
Uncanny: Scratching a Linux Device Driver Itch

Ian Osgood
Portland State Aerospace Society

Portland, Oregon
iano@quirkster.com

http://psas.pdx.edu

Draft of 2003/12/31 15:44

Abstract

The average application developer considers device
drivers to be be deep voodoo. You’re stuck if you don’t
have the driver for your hardware, and at the mercy of
the driver writer for any that are available. This pa-
per shows, however, that open source Linux drivers are
by no means out of reach of even a kernel novice. I
will show the path from an open source Linux CAN bus
driver through the minor customization required for our
embedded environment to the final completely rewritten
driver tailored specifically to the needs of our applica-
tion.

1 Introduction
The Portland State Aeronautics Society builds rockets
with the eventual goal of a guided trajectory into or-
bit. The system we have designed to do this is a dis-
tributed system of PIC controllers and a 486 running
Linux. The PIC nodes operate various sensors (GPS,
accelerometers, pressure and temperature sensors) and
functions (power, apogee detection, parachute ejection,
manual override, active guidance). The Linux node inte-
grates the data from the various nodes, coordinates them
to determine attitude and position, and corrects the tra-
jectory by controlling the guidance. The nodes inter-
communicate using a CAN bus.

CAN (Controller Area Network) bus is a 1 Mbps two
wire bus developed in the automotive industry for real-
time distributed sensing and control. Data on the bus are
sent serially, in variable length packets. Each packet has
an 11-bit identifier, 1 bit identifying a Remote Transmit
Request (RTR), a 4-bit data length, and 0-8 bytes of data.
The bus is designed so that contention is resolved strictly
via the message identifier; lower IDs have precedence.

2 Starting Point
The Flight Computer and Launch Tower Computer
MOPS/520 boards contain a built-in Intel i82527 CAN
interface chip. We found an open source Linux driver [1]

which handles this chip, which we modified to work
on the MOPS board. The main modifications were to
extend the driver with a source module abstracting the
details of our specific motherboard (interrupt number,
memory map), add a plethora of kernel debug messages,
and replace an overly complicated auto-detection of bus
speed with hardwired values.

The Intel CAN interface chip presents fifteen message
objects, each of which can be used to independently send
and receive messages on the CAN bus. The existing
driver presents 15 different devices, one per message ob-
ject. This is good for a model where you can have multi-
ple processes each in charge of reading or writing CAN
messages. However, the architecture we developed for
the Flight Computer (FC) only has one process which
reads and writes to the CAN bus, and distributes mes-
sages to other processes as necessary. This mismatch in
goals between our application and the driver led to un-
deruse of the potential of the chip. It was also likely
that the current driver architecture could not support the
expected combined telemetry and data bandwidth of the
fully functional Flight Computer.

In addition there were many required functions that
were simply missing from the device driver. First, it
appeared that RTR messages were completely unsup-
ported. The driver code to support these messages was
only half-written and extremely convoluted to deal with
the stateful nature of these messages. Also, to handle
these RTR messages, the incoming buffer to theread
system call was significant, which breaks the standard
Unix device driver interface specification, and lead to
many wasted hours figuring out why our application
code wasn’t working. Our application used theselect
system call to multiplex CAN message handling with in-
ternal interprocess message handling, but we found only
recently that the CAN driver did not support ’select’.

3 Driver Modification and Rewrite
Although I had written Unix apps and taken courses in
Unix internals, I had never sullied my hands with an ac-

Draft: 2003/12/31 15:44 Page:1



tual driver. I originally pored over the existing driver
source trying to patch it up just enough to meet our
needs. Incremental changes to an existing system often
don’t require the depth of knowledge required to rewrite
an entire system. However, driver work on an embed-
ded system is quite tedious. And after a few months it
became clear that a full driver rewrite was the option of
least resistance. The new plan was to develop a Linux
CAN driver as simple as possible, tailored specifically
to our hardware and performance requirements.

I started by finding material on the Internet about the
proper structure of a Linux device driver [4, 5]. Im-
mediately useful was the extensive documentation col-
lected by the PSAS and made available through their
Twiki web site. Through them, I found the Intel i82527
chip architecture specifications [2] and prior history on
the MOPS board and the requirements for the driver’s
throughput. Then I took the existing source code and
pared it down to those modules specific to our applica-
tion. This reduced the project from sixty source files
to eight source files: the general Linux driver frame-
work and specific support for the MOPS board, the
i82527 chip specific handler, the ’fileops’ (read/write,
open/close), and the corresponding header files. This
phase consisted of removing from the overly general
driver all that was not required by our specific hardware
configuration.

