impedance of nearly 

square and truncated corner circularly polarized patch elements.  CPPATCH is based on 

both PATCHD and PATCH9.  It uses the curve fit equations based on fullwave analysis 

from PATCHD and uses the feed models from PATCH9.  The accuracy is expected to be 

about three percent, which is significant since the axial ratio bandwidth of a single feed, 

circularly polarized element is typically less than one percent. 

3.5.2 Clementine 

Ansoft’s Clementine is a fullwave analysis CAD program that analyzes single 

layered microstrip geometries on a cylinder.  Once the geometry is entered, which may be 

of any dimension, it can be analyzed.  The analysis results include S-parameters, input 

impedance, surface currents, and far-field radiation patterns.  In all these cases, the results 

can be viewed in text or graphic form. 

Although Clementine can accurately analyze microstrip antennas, it cannot 

directly design an antenna.  A microstrip patch or array of patches must be designed 

through an iterative process.  In order to determine the initial patch dimensions to begin 

this iterative design process, Clementine provides an estimation tool, which quickly 
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provides estimated dimensions for microstrip feeds, rectangular patch elements, and 

circularly polarized elements.  These estimated patch dimensions are determined using 

the cavity model for planar surfaces.  The number of iterations required to have an 

accurately designed antenna depends on the complexity of the patch and its feed network. 

Clementine is uses mixed-potential integral equations and the method of 

moments.  Its results are accurate and take into account all mutual coupling effects.  The 

microstrip geometry is subdivided into meshed sections automatically before the 

simulation can occur.  The sizes of the mesh can either be entered or automatically 

determined.  If the meshed sections consist of many triangular sections that are very 

narrow, there is a chance that the results may be inaccurate. 

Fullwave solutions that are based on the method of moments can be 

computationally intensive, especially when the patch dimensions are large.  The size of 

the structure that can be simulated depends on the memory capacity of the computer 

(RAM).  Ansoft recommends a computer with 64 MB of RAM to simulate arrays having 

12 elements (3000 unknowns).  For example, a 500 MHz Pentium III with 256 MB of 

RAM took between 10 to 20 hours to analyze a wraparound patch designed for an 

operating frequency of 2.2155 GHz.  In contrast, a 366 MHz Pentium III with only 64 

MB of RAM was unable perform the same simulation. 

While the design of the antenna cannot be based solely on a CAD tool, they are 

extremely helpful to the designer.  They can enable the designer to complete an antenna 

design much faster, while the old “cut and try” method may take several months and be 

significantly more expensive. 
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