Secondly, the driver was restructured to present only
a single device. Internally, it made use of the chip’s fif-
teen message buffers as it saw fit to handle the current
communication demands.

At this stage, the driver was written without inter-
rupts, polling the chip message buffers to read. This is
easier to test and sufficient functionality for the Launch
Tower Computer (LTC). The LTC simply accepts com-
mands from the Launch Controller (LC) and retransmits
them on the CAN bus, possibly returning status of the
Launch Tower on demand. This is very low bandwidth,
and polling is appropriate. The LTC is also a very sim-
ple system with LEDs for feedbac, and so is ideal for
testing.

Later when the LTC checked out, support for inter-
rupts and theselect call were [will be] added to the
driver. The implementation is similar to that of the orig-
inal CAN driver, but much simplified and more robust.

4 Development Environment
The build environment was one of the first things to set
up. The MOPS board runs the Debian Linux ’sarge’ ker-
nel version 2.4.18. Since this is not the same as our de-
velopment machines, we first had to install the headers
for that system and configure the build environment to
use those headers.

The typical development cycle for the driver is:

1. build the driver on the development machine
2. scp the driver to the FC via the 802.11b wireless

link
3. ssh to the FC and install the driver locally
4. restart the FC applications to check the functional-

ity

Since there was no room on the Flight Computer
for development tools likegdb , most debugging was
through judiciously placedprintk statements in the
driver, which show up on the serial console provided by
the MOPS board.

Virtual terminals are a nice feature of Linux, allowing
a couple of terminals for editing, a terminal for build-
ing and copying, a terminal for thessh connection to
the FC, and a terminal runningminicom for the FC’s
serial console. XTerminals could be used instead, but
my development laptop could not have enough space de-
voted for an X installation. (This may change, seeing
how small and efficient the OpenDesktop X server is be-
coming, thanks to the brilliance of Keith Packard [?].)

After each session, I check in the stable changed
source to our CVS repository. I go to the PSAS Twiki
and update the Linux CAN Driver page to reflect the
group’s newfound knowledge and current progress. The
Twiki becomes my engineering notebook and communi-
cation tool in one. Hopefully, it will help the next gener-
ation of club members come up to speed on our project
as quickly as I was able to.

4.1 Custom Tool: sucan
This methodology is pretty tedious, especially for the
frequent changes required to explore the functionality of
the i82527 CAN chip. Exploration was required because
the published documentation didn’t match the driver or
Intel’s own sample code [2]. It was desirable to have a
more interactive means of exploring the chip. I discov-
ered theiopl system call in Intel Linux, which allows a
user-mode application (running as ’root’) to gain full ac-
cess to the I/O space, normally reserved only for device
drivers. This allowed me to write a toolsucan which
let me fully exercise the chip via a command-line inter-
face. This greatly sped up the process of determining
the correct I/O sequences to read and write RTR mes-
sages. Eliminating frequent driver reinstalls was crucial
for getting enough time to experiment during a typical
3-4 hour weekly rocket meeting.

4.2 Custom Tool: CANtalope
Also of aid in this process was a custom CAN bus mon-
itoring hardware, CANtalope, developed by the PSAS
Avionics team. This was a generic CAN node, a small
PIC circuit board which is the basis of all the CAN nodes
in the Flight Computer, modified with LEDs to show the
status of the CAN bus in real time, and with a serial

Draft: 2003/12/31 15:44 Page:2



port interface for remotely sending and receiving arbi-
trary CAN messages from a development workstation.
Some software was written for the workstation to con-
veniently display and log received CAN messages and
send CAN messages with a variety of data formats. The
software was used to confirm the proper operation of the
Linux CAN driver revisions. CAN bus debugging was
one of the last pieces of our development process that
was not previously open-source, relying on a Windows
application called CAN King.

5 Conclusion
The success of our rocket Avionics is predicated on the
availability of open-source software for almost all as-
pects of the system:

• The main OS of Linux, to the drivers for the CAN
bus and wireless network, the flexible development
tools, and ease of installation of software and com-
ponents thanks to the Debian package system.

• An open community where documentation and
guidance is widely available.

• An open Twiki web system so that the PSAS’s ac-
tivities are immediately documented.

• An open rocket society so that new members can
immediately become productive members of the
team.

It is debatable whether our contributions are useful to
the Linux community in the long run. I scratched a very
particular itch, one which is not widely found in the Unix
community. In the course of the work, there are many
fixes we found which can be patched back to the original
driver, but there has been no activity on that CAN driver
since 2001 [1]. Does this mean we should take it over,
or supplant it with our own driver? Of course, our driver
is specific to our hardware, and the original one more
general purpose with wider hardware support. But that
generality got in our way.

The CANtalope diagnostic system could very well be
of use to those doing development on CAN systems in
any environment. The barrier here is the need to build
your own CAN node, even though schematics, firmware,
and software are open source and freely available. Just
how much open source or shoestring-budget CAN de-
velopment is there in the world?

I suspect it was easier to rewrite the driver from some-
thing known to work previously than it would have been
to write from scratch. But who knows? We wasted alot
of time working around the previous driver.

There are several directions available due to open
source. One is to make your product as general pur-
pose as possible. The goal is for the product to spread
wide, and hopefully the wide audience will generate
more fixes, more features, and even broader support. But

one is also allowed to go the other direction; to simplify
and remove all that is not needed to meet one’s specific
needs. This work is likely to be a dead end as far as
the evolution of the source is concerned, but results in a
highly tuned application. Perhaps the simplified product
can be the seed for future growth in new directions the
original source could not have gone.

Tried and true methods were shown to work well.
Take small steps. Test frequently. Commit frequently.
Have others review your work, both to get the expertise
of the masters, and to educate the newbies. Learn from
the old code but don’t be afraid to take it in new direc-
tions. Make good use of your tools (vim).

6 Acknowledgments
The PSAS team has been very fun and rewarding work
with. During the last half year, I have learned enough to
install Linux, and work on drivers in an embedded envi-
ronment. I had no idea I would be writing and improv-
ing device drivers half a year ago when I first joined the
PSAS. I’m glad to be working with such a great group,
getting in touch with my inner geek. I would specifically
like to thank Andrew Greenberg, the spiritual leader of
our little group. Without his energy and dedication, this
group may have fallen apart many years ago. His vast
electronics and firmware experience led me out of many
dead ends. I also thank James Perkins and Jamey Sharp
for getting the CAN driver to work for the first time in
our avionics system, for their general Linux expertise,
and for guiding me through the Linux avionics code.

Thanks to Andrew, Peter Welte, and Tyler Nguyen for
coming up with CANtalope, finishing it just in time to
confirm the first successful operation ofsucan .

Thanks also to Linux and the open source commu-
nity. Without Arnaud Westenberg’s original open source
Linux driver [1], none of this would have been possible.
Without the publicly available books about linux drivers
and modules [4, 5] I wouldn’t have been able to gain the
knowledge I’d need to confidently rewrite the driver.

Thanks to Bart Massey and Keith Packard for guid-
ance rewriting the CAN driver, and thanks to Bart for en-
couraging us to submit a paper to the Freenix conference
and providing excellent TeX templates. A big thanks
to TeXShop, a GPL Max OS X TeX editor and pre-
viewer, which allowed me to go from zero TeX knowl-
edge to a full abstract in one day! It can be found at
http://www.uoregon.edu/˜koch/texshop .

7 Availability
All documentation and working notes for the projects
of the PSAS are on the PSAS Twiki web pages at
http://psas.pdx.edu/ . The hub page for the
CAN driver is athttp://twiki.psas.pdx.edu/
bin/view/PSAS/CanBusLinuxDriver [3].

Draft: 2003/12/31 15:44 Page:3



All source code is publicly available through the
PSAS WebCVS pages athttp://cvs.psas.
pdx.edu/cgi-bin/cvsweb/c/can-linux/ .
The old CAN driver code specifically is at
http://cvs.psas.pdx.edu/cgi-bin/
cvsweb/c/can-linux/ and the new driver is
at http://cvs.psas.pdx.edu/cgi-bin/
cvsweb/c/can-linux/uncanny .

References
[1] Arnaud Westenberg’s Linux CAN-bus Driver,

http://home.wanadoo.nl/arnaud/

[2] 82527 Serial Communications Controller Ar-
chitectural Overview, Intel Corporation (1996),
http://twiki.psas.pdx.edu/pub/
PSAS/FlightComputer/Intel_82527_
Architecture.pdf

[3] Ian Osgood et al, emphPSAS CAN Bus Linux
Driver, http://twiki.psas.pdx.edu/
bin/view/PSAS/CanBusLinuxDriver

[4] Alessandro Rubini and Jonathan Corbet,Linux
Device Drivers, 2nd Edition, O’Reilly & Asso-
ciates, Inc. (2001),http://www.xml.com/
ldd/chapter/book/index.html

[5] Peter Jay Salzman and Ori Pomerantz,The Linux
Kernel Module Programming Guide, http://
tldp.org/LDP/lkmpg/lkmpg.pdf , Open
Software License (2003)

Draft: 2003/12/31 15:44 Page:4


